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Abstract

A typical design of a real-time embedded system involves an iterative design space

exploration process. In general, the design space exploration strategy needs to

address two separate concerns.

1. How to cover the entire design space during the exploration process? Typ-

ically, the designer is confronted with a prohibitively large design space,

where the design points are associated with conflicting tradeoffs with respect

to various performance metrics like real-time response, costs etc.

2. How to quantitatively evaluate a single design point with respect to the var-

ious performance metrics? The designer needs to run a performance analysis

to evaluate each design point, and for most realistic system models such

performance analysis is time consuming.

The above issues lead to tedious iterations during design space exploration of real-

time embedded systems. A system designer would choose the values of the system

parameters and define an initial design point. The designer would then invoke a

performance analysis tool to evaluate the performance metrics corresponding to

the design point. If the designer is not satisfied with the resulting performance

numbers, then he/she would modify some of the parameters and invoke the per-

formance analysis once again. This iterative design space exploration is repeated
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until a satisfactory design is found. Unfortunately, as discussed above, each time

the performance analysis tool is invoked it takes a long time to run — which might

be in the tune of several hours – and this critically impacts the usability of the

tool in the interactive design space exploration sessions.

Current approaches rely mostly on ad-hoc techniques like genetic algorithms to

handle the high running times associated with such iterative design space explo-

ration processes. In this thesis we present systematic/formal approaches which

provide provable performance guarantees. We propose (i) novel algorithmic tech-

niques (both exact and approximate), as well as (ii) hardware-based techniques to

accelerate the computationally expensive performance analysis in each iteration.

We also introduce (i) a scheme to approximate the potentially exponential sized

design space with only a polynomial number of points and (ii) techniques to pro-

vide insightful feedback to the designer regarding the design parameters he may

choose to modify in each iteration. In particular, this thesis makes the following

contributions.

• We introduce the novel concept of “interactive” design space exploration to

accelerate each iteration in an interactive design session. We demonstrate

our idea with respect to a schedulability analysis problem. Our algorithm

is based on the observation that if only a small number of system parame-

ters are changed in each iteration, then it is not necessary to re-run the

full schedulability analysis algorithm, thereby making the iterative design

process considerably faster. We demonstrate that using our scheme can lead

to more than 20× speedup for each invocation of the schedulability analy-

sis algorithm, compared to the case where the full algorithm is run. Such

fast iterations also allow the designer to evaluate the schedulability for much

larger design space within a short time. We also outline some techniques for
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providing feedback on the potential system parameters that can be changed

to obtain a schedulable system when a task set is not schedulable.

• Design space exploration for hardware/software co-design involves identify-

ing all possible implementations to expose the different possible performance

tradeoffs associated with each of them. Unfortunately, the problem of opti-

mally computing even one feasible solution in most common setups is compu-

tationally intractable (NP-hard). In this thesis we derive a polynomial-time

approximation algorithm for solving it. Furthermore, our scheme also ap-

proximates the potentially exponential sized solution set with only a polyno-

mial number of points. This is more meaningful from a practical perspective,

as the designer is presented with a reasonably few well-distinguishable trade-

offs, rather than an exponentially large number of solutions, many of which

are similar to each other.

• We introduce the new technique of employing graphics processing units

(GPUs) to lower the high running times associated with heavy duty ker-

nels of design space exploration problems. To demonstrate our idea, we

present GPU-based engines to diminish the long running times associated

with an expensive hardware/software design space exploration problem and

a schedulability analysis problem. Our experiments on the GPU demonstrate

tremendous speed up (upto 100×) of the expensive kernel of our problems.

• Apart from the above, we have also been concerned real-life design issues,

specially in the automotive domain. In this regard, we have developed novel

analytical methods which facilitate fast design space exploration of system

parameters for safety-critical applications in the automotive domain. In con-

trast to traditional simulation methods which take hours to run, our an-

alytical model returns results in a matter of few seconds, and is ideal for

interactive design sessions.
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To summarize, this thesis is concerned with issues arising in design space explo-

ration of real-time embedded systems. Interactive design cycles associated with

design space exploration techniques are known to be tedious, and this thesis pro-

poses novel algorithmic, analytic and hardware-based techniques to ease the tedious

design cycles.
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Chapter 1

Introduction

An embedded system is an electronic device which contains a special-purpose com-

puting system embedded within it. Typically, such a device is a combination of

hardware and software designed to meet the special functionality of the system.

These systems are found in numerous application domains ranging from brake

controllers in automobiles and controllers in industrial plants, to mobile health

monitoring devices.

Most of the embedded systems, such as those mentioned above, need to continu-

ously interact with their physical environment through sensors and actuators. Once

the embedded system receives an input on the sensors, it needs to do some com-

putation and if required, send an output signal on the actuators. As most of these

applications are safety-critical, failure of the system to reply within the expected

time interval might lead to a catastrophic accident, possibly loss of human-life.

For instance, a delayed response of an automated brake-controller in a moving car

might result in a fatal crash. Thus, apart from guaranteeing correct computation,

many embedded systems must also meet real-time constraints, i.e. they must finish

the computation and react to stimuli within a definite time interval.
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Furthermore, due to considerations such as limited space and costs, the amount

of memory available is scarce in most of these real-time embedded devices. Also,

these devices are often mobile and have to run on batteries, which means that the

power consumption should be limited as much as possible for longer life of the

devices.

System-Level Performance Analysis

From the above discussion, we note that apart from being functionally correct, a

real-time embedded system must conform to certain non-functional or performance

metrics like timing constraints, memory size restrictions, power limitations, etc. To

check whether all such performance metrics of a system are satisfied, the design

of real-time embedded system typically starts with a system-level performance

analysis.

Thus, in a design cycle, the designer would typically invoke a system-level perfor-

mance analysis to seek answers to questions related to performance metrics like:

Given a set of jobs chosen to run on a processor, does there exist an execution order

or schedule which satisfies the timing constraints (Schedulability Analysis)? Which

functions should be implemented in hardware and which in software to maximize

performance and minimize the hardware costs (Partitioning)? Do the system-level

timing properties meet the design requirements (Timing Analysis)? What would

be the total response time or the end-to-end delay of the system once the system

receives an input on the sensors, till it sends an output signal on the actuators?

In the next section, we introduce the problem of design space exploration of real-

time embedded systems, and discuss the role of system-level performance analysis

in design space exploration cycles.



3

1.1 Design Space Exploration

Because of the many alternatives for mapping and partitioning, application opti-

mization, and architecture selection during the system design process, a designer

of a complex embedded system is confronted with a large design space. Each point

in the design space is associated with conflicting tradeoffs with respect to vari-

ous performance metrics like real-time response, costs etc. For instance, response

time (performance) of a system may be improved by implementing larger portions

of task for a given application in the hardware (providing that the application

offers enough “hardware realizable” functionalities) at the expense of an silicon

area overhead. By extensively playing around with system parameters, designers

can generate the trade-off curves in the design space defined by performance and

area costs. Such a process of systematically altering design parameters has been

recognized as an exploration of the design space.

Broadly, the design space exploration process consists of two orthogonal issues [36].

1. Firstly, the designer has to identify all the design points. Typically, the

designer is confronted with a large design space, where a large number of

implementation choices have to be investigated in order to determine design

trade-offs between various possibly conflicting performance metrics.

2. The designer also needs to run a performance analysis to quantitatively eval-

uate each design point in order to compare their relative merits with respect

to various performance metrics. For most realistic system models the per-

formance analysis is time consuming and involves running one or more com-

putationally expensive cores. We discuss this role of performance analysis in

design space exploration elaborately in the following section.
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Figure 1.1: Role of Performance Analysis in Interactive Design Space Exploration.

1.1.1 Role of Performance Analysis in Design Space Ex-

ploration

Design space exploration of a real-time embedded system is not a one-step proce-

dure, but rather an iterative procedure (see Figure 1.1). This process is well-known

as the Y-chart methodology [42, 50, 86], and involves the following steps. The

process starts with a specification of a set of representative target applications,

which must be implemented on an architecture such that predefined performance

constraints with respect to cost, real-time response, etc. are satisfied. In an explicit

mapping step, the target application is mapped onto the candidate architecture.

