229 research outputs found

    Semantics-preserving cosynthesis of cyber-physical systems

    Get PDF

    Control/Architecture co-design for cyber-physical systems

    Get PDF

    Robust and secure resource management for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.Modern vehicles are examples of complex cyber-physical systems with tens to hundreds of interconnected Electronic Control Units (ECUs) that manage various vehicular subsystems. With the shift towards autonomous driving, emerging vehicles are being characterized by an increase in the number of hardware ECUs, greater complexity of applications (software), and more sophisticated in-vehicle networks. These advances have resulted in numerous challenges that impact the reliability, security, and real-time performance of these emerging automotive systems. Some of the challenges include coping with computation and communication uncertainties (e.g., jitter), developing robust control software, detecting cyber-attacks, ensuring data integrity, and enabling confidentiality during communication. However, solutions to overcome these challenges incur additional overhead, which can catastrophically delay the execution of real-time automotive tasks and message transfers. Hence, there is a need for a holistic approach to a system-level solution for resource management in automotive cyber-physical systems that enables robust and secure automotive system design while satisfying a diverse set of system-wide constraints. ECUs in vehicles today run a variety of automotive applications ranging from simple vehicle window control to highly complex Advanced Driver Assistance System (ADAS) applications. The aggressive attempts of automakers to make vehicles fully autonomous have increased the complexity and data rate requirements of applications and further led to the adoption of advanced artificial intelligence (AI) based techniques for improved perception and control. Additionally, modern vehicles are becoming increasingly connected with various external systems to realize more robust vehicle autonomy. These paradigm shifts have resulted in significant overheads in resource constrained ECUs and increased the complexity of the overall automotive system (including heterogeneous ECUs, network architectures, communication protocols, and applications), which has severe performance and safety implications on modern vehicles. The increased complexity of automotive systems introduces several computation and communication uncertainties in automotive subsystems that can cause delays in applications and messages, resulting in missed real-time deadlines. Missing deadlines for safety-critical automotive applications can be catastrophic, and this problem will be further aggravated in the case of future autonomous vehicles. Additionally, due to the harsh operating conditions (such as high temperatures, vibrations, and electromagnetic interference (EMI)) of automotive embedded systems, there is a significant risk to the integrity of the data that is exchanged between ECUs which can lead to faulty vehicle control. These challenges demand a more reliable design of automotive systems that is resilient to uncertainties and supports data integrity goals. Additionally, the increased connectivity of modern vehicles has made them highly vulnerable to various kinds of sophisticated security attacks. Hence, it is also vital to ensure the security of automotive systems, and it will become crucial as connected and autonomous vehicles become more ubiquitous. However, imposing security mechanisms on the resource constrained automotive systems can result in additional computation and communication overhead, potentially leading to further missed deadlines. Therefore, it is crucial to design techniques that incur very minimal overhead (lightweight) when trying to achieve the above-mentioned goals and ensure the real-time performance of the system. We address these issues by designing a holistic resource management framework called ROSETTA that enables robust and secure automotive cyber-physical system design while satisfying a diverse set of constraints related to reliability, security, real-time performance, and energy consumption. To achieve reliability goals, we have developed several techniques for reliability-aware scheduling and multi-level monitoring of signal integrity. To achieve security objectives, we have proposed a lightweight security framework that provides confidentiality and authenticity while meeting both security and real-time constraints. We have also introduced multiple deep learning based intrusion detection systems (IDS) to monitor and detect cyber-attacks in the in-vehicle network. Lastly, we have introduced novel techniques for jitter management and security management and deployed lightweight IDSs on resource constrained automotive ECUs while ensuring the real-time performance of the automotive systems

    Towards Automotive Embedded Systems with Self-X Properties

    Get PDF
    With self-adaptation and self-organization new paradigms for the management of distributed systems have been introduced. By enhancing the automotive software system with self-X capabilities, e.g. self-healing, self-configuration and self-optimization, the complexity is handled while increasing the flexibility, scalability and dependability of these systems. In this chapter we present an approach for enhancing automotive systems with self-X properties. At first, we discuss the benefits of providing automotive software systems with self-management capabilities and outline concrete use cases. Afterwards, we will discuss requirements and challenges for realizing adaptive automotive embedded systems

    Interactive design space exploration of real-time embedded systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Recovery Time Considerations in Real-Time Systems Employing Software Fault Tolerance

    Get PDF
    Safety-critical real-time systems like modern automobiles with advanced driving-assist features must employ redundancy for crucial software tasks to tolerate permanent crash faults. This redundancy can be achieved by using techniques like active replication or the primary-backup approach. In such systems, the recovery time which is the amount of time it takes for a redundant task to take over execution on the failure of a primary task becomes a very important design parameter. The recovery time for a given task depends on various factors like task allocation, primary and redundant task priorities, system load and the scheduling policy. Each task can also have a different recovery time requirement (RTR). For example, in automobiles with automated driving features, safety-critical tasks like perception and steering control have strict RTRs, whereas such requirements are more relaxed in the case of tasks like heating control and mission planning. In this paper, we analyze the recovery time for software tasks in a real-time system employing Rate-Monotonic Scheduling (RMS). We derive bounds on the recovery times for different redundant task options and propose techniques to determine the redundant-task type for a task to satisfy its RTR. We also address the fault-tolerant task allocation problem, with the additional constraint of satisfying the RTR of each task in the system. Given that the problem of assigning tasks to processors is a well-known NP-hard bin-packing problem we propose computationally-efficient heuristics to find a feasible allocation of tasks and their redundant copies. We also apply the simulated annealing method to the fault-tolerant task allocation problem with RTR constraints and compare against our heuristics

    An Optimization Based Design for Integrated Dependable Real-Time Embedded Systems

    Get PDF
    Moving from the traditional federated design paradigm, integration of mixedcriticality software components onto common computing platforms is increasingly being adopted by automotive, avionics and the control industry. This method faces new challenges such as the integration of varied functionalities (dependability, responsiveness, power consumption, etc.) under platform resource constraints and the prevention of error propagation. Based on model driven architecture and platform based design’s principles, we present a systematic mapping process for such integration adhering a transformation based design methodology. Our aim is to convert/transform initial platform independent application specifications into post integration platform specific models. In this paper, a heuristic based resource allocation approach is depicted for the consolidated mapping of safety critical and non-safety critical applications onto a common computing platform meeting particularly dependability/fault-tolerance and real-time requirements. We develop a supporting tool suite for the proposed framework, where VIATRA (VIsual Automated model TRAnsformations) is used as a transformation tool at different design steps. We validate the process and provide experimental results to show the effectiveness, performance and robustness of the approach
    corecore