

Algorithmically generating new algebraic
features of polynomial systems for
machine learning

Florescu, D. & England, M.

Published PDF deposited in Coventry University’s Repository

Original citation:
Florescu, D & England, M 2019, Algorithmically generating new algebraic features of
polynomial systems for machine learning. in Proceedings of the 4th International
Workshop on Satisfiability Checking and Symbolic Computation. vol. (In-Press), CEUR
Workshop Proceedings, 4th International Workshop on Satisfiability Checking and
Symbolic Computation, Bern , Switzerland, 10/07/19.

ISSN 1613-0073
ESSN 1613-0073

Publisher: CEUR Workshop Proceedings

Copyright © 2019 for the individual papers by the papers' authors. This volume
and its papers are published under the Creative Commons License Attribution 4.0
International (CC BY 4.0).

Copyright © and Moral Rights are retained by the author(s) and/ or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This item cannot be
reproduced or quoted extensively from without first obtaining permission in
writing from the copyright holder(s). The content must not be changed in any way
or sold commercially in any format or medium without the formal permission of
the copyright holders.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CURVE/open

https://core.ac.uk/display/228158024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Algorithmically Generating New Algebraic Features of

Polynomial Systems for Machine Learning

Dorian Florescu Matthew England

Dorian.Florescu@coventry.ac.uk Matthew.England@coventry.ac.uk

Faculty of Engineering, Environment and Computing,

Coventry University, Coventry, CV1 5FB, UK

Abstract

There are a variety of choices to be made in both computer algebra
systems (CASs) and satisfiability modulo theory (SMT) solvers which
can impact performance without affecting mathematical correctness.
Such choices are candidates for machine learning (ML) approaches,
however, there are difficulties in applying standard ML techniques, such
as the efficient identification of ML features from input data which is
typically a polynomial system.

Our focus is selecting the variable ordering for cylindrical algebraic de
composition (CAD), an important algorithm implemented in several
CASs, and now also SMT-solvers. We created a framework to describe
all the previously identified ML features for the problem and then enu
merated all options in this framework to automatically generate many
more features. We validate the usefulness of these with an experiment
which shows that an ML choice for CAD variable ordering is superior
to those made by human created heuristics, and further improved with
these additional features. This technique of feature generation could
be useful for other choices related to CAD, or even choices for other
algorithms in CASs / SMT-solvers with polynomial systems as input.

1 Introduction

Machine Learning (ML), that is statistical techniques to give computer systems the ability to learn rules from
data, is a topic that has found great success in a diverse range of fields over recent years. ML is most attractive
when the underlying functional relationship to be modelled is complex or not well understood. Hence ML has
yet to make a large impact in the fields which form SC2, Symbolic Computation and Satisfiability Checking [1],
since these prize mathematical correctness and seek to understand underlying functional relationships. However,
as most developers would acknowledge, our software usually comes with a range of choices which, while having
no effect on the correctness of the end result, could have a great effect on the resources required to find it. These
choices range from the low level (in what order to perform a search that may terminate early) to the high (which
of a set of competing exact algorithms to use for this problem instance). In making such choices we may be
faced with decisions where relationships are not fully understood, but are not the key object of study.

Copyright c© by the paper’s authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In: J. Abbott, A. Griggio (eds.): Proceedings of the 4th SC-square Workshop, Bern, Switzerland, 10th July 2019, published at
http://ceur-ws.org

http:http://ceur-ws.org
mailto:Matthew.England@coventry.ac.uk
mailto:Dorian.Florescu@coventry.ac.uk

In practice such choices may be made by man-made heuristics based on some experimentation (e.g. [18]) or
magic constants where crossing a single threshold changes system behaviour [11]. It is likely that many of these
decisions could be improved by allowing learning algorithms to analyse the data. The broad topic of this paper
is ML for algorithm choices where the input is a set of polynomials, which encompasses a variety of tools in
computer algebra systems and the SMT theory of [Quantifier Free] Non-Linear Real Arithmetic, [QF]NRA.

There has been little research on the use of ML in computer algebra: only [33] on identifying efficient multi
variate Horner schemes; [28] [27] [24] on the topic of CAD variable ordering choice; [26], [27] on the question of
whether to precondition CAD with Groebner Bases; and [31] on deciding the order of sub-formulae solving for
a QE procedure. Within SMT there has been significant work on the Boolean logic side e.g. the portfolio SAT
solver SATZilla [46] and MapleSAT [34] which views solver branching as an optimisation problem. However
there is little work on the use of ML to choose or optimise theory solvers.

We note that other fields of mathematical software are ahead in the use of ML, most notably the automated
reasoning community (see e.g. [43], [32], [7], or the brief survey in [19]).

1.1 Difficulties with ML for problems in NRA

There are difficulties in applying standard ML techniques to problems in NRA. One is the lack of sufficiently
large datasets, which is addressed only partially by the SMT-LIB. The experiment in [26] found the [QF]NRA
sections of the SMT-LIB too uniform, and had to resort to random generated examples (although the state
of benchmarking in computer algebra is far worse [22]). There have been improvements since then, with the
benchmarks increasing both in number and diversity of underlying application. For example, there are now
problems arising from biology [4], [23] and economics [38], [39].

Another difficulty is the identification of suitable features from the input with which to train the ML models.
There are some obvious candidates concerning the size and degrees of polynomials, and the distribution of
variables. However, this provides a starting set (i.e. before any feature selection takes place) that is small in
comparison to other machine learning applications. The main focus of this paper is to introduce a method to
automatically (and cheaply) generate further features for ML from polynomial systems.

1.2 Contribution and plan

Our main contributions are the new feature generation approach described in Section 3 and the validation of its
use in the experiments described in Sections 4−5. The experiments are for the choice of variable ordering for
cylindrical algebraic decomposition, a topic whose background we first present in Section 2, but we emphasise
that the techniques may be applicable more broadly.

