134 research outputs found

    Evaluation and improvement of the workflow of digital imaging of fine art reproduction in museums

    Get PDF
    Fine arts refer to a broad spectrum of art formats, ie~painting, calligraphy, photography, architecture, and so forth. Fine art reproductions are to create surrogates of the original artwork that are able to faithfully deliver the aesthetics and feelings of the original. Traditionally, reproductions of fine art are made in the form of catalogs, postcards or books by museums, libraries, archives, and so on (hereafter called museums for simplicity). With the widespread adoption of digital archiving in museums, more and more artwork is reproduced to be viewed on a display. For example, artwork collections are made available through museum websites and Google Art Project for art lovers to view on their own displays. In the thesis, we study the fine art reproduction of paintings in the form of soft copy viewed on displays by answering four questions: (1) what is the impact of the viewing condition and original on image quality evaluation? (2) can image quality be improved by avoiding visual editing in current workflows of fine art reproduction? (3) can lightweight spectral imaging be used for fine art reproduction? and (4) what is the performance of spectral reproductions compared with reproductions by current workflows? We started with evaluating the perceived image quality of fine art reproduction created by representative museums in the United States under controlled and uncontrolled environments with and without the presence of the original artwork. The experimental results suggest that the image quality is highly correlated with the color accuracy of the reproduction only when the original is present and the reproduction is evaluated on a characterized display. We then examined the workflows to create these reproductions, and found that current workflows rely heavily on visual editing and retouching (global and local color adjustments on the digital reproduction) to improve the color accuracy of the reproduction. Visual editing and retouching can be both time-consuming and subjective in nature (depending on experts\u27 own experience and understanding of the artwork) lowering the efficiency of artwork digitization considerably. We therefore propose to improve the workflow of fine art reproduction by (1) automating the process of visual editing and retouching in current workflows based on RGB acquisition systems and by (2) recovering the spectral reflectance of the painting with off-the-shelf equipment under commonly available lighting conditions. Finally, we studied the perceived image quality of reproductions created by current three-channel (RGB) workflows with those by spectral imaging and those based on an exemplar-based method

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif

    Fusing spatial and temporal components for real-time depth data enhancement of dynamic scenes

    Get PDF
    The depth images from consumer depth cameras (e.g., structured-light/ToF devices) exhibit a substantial amount of artifacts (e.g., holes, flickering, ghosting) that needs to be removed for real-world applications. Existing methods cannot entirely remove them and perform slow. This thesis proposes a new real-time spatio-temporal depth image enhancement filter that completely removes flickering and ghosting, and significantly reduces holes. This thesis also presents a novel depth-data capture setup and two data reduction methods to optimize the performance of the proposed enhancement method

    Similarity reasoning for local surface analysis and recognition

    Get PDF
    This thesis addresses the similarity assessment of digital shapes, contributing to the analysis of surface characteristics that are independent of the global shape but are crucial to identify a model as belonging to the same manufacture, the same origin/culture or the same typology (color, common decorations, common feature elements, compatible style elements, etc.). To face this problem, the interpretation of the local surface properties is crucial. We go beyond the retrieval of models or surface patches in a collection of models, facing the recognition of geometric patterns across digital models with different overall shape. To address this challenging problem, the use of both engineered and learning-based descriptions are investigated, building one of the first contributions towards the localization and identification of geometric patterns on digital surfaces. Finally, the recognition of patterns adds a further perspective in the exploration of (large) 3D data collections, especially in the cultural heritage domain. Our work contributes to the definition of methods able to locally characterize the geometric and colorimetric surface decorations. Moreover, we showcase our benchmarking activity carried out in recent years on the identification of geometric features and the retrieval of digital models completely characterized by geometric or colorimetric patterns

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies
    • …
    corecore