The designer then invokes a performance analysis tool to evaluate the performance

metrics corresponding to the design point. If the designer is not satisfied with the

resulting performance numbers, then he/she would modify some of the parameters

and invoke the performance analysis once again. The designers might interpret

the performance numbers manually, or might be inspired by feedback provided by

the performance analysis tools to propose the new parameter values (this inter-

pretation process is indicated in Figure 1.1 by the lightbulb). The designer may

modify (i) the application parameters (worst-case execution times, deadlines and

periods), (ii) the selection of architecture building blocks (number of processors,

processor frequencies, hardware costs (in terms of ASIC/FPGA area)), or (iii) the
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mapping strategy itself. This iterative design space exploration is repeated until

a satisfactory design is found. Thus, a real-life design session of a embedded sys-

tem for a system-level designer is interactive; they repeatedly invoke system-level

performance analysis tools during the design exploration cycles.

Unfortunately, it turns out that interactive design space exploration is quite te-

dious. The prime reason for this being the fact that for most realistic system

models the system-level performance analysis involves running one or more com-

putationally expensive cores. Hence, each time the tool is invoked, the system

designer has to wait for a long time (which might be in the tune of several hours)

to let the analysis run to completion and this critically impacts the usability of the

tool in the interactive design sessions.

1.1.2 Challenges

In the above we discussed the two major concerns in design space exploration:

(i) a prohibitively large design space that must be covered during the exploration

process, and (ii) a heavy-duty performance analysis to evaluate each design point.

In this section, we shall discuss the particular reasons behind long and exhausti-

ing interactive design space exploration sessions associated with some common

computationally expensive system-level performance analysis problems.

• Schedulability Analysis

Schedulability analysis is used to determine if the temporal properties of

a real-time system are satisfied. If the analysis returns a negative answer,

the designer repeatedly changes system parameters and re-runs the analysis.

However, for most realistic task models, schedulability analysis algorithms

often involves running one or more computationally expensive cores [47, 11,
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9]. Hence, each time the schedulability analysis tool is invoked, it takes a

long time to run and this hampers the productivity of the designer in the

iterative design sessions.

Apart from making the iterative design sessions faster, there are additional

challenges involved with interactive schedulability analysis. For example,

in each iteration of the design, if the designer randomly chooses a system

parameter and makes a change, this change might not lead to a feasible

system. The challenge is to develop a mechanism such that the tool provides

the designer with some concrete feedback regarding what system parameter

should be changed that would likely yield a feasible solution.

• Hardware/Software Partitioning

Design space exploration plays an integral part in hardware/software parti-

tioning; it involves evaluating the possible performance versus area trade-offs

associated with all possible design points. Unfortunately, optimally comput-

ing even one feasible design point in most common setups is computationally

expensive [36, 60]. Moreover, typically, there might be infinitely many points

in the design space. Thus, the straightforward approach to determine the

design points by an exhaustive search is intractable and not practical enough

to be used in an interactive design cycle.

Traditionally, researchers have been using different techniques to get around

the high running times associated with such problems. The most notable

amongst these are heuristics like genetic and evolutionary algorithms [37, 48].

However, these algorithms do not yield exact solutions and neither do they

offer any kind of performance guarantee. Therefore, new techniques are

necessary which are efficient as well as provide formal guarantees on the

optimality of the design points that are returned.
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• Timing Analysis of Distributed Real-Time Applications

Over the past decade, embedded systems have increasingly become distrib-

uted in nature with different scheduling and arbitration schemes being used

on the different processors and buses. One foremost example of such dis-

tributed real-time systems may be found in today’s automobiles where elec-

tronic systems have gradually replaced mechanical ones in cars and trucks.

Such distributed systems are rapidly increasing in size, communication com-

plexity and software content. For example, today’s vehicles can have more

than 70 control units or processors, connected by multiple communication

buses and running millions of lines of software [5]. Analysing such hetero-

geneous systems to verify timing and other system-level properties pose a

major challenge. Traditional traditional design processes do not handle such

complexity; system-level design methodology is required [65, 70]. Important

system-level design decisions here involve identifying optimal scheduling poli-

cies, parameters of the bus protocol, end-to-end timing delays, buffer sizes,

etc. Commercially available design tools for automotive electronics like De-

comsys [27] and Dspace [28] rely on simulation techniques to provide such

answers. Such simulation tools take long running times and coupled with

naive design space exploration techniques, the total design cycle becomes

very long.

1.2 Thesis Contributions

In the above discussion, we have identified two broad issues. Firstly, despite high

running times associated with computationally expensive kernels of the perfor-

mance analysis machinery (which lead to tedious interactive design cycles), current

high-level design methodologies and tools have no support to address the problem.
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Moreover, so far only ad-hoc solutions like evolutionary algorithms and exhaustive

search techniques have been used in order to cope the prohibitively large design

space to cope with multi-objective optimization design problems. In this thesis we

present systematic/formal approaches which provide provable performance guar-

antees. We propose (i) novel algorithmic techniques, both exact and approximate,

as well as (ii) hardware-based techniques to accelerate the computationally ex-

pensive performance analysis in each iteration. We also introduce (i) a scheme

to approximate the potentially exponential sized design space with only a poly-

nomial number of points and (ii) techniques to provide with insightful feedback

to the designer regarding the design parameters he may choose to modify in each

iteration. In particular, this thesis proposes novel techniques for interactive design

space exploration by addressing the challenges associated with common system-

level performance analysis problems discussed in Section 1.1.2.

• Interactive Schedulability Analysis

We propose a novel approach to bring down the high running times asso-

ciated with schedulability analysis algorithms, especially in the context of

an iterative design process. It is based on the observation that if only a

small number of design parameters are changed, then it is not required to

invoke the full schedulability analysis machinery. Rather, certain data struc-

tures can be created when the algorithm is run for the first time, and on

subsequent invocations of the algorithm it is possible to exploit these data

structures and run only a small subset of the regular schedulability analysis

algorithm. We refer to this as interactive schedulability analysis because it

would typically be used in an interactive mode—a designer would keep on

modifying the values of a small number of system parameters and use this

algorithm to test whether the system becomes schedulable.

This concept of interactive schedulability analysis is fairly general and can
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be applied to a number of well-known task models. In this thesis, we have

chosen the recently proposed recurring real-time task model [9] to illustrate

this scheme. It has been shown in [9] that this model generalizes a number

of task models. Further, it can be used to model realistic applications with

conditional branches and fine-grained deadline constraints. Our experimental

results show that using our scheme can lead to more than 20× speedup for

each invocation of the schedulability analysis algorithm, compared to the

case where the full algorithm is run.

Note that the designer repeatedly changes system parameters so that the

schedulability analysis may yield a feasible solution. If the designer randomly

chooses a system parameter and makes a change it might not lead to a feasible

system. In our work, we also devise a technique using which a system designer

can be provided some feedback regarding which system parameter(s) should

be changed that would likely yield a feasible solution.

• Hardware/Software Partitioning

We develop an efficient scheme for design space exploration in the context

of hardware/software co-design of real-time systems. Such systems nowa-

days consist of a heterogeneous mix of fully-programmable processors, fixed-

function components or hardware accelerators, and partially-programmable

engines. Hence, system designers are faced with an array of implementation

possibilities for an application at hand. Such possibilities typically come

with different tradeoffs involving cost, power consumption and packaging

constraints. As a result, a designer is no longer interested in one implemen-

tation that meets the specified real-time constraints (i.e. is schedulable), but

would rather like to identify all schedulable implementations that expose the

different possible performance tradeoffs formally known as the Pareto front.

In this thesis we formally define this multicriteria schedulability analysis
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problem and derive a polynomial-time approximation algorithm for solving

it. This result is interesting because the problem of optimally computing

even one schedulable solution in our setup (and in most common setups) is

computationally intractable (NP-hard).

The second reason which makes our work interesting is that there can be

an exponentially large number of points in the Pareto front, which makes

it impossible to compute this entire set in polynomial time. Hence, our

polynomial-time approximation algorithm by default also implies approxi-

mating the (potentially exponential size) set with only a polynomial number

of points. In a typical design cycle, a system designer inspects all the trade-

offs in the set and then selects one, or at most a few implementations. Hence,

from a practical perspective, it is more meaningful if the designer is presented

with a reasonably few well-distinguishable tradeoffs in the set, rather than

an exponentially large number of solutions, many of which are very similar

to each other. Our approximation algorithm is therefore not only attractive

in terms of time-complexity, but also returns more meaningful solutions.