2 Background on variable ordering for CAD

2.1 Cylindrical algebraic decomposition

A Cylindrical Algebraic Decomposition (CAD) is a decomposition of ordered Rn space into cells arranged cylin
drically : the projections of any pair of cells with respect to the variable ordering are either equal or disjoint.
The projections form an induced CAD of the lower dimensional space. The cells are (semi)-algebraic meaning
each can be described with a finite sequence of polynomial constraints.

A CAD is produced to be truth-invariant for a logical formula (so the formula is either true or false on each
cell). Such a decomposition can then be used to perform Quantifier Elimination (QE) over the reals, i.e. given
a quantified Tarski formula find an equivalent quantifier free formula over the reals. For example, QE would

2transform ∃x, ax + bx + c = 0 ∧ a = 0 to the equivalent unquantified statement b2 − 4ac ≥ 0. A CAD over
the (x, a, b, c)-space could be used to ascertain this, so long as the variable ordering ensured that there was an
induced CAD of (a, b, c)-space. We test one sample point per cell and construct a quantifier free formula from
the relevant semi-algebraic cell descriptions.

CAD was introduced by Collins in 1975 [15] and works relative to a set of polynomials. Collins’ CAD produces
a decomposition so that each polynomial has constant sign on each cell (thus truth-invariant for any formula
built with those polynomials). The algorithm first projects the polynomials into smaller and smaller dimensions;
and then uses these to lift − to incrementally build decompositions of larger and larger spaces according to the
polynomials at that level. For further details on CAD see for example the collection [12].

QE has numerous applications throughout science and engineering [42]. Our work also speeds up independent
applications of CAD, such as reasoning with multi-valued functions [17] or motion planning [45].

2.2 Variable ordering

The definition of cylindricity and both stages of the algorithm are relative to an ordering of the variables. For
example, given polynomials in variables ordered as xn > xn−1 > . . . , > x2 > x1 we first project away xn and so
on until we are left with polynomials univariate in x1. We then start lifting by decomposing the x1−axis, and
then the (x1, x2)−plane and so so on. The cylindricity condition refers to projections of cells in Rn onto a space
(x1, . . . , xm) where m < n. There have been numerous advances to CAD since its inception: new projection
schemes [35], [37]; partial construction [16], [44]; symbolic-numeric lifting [41], [29]; adapting to the Boolean
structure [5], [20]; and adaptations for SMT [30], [9]. However, the need for a fixed variable ordering remains.

Depending on the application, the variable ordering may be determined, constrained, or free. QE, requires
that quantified variables are eliminated first and that variables are eliminated in the order in which they are
quantified so there is only partial freedom. The discriminant in the example from Section 2.1 could have been
found with any CAD which eliminates x first. A CAD for the quadratic polynomial under ordering a - b - c
has only 27 cells, but 115 are required for the reverse ordering.

Since we can switch the order of quantified variables in a statement when the quantifier is the same, we also
have some choice on the ordering of quantified variables. For example, a QE problem of the form ∃x∃y∀aφ(x, y, a)
could be solved by a CAD under either ordering x > y > a or ordering y > x > a. In the SMT context there is
only a single existentially quantified block and so there is a completely free choice of ordering.

The choice of variable ordering can have a great effect on the time / memory use of CAD, and the number
of cells in the output. Brown and Davenport presented a class of problems in which one variable ordering gave
output of double exponential complexity in the number of variables and another output of a constant size [10].

2.3 Prior work on choosing the variable ordering

Heuristics have been developed to choose a variable ordering, with Dolzmann et al. [18] giving the best known
study. After analysing a variety of metrics they proposed a heuristic, sotd, which constructs the full set of pro
jection polynomials for each permitted ordering and selects the ordering whose corresponding set has the lowest
sum of total degrees for each of the monomials in each of the polynomials. The second author demonstrated
examples for which that heuristic could be misled in [6]; and then later showed that tailoring to an implemen
tation could improve performance [21]. These heuristics all involved potentially costly projection operations on
the input polynomials.

In [28] the second author of the present paper collaborated to use a support vector machine to choose which
of three human made heuristics to believe when picking the variable ordering, based only on simple features of
the input polynomials. The experiments identified substantial subclasses on which each of the three heuristics
made the best decision, and demonstrated that the machine learned choice did significantly better than any one
heuristic overall. This work was picked up again in [24] by the present authors, where ML was used to predict
directly the variable ordering for CAD, leading to the shortest computing time, with experiments conducted for
four different ML models.

Both [28] and [24] used a set of 11 human identified features. These did lead to good performance of the
models, with ML outperforming the prior human created heuristics, but a starting set of 11 features is relatively
small for ML and so we hypothesise that identifying more would improve the results.

3 Generating new features algorithmically

3.1 Existing features for sets of polynomials

An early heuristic for the choice of CAD variable ordering is that of Brown [8], which chooses a variable ordering
according to the following criteria, starting with the first and breaking ties with successive ones.

(1) Eliminate a variable first if it appears with the lowest overall degree in the input.

(2) For each variable calculate the maximum total degree for the set of terms in the input in which it occurs.
Eliminate first the variable for which this is lowest.

(3) Eliminate a variable first if there is a smaller number of terms in the input which contain the variable.

Despite being computationally cheaper than the sotd heuristic (because the latter performs projections before
measuring degrees) experiments in [28] suggested this simpler measure actually performs slightly better, although

Table 1: Features used by ML in [28] to choose the ordering of 3 variables for CAD.

