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Abstract 

There are a variety of choices to be made in both computer algebra 
systems (CASs) and satisfiability modulo theory (SMT) solvers which 
can impact performance without affecting mathematical correctness. 
Such choices are candidates for machine learning (ML) approaches, 
however, there are difficulties in applying standard ML techniques, such 
as the efficient identification of ML features from input data which is 
typically a polynomial system. 

Our focus is selecting the variable ordering for cylindrical algebraic de
composition (CAD), an important algorithm implemented in several 
CASs, and now also SMT-solvers. We created a framework to describe 
all the previously identified ML features for the problem and then enu
merated all options in this framework to automatically generate many 
more features. We validate the usefulness of these with an experiment 
which shows that an ML choice for CAD variable ordering is superior 
to those made by human created heuristics, and further improved with 
these additional features. This technique of feature generation could 
be useful for other choices related to CAD, or even choices for other 
algorithms in CASs / SMT-solvers with polynomial systems as input. 

1 Introduction 

Machine Learning (ML), that is statistical techniques to give computer systems the ability to learn rules from 
data, is a topic that has found great success in a diverse range of fields over recent years. ML is most attractive 
when the underlying functional relationship to be modelled is complex or not well understood. Hence ML has 
yet to make a large impact in the fields which form SC2, Symbolic Computation and Satisfiability Checking [1], 
since these prize mathematical correctness and seek to understand underlying functional relationships. However, 
as most developers would acknowledge, our software usually comes with a range of choices which, while having 
no effect on the correctness of the end result, could have a great effect on the resources required to find it. These 
choices range from the low level (in what order to perform a search that may terminate early) to the high (which 
of a set of competing exact algorithms to use for this problem instance). In making such choices we may be 
faced with decisions where relationships are not fully understood, but are not the key object of study. 
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In practice such choices may be made by man-made heuristics based on some experimentation (e.g. [18]) or 
magic constants where crossing a single threshold changes system behaviour [11]. It is likely that many of these 
decisions could be improved by allowing learning algorithms to analyse the data. The broad topic of this paper 
is ML for algorithm choices where the input is a set of polynomials, which encompasses a variety of tools in 
computer algebra systems and the SMT theory of [Quantifier Free] Non-Linear Real Arithmetic, [QF]NRA. 

There has been little research on the use of ML in computer algebra: only [33] on identifying efficient multi
variate Horner schemes; [28] [27] [24] on the topic of CAD variable ordering choice; [26], [27] on the question of 
whether to precondition CAD with Groebner Bases; and [31] on deciding the order of sub-formulae solving for 
a QE procedure. Within SMT there has been significant work on the Boolean logic side e.g. the portfolio SAT 
solver SATZilla [46] and MapleSAT [34] which views solver branching as an optimisation problem. However 
there is little work on the use of ML to choose or optimise theory solvers. 

We note that other fields of mathematical software are ahead in the use of ML, most notably the automated 
reasoning community (see e.g. [43], [32], [7], or the brief survey in [19]). 

1.1 Difficulties with ML for problems in NRA 

There are difficulties in applying standard ML techniques to problems in NRA. One is the lack of sufficiently 
large datasets, which is addressed only partially by the SMT-LIB. The experiment in [26] found the [QF]NRA 
sections of the SMT-LIB too uniform, and had to resort to random generated examples (although the state 
of benchmarking in computer algebra is far worse [22]). There have been improvements since then, with the 
benchmarks increasing both in number and diversity of underlying application. For example, there are now 
problems arising from biology [4], [23] and economics [38], [39]. 

Another difficulty is the identification of suitable features from the input with which to train the ML models. 
There are some obvious candidates concerning the size and degrees of polynomials, and the distribution of 
variables. However, this provides a starting set (i.e. before any feature selection takes place) that is small in 
comparison to other machine learning applications. The main focus of this paper is to introduce a method to 
automatically (and cheaply) generate further features for ML from polynomial systems. 

1.2 Contribution and plan 

Our main contributions are the new feature generation approach described in Section 3 and the validation of its 
use in the experiments described in Sections 4−5. The experiments are for the choice of variable ordering for 
cylindrical algebraic decomposition, a topic whose background we first present in Section 2, but we emphasise 
that the techniques may be applicable more broadly. 