• Accelerating Performance Analysis Using GPUs

We introduce the novel idea of using commodity graphics hardware (more

specifically, graphics processing units or GPUs) to accelerate the expensive

cores associated with heavy-duty kernels of design space exploration prob-

lems. The two foremost reasons why GPUs are an attractive platform for

such non-graphics computations are—(i) modern GPUs are extremely power-

ful (e.g. high-end GPUs such as nVIDIA GeForce 8800 GTX have a FLOPS

rating of around 330 GigaFLOPS, whereas high-end general-purpose proces-

sors are only capable of around 25 GigaFLOPS) (ii) GPUs are now com-

modity items as their costs have dramatically reduced over the last few

years. Thus, the attractive price-performance ratios of GPUs gives us an
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enormous opportunity to change the way system-level performance analysis

tools perform, with almost no additional cost. In fact, recent years have seen

the increasing use of graphics processing units (GPUs) for a wide variety of

general-purpose computing tasks. Examples of these include scientific com-

puting [35, 45], computational geometry [2], database processing [3], image

processing [56, 58], astrophysics [67] and bioinformatics [53].

In this thesis, we use the schedulability analysis of the recurring real-time task

model problem and the hardware/software co-design problem to establish

the utility of the GPUs in accelerating system-level performance analysis

algorithms. Our experiments on the GPU demonstrate tremendous speed up

(upto 16×) of the schedulability analysis algorithm and (upto 100×) speed-

up of the hardware/software co-design problem.

• Performance Analysis of Applications in Automotive Electronics

We have also been concerned with practical cases of embedded system design,

and in this regard, we have specifically worked in the automotive domain.

Our contributions in this direction are discussed below.

We propose an analytical framework for compositional performance analysis

of a network of processors that communicate via a FlexRay bus. FlexRay

is fast emerging as the predominant protocol for in-vehicle automotive com-

munication systems. Given a specification of the applications running on

the system, their partitioning and mapping on the different processors, their

activation rates or periods and the message priorities, our framework can be

used to answer various performance analysis related questions. These include

the maximum end-to-end delay experienced by the different message types,

the amount of buffer space required within a communication controller as-

sociated with a processor and the utilizations of the different processors and

the FlexRay bus.
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In contrast to traditional simulation methods which takes hours to run, our

analytical model returns results in a matter of few seconds, and is ideal for

fast analysis in interactive design cycles. The framework allows the designer

to extensively play around with the FlexRay protocol parameters in order

to identify the suitable performance metric. Also, it can help in resource

dimensioning (e.g. designing the various processors) and determining optimal

scheduling policies for multitasking processors.

1.3 Organization of this Thesis

In the following we give a brief overview of the contents of this thesis. Chapter 2

presents our scheme for “interactive” schedulability analysis. We also describe

a technique using which a system designer can be provided some feedback on

potential modifications that may be done when a task set is not schedulable.

Our work on design space exploration using approximation techniques is presented

in Chapter 3. We formally define the single criteria version of the problem, prove

that it is NP-hard and derive a polynomial-time approximation scheme for solving

it. This is followed by our solution to the multicriteria problem.

Chapter 4 deals with our idea of accelerating performance analysis problems using

commodity graphics processor units (GPUs). Towards this, we propose two GPU-

based engines — (i) for a hardware/software co-design and (ii) for a schedulability

analysis algorithm.

Chapter 5 contains the results related to performance analysis of FlexRay based

automotive networks. Finally, we summarize this thesis in Chapter 6 with direc-

tions for future work.



Chapter 2

Interactive Schedulability

Analysis

Schedulability analysis plays an integral role in the system-level design of real-

time embedded systems. Once a designer chooses the values of the relevant system

parameters, schedulability analysis is used to determine whether it is possible to

assign to each job a processor time equal to its worst-case execution requirement,

between its ready time and its deadline. If such an analysis returns a negative

result (i.e. there exist legal scenarios where certain jobs might miss their deadlines),

then some of the system parameters are relaxed and the analysis is invoked once

again. On the other hand, if such an analysis returns a positive result (i.e. all

jobs definitely meet their deadlines), the designer might want to constrain some

of the system parameters and re-invoke the analysis to find a tighter set of design

parameters where the system is schedulable. Thus, in a typical system design

process, this iteration is repeated a number of times where the designer evaluates

the schedulability for a extensive set of design parameters.

Unfortunately, the schedulability analysis problem for most task models is in-

tractable (usually co-NP hard). Therefore, known algorithms for these models
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have an exponential time complexity and at best run in pseudo-polynomial time.

As a result, the above-mentioned iterative design process can become overly te-

dious for even reasonably-sized problems. To get around this, recent research in the

real-time systems area has focused on either obtaining efficient pseudo-polynomial

time algorithms or on approximately solving the schedulability analysis problem

[4, 21, 32].

In this chapter, we propose another possible approach to bring down the high

running times associated with schedulability analysis algorithms, especially in the

context of an iterative design process. It is based on the observation that if only a

small number of design parameters are changed, then it is not required to invoke

the full schedulability analysis machinery. Rather, certain data structures can be

created when the algorithm is run for the first time, and on subsequent invoca-

tions of the algorithm it is possible to exploit these data structures and run only

a small subset of the regular schedulability analysis algorithm. We refer to this as

interactive schedulability analysis because it would typically be used in an inter-

active mode—a designer would keep on modifying the values of a small number

of system parameters and use this algorithm to test whether the system becomes

schedulable.

This concept of interactive schedulability analysis is fairly general and can be

applied to a number of well-known task models. In this thesis, we have chosen

the recently proposed recurring real-time task model [9] to illustrate this scheme.

It has been shown in [9] that this model generalizes a number of task models.

Further, it can be used to model realistic applications with conditional branches

and fine-grained deadline constraints.

Before proceeding further, we would like to clarify what we mean by “modifying

the values of system parameters” in the context of scheduling a set of task graphs.
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The relevant system parameters are determined by the underlying task model.

For example, in the recurring real-time task model, vertices of task graphs are

annotated with worst-case execution times and deadlines. The edges are annotated

with minimum intertriggering separation times and each task graph is associated

with a period, which specifies the minimum time interval between two consecutive

triggerings of the graph. When the schedulability analysis of a task set returns

a negative answer (i.e. not schedulable), a designer would typically relax a few

deadline constraints associated with some of the vertices of the task graphs and run

the algorithm once again. Other possible modifications might consist of increasing

the values of some intertriggering separations, or increasing the period associated

with a task graph, or decreasing the execution times associated with some of

the vertices (possibly by rewriting/optimizing the code corresponding to those

vertices). It might even be possible to split a vertex into two or more vertices, i.e.

change the structure of a task graph.

Note that once a task set becomes schedulable, it is possible that a designer might

now want to constrain (or reduce) the values of some of the above-mentioned

parameters like deadlines, intertriggering separations, or task periods. This is in

order to test whether the task set still remains schedulable with a tighter deadline,

intertriggering separation, or period constraint. Often such an iterative process

is used to obtain the tightest set of constraints under which a task set remains

schedulable.

Overview of the Proposed Scheme

In this thesis, we discuss our proposed interactive scheme in the context of dynamic

priority feasibility analysis in a preemptive uniprocessor environment. A standard

methodology based on the processor demand criteria (see [10] and [17]) has emerged
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for the feasibility analysis of such systems. Towards this, the worst-case workload

that can possibly be generated by a task (graph) is represented by a function called

the demand-bound function. The demand-bound function of a task T , denoted by

T.dbf(t), takes as an argument a positive real number t and returns the maximum

possible cumulative execution requirement of jobs that can be legally generated by

T and which have their ready-times and deadlines both within a time interval of

length t. A set of concurrently executing tasks T is then schedulable under a fully

preemptive uniprocessor model if and only if for all 0 < t ≤ tmax,
∑

T∈T T.dbf(t) ≤

t, where tmax is a function of the execution requirements of the tasks in T and their

periods. This scheme therefore involves two stages:

(i) Computing T.dbf(t) for all t ≤ tmax and T ∈ T , and

(ii) Checking that
∑

T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

For the recurring real-time task model, it turns out that for an arbitrary task graph

T , computing T.dbf(t) for any t is NP-hard (see [20]). Further, tmax is pseudo-

polynomial in the size of problem. Hence, a pseudo-polynomial number of checks

have to be performed in stage (ii).

While computing T.dbf(t) for different values of t in stage (i), we construct a table

for each task graph T ∈ T (the details of which are described later in this chapter).