Description In Framework

1
2
3
4
5
6
7
8
9
10
11

Number of polynomials
Maximum total degree of polynomials
Maximum degree of x1 among all polynomials
Maximum degree of x2 among all polynomials
Maximum degree of x3 among all polynomials
Proportion of x1 occurring in polynomials
Proportion of x2 occurring in polynomials
Proportion of x3 occurring in polynomials
Proportion of x1 occurring in monomials
Proportion of x2 occurring in monomials
Proportion of x3 occurring in monomials

P I
dm,pmaxm,p ()v v

dm,pmaxm,p 1
dm,pmaxm,p 2
dm,pmaxm,p 3I

dm,pavp (sgn ())mI 1
dm,pavp (sgn ())mI 2
dm,pavp (sgn ())m 3

avm,p (sgn (dm,p))1
avm,p (sgn (dm,p))2
avm,p (sgn (dm,p))3

the key message from those experiments is that there were substantial subsets of problems for which each human-
made heuristic made a better choice than the others.

The Brown heuristic inspired almost all the features used by the authors of [28], [24] to perform ML for CAD
variable ordering, with the full set of 11 features listed in Table 1 (column 3 will be explained later).

3.2 A new framework for generating polynomial features

Our new feature generation procedure is based on the observation that all the measurements taken by the Brown
heauristic, and all those features used in [28], [24] can be formalised mathematically using a small number of
functions. For simplicity, the following discussion will be restricted to polynomials of 3 variables as these were
used in the following experiments, but everything generalises in an obvious way to n variables.

Let a problem instance Pr be defined by a set of P polynomials

Pr = {Pp | p = 1, . . . , P }. (1)

This is the typical input for producing a sign-invariant CAD. Of course, any problem instance consisting of a
logical formula whose atoms are polynomial sign conditions can also have such a set extracted.

In the following we define the notation for polynomial variables and coefficients that will be used throughout
the manuscript. Each polynomial with index p, for p = 1, . . . , P contains a different number of monomials, which
will be labelled with index m, where m = 1, . . . ,Mp and Mp denotes the number of monomials in polynomial
p. We note that these are just labels and are not setting an ordering themselves. The degrees corresponding to
each of the variables x1, x2, x3 are a function of m and p. These need to be explicitly labelled in order to allow
a rigorous definition of our proposed procedure of feature generation.

We can now write each polynomial as

Mp
dm,p dm,p dm,p

m,p 1 2 3= c · x x x , p = 1, . . . , P. (2)Pp 1 2 3
m=1

Here, xv represents the polynomial variables (v = 1, 2, 3). Thus for each monomial in each polynomial there is a
tuple (m, p) of positive integers that label it. Then in turn we denote by dm,p the degree of variable xv in that v

m,pmonomial, and by c the constant coefficient, i.e., tuple superscripts are giving a label for a monomial in a
problem instance. The original indices are simply a labelling and not an ordering of the variables x1, x2, x3.

Therefore, any one of our problem instances Pr is uniquely represented by a set of sets
m,p, (dm,p, dm,p, dm,pSPr = [c 1 2 3)] | m = 1, . . . ,Mp | p = 1, . . . , P . (3)

Observe that each of Brown’s measures can now be formalised as a vector of features for choosing a variable.

dm,p(1) Overall degree in the input of a variable: maxm,p .v

(2) Maximum total degree of those terms in the input in which a variable occurs:
) · (dm,p + dm,p + dm,psgn(dm,p).maxm,p v 1 2 3 I

(3) Number of terms in the input which contain the variable: sgn(dm,p).m,p v

In the latter two we use the sign function to discriminate between monomials which contain a variable (sign of
degree is positive) and those which do not (sign of degree is zero). Of course the sign of the degree is never
negative.

Define now also the averaging functions

1 1 1

1
avm , avp , avm,p .

Mp P P Mpm p p m

Then all the features in Table 1 can be formalised similarly to Brown’s metrics, as shown in the third column of
Table 1. We can place all of these scalars into a single framework:

f (Pr) = (g4 ◦ g3 ◦ g2 ◦ g1 ◦ hm,p) (Pr) , (4)

where I
dm,p

) d
m,phm,p (Pr) ∈ , sgn (dm,p) · ()) | v = 1, 2, 3v v v v

and g1, g2, g3, and g4 are all taken from the set I I I I
maxp, maxm, maxm,p, max0, , , , 0, avp, avm, avm,p, av0, sgn, sgn0 . p m m,pI

In the above set max0, 0, av0 and sgn0 are all equal to the identity function.
2 4 2 d1,2 d1,2For example, let Pr = {x1x2 − x3, x1x2x3 + x1x3}. If m = 1, p = 2, then h1,2 (Pr) ∈ , sgn ·v v I 1,2

) d) | v = 1, 2, 3 = 1, 1 · 7, 4, 4 · 7, 2, 2 · 7 . v v

3.3 Generating additional features

We will thus consider deriving all of the other features which fall into this framework, but to do so we must first
impose a number of rules. I
1. The functions g1, g2, g3, g4 must all belong to distinct categories of function, i.e. one each of max, , av,

and sgn.

2. Exactly one of the functions g1, g2, g3, g4 is computed over p and exactly one is computed over m (it may
be the same one).

3. The computation over p is always performed by a function gi with an index i greater or equal to that of the
function computing over m.

The expression of f (Pr) can be interpreted as follows. The values hm,p (Pr) are functions of variables m
and p. Each of the functions g1, g2, g3, g4 either leave the function unchanged, or they turn it into a function of
fewer variables (first into a function of p, and then into a scalar value, representing the ML feature).

The rules above are justified as follows. Rule 1 reduces the redundancy in the feature set. Rules 2 and 3
guarantee that the feature fv (Pr) is well defined and is a scalar number. In particular, Rule 3 is necessary
because the computation over the terms in a polynomial is dependent on their number, which is not the same
for all polynomials.

