125 research outputs found

    Topology optimization for energy problems

    Get PDF
    The optimal design of energy systems is a challenge due to the large design space and the complexity of the tightly-coupled multi-physics phenomena involved. Standard design methods consider a reduced design space, which heavily constrains the final geometry, suppressing the emergence of design trends. On the other hand, advanced design methods are often applied to academic examples with reduced physics complexity that seldom provide guidelines for real-world applications. This dissertation offers a systematic framework for the optimal design of energy systems by coupling detailed physical analysis and topology optimization. Contributions entail both method-related and application-oriented innovations. The method-related advances stem from the modification of topology optimization approaches in order to make practical improvements to selected energy systems. We develop optimization models that respond to realistic design needs, analysis models that consider full physics complexity and design models that allow dramatic design changes, avoiding convergence to unsatisfactory local minima and retaining analysis stability. The application-oriented advances comprise the identification of novel optimized geometries that largely outperform industrial solutions. A thorough analysis of these configurations gives insights into the relationship between design and physics, revealing unexplored design trends and suggesting useful guidelines for practitioners. Three different problems along the energy chain are tackled. The first one concerns thermal storage with latent heat units. The topology of mono-scale and multi-scale conducting structures is optimized using both density-based and level-set descriptions. The system response is predicted through a transient conjugate heat transfer model that accounts for phase change and natural convection. The optimization results yield a large acceleration of charge and discharge dynamics through three-dimensional geometries, specific convective features and optimized assemblies of periodic cellular materials. The second problem regards energy distribution with district heating networks. A fully deterministic robust design model and an adjoint-based control model are proposed, both coupled to a thermal and fluid-dynamic analysis framework constructed using a graph representation of the network. The numerical results demonstrate an increased resilience of the infrastructure thanks to particular connectivity layouts and its rapidity in handling mechanical failures. Finally, energy conversion with proton exchange membrane fuel cells is considered. An analysis model is developed that considers fluid flow, chemical species transport and electrochemistry and accounts for geometry modifications through a density-based description. The optimization results consist of intricate flow field layouts that promote both the efficiency and durability of the cell

    Passive Micromixers

    Get PDF
    Micro-total analysis systems and lab-on-a-chip platforms are widely used for sample preparation and analysis, drug delivery, and biological and chemical syntheses. A micromixer is an important component in these applications. Rapid and efficient mixing is a challenging task in the design and development of micromixers. The flow in micromixers is laminar, and, thus, the mixing is primarily dominated by diffusion. Recently, diverse techniques have been developed to promote mixing by enlarging the interfacial area between the fluids or by increasing the residential time of fluids in the micromixer. Based on their mixing mechanism, micromixers are classified into two types: active and passive. Passive micromixers are easy to fabricate and generally use geometry modification to cause chaotic advection or lamination to promote the mixing of the fluid samples, unlike active micromixers, which use moving parts or some external agitation/energy for the mixing. Many researchers have studied various geometries to design efficient passive micromixers. Recently, numerical optimization techniques based on computational fluid dynamic analysis have been proven to be efficient tools in the design of micromixers. The current Special Issue covers new mechanisms, design, numerical and/or experimental mixing analysis, and design optimization of various passive micromixers

    Serpentine minichannel liquid-cooled heat sinks for electronics cooling applications

    Get PDF
    The increasing density of transistors in electronic components is leading to an inexorable rise in the heat dissipation that must be achieved in order to preserve reliability and performance. Hence, improving the thermal management of electronic devices is a crucial goal for future generations of electronic systems. Therefore, a complementary experimental and numerical investigation of single-phase water flow and heat transfer characteristics of the benefits of employing three different configurations of serpentine minichannel heat sink (MCHS) designs has been performed, to assess their suitability for the thermal management of electronic devices. These heat sinks are termed single (SPSMs), double (DPSMs) and triple path serpentine rectangular minichannels (TPSMs), and their performance is compared, both experimentally and numerically, with that of a design based on an array of straight rectangular minichannels (SRMs) in terms of pressure drop (ΔP), average Nusselt number (Nuavg) and total thermal resistance (Rth). The results showed that the serpentine channel bends are very influential in improving heat transfer by preventing both the hydrodynamic and thermal boundary layers from attaining a fully-developed state. The SPSM design provides the most effective heat transfer, followed by the DPSM and TPSM ones, both of which out-performed the SRM heat sink. The SPSM heat sink produced a 35% enhancement in Nuavg and a 19% reduction in Rth at a volumetric flow rate (Qin) of 0.5 l/min compared to the conventional SRM heat sink. These improvements in the heat transfer are, however, achieved at the expense of significantly larger ΔP. It was found that the incorporation of serpentine minichannels into heat sinks will significantly increase the heat-removal ability, but this must be balanced with the pressure drop requirement. Therefore, an experimental and numerical investigation of the benefit of introducing chevron fins has been carried out to examine the potential of decreasing pressure drop along with further thermal enhancement. This novel design is found to significantly reduce both the ΔP across the heat sink and the Rth by up to 60% and 10%, respectively, and to enhance the Nuavg by 15%, compared with the SPSM heat sink without chevron fins. Consequently, the design of the SPSM with and without chevron fins was then optimised in terms of the minichannel width (Wch) number of minichannels (Nch) and chevron oblique angle (θ). The optimisation process uses a 30 (without chevron fins) and 50 (with chevron fins) point Optimal Latin Hypercubes Design of Experiment, generated from a permutation genetic algorithm, and accurate metamodels built using a Moving Least Square (MLS) method. A Pareto front is then constructed to enable the compromises available between designs with a low pressure drop and those with low thermal resistance to be explored and appropriate design parameters to be chosen. These techniques have then been used to explore the feasibility of using serpentine MCHS and heat spreaders to cool GaN HEMT