In an iterative design cycle, once the deadline d(v) of a vertex v ∈ T is changed and

the schedulability analysis algorithm is invoked, the table corresponding to T need

not be recomputed from scratch. Rather, only parts of it are updated—which is

significantly faster than recomputing the entire table. For any t, T.dbf(t) (where T

is the task graph with the changed d(v)) can now be computed from this updated

table.
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Similarly, we also avoid checking the condition
∑

T∈T T.dbf(t) ≤ t for all 0 < t ≤

tmax. When the deadline d(v) of a vertex v ∈ T is changed, we compute the values

of t at which the condition for schedulability i.e.
∑

T∈T T.dbf(t) ≤ t can possibly

change due to d(v). We then check the schedulability condition only for these

values of t, which again can be considerably faster than checking this condition for

all t ≤ tmax.

Related Work

To the best of our knowledge, the concept of interactive schedulability analysis—in

the form that we present in this thesis—has not been investigated before. The need

for appropriate tool sets for interactive timing analysis has been emphasized in [79]

and several other papers. [79] introduced an interactive tool, which helps to debug

timing errors in real time programs. However, no formal or algorithmic results

were presented. Neither did [79] present any result on how to speedup interactive

timing analysis.

Most of the previous research on obtaining efficient algorithms for schedulability

analysis for different real-time task models focused on designing either efficient

pseudo-polynomial algorithms, or polynomial time solutions for restricted versions

of task models. More recently, the concept of approximate schedulability analy-

sis has been investigated in a number of papers (see, for example, [21], [4], and

[32]). Unlike exact schedulability analysis, approximate schedulability analysis

might return false positives or false negatives. Here, the basic idea is that if the

schedulability analysis algorithm is occasionally allowed to return a false answer,

then such an algorithm can be designed to run in polynomial time. For example,

if the algorithm is allowed to return false positives then in some cases although a

task set is not schedulable, the algorithm incorrectly returns schedulable. However,
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it can be guaranteed that even in such cases no task will miss its deadline by more

than a prespecified time interval. Further, for most task sets the algorithm will

return the correct answer. A similar algorithm that only returns false negatives

can also be designed.

None of the above research directions however exploit the fact that often the

schedulability analysis algorithm is repeatedly invoked, with minor modifications

in the task graphs. This is the scenario we address in this thesis. Although not

directly related to the problem we address in this thesis, recently there has been

some work on computing the space of task periods and worst-case execution times

that lead to schedulable systems (this is often referred to as computing the schedu-

lable region) [14]. The problem we address here, on the other hand, is an online or

an interactive debugging scenario, where the designer is concerned with identifying

one set of system parameters that lead to a schedulable design.

Organization of this Chapter

The rest of this chapter is organized as follows. In the next section we give some

necessary background and an overeview of our scheme. This is followed by the re-

lated work in this domain. In Section 2.1, we describe the recurring real-time task

model and its schedulability analysis. Towards this, we present a dynamic pro-

gramming algorithm for computing the demand-bound function for this model in

Sections 2.1.2 and 2.1.3. In Section 2.2 we then present our scheme for interactive

schedulability analysis, which partly makes use of the dynamic programming algo-

rithm. Our experimental results are described in Section 2.3. When a task set is

not schedulable, it is often helpful if the system designer can be provided feedback

on the potential system parameters that can be changed to obtain a schedulable

system. In Section 2.4 we outline some techniques for providing such feedback,
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and finally, we conclude this chapter in Section 2.5.

2.1 The Recurring Real-Time Task Model and

its Schedulability Analysis

The recurring real-time task model was recently proposed by Baruah in [8, 9]. It is

especially suited for accurately modeling conditional real-time code with recurring

behavior, i.e. where code blocks have conditional branches and run in an infinite

loop, as is the case in many embedded applications. Further, this model also

generalizes a number of well-known task models such as the multiframe model [55],

the generalized multiframe model [10] and the recurring branching task model [7].

A recurring real-time task T is represented by a task graph which is a directed

acyclic graph with a unique source (a vertex with no incoming edges) and a unique

sink (a vertex with no outgoing edges) vertex. Associated with each vertex v of this

graph is its execution requirement e(v), and deadline d(v). Whenever the vertex

v is triggered, it generates a job which has to be executed for e(v) amount of time

within d(v) time units from the triggering-time. Each directed edge (u, v) in the

graph is associated with a minimum intertriggering separation p(u, v), denoting the

minimum amount of time that must elapse before the vertex v can be triggered

after the triggering of the vertex u.

The semantics of the execution of such a task graph state that the source vertex

can be triggered at any time, and if some vertex u is triggered then the next vertex

v can be triggered only if there exists a directed edge (u, v) and at least p(u, v)

amount of time has passed since the triggering of the vertex u. If there are directed

edges (u, v1) and (u, v2) from the vertex u (representing a conditional branch) then
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Figure 2.1: An example recurring real time task.

only one among v1 and v2 can be triggered, after the triggering of u. The triggering

of the sink vertex can be followed by the source vertex getting triggered again but

any two consecutive triggerings of the source vertex should be separated by at least

P (T ) units of time, called the period of the task graph.

Therefore, a sequence of vertices v1, v2, . . . , vk getting triggered at time instants

t1, t2, . . . , tk, is legal if and only if there are directed edges (vi, vi+1), and ti+1− ti ≥

p(vi, vi+1) for i = 1, . . . , k − 1. The only exception is that vi+1 can also be the

source and vi the sink vertex, and in that case if there exists some vertex vj, j < i,

in the sequence such that vj is also the source vertex then ti+1 − tj ≥ P (T ) must

be additionally satisfied. The real-time constraints require that the job generated

by triggering vertex vi, i = 1, . . . , k, be assigned the processor for e(vi) amount of

time within the time interval (ti, ti + d(vi)].

Once jobs are generated, they execute independently of each other (and therefore

a restriction like first-come-first-served can not hold). Therefore, to ascertain that

a job generated by a vertex u completes execution before a job generated by a

vertex v, when u and v belong to the same task graph and there is a directed

edge from u to v, then either of the following conditions must hold: p(u, v) ≥ d(u),

which guarantees that the vertex v can be triggered only after the job generated by

vertex u has completed execution, or that d(u) ≤ p(u, v) + d(v), which guarantees

that the absolute deadline of the job generated by vertex v is larger than or equal
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to the absolute deadline of the job generated by vertex u. In the real-time systems

literature the first requirement is referred to as the frame separation property [74]

and the second as the localized Monotonic Absolute Deadlines property (l-MAD)

[10]. In this thesis, we assume either one of these two properties to hold.

Two points may be noted here. First, the original recurring real-time task model

and its schedulability analysis, as proposed by Baruah in [9], is based on the

frame separation property assumption. Second, our assumption that the l-MAD

property leads to a job generated by a vertex u completing its execution before a

job generated by a vertex v (when there is a directed edge from u to v) is based on

the implicit assumption of the underlying scheduler uses the earliest deadline first

(EDF) policy. We believe that this is a realistic assumption because EDF is known

to be the optimal preemptive scheduling policy (i.e. if a task set is schedulable

then EDF results in a feasible schedule) and it is widely used in real-life systems.

Clearly, if the scheduling policy is not EDF then the l-MAD property along with

the processor demand criteria for schedulability does not guarantee that a job

generated by a vertex u will complete its execution before a job generated by v

whenever there is a directed edge from u to v. Hence, we will from now on assume

that the scheduling policy being used is EDF whenever the l-MAD property is

assumed to hold true.

Figure 2.1 illustrates an example recurring real-time task. In this task, vertex v3,

for instance, has an execution requirement e(v3) = 6, which must be met within 10

time units (its deadline) from its triggering time. The edge (v1, v3) has been labeled

10, which implies that the vertex v3 can be triggered only after a minimum of 10

time units from the triggering of v1 (i.e. the minimum intertriggering separation

time). Edges (v1, v2) and (v1, v3) from vertex v1 imply that either v2 or v3 can be

triggered after v1. The period of the task (the minimum time interval between two

consecutive triggerings of the source vertex) is 50.
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2.1.1 Task Sets and Schedulability Analysis

A task set T = {T1, T2, . . . , Tn} consists of a collection of task graphs, the vertices

of which can get triggered independently of each other. A triggering sequence

for such a task set T is legal if and only if for every task graph Ti, the subset

of vertices of the sequence belonging to Ti constitute a legal triggering sequence

for Ti. In other words, a legal triggering sequence for T is obtained by merging

together (ordered by triggering times, with ties broken arbitrarily) legal triggering

sequences of the constituting tasks.