2 Background on variable ordering for CAD 

2.1 Cylindrical algebraic decomposition 

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered Rn space into cells arranged cylin
drically : the projections of any pair of cells with respect to the variable ordering are either equal or disjoint. 
The projections form an induced CAD of the lower dimensional space. The cells are (semi)-algebraic meaning 
each can be described with a finite sequence of polynomial constraints. 

A CAD is produced to be truth-invariant for a logical formula (so the formula is either true or false on each 
cell). Such a decomposition can then be used to perform Quantifier Elimination (QE) over the reals, i.e. given 
a quantified Tarski formula find an equivalent quantifier free formula over the reals. For example, QE would 

2transform ∃x, ax + bx + c = 0 ∧ a = 0 to the equivalent unquantified statement b2 − 4ac ≥ 0. A CAD over 
the (x, a, b, c)-space could be used to ascertain this, so long as the variable ordering ensured that there was an 
induced CAD of (a, b, c)-space. We test one sample point per cell and construct a quantifier free formula from 
the relevant semi-algebraic cell descriptions. 

CAD was introduced by Collins in 1975 [15] and works relative to a set of polynomials. Collins’ CAD produces 
a decomposition so that each polynomial has constant sign on each cell (thus truth-invariant for any formula 
built with those polynomials). The algorithm first projects the polynomials into smaller and smaller dimensions; 
and then uses these to lift − to incrementally build decompositions of larger and larger spaces according to the 
polynomials at that level. For further details on CAD see for example the collection [12]. 

QE has numerous applications throughout science and engineering [42]. Our work also speeds up independent 
applications of CAD, such as reasoning with multi-valued functions [17] or motion planning [45]. 



2.2 Variable ordering 

The definition of cylindricity and both stages of the algorithm are relative to an ordering of the variables. For 
example, given polynomials in variables ordered as xn > xn−1 > . . . , > x2 > x1 we first project away xn and so 
on until we are left with polynomials univariate in x1. We then start lifting by decomposing the x1−axis, and 
then the (x1, x2)−plane and so so on. The cylindricity condition refers to projections of cells in Rn onto a space 
(x1, . . . , xm) where m < n. There have been numerous advances to CAD since its inception: new projection 
schemes [35], [37]; partial construction [16], [44]; symbolic-numeric lifting [41], [29]; adapting to the Boolean 
structure [5], [20]; and adaptations for SMT [30], [9]. However, the need for a fixed variable ordering remains. 

Depending on the application, the variable ordering may be determined, constrained, or free. QE, requires 
that quantified variables are eliminated first and that variables are eliminated in the order in which they are 
quantified so there is only partial freedom. The discriminant in the example from Section 2.1 could have been 
found with any CAD which eliminates x first. A CAD for the quadratic polynomial under ordering a - b - c 
has only 27 cells, but 115 are required for the reverse ordering. 

Since we can switch the order of quantified variables in a statement when the quantifier is the same, we also 
have some choice on the ordering of quantified variables. For example, a QE problem of the form ∃x∃y∀aφ(x, y, a) 
could be solved by a CAD under either ordering x > y > a or ordering y > x > a. In the SMT context there is 
only a single existentially quantified block and so there is a completely free choice of ordering. 

The choice of variable ordering can have a great effect on the time / memory use of CAD, and the number 
of cells in the output. Brown and Davenport presented a class of problems in which one variable ordering gave 
output of double exponential complexity in the number of variables and another output of a constant size [10]. 

2.3 Prior work on choosing the variable ordering 

Heuristics have been developed to choose a variable ordering, with Dolzmann et al. [18] giving the best known 
study. After analysing a variety of metrics they proposed a heuristic, sotd, which constructs the full set of pro
jection polynomials for each permitted ordering and selects the ordering whose corresponding set has the lowest 
sum of total degrees for each of the monomials in each of the polynomials. The second author demonstrated 
examples for which that heuristic could be misled in [6]; and then later showed that tailoring to an implemen
tation could improve performance [21]. These heuristics all involved potentially costly projection operations on 
the input polynomials. 