    Experimental and numerical analysis of fuel cells

    Get PDF
    Fuel Cells are attractive power source for use in electronic applications. Physical phenomena (water generation, saturation effect in fuel cell, poisoning, and thermal stress) are studied that governs the operation of a Proton Exchange Membrane Fuel Cell (PEMFC) and Solid Oxide Fuel cell (SOFC). Additionally, experimental studies and numerical simulations on PEMFC gas flow channel, the determination of the impact of the single channel fuel cell are presented. Furthermore, preliminary study is done for the application of APS (Air Plasma Spray) to SOFC and adhesion of anode and cathode with electrolytes for the determination of parameters involved in manufacturing the components of fuel cell. The new aspects on physical phenomena are significantly different from the currently popular relationships used in fuel cells as they are simplified from simulation and experimental results. In prior work, the physical phenomena such as water generation, saturation effect in fuel cell, poisoning, and thermal stress etc. are either assumed or used as adjustment parameters to simplify them or to achieve best fits with polarization data. In this work, physical phenomena are not assumed but determined via newly developed experimental and numerical techniques. The experimental fixtures and procedures were used to find better ways to control parameters of gas flow channel configurations for optimizing gas flow rates and performance, and gas flow channel pressure swing for CO poisoning recovery. The experimental results reveal controlling parameters for the mentioned cases and innovative design for Fuel cells. Numerical modeling were used to 2D and later 3D for simplification of single channel fuel cell model, transient localized heating to the catalyst layer for CO recovery, thermal stress that developed during SOFC fabrication by High Temperature vacuum Tube Furnace (HTVTF), and Gas Diffusion Layer and Gas Flow Channel (GDL-GFC) interfacial conditions with results based on commonly used relationships from the PEMFC literature. The modeling works reveal substantial impact on predicted GDL saturation, and consequently cause a significant impact on cell performance. Computational parametric relations and polarization curve results are compared to experimental polarization behavior which achieved a comparable relation

    Characterisation of concentrating solar optics by Light Field Method

    Get PDF
    Abstract: This dissertation develops ideas and techniques for the measurement of the light field produced by the concentrating optics that are used in solar thermal power systems. The research focussed on developing a framework and the principles for the implementation of a scalable technology that is suitable, in principle, for cost effective industrial implementation in the field. Investigation from first principles and technological surveys resulted in formulation of a number of model techniques, from which one was developed. A key component of the proposed model was evaluated using a novel reformulation and application of electrical impedance tomography (EIT). This was to implement an information transform effecting a highly non-linear compressive sensing mechanism, offsetting manufacturing and material complexity in the measurement of high solar flux levels. The technique allows sensing of a wide range of phenomena over arbitrary manifolds in three-dimensional space by utilizing passive transducers. An inverse reconstruction method particular to the structure of the device was proposed, implemented, and tested in a full simulation of intended operation. The parameter space of internal configurations of the method were the subject of a uniform, statistical search, with results also indicating geometrical properties of the transform used. A variety of design guides were developed to better optimize the implementation of the techniques in a range of applications.M.Ing. (Mechanical Engineering Science

    Dimensional Metrology and Thermo-Fluid Studies on Additively Manufactured Transpiration Cooling Structures

    Get PDF
    The rapid advancement in metallic additive manufacturing (AM) has provided us with new opportunities and challenges to apply more sophisticated cooling designs to protect high-temperature components in gas turbines. With the benefits of high design freedom and structural complexity, the direct metal laser sintering (DMLS) AM technique can fabricate cooling passages into microscale in a highly compact fashion, making transpiration cooling feasible in turbine airfoil to protect hot surfaces. In this research, an accurate dimensional characterization technique of microscale cooling passages was developed, and the related thermo-fluid performance was studied. The DMLS process produces microchannels with deformations and surface roughness, which significantly impact thermo-fluid performance. The state-of-the-art micro-CT scanners hardly work for intricate AM transpiration cooling structures due mainly to limitations in penetration rate and detection precision on heavy metals. In this research, a high-precision scanning electron microscope (SEM) characterization combined with a multi-level image segmentation method was employed to statistically analyze the geometric dimensions of microchannels made by AM. Based on the characterization results, surface improvement techniques were used to generate expected channel sizes, preparing for the cooling effectiveness studies with various geometric parameters. Most previous experimental studies on transpiration cooling focused only on cooling effectiveness, leaving a significant vacancy in the literature on the heat transfer coefficient (HTC) at the target surfaces. Two classic methods to investigate HTC, the steady-state foil heater method and the transient thermography technique, both fail for transpiration cooling. That is because the foil heater would block numerous coolant outlets, and the transient semi-infinite solid medium theory no longer holds for porous plates. In this study, a micro-lithography technique was employed to precisely coat a patterned surface heater directly on top of the low thermally conductive test plate to determine the HTC distributions. The dimensional variations created by AM fabrication generate inhomogeneity of cooling performance at the target surface. Moreover, the various hole size would cause clogging issues of the smallest channels during operation, which would, in turn, affect the cooling performance as well. A machine learning model was developed in this work to predict cooling effectiveness distributions from these contributing factors
    corecore