The schedulability analysis of a task set T is concerned with determining whether

the jobs generated by all possible legal triggering sequences of T can be scheduled

such that their associated deadlines are met. Algorithms for the schedulability

analysis of such task sets, in a preemptive uniprocessor setup, are based on certain

task independence assumptions. These are: (i) The runtime behavior of a task is

independent of any other tasks in the system. (ii) The constraints according to

which legal job sequences are generated can be specified without any references to

absolute time. Assumption (i) states that each task generates jobs independently

of the jobs generated by other tasks in the system. Therefore, it is not permissible,

for example, to require a task to generate a job in response to a job generated by

another task. Assumption (ii) states that all temporal specifications defining the

rules according to which jobs are generated by a task can only be relative to the

time at which the task begins execution, or can be relative to the ready-time of

another job of the same task. Therefore, a constraint like the ready-times of two

consecutive jobs of a task must be separated by at least p time units, conforms to

this requirement. Lastly, the time at which a task begins execution (i.e. the first

job is generated) is not a priori known. For example, a task can begin execution

in response to some external event.
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Note that although the task independence assumptions restrict the job generation

process of a task (for example, by specifying the minimum separation between

the generation of two jobs), they make no assumptions about the interactions

between the jobs once they are generated. Once a job is generated, it executes

independently of any other job in the system, including those generated by the

same task.

Given a sequence of jobs generated by a task set [(Ti, ai, ei, di), (Tj, aj, ej, dj), . . .]

(Ti refers to a task, ai is the ready time of a job, ei is its execution requirement,

and di is its absolute deadline), the task independence assumptions imply that the

sequence is legal if and only if all subsequences formed by jobs from the individual

tasks are also legal (follows from Assumption (i)). Assumption (ii) implies that if

[(a1, e1, d1), (a2, e2, d2), . . .] is a legal sequence of jobs generated by a task, then the

sequence [(a1− t, e1, d1− t), (a2− t), e2, d2− t), . . .] is also legal, where t is any real

number.

It directly follows from the description of the recurring real-time task model in

Section 2.1 that the model indeed satisfies the above task independence assump-

tions (and so does a wide variety of other task models such as the sporadic, multi-

frame, generalized multiframe, and the recurring branching models). The recurring

real-time task model therefore lends itself to schedulability analysis based on the

processor demand criteria, that we outlined in Section 2.

2.1.2 The demand-bound function

Recall from Section 2 that a task set T is schedulable if and only if
∑

T∈T T.dbf(t) ≤

t for all 0 < t ≤ tmax. It can be proved that

tmax =

∑
T∈T 2E(T )

1−
∑

T∈T
E(T )
P (T )
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where E(T ) is the maximum cumulative execution requirement arising from a

sequence of vertices on any path from the source to the sink vertex of the task

graph T (see [9] for details).

For any task graph T , computing the value of T.dbf(t) for some (large) value of

t ≤ tmax might involve multiple traversals (loops) through the task graph. It was

shown in [9] that if for a task graph T , T.dbf(t) is known for all “small values” of

t then it is possible to calculate from these, the value of T.dbf(t) for any t. “Small

values” of t for a task graph T are those for which the sequence of vertices that

contribute towards computing T.dbf(t) contain the source vertex at most once.

The value of T.dbf(t) for larger values of t is made up of some multiple of E(T )

plus T.dbf(t′) where t′ is “small” in the sense described above. T.dbf(t) for any t

can hence be computed as follows (for a more detailed description, refer to [9]).

T.dbf(t) = max{⌊t/P (T )⌋E(T ) + T.dbf(t mod P (T )),

(⌊t/P (T )⌋ − 1)E(T ) + T.dbf(P (T ) + t mod P (T ))} (2.1)

To compute T.dbf(t) for “small” values of t, [9] constructs a new task graph

by taking two copies of the task graph of T and adding an edge from the sink

vertex of the first graph to the source vertex of the second and finally replacing

the source vertex of the first with a “dummy” vertex with execution requirement

and deadline equal to zero. The intertriggering separations on all edges outgoing

from this source vertex is also made equal to zero. (Two copies of the task graph

in Figure 2.1 are joined in the fashion described above, and the resulting task

graph is shown in Figure 2.2). T.dbf(t) for all values of t are then calculated by

enumerating all possible paths in this new graph. For arbitrary task graphs, this

incurs a computation time which is exponential in the number of vertices in the

task graph. The list alongside the task graph in Figure 2.2 gives us few values of

T.dbf(t) corresponding to some selected “small” values of t for this task graph.
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Figure 2.2: Finding T.dbf(t) for “small” values of t.

For instance, when t = 4, the T.dbf(t) is 2, implying that within any time interval

of 4 units the total execution requirement of jobs which have both their ready

times and deadlines within this interval is 2. This means that there is no other

permissible sequence of jobs which will have a demand greater than 2 within an

time interval of 4. Similar explanation applies to other pairs of values listed in the

table.

2.1.3 Computing the demand-bound function

In this section we present a dynamic programming algorithm for computing the

demand-bound function T.dbf(t) for any task graph T . It was shown in [20] that

computing T.dbf(t) for any t is NP-hard for an arbitrary task graph T and a

dynamic programming algorithm for computing it was given. The algorithm that

we present here includes a minor extension of the algorithm in [20], so that it may

be used by our interactive framework. The algorithm runs in pseudo-polynomial
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time and constructs a table, which is then used by our interactive schedulability

analysis framework that we describe in Section 2.2.

The algorithm given below (Algorithm 1) constitutes stage (i) of the two stages

that we listed in Section 2. We first give an algorithm for computing the demand-

bound function of a task graph for “small values” of t. Using this, we then compute

the demand-bound function for any value of t as explained in Section 2.1.2.

Given a task graph T , let T ′ denote the graph formed by joining two copies of T by

adding an edge from the sink vertex of the first graph to the source vertex of the

second, and replacing the source vertex of the first copy by a “dummy” vertex. If

the frame separation property is followed then the newly added edge is labeled with

an intertriggering separation of p = d(vsink), and if the l-MAD property is followed

then it is labeled with p = max{0, d(vsink) − d(vsource)}, where vsource and vsink

denotes the source and the sink vertices of T . Now we give a pseudo-polynomial

time algorithm based on dynamic programming, for computing T ′.dbf(t) for values

of t that do not involve any looping through T ′, i.e. we consider only “one-shot”

executions of T ′.

Let there be n vertices in T ′ denoted by v1, . . . , vn, and without any loss of gen-

erality we assume that there can be a directed edge from vi to vj only if i < j.

Following our notation described in Section 2.1, associated with each vertex vi is

its execution requirement e(vi) which here is assumed to be integral (a pseudo-

polynomial algorithm is meaningful only under this assumption), and its deadline

d(vi). Associated with each edge (vi, vj) is the minimum intertriggering separation

p(vi, vj).

Let ti,e be the minimum time interval within which the task T ′ can have an exe-

cution requirement of exactly e time units due to some legal triggering sequence,

considering only a subset of vertices from the set {v1, . . . , vi}, if all the triggered
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vertices are to meet their respective deadlines. Let tii,e be the minimum time inter-

val within which a sequence of vertices from the set {v1, . . . , vi}, and ending with

the vertex vi, can have an execution requirement of exactly e time units, if all the

vertices have to meet their respective deadlines. Lastly, let E = maxi=1,...,n e(vi).

Clearly, nE is an upper bound on T ′.dbf(t) for any t ≥ 0 for one-shot executions

of T ′.

It can be shown by induction that Algorithm 1 correctly computes T ′.dbf(t), and

has a running time of O(n3E). This algorithm, in addition, computes the values of

a set of boolean variables which are referred to as flagi,e. For any given value of i

and e, flagi,e is set to PREV IOUS if ti−1,e < tii,e else it is set to SELF . The use

of this variable will be explained in Section 2.2 when we describe our interactive

schedulability analysis framework.