The final set {f (1)(Pr), . . . , f (Nf)(Pr)} has size Nf = 1728 for a problem with 3 variables. This number is
attained as follows: we have 12 possible distributions of indexes to the functions g1, . . . , g4 as shown in Table 2;
then 4! possible orderings of those functions; and 6 possible choices for h. So 4! · 6 · 12 = 1728.

However, many of these features will be identical (e.g. due to a different placement of the identify function).
We do not identify these manually now: that task is trivial for a given dataset, but substantial to do in generality.

4 Machine learning experiment with the new features

We now describe a ML experiment to choose the variable ordering for cylcindrical algebraic decomposition. The
methodology here is similar to that in our recent paper [24] except for the addition of the extra features from
Section 3. A more detailed discussion of the methodology can be found in [24].

Table 2: Possible distributions of indices to the function classes in feature framework.

max av sum sgn
p, m 0 0 0
p m 0 0
p 0 m 0
0 p, m 0 0
0 p m 0
0 0 p, m 0

max av sum sgn
p, m 0 0 1
p m 0 1
p 0 0 1
0 p, m 0 1
0 p m 1
0 0 p, m 1

4.1 Problem set

We use the nlsat dataset1 produced to evaluate the work in [30], thus the problems are all fully existentially
quantified. Although there are CAD algorithms that reduce what is being computed based on the quantifiers in
the input (most notably via Partial CAD [16]), the conclusions drawn are likely to be applicable outside of the
SAT context. We use the 6117 problems with 3 variables from this database, so each has a choice of six different
variable orderings. We extracted only the polynomials involved, and randomly divided into two datasets for
training (4612) and testing (1505). Only the former was used to tune the parameters of the ML models.

4.2 Software

We used the CAD routine CylindricalAlgebraicDecompose which is part of the RegularChains Library for
Maple. This algorithm builds decompositions first of n-dimensional complex space before refining to a CAD of
Rn [14], [13], [3]. We ran the code in Maple 2018 but used an updated version of the RegularChains Library
(http://www.regularchains.org). Training and evaluation of the ML models was done using the scikit-learn
package [40] v0.20.2 for Python 2.7. The features for ML were extracted using code written in the sympy package
v1.3 for Python 2.7, as was the Brown heuristic. The sotd heuristic was implemented in Maple as part of the
ProjectionCAD package [25].

4.3 Timings

CAD construction was timed in a Maple script that was called separately from Python for each CAD (to avoid
Maple’s caching of results). The target variable ordering for ML was defined as the one that minimises the
computing time for a given problem. All CAD function calls included a time limit. For the training dataset an
initial time limit of 4 seconds was used, doubled incrementally if all orderings timed out, until CAD completed
for at least one ordering (a target variable ordering could be assigned for all problems using time limits no bigger
than 64 seconds). The problems in the testing dataset were processed with a larger time limit of 128 seconds for
all orderings (timeout set as 128s).

4.4 Feature simplification

When computed on a set of problems {Pr1, . . . , PrN }, some of the features f (i) turn out to be constant, i.e.
f (i)(Pr1) = f (i)(Pr2) = · · · = f (i)(PrN). Such features will have no benefit for ML and are removed. Further,
other features may be repetitive, i.e. f (i)(Prn) = f (j)(Prn), ∀n = 1, . . . , N. This repetition may represent a
mathematical equality, or just be the case of the given dataset. Either way, they are merged into a single feature
for the experiment. After these steps, we are left with 78 features for our dataset: so while a large majority were
redundant, we still have seven times those available in [28], [24].

4.5 Feature selection

Feature selection was performed with the training dataset to see if any features were redundant for the ML. We
chose the Analysis of Variance (ANOVA) F-value to determine the importance of each feature for the classification
task. Other choices we considered were unsuitable for our problem, e.g. the mutual information based selection
requires very large amounts of data. Each problem is assigned a target ordering, or class c = 1, . . . , C, where
C = 6. Let Prc,n denote problem number n from the training dataset that is assigned class number c, c = 1, . . . , C IC
and n = 1, . . . , Nc, where Nc denotes the number of problems that are assigned class c. Thus c=1 Nc = N.

1Freely available from http://cs.nyu.edu/∼dejan/nonlinear/

http://www.regularchains.org
http://cs.nyu.edu/~dejan/nonlinear/

The F-value for feature number i is computed as follows [36].

2
1 IC (i)¯ f̄ (i)Nc fc −C−1 c=1

Fi = 2 , (5)
1 IC INc (i)¯f (i)(Prc,n) − fcN−C c=1 n=1

¯ ¯where fc
(i)

is the sample mean in class c, and f (i) the overall mean of the data:

Nc C Nc

f̄ (i) f̄ (i)=
1

f (i) (Prc,n) , =
1

f (i)(Prc,n).c Nc N
n=1 c=1 n=1

The numerator in (5) represents the between-class variability or explained variance and the denominator the
within-class variability or unexplained variance. The three features with the highest F-values were: I I I

1 1f65 (Pr) = max0 avm,p sign (dm,p) = sign (dm,p) ,0 2 P p Mp m 2 I I
v) d

m,pf46 (Pr) = max0 avmsign (dm,p) · ())p 2 vI I I
1

) d
m,p= sign (dm,p) · () ,p Mp m 2 v v)I I
) d

m,pf76 (Pr) = av0 maxm sign (dm,p) · ()p 2 v v)I I
v) d

m,p= maxm sign (dm,p) · ()) . p 2 v

The new features may be translated back into natural language. For example, feature 65 is the proportion
of monomials containing variable x2, averaged across all polynomials; feature 46 the sum of the degrees of
the variables in all monomials containing variable x2, averaged across all monomials and summed across all
polynomials; and feature 76 the maximum sum of the degrees of the variables in all monomials containing
variable x2, summed across all polynomials.