In [28] the second author of the present paper collaborated to use a support vector machine to choose which 
of three human made heuristics to believe when picking the variable ordering, based only on simple features of 
the input polynomials. The experiments identified substantial subclasses on which each of the three heuristics 
made the best decision, and demonstrated that the machine learned choice did significantly better than any one 
heuristic overall. This work was picked up again in [24] by the present authors, where ML was used to predict 
directly the variable ordering for CAD, leading to the shortest computing time, with experiments conducted for 
four different ML models. 

Both [28] and [24] used a set of 11 human identified features. These did lead to good performance of the 
models, with ML outperforming the prior human created heuristics, but a starting set of 11 features is relatively 
small for ML and so we hypothesise that identifying more would improve the results. 

3 Generating new features algorithmically 

3.1 Existing features for sets of polynomials 

An early heuristic for the choice of CAD variable ordering is that of Brown [8], which chooses a variable ordering 
according to the following criteria, starting with the first and breaking ties with successive ones. 

(1) Eliminate a variable first if it appears with the lowest overall degree in the input. 

(2) For each variable calculate the maximum total degree for the set of terms in the input in which it occurs. 
Eliminate first the variable for which this is lowest. 

(3) Eliminate a variable first if there is a smaller number of terms in the input which contain the variable. 

Despite being computationally cheaper than the sotd heuristic (because the latter performs projections before 
measuring degrees) experiments in [28] suggested this simpler measure actually performs slightly better, although 



Table 1: Features used by ML in [28] to choose the ordering of 3 variables for CAD. 

# Description In Framework 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Number of polynomials 
Maximum total degree of polynomials 
Maximum degree of x1 among all polynomials 
Maximum degree of x2 among all polynomials 
Maximum degree of x3 among all polynomials 
Proportion of x1 occurring in polynomials 
Proportion of x2 occurring in polynomials 
Proportion of x3 occurring in polynomials 
Proportion of x1 occurring in monomials 
Proportion of x2 occurring in monomials 
Proportion of x3 occurring in monomials 

P I 
dm,pmaxm,p ( )v v 

dm,pmaxm,p 1 
dm,pmaxm,p 2 
dm,pmaxm,p 3I 

dm,pavp (sgn ( ))mI 1 
dm,pavp (sgn ( ))mI 2 
dm,pavp (sgn ( ))m 3 

avm,p (sgn (dm,p))1 
avm,p (sgn (dm,p))2 
avm,p (sgn (dm,p))3 

the key message from those experiments is that there were substantial subsets of problems for which each human-
made heuristic made a better choice than the others. 

The Brown heuristic inspired almost all the features used by the authors of [28], [24] to perform ML for CAD 
variable ordering, with the full set of 11 features listed in Table 1 (column 3 will be explained later). 

3.2 A new framework for generating polynomial features 

Our new feature generation procedure is based on the observation that all the measurements taken by the Brown 
heauristic, and all those features used in [28], [24] can be formalised mathematically using a small number of 
functions. For simplicity, the following discussion will be restricted to polynomials of 3 variables as these were 
used in the following experiments, but everything generalises in an obvious way to n variables. 

Let a problem instance Pr be defined by a set of P polynomials 

Pr = {Pp | p = 1, . . . , P }. (1) 

This is the typical input for producing a sign-invariant CAD. Of course, any problem instance consisting of a 
logical formula whose atoms are polynomial sign conditions can also have such a set extracted. 

In the following we define the notation for polynomial variables and coefficients that will be used throughout 
the manuscript. Each polynomial with index p, for p = 1, . . . , P contains a different number of monomials, which 
will be labelled with index m, where m = 1, . . . ,Mp and Mp denotes the number of monomials in polynomial 
p. We note that these are just labels and are not setting an ordering themselves. The degrees corresponding to 
each of the variables x1, x2, x3 are a function of m and p. These need to be explicitly labelled in order to allow 
a rigorous definition of our proposed procedure of feature generation. 

We can now write each polynomial as 

Mp 
dm,p dm,p dm,p 

m,p 1 2 3= c · x x x , p = 1, . . . , P. (2)Pp 1 2 3 
m=1 

Here, xv represents the polynomial variables (v = 1, 2, 3). Thus for each monomial in each polynomial there is a 
tuple (m, p) of positive integers that label it. Then in turn we denote by dm,p the degree of variable xv in that v 

m,pmonomial, and by c the constant coefficient, i.e., tuple superscripts are giving a label for a monomial in a 
problem instance. The original indices are simply a labelling and not an ordering of the variables x1, x2, x3. 