2.2 Interactive Schedulability Analysis for the

Recurring Real-Time Task Model

Having introduced all the necessary background, we are now in a position to de-

scribe our framework for interactive schedulability analysis. Recall from Section 2

that this framework is composed of two steps: (i) Computing T.dbf(t) for all

t ≤ tmax and T ∈ T , and (ii) Checking that
∑

T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

When the schedulability analysis algorithm is invoked for the first time, for each

task graph T ∈ T , Algorithm 1 is used to compute the values of tii,e, ti,e, and

flagi,e, which constitutes step (i). These are then stored in a table, which we will

refer to as the dbf-table. For any task graph T , its dbf-table consists of rows which

correspond to the vertices of T (ranging from 1 to n, assuming that T consists of
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Algorithm 1 Computing T ′.dbf(t)

Require: Task graph T ′, and a real number t ≥ 0

1: for e← 1 to nE do

2: t1,e ←

{
d(v1) if e(v1) = e

∞ otherwise

3: flag1,e ←

{
SELF if e(v1) = e

PREVIOUS otherwise

4: t11,e ← t1,e

5: end for

6: for i← 1 to n− 1 do

7: for e← 1 to nE do

8: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

9: ti+1
i+1,e ←





min{t
ij
ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,

d(vi+1) if e(vi+1) = e, and∞ otherwise

10: ti+1,e ← min{ti,e, t
i+1
i+1,e}

11: if ti+1,e = ti+1
i+1,e then

12: flagi+1,e ←SELF

13: else

14: flagi+1,e ←PREVIOUS

15: end if

16: end for

17: end for

18: T ′.dbf(t)← max{e | tn,e ≤ t}

n vertices) and columns which correspond to the different execution requirements

that may be demanded by T due to a triggering of these vertices (ranging from

1 to nE). A cell (i, e) in this table contains three different values: ti,e, tii,e and

flagi,e.

Now suppose that the schedulability analysis algorithm fails in step (ii), i.e. there

exists some t̂ ≤ tmax such that
∑

T∈T T.dbf(t̂) > t̂. Then the system designer might

choose to modify certain system parameters and run the schedulability analysis al-

gorithm once again. Typically, this would involve rerunning steps (i) and (ii) from

scratch. However, using our scheme for interactive schedulability analysis, we

would instead only update the existing dbf-tables and recompute the appropriate
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T.dbf(t) values from the updated tables. In most cases, this would be consider-

ably faster than recomputing all the T.dbf(t) values from scratch. Clearly, only

the dbf-tables of task graphs that have been modified will have to be updated.

Once the appropriate T.dbf(t)s have been recomputed, depending on the nature

of the modifications made (e.g. deadlines have only been relaxed), the checking

involved in step (ii) can be resumed from t̂ onwards. There is no need to check the

condition
∑

T∈T T.dbf(t) ≤ t for values of t < t̂ since the task set already passed

the schedulability test for these values of t.

The second possible scenario is when the task set T satisfies the schedulability

test in step (ii) for all t ≤ tmax (i.e. T is schedulable). In this case, the designer

might still want to modify certain system parameters (e.g. constrain the deadlines

associated with some of the vertices) and run the schedulability analysis algorithm

once again. This might be to test if the task set remains schedulable under a

tighter set of constraints. In this case, we would again update the dbf-tables and

recompute the appropriate T.dbf(t) values from the updated tables, as before.

However, step (ii) will now become more involved—rather than checking the con-

dition
∑

T∈T T.dbf(t) ≤ t for all t ≤ tmax, we check this condition only for those

values of t at which the sum
∑

T∈T T.dbf(t) might have changed.

In the following two subsections we discuss the details of the two above-mentioned

scenarios. Recall that in this thesis we shall only be concerned with deadlines

associated with vertices of task graphs being modified.

2.2.1 Relaxing the Deadline of a Vertex

Given a task graph T , let us assume that T ′ is obtained by joining two copies

of T , followed by adding an edge from the sink vertex of the first copy to the

source vertex of the second and replacing the source vertex of the first copy by a
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Algorithm 2 dbf-table update: Deadline relaxed case

Require: Task graph T ′, a real number t ≥ 0, and a vertex number node such that

deadline associated with vertex vnode in T ′ has been relaxed.

1: for e← 1 to nE do

2: for i← node− 1 to n− 1 do

3: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

4: ti+1
i+1,e ←





min{t
ij
ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,

d(vi+1) if e(vi+1) = e, and∞ otherwise

5: ti+1,e ← min{ti,e, t
i+1
i+1,e}

6: if ti+1,e = ti+1
i+1,e then

7: flagi+1,e ←SELF

8: else

9: flagi+1,e ←PREVIOUS

10: end if

11: if i + 1 = node then

12: if flagi+1,e = PREVIOUS then

13: break;

14: else if flagi+2,e = SELF then

15: break;

16: end if

17: else if flagi+2,e = SELF then

18: break;

19: end if

20: end for

21: end for

22: T ′.dbf(t)← max{e | tn,e ≤ t}

“dummy” vertex (as described in Section 2.1.3). We also assume that the dbf-table

of T ′ has been computed. Now let us suppose that the deadline d(v) associated

with a vertex v ∈ T has been relaxed. Unless v is the source vertex of T , this

results in the deadlines of two vertices in T ′ (both of which correspond to the same

vertex v in T ) getting changed. Algorithm 2 then correctly updates dbf-table to

reflect this change. Note that it has to be invoked either once or twice depending

on whether v is a source vertex of T or not.
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To understand how Algorithm 2 works, let us assume that the deadline associated

with the vertex vnode in T ′ has been relaxed, where the vertices of T ′ are v1, . . . , vn,

with a directed edge from vi to vj only if i < j. The algorithm starts traversing the

rows of the dbf-table starting from the row node and ending at row n (lines 1 and 2).

Hence, it does not recompute the values in the cells in rows 1 to (node−1). This is

because the values in these cells do not depend on the deadline of node vnode (i.e.

d(vnode)), and therefore remain unchanged even after d(vnode) has been relaxed.

Note that this immediately follows from the fact that dbf-table is computed using

a dynamic programming algorithm, where the computation of the ith row depends

only on the parameters associated with the subset of vertices {v1, v2, . . . , vi}.

Lines 3 to 10 of this algorithm are the same as lines 8 to 15 of Algorithm 1. They

compute the values of the (i + 1, e)th cell of the dbf-table using the values in the

cells which have been previously computed or updated. During the first iteration

of the loop spanning across lines 2 to 20, i + 1 = node. From lines 11 to 19 of

Algorithm 2 it may be seen that cells corresponding to vertices numbered higher

than node are selectively recomputed based on the values of the flag variables. In

what follows, we first explain how the value of the flag variable is exploited for

this selective update and then we work through an example.

The main principle behind the selective update relies on two observations:

1. Let k and e be such that node < k ≤ n and 1 ≤ e ≤ nE. Therefore, (k, e)

is a cell in the dbf-table that is above the row node. Our observation is that

although the variable tk,e depends on both tkk,e and tk−1,e (see line 5), upon

relaxation of d(vnode), tk,e would change if and only if tk−1,e has changed. In

other words, the values in the cell (k, e) will change only if the cell in the
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previous row and the same column has changed. This corresponds to the case

that tkk,e does not depend on the deadline associated with vnode (see line 4 in

Algorithm 2 for how the value of tkk,e is determined).

2. The variable flagk,e for any cell in the dbf-table is assigned to PREV IOUS

if tk,e depends on tk−1,e, i.e. we say that it depends on the previous cell in

the column e. Similarly, flagk,e is assigned to SELF if tk,e depends on tkk,e,

i.e. we say that it depends on the same cell or on self.

These two observations should be used to reason about the behavior of Algorithm 2.

In the row node, the algorithm traverses all the cells for e = {1, . . . , nE} and

updates the values tnode,e, tnode
node,e and flagnode,e in each cell. For each cell (node, e),

the algorithm also updates the cell higher up on the column (i.e. cell (node+1, e))

depending on the updated flag value on the cell (node, e) and the existing flag

value in the higher cell (node + 1, e). This is explained below in further detail.

• If flagnode,e = PREV IOUS, it implies that tnode,e = tnode−1,e (follows from

observation (2)) and since tnode−1,e remains unchanged with any change in

d(vnode), tnode,e need not be modified as well. Hence, we need not update any

cell in the column e (follows from observation (1)).

• On the other hand, if flagnode,e = SELF , it implies that tnode,e will change

with the relaxation of d(vnode). This follows from the facts that tnode,e = tnode
node,e

(observation (2)), and that tnode
node,e has now been updated. Now, there might

be two different scenarios:

1. If flagnode+1,e = SELF , we need not update any cell on the column e.

flagnode+1,e = SELF in the cell (node + 1, e) implies tnode+1
node+1,e < tnode,e

before the change. After we have relaxed d(vnode), tnode,e must have

increased or remained unchanged. Hence, tnode+1
node+1,e < tnode,e still holds,
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Figure 2.3: The task graph T .

and there is no need to update the cell (node + 1, e) or the cells higher

up in the column.

2. If flagnode+1,e = PREV IOUS, tnode+1,e would change as well (obser-

vation (1)). This change might then similarly propagate along the

higher cells of the column e, if the value of their respective flags equals

PREV IOUS.