Feature selection did not suggest to remove any features (they all contributed meaningful information), so we
proceed with our experiment using all 78.

4.6 ML models

Four of the most commonly used deterministic ML models were tuned on the training data (for details on the
methods see e.g. the textbook [2]). We also give an overview of each in [24].

• The K−Nearest Neighbours (KNN) classifier [2, §2.5].

• The Multi-Layer Perceptron (MLP) classifier [2, §2.5].

• The Decision Tree (DT) classifier [2, §14.4].

• The Support Vector Machine (SVM) classifier with RBF kernel [2, §6.3].
Each model was trained using grid search 5-fold cross-validation, i.e. the set was randomly divided into 5 and

each possible combination of 4 parts was used to tune the model parameters, leaving the last part for fitting
the hyperparameters with cross-validation, by optimising the average F-score. Grid searches were performed for
an initially large range for each hyperparameter; then gradually decreased to home into optimal values. This
lasted from a few seconds for simpler models like KNN to a few minutes for more complex models like MLP. The
optimal hyperparameters selected during cross-validation are in Table 3.

4.7 Comparing with human made heuristics

The ML approaches were compared in terms of prediction accuracy and resulting CAD computing time against
the two best known human constructed heuristics Brown [8] and sotd [18] as discussed earlier. Unlike the ML,
these can end up predicting several variable orderings (i.e. when they cannot discriminate). In practice if this
were to happen the heuristic would select one randomly (or perhaps lexicographically), however that final pick is
not meaningful. To accommodate this, for each problem, the prediction accuracy of such a heuristic is judged to
be the percentage of its predicted variable orderings that are also target orderings. The average of this percentage
over all problems in the testing dataset represents the prediction accuracy. Similarly, the computing time for
such methods was assessed as the average computing time over all predicted orderings, and it is this that is
summed up for all problems in the testing dataset.

Table 3: The ML hyperparameters used following optimisation on the training dataset.

Model Hyperparameter Value

Decision Tree Criterion
Maximum tree depth

Gini impurity
17

K-Nearest
Neighbours

Train instances weighting
Algorithm

Inversely proportional to distance
Ball Tree

Support Vector
Machine

Regularization parameter C
Kernel

γ
Tolerance for stopping criterion

316
Radial basis function

0.08
0.0316

Multi-Layer
Perceptron

Hidden layer size
Activation function

Algorithm
Regularization parameter α

18
Hyperbolic tangent

Quasi-Newton based optimiser
5 · 10−5

5 Experimental Results

The results are presented in Table 4. We compare the four ML models on accuracy, defined as the percentage of
problems where they selected the optimum ordering, and also the total computation time (in seconds) for solving
all the problems with their chosen orderings. The first two rows of the top table reproduce the results of [24]
which used only the 11 features from Table 1, while the latter two rows are the results from the new experiment
in the present paper which has 78 features. We also compare with the two human constructed heuristics and the
outcome of a random choice between the 6 orderings (which do not change with the number of features). We
might expect a random choice to be correct one sixth of the time but it is higher as for some problems there were
multiple variable orderings with equally fast timings. The distribution of the computation times: the differences
between the computation time of each method and the minimum computation time, given as a percentage of the
minimum time, are depicted in Figure 1.

5.1 Range of possible outcomes

The minimum total computing time, achieved if we select an optimal ordering for every problem, is 8 623s (the
virtual best heuristic). Choosing at random would take 30 235s, almost 4 times as much. The maximum time, if
we selected the worst ordering for every problem, is 64 534s. The K-Nearest Neighbours model (with 78 features)
achieved the shortest time of our models and heuristics, with 9 178s, only 6% more than the minimal possible.

Table 4: The top table compares performance of the machine learning classifiers (DT, KNN, MLP, SVM) with the
original set of features as published in [24] and the extended set developed in the present paper. For comparison,
the bottom table shows the best and worst possible choices, along with the results of a random choice and those
of two human-made heuristics (Brown and sotd).

DT KNN MLP SVM
From [24]
(11 Features)

Accuracy
Time (s)

62.6%
9 994

63.3%
10 105

61.6%
9 822

58.8%
10 725

New Experiment
(78 Features)

Accuracy
Time (s)

65.2%
9 603

66.3%
9 178

67%
9 399

65%
9 487

Virtual Best Heuristic Virtual Worst Heuristic random Brown sotd
Accuracy
Time (s)

100%
8 623

0%
64 534

22.7%
30 235

51%
10 951

49.5%
11 938

0 5 10 15 20
0

500

1000

Pr
ob
le
m
 c
ou
nt

Decision Tree

0 5 10 15 20
0

500

1000
K-Nearest Neighbors

0 5 10 15 20
0

500

1000

Pr
ob
le
m
 c
ou
nt

Multi Layer Perceptron

0 5 10 15 20
0

500

1000
Support Vector Machine

0 5 10 15 20
Pecentage increase

 from minimum time (%)

0

500

1000

Pr
ob
le
m
 c
ou
nt

Brown heuristic

0 5 10 15 20
Pecentage increase

 from minimum time (%)

0

500

1000
Sotd heuristic

Figure 1: The histograms of the percentage increase in computation time relative to the minimum computation
time for each method, calculated for a bin size of 1%.