Therefore, any one of our problem instances Pr is uniquely represented by a set of sets     
m,p, (dm,p, dm,p, dm,pSPr = [c 1 2 3 )] | m = 1, . . . ,Mp | p = 1, . . . , P . (3) 

Observe that each of Brown’s measures can now be formalised as a vector of features for choosing a variable. 

dm,p(1) Overall degree in the input of a variable: maxm,p .v 



    

  
  

    

(2) Maximum total degree of those terms in the input in which a variable occurs: 
) · (dm,p + dm,p + dm,psgn(dm,p ).maxm,p v 1 2 3 I 

(3) Number of terms in the input which contain the variable: sgn(dm,p).m,p v 

In the latter two we use the sign function to discriminate between monomials which contain a variable (sign of 
degree is positive) and those which do not (sign of degree is zero). Of course the sign of the degree is never 
negative. 

Define now also the averaging functions 

1 1 1
 

1 
avm  , avp , avm,p  . 

Mp P P Mpm p p m 

Then all the features in Table 1 can be formalised similarly to Brown’s metrics, as shown in the third column of 
Table 1. We can place all of these scalars into a single framework: 

f (Pr) = (g4 ◦ g3 ◦ g2 ◦ g1 ◦ hm,p) (Pr) , (4) 

where I 
dm,p 

) d
m,phm,p (Pr) ∈ , sgn (dm,p) · ( ) ) | v = 1, 2, 3v v v v

and g1, g2, g3, and g4 are all taken from the set I I I I 
maxp, maxm, maxm,p, max0, , , , 0, avp, avm, avm,p, av0, sgn, sgn0 . p m m,pI 

In the above set max0, 0, av0 and sgn0 are all equal to the identity function.   
2 4 2 d1,2 d1,2For example, let Pr = {x1x2 − x3, x1x2x3 + x1x3}. If m = 1, p = 2, then h1,2 (Pr) ∈ , sgn ·v v  I 1,2 

) d ) | v = 1, 2, 3 = 1, 1 · 7, 4, 4 · 7, 2, 2 · 7 . v v

3.3 Generating additional features 

We will thus consider deriving all of the other features which fall into this framework, but to do so we must first 
impose a number of rules. I 
1. The functions g1, g2, g3, g4 must all belong to distinct categories of function, i.e. one each of max, , av, 

and sgn. 

2. Exactly one of the functions g1, g2, g3, g4 is computed over p and exactly one is computed over m (it may 
be the same one). 

3. The computation over p is always performed by a function gi with an index i greater or equal to that of the 
function computing over m. 

The expression of f (Pr) can be interpreted as follows. The values hm,p (Pr) are functions of variables m 
and p. Each of the functions g1, g2, g3, g4 either leave the function unchanged, or they turn it into a function of 
fewer variables (first into a function of p, and then into a scalar value, representing the ML feature). 

The rules above are justified as follows. Rule 1 reduces the redundancy in the feature set. Rules 2 and 3 
guarantee that the feature fv (Pr) is well defined and is a scalar number. In particular, Rule 3 is necessary 
because the computation over the terms in a polynomial is dependent on their number, which is not the same 
for all polynomials. 

The final set {f (1)(Pr), . . . , f (Nf )(Pr)} has size Nf = 1728 for a problem with 3 variables. This number is 
attained as follows: we have 12 possible distributions of indexes to the functions g1, . . . , g4 as shown in Table 2; 
then 4! possible orderings of those functions; and 6 possible choices for h. So 4! · 6 · 12 = 1728. 

However, many of these features will be identical (e.g. due to a different placement of the identify function). 
We do not identify these manually now: that task is trivial for a given dataset, but substantial to do in generality. 

4 Machine learning experiment with the new features 

We now describe a ML experiment to choose the variable ordering for cylcindrical algebraic decomposition. The 
methodology here is similar to that in our recent paper [24] except for the addition of the extra features from 
Section 3. A more detailed discussion of the methodology can be found in [24]. 