This selective updation of the dbf-table is what is taken care of in the lines 11 to

19 of Algorithm 2. Clearly, this avoids recomputing the table from stratch which

often saves a large chunk of computation.

Illustrative Example

To appreciate why Algorithm 2 will often be computationally less expensive com-

pared to recomputing the entire dbf-table, let us consider a small example. Let T

be a task graph with 3 vertices, v1, v2, v3, such that an edge from vi to vj exists

if and only if j = i + 1. Let e(vi) = 1 for all 1 ≤ i ≤ 3 in T . The deadlines of

the vertices are d(v1) = 2, d(v2) = 3, and d(v3) = 2. The minimum intertriggering

separation times associated with the edges are p(v1, v2) = 3, and p(v2, v3) = 3 (see

Figure 2.3). Let T ′ be the graph that is formed by joining two copies of this task

graph T in the fashion described in Section 2.1.3. T ′ is shown in Figure 2.4.

The dbf-table of T ′ is shown in Table 2.1. For any 1 ≤ i ≤ 6 and 1 ≤ e ≤ 6, the

(i, e)th cell of this table contains the values of ti,e, tii,e, and flagi,e (in this order),

where P and S denotes the PREV IOUS and SELF values of flagi,e respectively.
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Figure 2.4: The task graph T ′.

i↑ e→
1 2 3 4 5 6

6 2, 2, S 4, 5, P 7, 8, P 10, 10, S 13, 13, S, ∞, ∞, S

5 2, 3, P 4, 6, P 7, 8, P 11, 11, S ∞, ∞, S, ∞, ∞, S

4 2, 2, S 4, 4, S 7, 7, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

3 2, 2, S 5, 5, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

2 3, 3, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

1 ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

Table 2.1: dbf-table of T ′.

Figure 2.5: Graph T ′ after relaxing the deadline associated with the vertex v4 from 2

to 3.

Assume that the deadline of the source vertex of T has been changed from 2 to 3.

This implies that the deadline of v4 in T ′ is relaxed from 2 to 3. The task graph

with its new deadlines is illustrated in Figure 2.5. We then update the dbf-table

using Algorithm 2. The new dbf-table is shown in Table 2.2. Only the cells of

Table 2.1 which were updated using Algorithm 2 are shown using a bold-italic font

in Table 2.2.

Since only the deadline of v4 was relaxed, the execution demand arising from any

vertex numbered less than 4 remains unchanged. Hence, the only potential cells of

Table 2.1 which might be effected are on or above row 4. Algorithm 2 first traverses

row 4 of this table and recomputes the values of its cells. However, it does not
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i↑ e→
1 2 3 4 5 6

6 2, 2, S 5, 5, S 8, 8, S 10, 10, S 13, 13, S, ∞, ∞, S

5 2, 3, P 5, 6, P 8, 8, S 11, 11, S ∞, ∞, S, ∞, ∞, S

4 2, 3, P 5, 5, S 8, 8, S ∞, ∞, S ∞, ∞, S ∞, ∞, S

3 2, 2, S 5, 5, S ∞, ∞, S ∞, ∞, S ∞, ∞,S, ∞, ∞, S

2 3, 3, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

1 ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S ∞, ∞, S, ∞, ∞, S

Table 2.2: The updated dbf-table after relaxing the deadline associated with the vertex

v4 from 2 to 3.

“propagate” a change upwards, along the column of a cell, if the flag in the cell

is now equal to PREV IOUS. This is because if the value of the flag equals to

PREV IOUS, then it implies that the value of t4,e is equal to t3,e which remains

unaltered. Further, any tj,e, where j > 4, need not be changed as a result of relaxing

d(v4). Recall that this follows from observation (1). To verify observation (1) note

that by definition (Section 2.1.3) t55,1 = d(v5) = 3, t55,2 = p4,5 + d(v5) = 6, etc.

These remain unaltered even after the deadline of v4 is changed and thus are same

in both tables – Table 2.1 and Table 2.2. For example, we can verify from Table 2.2

that when e = 1, this is indeed the case. Hence, this clearly saves a significant

amount computation compared to the case where the full dbf-table is recomputed.

The second scenario is when one of the cells has its flag set to SELF . In our

example, cells (4, 2), and (4, 3) illustrate this scenario. Let us consider cell (4, 3),

where flag4,3 = SELF implies that t4,3 = t44,3. t44,3 being in row 4 was updated and

hence the value of t4,3 has changed as well and might in turn lead to changes in the

cells higher up along this column. Therefore, we need to check whether any higher

numbered vertices might also be effected. The cell (5, 3) had flag = PREV IOUS

(see Table 2.1) and hence t5,3 needs to be recomputed. Similarly, cell (6, 3) is

also recomputed. Note that cell (4, 4), has its flag set to SELF ; however, since

flag5,4 = SELF we need not propagate the change along the higher numbered

columns. This again saves a significant amount of computation time.
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If the schedulability test for a task set T fails at t = t̂ then in this case (i.e.

when deadlines associated with vertices are only being relaxed) after the deadlines

associated with one or more vertices are relaxed, the check in step (ii) of our scheme

can be resumed at t = t̂.

2.2.2 Constraining the Deadline of a Vertex

Let us now consider the case where the deadline of a vertex v ∈ T is constrained.

As in the previous case, depending on whether v is a source vertex in T or not, this

would result in two vertices in T ′ getting affected (where T ′ is obtained by joining

two copies of T ). Again, let vnode be a vertex in T ′ whose deadline is constrained.

Then Algorithm 3 updates the dbf-table corresponding to T ′. Algorithm 3 is similar

to Algorithm 2, except for a pair of extra conditions in lines 15 and 20. The use

of these two conditions will be clarified in the following discussion.

The two observations listed in Section 2.2.1 hold true even in the case when the

deadline of a vertex is constrained. Hence, based on the values of the flag variables

we can once again find out the appropriate conditions for updating the dbf-table.

• If flagnode,e = PREV IOUS then this case is exactly similar to the corre-

sponding case where a deadline is relaxed.

• On the other hand, if flagnode,e = SELF then we know that tnode,e = tnode
node,e

and this implies that the value of tnode,e has decreased as a result of con-

straining the deadline of vnode. In such a case, if flagnode+1,e = PREV IOUS

then the scenario is again similar to the corresponding case where the dead-

line of vnode was relaxed. Hence, the value tnode+1,e will have to be updated.

The change might then “propagate” along the higher cells of the column e,

depending on the value of their flags.
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Algorithm 3 dbf-table update: Deadline constrained case

Require: Task graph T ′, a real number t ≥ 0, and a vertex number node such that

deadline associated with vertex vnode in T ′ has been constrained.

1: for e← 1 to nE do

2: for i← node− 1 to n− 1 do

3: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

4: ti+1
i+1,e ←





min{t
ij
ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,

d(vi+1) if e(vi+1) = e, and∞ otherwise

5: ti+1,e ← min{ti,e, t
i+1
i+1,e}

6: if ti+1,e = ti+1
i+1,e then

7: flagi+1,e ←SELF

8: else

9: flagi+1,e ←PREVIOUS

10: end if

11: if i + 1 = node then

12: if flagi+1,e = PREVIOUS then

13: break;

14: else if flagi+2,e = SELF then

15: if ti+1,e ≥ ti+2
i+2,e then

16: break;

17: end if

18: end if

19: else if flagi+2,e = SELF then

20: if ti+1,e ≥ ti+2
i+2,e then

21: break;

22: end if

23: end if

24: end for

25: end for

26: T ′.dbf(t)← max{e | tn,e ≤ t}

• However, if flagnode,e = SELF and if flagnode+1,e = SELF as well (which

implies that tnode+1,e = tnode+1
node+1,e), the scenario is different from when the

deadline of vnode was relaxed. The reason for this being, after the deadline

was constrained, it might now be that tnode,e has decreased. Thus, tnode+1
node+1,e <

tnode,e, which was true before the change, might no longer hold. Hence,



38

tnode+1,e might be assigned to the new value tnode,e, instead of the existing

value tnode+1
node+1,e and we need to update the cell (node+1, e). Similar reasoning

also holds true when we select any cell (i, e) for updating where i > node.

This explains the need for the extra pair of conditions.