5.2 Human-made heuristics

Since they are not affected by the new feature framework of the present paper the findings on the human made
heuristics are the same as in [24]. Of the two human-made heuristics, Brown performed the best, surprising since
the sotd heuristic has access to additional information (not just the input polynomials but also their projections).
Obtaining an ordering for a problem instance with sotd hence takes longer than for Brown or any ML model −
generating an ordering with sotd for all problems in the testing dataset took over 30min. Using Brown we can
solve all problems in 10,951s, 27% more than the minimum. While sotd is only 0.7% less accurate than Brown
in identifying the best ordering, it is much slower at 11 938s or 38% more than the minimum. So, while Brown
is not much better at identifying the best, it is much better at discarding the worst!

5.3 ML choices

The results show that all ML approaches outperform the human constructed heuristics in terms of both accu
racy and timings. Moreover, the results show that the new algorithm for generating features leads to a clear
improvement in ML performance compared to using only a small number of human generated features in [24].
For all four modules both accuracy has increased and computation time decreased. The best achieved time was
14% above the minimum using the original 11 features but now only 6% above with the new features.

The computing time for all the methods lies between the best (8 623s) and the worst (64 534s). Therefore, if
we scale this time to [0, 100] so that the shortest time corresponds to 0 and the slowest to 100, then the best
human-made heuristic (Brown) lies at 4.16, and the best ML method (KNN) lies at 0.99. So using ML allows us
to be 4 times closer to the minimum possible computing time.

Figure 1 shows that the human-made heuristics result in computing times that are often significantly larger
than 1% of the corresponding minimum time for each problem. The ML methods, on the other hand, all result
in over 1000 problems (∼ 75% of the testing dataset) within 1% of the minimum time.

6 Final Thoughts

In this experiment the MLP and KNN models offered the best performance, and a clear advance on the prior
state of the art. But we acknowledge that there is much more to do and emphasise that these are only the initial
findings of the project and we need to see if the findings are replicated. Planned extensions include: expanding
the dataset to problems with more variables and quantifier structure; trying different feature selection techniques,
and seeing if classifiers trained for the Maple CAD may be applied to other implementations.

Our main result is that a great many more features can be obtained trivially from the input (i.e. without
any projection operations) than previously thought, and that these are relevant and lead to better ML choices.
Some of these are easy to express in natural language, such as the number of polynomials containing a certain
variable, but others do not have an obvious interpretation. This is important because something that is hard to
describe in natural language is unlikely to be suggested by a human as a feature, which illustrates the benefit of
our framework. This contribution to feature extraction for algebraic problems should be more widely applicable
than the CAD variable ordering decision.

Acknowledgements

This work is supported by EPSRC Project EP/R019622/1: Embedding Machine Learning within Quantifier
Elimination Procedures.

References
´ [1]	 Abrahám, E., Abbott, J., Becker, B., Bigatti, A., Brain, M., Buchberger, B., Cimatti, A., Davenport, J.,
England, M., Fontaine, P., Forrest, S., Griggio, A., Kroening, D., Seiler, W., Sturm, T.: SC2: Satisfiability
checking meets symbolic computation. In: Proc. CICM ’16, LNCS 9791, pp. 28–43. Springer (2016),
https://doi.org/10.1007/978-3-319-42547-4 3

[2] Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)

[3] Bradford, R., Chen, C., Davenport, J., England, M., Moreno Maza, M., Wilson, D.: Truth table invariant
cylindrical algebraic decomposition by regular chains. In: Proc. CASC ’14, LNCS 8660, pp. 44–58. Springer
(2014), http://dx.doi.org/10.1007/978-3-319-10515-4 4

[4] Bradford, R., Davenport, J., England, M., Errami, H., Gerdt, V., Grigoriev, D., Hoyt, C., Košta, M.,
Radulescu, O., Sturm, T., Weber, A.: A case study on the parametric occurrence of multiple steady states.
In: Proc. ISSAC ’17, pp. 45–52. ACM (2017), https://doi.org/10.1145/3087604.3087622

[5] Bradford, R., Davenport, J., England, M., McCallum, S., Wilson, D.:	 Truth table invariant cylindrical
algebraic decomposition. J. Symb. Comp. 76, 1–35 (2016), http://dx.doi.org/10.1016/j.jsc.2015.11.002

[6] Bradford, R., Davenport, J., England, M., Wilson, D.:	 Optimising problem formulations for cylindrical
algebraic decomposition. In: Intelligent Computer Mathematics, LNCS 7961, pp. 19–34. Springer Berlin
Heidelberg (2013), http://dx.doi.org/10.1007/978-3-642-39320-4 2

[7] Bridge, J., Holden, S., Paulson, L.: Machine learning for first-order theorem proving. Journal of Automated
Reasoning 53, 141–172 (2014), https://doi.org/10.1007/s10817-014-9301-5

[8] Brown, C.: Tutorial: Cylindrical algebraic decomposition, at ISSAC ’04, (2004),
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf

[9] Brown, C.: Constructing a single open cell in a cylindrical algebraic decomposition. In: Proc. ISSAC ’13,
pp. 133–140. ACM (2013), https://doi.org/10.1145/2465506.2465952

[10] Brown, C., Davenport, J.: The complexity of quantifier elimination and cylindrical algebraic decomposition.
In: Proc. ISSAC ’07, pp. 54–60. ACM (2007), https://doi.org/10.1145/1277548.1277557

[11] Carette, J.: Understanding expression simplification. In: Proc. ISSAC ’04, pp. 72–79. ACM (2004),
https://doi.org/10.1145/1005285.1005298

[12] Caviness, B., Johnson, J.: Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Mono
graphs in Symbolic Computation, Springer-Verlag (1998), https://doi.org/10.1007/978-3-7091-9459-1

https://doi.org/10.1007/978-3-319-42547-4_3
http://dx.doi.org/10.1007/978-3-319-10515-4_4
https://doi.org/10.1145/3087604.3087622
http://dx.doi.org/10.1016/j.jsc.2015.11.002
http://dx.doi.org/10.1007/978-3-642-39320-4_2
https://doi.org/10.1007/s10817-014-9301-5
http://www.usna.edu/Users/cs/wcbrown/research/ISSAC04/handout.pdf
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/1277548.1277557
https://doi.org/10.1145/1005285.1005298
https://doi.org/10.1007/978-3-7091-9459-1