Table 2: Possible distributions of indices to the function classes in feature framework. 

max av sum sgn 
p, m 0 0 0 
p m 0 0 
p 0 m 0 
0 p, m 0 0 
0 p m 0 
0 0 p, m 0 

max av sum sgn 
p, m 0 0 1 
p m 0 1 
p 0 0 1 
0 p, m 0 1 
0 p m 1 
0 0 p, m 1 

4.1 Problem set 

We use the nlsat dataset1 produced to evaluate the work in [30], thus the problems are all fully existentially 
quantified. Although there are CAD algorithms that reduce what is being computed based on the quantifiers in 
the input (most notably via Partial CAD [16]), the conclusions drawn are likely to be applicable outside of the 
SAT context. We use the 6117 problems with 3 variables from this database, so each has a choice of six different 
variable orderings. We extracted only the polynomials involved, and randomly divided into two datasets for 
training (4612) and testing (1505). Only the former was used to tune the parameters of the ML models. 

4.2 Software 

We used the CAD routine CylindricalAlgebraicDecompose which is part of the RegularChains Library for 
Maple. This algorithm builds decompositions first of n-dimensional complex space before refining to a CAD of 
Rn [14], [13], [3]. We ran the code in Maple 2018 but used an updated version of the RegularChains Library 
(http://www.regularchains.org). Training and evaluation of the ML models was done using the scikit-learn 
package [40] v0.20.2 for Python 2.7. The features for ML were extracted using code written in the sympy package 
v1.3 for Python 2.7, as was the Brown heuristic. The sotd heuristic was implemented in Maple as part of the 
ProjectionCAD package [25]. 

4.3 Timings 

CAD construction was timed in a Maple script that was called separately from Python for each CAD (to avoid 
Maple’s caching of results). The target variable ordering for ML was defined as the one that minimises the 
computing time for a given problem. All CAD function calls included a time limit. For the training dataset an 
initial time limit of 4 seconds was used, doubled incrementally if all orderings timed out, until CAD completed 
for at least one ordering (a target variable ordering could be assigned for all problems using time limits no bigger 
than 64 seconds). The problems in the testing dataset were processed with a larger time limit of 128 seconds for 
all orderings (timeout set as 128s). 

4.4 Feature simplification 

When computed on a set of problems {Pr1, . . . , PrN }, some of the features f (i) turn out to be constant, i.e. 
f (i)(Pr1) = f (i)(Pr2) = · · · = f (i)(PrN ). Such features will have no benefit for ML and are removed. Further, 
other features may be repetitive, i.e. f (i)(Prn) = f (j)(Prn), ∀n = 1, . . . , N. This repetition may represent a 
mathematical equality, or just be the case of the given dataset. Either way, they are merged into a single feature 
for the experiment. After these steps, we are left with 78 features for our dataset: so while a large majority were 
redundant, we still have seven times those available in [28], [24]. 

4.5 Feature selection 

Feature selection was performed with the training dataset to see if any features were redundant for the ML. We 
chose the Analysis of Variance (ANOVA) F-value to determine the importance of each feature for the classification 
task. Other choices we considered were unsuitable for our problem, e.g. the mutual information based selection 
requires very large amounts of data. Each problem is assigned a target ordering, or class c = 1, . . . , C, where 
C = 6. Let Prc,n denote problem number n from the training dataset that is assigned class number c, c = 1, . . . , C IC
and n = 1, . . . , Nc, where Nc denotes the number of problems that are assigned class c. Thus c=1 Nc = N. 

1Freely available from http://cs.nyu.edu/∼dejan/nonlinear/ 

http://www.regularchains.org
http://cs.nyu.edu/~dejan/nonlinear/


  
  

   

The F-value for feature number i is computed as follows [36]. 

2 
1 IC (i)¯ f̄ (i)Nc fc −C−1 c=1 

Fi = 2 , (5) 
1 IC INc (i)¯f (i)(Prc,n) − fcN−C c=1 n=1 

¯ ¯where fc 
(i) 

is the sample mean in class c, and f (i) the overall mean of the data: 

Nc C Nc 

f̄ (i) f̄ (i)=
1 

f (i) (Prc,n) , =
1 

f (i)(Prc,n).c Nc N 
n=1 c=1 n=1 

The numerator in (5) represents the between-class variability or explained variance and the denominator the 
within-class variability or unexplained variance. The three features with the highest F-values were: I I I

