159 research outputs found

    10271 Abstracts Collection -- Verification over discrete-continuous boundaries

    Get PDF
    From 4 July 2010 to 9 July 2010, the Dagstuhl Seminar 10271 ``Verification over discrete-continuous boundaries\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Algorithmically generating new algebraic features of polynomial systems for machine learning

    Get PDF
    There are a variety of choices to be made in both computer algebra systems (CASs) and satisfiability modulo theory (SMT) solvers which can impact performance without affecting mathematical correctness. Such choices are candidates for machine learning (ML) approaches, however, there are difficulties in applying standard ML techniques, such as the efficient identification of ML features from input data which is typically a polynomial system. Our focus is selecting the variable ordering for cylindrical algebraic decomposition (CAD), an important algorithm implemented in several CASs, and now also SMT-solvers. We created a framework to describe all the previously identified ML features for the problem and then enumerated all options in this framework to automatically generation many more features. We validate the usefulness of these with an experiment which shows that an ML choice for CAD variable ordering is superior to those made by human created heuristics, and further improved with these additional features. We expect that this technique of feature generation could be useful for other choices related to CAD, or even choices for other algorithms with polynomial systems for input.Comment: To appear in Proc SC-Square Workshop 2019. arXiv admin note: substantial text overlap with arXiv:1904.1106

    3-torsion and conductor of genus 2 curves

    Get PDF
    We give an algorithm to compute the conductor for curves of genus 2. It is based on the analysis of 3-torsion of the Jacobian for genus 2 curves over 2-adic fields.Comment: 16 page

    New Baselines for Local Pseudorandom Number Generators by Field Extensions

    Get PDF
    We will revisit recent techniques and results on the cryptoanalysis of local pseudorandom number generators (PRGs). By doing so, we will achieve a new attack on PRGs whose time complexity only depends on the algebraic degree of the PRG. Concretely, for PRGs F:{0,1}n{0,1}n1+eF : \{0,1\}^n\rightarrow \{0,1\}^{n^{1+e}}, we will give an algebraic algorithm that distinguishes between random points and image points of FF, whose time complexity is bounded by exp(O(log(n)degF/(degF1)n1e/(degF1)))\exp(O(\log(n)^{\deg F /(\deg F - 1)} \cdot n^{1-e/(\deg F -1)} )) and whose advantage is at least 1o(1)1 - o(1) in the worst case. To the best of the author\u27s knowledge, this attack outperforms current attacks on the pseudorandomness of local random functions with guaranteed noticeable advantage and gives a new baseline algorithm for local PRGs. Furthermore, this is the first subexponential attack that is applicable to polynomial PRGs of constant degree over fields of any size with a guaranteed noticeable advantage. We will extend this distinguishing attack further to achieve a search algorithm that can invert a uniformly random constant-degree map F:{0,1}n{0,1}n1+eF : \{0,1\}^n\rightarrow \{0,1\}^{n^{1+e}} with high advantage in the average case. This algorithm has the same runtime complexity as the distinguishing algorithm

    A Mathematical Framework for Agent Based Models of Complex Biological Networks

    Full text link
    Agent-based modeling and simulation is a useful method to study biological phenomena in a wide range of fields, from molecular biology to ecology. Since there is currently no agreed-upon standard way to specify such models it is not always easy to use published models. Also, since model descriptions are not usually given in mathematical terms, it is difficult to bring mathematical analysis tools to bear, so that models are typically studied through simulation. In order to address this issue, Grimm et al. proposed a protocol for model specification, the so-called ODD protocol, which provides a standard way to describe models. This paper proposes an addition to the ODD protocol which allows the description of an agent-based model as a dynamical system, which provides access to computational and theoretical tools for its analysis. The mathematical framework is that of algebraic models, that is, time-discrete dynamical systems with algebraic structure. It is shown by way of several examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog

    Algorithmic boundedness-from-below conditions for generic scalar potentials

    Get PDF
    Checking that a scalar potential is bounded from below (BFB) is an ubiquitous and notoriously difficult task in many models with extended scalar sectors. Exact analytic BFB conditions are known only in simple cases. In this work, we present a novel approach to algorithmically establish the BFB conditions for any polynomial scalar potential. The method relies on elements of multivariate algebra, in particular, on resultants and on the spectral theory of tensors, which is being developed by the mathematical community. We give first a pedagogical introduction to this approach, illustrate it with elementary examples, and then present the working Mathematica implementation publicly available at GitHub. Due to the rapidly increasing complexity of the problem, we have not yet produced ready-to-use analytical BFB conditions for new multi-scalar cases. But we are confident that the present implementation can be dramatically improved and may eventually lead to such results
    corecore