[13] Chen, C., Moreno Maza, M.: An incremental algorithm for computing cylindrical algebraic decompositions.
In: Computer Mathematics, pp. 199—221. Springer Berlin Heidelberg (2014),
https://doi.org/10.1007/978-3-662-43799-5 17

[14] Chen, C., Moreno Maza, M., Xia, B., Yang, L.: Computing cylindrical algebraic decomposition via triangular
decomposition. In: Proc. ISSAC ’09, 95–102. ACM (2009), https://doi.org/10.1145/1576702.1576718

[15] Collins, G.:	 Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proc.
2nd GI Conference on Automata Theory and Formal Languages. pp. 134–183. Springer-Verlag (reprinted in
the collection [12]) (1975), https://doi.org/10.1007/3-540-07407-4 17

[16] Collins, G., Hong, H.:	 Partial cylindrical algebraic decomposition for quantifier elimination. Journal of
Symbolic Computation 12, 299–328 (1991), https://doi.org/10.1016/S0747-7171(08)80152-6

[17] Davenport, J., Bradford, R., England, M., Wilson, D.:	 Program verification in the presence of complex
numbers, functions with branch cuts etc. In: Proc. SYNASC ’12, pp. 83–88. IEEE (2012),
http://dx.doi.org/10.1109/SYNASC.2012.68

[18] Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: Proc. ISSAC ’04, pp. 111–118.
ACM (2004), https://doi.org/10.1145/1005285.1005303

[19] England, M.: Machine learning for mathematical software. In: Mathematical Software – Proc. ICMS ’18.
LNCS 10931, pp. 165–174. Springer (2018), https://doi.org/10.1007/978-3-319-96418-8 20

[20] England, M., Bradford, R., Davenport, J.: Improving the use of equational constraints in cylindrical alge
braic decomposition. In: Proc. ISSAC ’15, pp. 165–172. ACM (2015),
http://dx.doi.org/10.1145/2755996.2756678

[21] England, M., Bradford, R., Davenport, J., Wilson, D.: Choosing a variable ordering for truth-table invariant
CAD by incremental triangular decomposition. In: Proc. ICMS ’14, LNCS 8592, pp. 450–457. Springer
(2014), http://dx.doi.org/10.1007/978-3-662-44199-2 68

[22] England, M., Davenport, J.: Experience with heuristics, benchmarks & standards for cylindrical algebraic
decomposition. In: Proc. SC2 ’16. CEUR-WS 1804 (2016), http://ceur-ws.org/Vol-1804/

[23] England, M., Errami, H., Grigoriev, D.,	 Radulescu, O., Sturm, T., Weber, A.: Symbolic versus nu
merical computation and visualization of parameter regions for multistationarity of biological networks.
In: Computer Algebra in Scientific Computing (CASC ’17), LNCS 10490, pp. 93–108. Springer (2017),
https://doi.org/10.1007/978-3-319-66320-3 8

[24] England, M., Florescu,	 D.: Comparing machine learning models to choose the variable ordering for
cylindrical algebraic decomposition. To appear in Proc. CICM ’19 (Springer LNCS) (2019). Preprint:
https://arxiv.org/abs/1904.11061

[25] England, M., Wilson, D., Bradford, R., Davenport, J.: Using the Regular Chains Library to build cylindrical
algebraic decompositions by projecting and lifting. In: Mathematical Software – ICMS ’14. LNCS 8592, pp.
458–465. Springer (2014), http://dx.doi.org/10.1007/978-3-662-44199-2 69

[26] Huang, Z., England, M., Davenport, J., Paulson, L.: Using machine learning to decide when to precondition
cylindrical algebraic decomposition with Groebner bases. In: Proc. SYNASC ’16. pp. 45–52. IEEE (2016),
https://doi.org/10.1109/SYNASC.2016.020

[27] Huang, Z., England, M., Wilson, D., Bridge, J., Davenport, J., Paulson, L.:	 Using machine learning to
improve cylindrical algebraic decomposition. Mathematics in Computer Science, Volume to be assigned, 28
pages (2019), https://doi.org/10.1007/s11786-019-00394-8

[28] Huang, Z., England, M., Wilson, D., Davenport, J., Paulson, L., Bridge, J.: Applying machine learning to
the problem of choosing a heuristic to select the variable ordering for cylindrical algebraic decomposition.
In: Intelligent Computer Mathematics, LNAI 8543, pp. 92–107. Springer International (2014),
http://dx.doi.org/10.1007/978-3-319-08434-3 8

https://doi.org/10.1007/978-3-662-43799-5_17
https://doi.org/10.1145/1576702.1576718
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
http://dx.doi.org/10.1109/SYNASC.2012.68
https://doi.org/10.1145/1005285.1005303
https://doi.org/10.1007/978-3-319-96418-8_20
http://dx.doi.org/10.1145/2755996.2756678
http://dx.doi.org/10.1007/978-3-662-44199-2_68
http://ceur-ws.org/Vol-1804/
https://doi.org/10.1007/978-3-319-66320-3_8
https://arxiv.org/abs/1904.11061
http://dx.doi.org/10.1007/978-3-662-44199-2_69
https://doi.org/10.1109/SYNASC.2016.020
https://doi.org/10.1007/s11786-019-00394-8
http://dx.doi.org/10.1007/978-3-319-08434-3_8