1 1f65 (Pr) = max0 avm,p sign (dm,p) = sign (dm,p) ,0 2 P p Mp m 2 I I 
v) d

m,pf46 (Pr) = max0 avmsign (dm,p) · ( ) )p 2 vI I I
1 

) d
m,p= sign (dm,p) · ( ) ,p Mp m 2 v v)I I 
) d

m,pf76 (Pr) = av0 maxm sign (dm,p) · ( )p 2 v v)I I 
v) d

m,p= maxm sign (dm,p) · ( ) ) . p 2 v

The new features may be translated back into natural language. For example, feature 65 is the proportion 
of monomials containing variable x2, averaged across all polynomials; feature 46 the sum of the degrees of 
the variables in all monomials containing variable x2, averaged across all monomials and summed across all 
polynomials; and feature 76 the maximum sum of the degrees of the variables in all monomials containing 
variable x2, summed across all polynomials. 

Feature selection did not suggest to remove any features (they all contributed meaningful information), so we 
proceed with our experiment using all 78. 

4.6 ML models 

Four of the most commonly used deterministic ML models were tuned on the training data (for details on the 
methods see e.g. the textbook [2]). We also give an overview of each in [24]. 

• The K−Nearest Neighbours (KNN) classifier [2, §2.5]. 

• The Multi-Layer Perceptron (MLP) classifier [2, §2.5]. 

• The Decision Tree (DT) classifier [2, §14.4]. 

• The Support Vector Machine (SVM) classifier with RBF kernel [2, §6.3]. 
Each model was trained using grid search 5-fold cross-validation, i.e. the set was randomly divided into 5 and 

each possible combination of 4 parts was used to tune the model parameters, leaving the last part for fitting 
the hyperparameters with cross-validation, by optimising the average F-score. Grid searches were performed for 
an initially large range for each hyperparameter; then gradually decreased to home into optimal values. This 
lasted from a few seconds for simpler models like KNN to a few minutes for more complex models like MLP. The 
optimal hyperparameters selected during cross-validation are in Table 3. 

4.7 Comparing with human made heuristics 

The ML approaches were compared in terms of prediction accuracy and resulting CAD computing time against 
the two best known human constructed heuristics Brown [8] and sotd [18] as discussed earlier. Unlike the ML, 
these can end up predicting several variable orderings (i.e. when they cannot discriminate). In practice if this 
were to happen the heuristic would select one randomly (or perhaps lexicographically), however that final pick is 
not meaningful. To accommodate this, for each problem, the prediction accuracy of such a heuristic is judged to 
be the percentage of its predicted variable orderings that are also target orderings. The average of this percentage 
over all problems in the testing dataset represents the prediction accuracy. Similarly, the computing time for 
such methods was assessed as the average computing time over all predicted orderings, and it is this that is 
summed up for all problems in the testing dataset. 



Table 3: The ML hyperparameters used following optimisation on the training dataset. 

Model Hyperparameter Value 

Decision Tree Criterion 
Maximum tree depth 

Gini impurity 
17 

K-Nearest 
Neighbours 

Train instances weighting 
Algorithm 

Inversely proportional to distance 
Ball Tree 

Support Vector 
Machine 

Regularization parameter C 
Kernel 

γ 
Tolerance for stopping criterion 

316 
Radial basis function 

0.08 
0.0316 

Multi-Layer 
Perceptron 

Hidden layer size 
Activation function 

Algorithm 
Regularization parameter α 

18 
Hyperbolic tangent 

Quasi-Newton based optimiser 
5 · 10−5 

5 Experimental Results 

The results are presented in Table 4. We compare the four ML models on accuracy, defined as the percentage of 
problems where they selected the optimum ordering, and also the total computation time (in seconds) for solving 
all the problems with their chosen orderings. The first two rows of the top table reproduce the results of [24] 
which used only the 11 features from Table 1, while the latter two rows are the results from the new experiment 
in the present paper which has 78 features. We also compare with the two human constructed heuristics and the 
outcome of a random choice between the 6 orderings (which do not change with the number of features). We 
might expect a random choice to be correct one sixth of the time but it is higher as for some problems there were 
multiple variable orderings with equally fast timings. The distribution of the computation times: the differences 
between the computation time of each method and the minimum computation time, given as a percentage of the 
minimum time, are depicted in Figure 1. 

5.1 Range of possible outcomes 

The minimum total computing time, achieved if we select an optimal ordering for every problem, is 8 623s (the 
virtual best heuristic). Choosing at random would take 30 235s, almost 4 times as much. The maximum time, if 
we selected the worst ordering for every problem, is 64 534s. The K-Nearest Neighbours model (with 78 features) 
achieved the shortest time of our models and heuristics, with 9 178s, only 6% more than the minimal possible. 

Table 4: The top table compares performance of the machine learning classifiers (DT, KNN, MLP, SVM) with the 
original set of features as published in [24] and the extended set developed in the present paper. For comparison, 
the bottom table shows the best and worst possible choices, along with the results of a random choice and those 
of two human-made heuristics (Brown and sotd). 

DT KNN MLP SVM 
From [24] 
(11 Features) 

Accuracy 
Time (s) 

62.6% 
9 994 

63.3% 
10 105 

61.6% 
9 822 

58.8% 
10 725 

New Experiment 
(78 Features) 

Accuracy 
Time (s) 

65.2% 
9 603 

66.3% 
9 178 

67% 
9 399 

65% 
9 487 

Virtual Best Heuristic Virtual Worst Heuristic random Brown sotd 
Accuracy 
Time (s) 

100% 
8 623 

0% 
64 534 

22.7% 
30 235 

51% 
10 951 

49.5% 
11 938 
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Figure 1: The histograms of the percentage increase in computation time relative to the minimum computation 
time for each method, calculated for a bin size of 1%. 

5.2 Human-made heuristics 

Since they are not affected by the new feature framework of the present paper the findings on the human made 
heuristics are the same as in [24]. Of the two human-made heuristics, Brown performed the best, surprising since 
the sotd heuristic has access to additional information (not just the input polynomials but also their projections). 
Obtaining an ordering for a problem instance with sotd hence takes longer than for Brown or any ML model − 
generating an ordering with sotd for all problems in the testing dataset took over 30min. Using Brown we can 
solve all problems in 10,951s, 27% more than the minimum. While sotd is only 0.7% less accurate than Brown 
in identifying the best ordering, it is much slower at 11 938s or 38% more than the minimum. So, while Brown 
is not much better at identifying the best, it is much better at discarding the worst! 

5.3 ML choices 

The results show that all ML approaches outperform the human constructed heuristics in terms of both accu
racy and timings. Moreover, the results show that the new algorithm for generating features leads to a clear 
improvement in ML performance compared to using only a small number of human generated features in [24]. 
For all four modules both accuracy has increased and computation time decreased. The best achieved time was 
14% above the minimum using the original 11 features but now only 6% above with the new features. 

The computing time for all the methods lies between the best (8 623s) and the worst (64 534s). Therefore, if 
we scale this time to [0, 100] so that the shortest time corresponds to 0 and the slowest to 100, then the best 
human-made heuristic (Brown) lies at 4.16, and the best ML method (KNN) lies at 0.99. So using ML allows us 
to be 4 times closer to the minimum possible computing time. 

Figure 1 shows that the human-made heuristics result in computing times that are often significantly larger 
than 1% of the corresponding minimum time for each problem. The ML methods, on the other hand, all result 
in over 1000 problems (∼ 75% of the testing dataset) within 1% of the minimum time. 



6 Final Thoughts 

In this experiment the MLP and KNN models offered the best performance, and a clear advance on the prior 
state of the art. But we acknowledge that there is much more to do and emphasise that these are only the initial 
findings of the project and we need to see if the findings are replicated. Planned extensions include: expanding 
the dataset to problems with more variables and quantifier structure; trying different feature selection techniques, 
and seeing if classifiers trained for the Maple CAD may be applied to other implementations. 

Our main result is that a great many more features can be obtained trivially from the input (i.e. without 
any projection operations) than previously thought, and that these are relevant and lead to better ML choices. 
Some of these are easy to express in natural language, such as the number of polynomials containing a certain 
variable, but others do not have an obvious interpretation. This is important because something that is hard to 
describe in natural language is unlikely to be suggested by a human as a feature, which illustrates the benefit of 
our framework. This contribution to feature extraction for algebraic problems should be more widely applicable 
than the CAD variable ordering decision. 
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