[29] Iwane, H., Yanami, H., Anai, H., Yokoyama, K.: An effective implementation of a symbolic-numeric cylin
drical algebraic decomposition for quantifier elimination. In: Proc. SNC ’09, pp. 55–64. SNC ’09 (2009),
https://doi.org/10.1145/1577190.1577203

[30] Jovanovic, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.)
Automated Reasoning − Proc. IJCAR ’12, LNCS 7364, pp. 339–354. Springer (2012),
https://doi.org/10.1007/978-3-642-31365-3 27

[31] Kobayashi, M., Iwane, H., Matsuzaki, T., Anai, H.: Efficient subformula orders for real quantifier elimination
of non-prenex formulas. In: Proc. MACIS ’15, LNCS 9582, pp. 236–251. Springer International Publishing
(2016), https://doi.org/10.1007/978-3-319-32859-1 21

[32] Kühlwein, D., Blanchette, J., Kaliszyk, C., Urban, J.: MaSh: Machine learning for sledgehammer. In:
Interactive Theorem Proving, LNCS 7998, pp. 35–50. Springer Berlin Heidelberg (2013),
https://doi.org/10.1007/978-3-642-39634-2 6

[33] Kuipers, J., Ueda, T., and Vermaseren, J.A.M.: Code optimization in FORM. Computer Physics Commu
nications, 189, 1–19 (2015), https://doi.org/10.1016/j.cpc.2014.08.008

[34] Liang, J., Hari Govind, V., Poupart, P.,	 Czarnecki, K., Ganesh, V.: An empirical study of branching
heuristics through the lens of global learning rate. In: Proc. SAT ’17, LNCS 10491, pp. 119–135. Springer
(2017), https://doi.org/10.1007/978-3-319-66263-3 8

[35] McCallum, S.:	 An improved projection operation for cylindrical algebraic decomposition. In: [12], pp.
242–268. (1998), https://doi.org/10.1007/978-3-7091-9459-1 12

[36] Markowski, C.A. and Markowski, E.P.:	 Conditions for the effectiveness of a preliminary test of variance.
The American Statistician, 44:4, 322–326 (1990)

[37] McCallum, S., Parusińiski, A., Paunescu, L.: Validity proof of Lazard’s method for CAD construction.
Journal of Symbolic Computation 92, 52–69 (2019), https://doi.org/10.1016/j.jsc.2017.12.002

[38] Mulligan, C., Bradford, R., Davenport, J., England, M., Tonks, Z.: Non-linear real arithmetic benchmarks
derived from automated reasoning in economics. In: Proc. SC2 ’18, pp. 48–60. CEUR-WS 2189 (2018),
http://ceur-ws.org/Vol-2189/

[39] Mulligan, C., Davenport, J., England, M.: TheoryGuru: A Mathematica package to apply quantifier elim
ination technology to economics. In: Mathematical Software – Proc. ICMS ’18. LNCS 10931, pp. 369–378.
Springer (2018), https://doi.org/10.1007/978-3-319-96418-8 44

[40] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay,
E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011),
http://www.jmlr.org/papers/v12/pedregosa11a.html

[41] Strzeboński, A.: Cylindrical algebraic decomposition using validated numerics. Journal of Symbolic Com
putation 41(9), 1021–1038 (2006), https://doi.org/10.1016/j.jsc.2006.06.004

[42] Sturm, T.: New domains for applied quantifier elimination. In: Computer Algebra in Scientific Computing,
LNCS 4194, pp. 295–301. Springer (2006), https://doi.org/10.1007/11870814 25

[43] Urban, J.:	 MaLARea: A metasystem for automated reasoning in large theories. In: Proc. ESARLT ’07,
CEUR-WS 257, p. 14. CEUR-WS (2007), http://ceur-ws.org/Vol-257/

[44] Wilson, D., Bradford, R., Davenport, J., England, M.:	 Cylindrical algebraic sub-decompositions. Mathe
matics in Computer Science 8, 263–288 (2014), http://dx.doi.org/10.1007/s11786-014-0191-z

[45] Wilson, D., Davenport, J., England, M., Bradford, R.: A “piano movers” problem reformulated. In: Proc.
SYNASC ’13, pp. 53–60. IEEE (2013), http://dx.doi.org/10.1109/SYNASC.2013.14

[46] Xu, L., Hutter, F., Hoos, H., Leyton-Brown, K.: SATzilla: Portfolio-based algorithm selection for SAT. J.
Artificial Intelligence Research 32, 565–606 (2008), https://doi.org/10.1613/jair.2490

https://doi.org/10.1145/1577190.1577203
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-319-32859-1_21
https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1007/978-3-319-66263-3_8
https://doi.org/10.1007/978-3-7091-9459-1_12
https://doi.org/10.1016/j.jsc.2017.12.002
http://ceur-ws.org/Vol-2189/
https://doi.org/10.1007/978-3-319-96418-8_44
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1016/j.jsc.2006.06.004
https://doi.org/10.1007/11870814_25
http://ceur-ws.org/Vol-257/
http://dx.doi.org/10.1007/s11786-014-0191-z
http://dx.doi.org/10.1109/SYNASC.2013.14
https://doi.org/10.1613/jair.2490

	Algorithmically generating cs
	Algorithmically Generating pdf
	Introduction
	Difficulties with ML for problems in NRA
	Contribution and plan

	Background on variable ordering for CAD
	Cylindrical algebraic decomposition
	Variable ordering
	Prior work on choosing the variable ordering

	Generating new features algorithmically
	Existing features for sets of polynomials
	A new framework for generating polynomial features
	Generating additional features

	Machine learning experiment with the new features
	Problem set
	Software
	Timings
	Feature simplification
	Feature selection
	ML models
	Comparing with human made heuristics

	Experimental Results
	Range of possible outcomes
	Human-made heuristics
	ML choices

	Final Thoughts