Efficiently Performing Step (ii)

As discussed, here we would like to avoid performing the check
∑

T∈T T.dbf(t) ≤ t

for all values of t ≤ tmax. Let us assume that the deadline associated with a

certain vertex of T has been constrained. We also assume that T belongs to a

task set T , which was originally schedulable. Algorithm 3 is then used to update

the dbf-table associated with T . Now our goal is to identify those values of t at

which the sum
∑

T∈T T.dbf(t) was modified; we would like to check the condition
∑

T∈T T.dbf(t) ≤ t only at these values of t. Towards this, we first scan the

updated dbf-table and identify those values of t for which t < P (T ) and either

T.dbf(t) or T.dbf(t + P (T )) have been updated. Let tchange be the first such value

of t in this table. Let tcheck be a possible value of t that we are interested in

identifying. It then follows from Eqn. 2.1 in Section 2.1.2 that for each value of

tchange, there will be multiple tchecks. These tchecks are given by:

tcheck = tchange + kP (T )

where k = 0, . . . , N and N is the largest integer satisfying the inequality tchange +

NP (t) ≤ tmax.

The above procedure has to be repeated for all possible values of tchange in the

updated dbf-table and the corresponding tchecks are identified. The schedulability

test
∑

T∈T T.dbf(t) ≤ t is then performed at these tchecks.
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2.2.3 Running Times

Note that both the algorithms for updating the dbf-table (i.e. Algorithms 2 and

3), have a worst-case running time of O(n3E). Hence, in the worst-case, updating

the dbf-table involves the same computational cost as that involved in computing

this table from scratch. Clearly, at least from a theoretical standpoint, our scheme

would have been more attractive had this been otherwise. However, as we have

pointed out in Section 2.2.1, for most problems the actual running time incurred by

our algorithms would be significantly less than what would be involved in recom-

puting the entire dbf-table. As an example, let us consider Algorithm 2. We saw

that when the deadline of a vertex vnode was relaxed, then the cells 1, 2, . . . , nE of

row node were unconditionally recomputed. However, any cell on a row numbered

higher than node will have to be updated depending on the conditions in lines 11

to 19 of the algorithm. Hence, updating a single column of the dbf-table will incur

the worst-case cost only when the value of tnode,e is less than ti,e for all i > node.

Further, for the worst-case (in terms of updating the dbf-table) to occur, the worst-

case update scenario of a column must happen for all columns 1, 2, . . . , nE. For

most problem instances, such corner cases are unlikely to happen and as our ex-

perimental results show in Section 2.3, our scheme results in a significant speedup

compared to recomputing the dbf-table for each change.

Similarly, in the worst-case, stage (ii) might also require that the schedulability

condition
∑

T∈T T.dbf(t) ≤ t to be checked for all t ≤ tmax. But once again, for

most problem instances, this is unlikely to happen.

Finally, note that the space complexity of storing a dbf-table with n vertices is

O(n2E). For each vertex i we store ti,e, tii,e, and flagi,e, where e ranges from 1 to

nE.
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2.3 Experimental Results

We conducted two broad categories of experiments. In Section 2.3.1 we report some

experimental results that were obtained by running the dynamic programming

algorithm (Algorithm 1) and our proposed algorithms for interactive schedulability

analysis (Algorithms 2 and 3) on a set of synthetic task graphs. In Section 2.3.2

we illustrate the benefits of efficiently performing Step(ii) of the schedulability

analysis (which we described in Section 2.2.2).

2.3.1 Experiments with Step (i)

For our experiments we randomly generated synthetic task graphs using two pa-

rameters. The first is the maximum execution requirement, E, associated with

any vertex of a graph. The second parameter is called the connectivity factor. If

v1, . . . , vn are the vertices of a task graph such that there is an edge from vi to vj

only if j > i, then while generating the graph, for each vertex vj we construct an

edge from vi to vj with a probability equal to the connectivity factor of the graph,

for all i = 1, . . . , j − 1.

The parameters (i.e. E and the connectivity factor) used to generate our syn-

thetic graphs were chosen such that the graphs represent realistic network packet

processing applications. The details of this application may be found in [19]. A

connectivity factor equal to 0.4 was used to generate all the task graphs since this

results in graphs which are similar to those arising in practice. It may be noted here

that a higher connectivity factor would clearly result in more paths in any graph.

Hence, this would lead to higher savings from our scheme compared to when all

the paths in a graph are exhaustively enumerated to compute the demand-bound

function. E was set equal to either 200 or 600, representing two possible cases
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Figure 2.6: Running times for updating the dbf-table when the deadline of a vertex was

relaxed (a) E = 200 and (b) E = 600.

in the above-mentioned application.The inter-triggering time for each edge was

generated such that it satisfies the (l-MAD) property (see 2.1). The experiments

for Step(ii) (Section 2.3.2) also involve the periods, and for our study we have

assumed this to be set between 800 and 2000 for each task.

Figure 2.6 shows the running times involved in computing the dbf-table of a sin-

gle task graph. Once the deadline associated with a vertex of this task graph

was relaxed, we have (i) recomputed the entire dbf-table using Algorithm 1, and

(ii) updated the dbf-table using Algorithm 2. Figures 2.6(a) and 2.6(b) show the

running times incurred for task graphs with their number of vertices ranging from
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50 to 200, which were generated by setting E = 200 and E = 600 respectively.

The task graphs formed by joining together two copies of our original task graphs

had 100 to 400 vertices (as explained in Section 2.1.3), and the computation of the

dbf-table used these graphs.

For each randomly generated task graph, we randomly selected a vertex of this

graph and relaxed its deadline by a certain amount. The dbf-table associated with

this task was then (i) entirely recomputed, and (ii) updated using our proposed

scheme. For each task graph, this process was repeated for five randomly selected

vertices. The results in Figures 2.6(a) and 2.6(b) report the maximum dbf-table

update time incurred among these five vertices, along with the time required to

recompute the entire dbf-table. These results illustrate the savings achieved by our

proposed scheme. With E = 600, we obtain a speedup of more than 20×, which

translates into the schedulability analysis running in approximately 2 minutes in-

stead of 40 minutes. In an interactive design environment, the former waiting time

is clearly more tolerable than the latter. It should also be noted that with larger

values of E, even higher speedups will be obtained. Figures 2.7(a) and 2.7(b) show

similar results for the case where the deadline of a vertex was constrained.

We also conducted another set of experiments with relatively smaller task graphs

(containing 50 vertices), while varying the value of E from 1000 to 10000. Here, it

may be noted that the execution requirement associated with any vertex of a graph

is expressed in terms of time units. Such time units depend on the application at

hand and might denote milliseconds, microseconds, or even the number of clock

cycles of the processor on which the task graphs are required to execute. Hence,

experiments with large values of E are completely realistic. Our motivation behind

experimenting with small task graphs is that most realistic applications are likely to

be represented by task graphs containing relatively few vertices. The steps involved

in this set of experiments are exactly similar to those of the earlier experiments.
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Figure 2.7: Running times for updating the dbf-table when the deadline of a vertex was

constrained (a) E = 200 and (b) E = 600.

Figure 2.8(a) shows how the dbf-table update time and computation time changes

with increasing E (the maximum execution time associated with a vertex), when

the deadline associated with a randomly chosen vertex of a task graph is relaxed.

Figure 2.8(b) shows the corresponding results when the deadline associated with

a vertex is constrained. Note that in both the cases we obtain speedups of around

5×, which are significant if a design tool is to be used in an interactive fashion.

All the CPU times reported above were measured on a Linux machine with Fedora

Core 3, running on a 3.0 GHz CPU with a 2 GB RAM.

It may be noted that all our implementations were done in C++, did not make
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Figure 2.8: Running times for updating the dbf-table for a task graph with 50 vertices,

as the maximum execution requirement associated with a vertex (E) is increased. (a)

Deadline of a randomly chosen vertex is relaxed, and (b) Deadline of a randomly chosen

vertex is constrained.

use of any graphical interfaces for specifying the task graphs, and the code was

specifically optimized for running the schedulability analysis. In practice, a design

tool supporting schedulability analysis would be more involved. More specifically,

the task graphs might be integrated with other application-specific data struc-

tures that are not be optimized for the schedulability analysis algorithm. In such

cases, the speedups obtained by our interactive schedulability analysis might be

considerably higher compared to the results reported here. This is because it in-

volves fewer traversals through these task graphs in subsequent invocations of the
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Task Sets Task Graphs

Set 1 T1 1.647× 103

#vertices/task graph = 10 T2 1.799× 103

max. exec. req. of a vertex (E) = 200 T3 4.474× 103

tmax = 54.6× 103

Set 2 T1 3.759× 103

#vertices/task graph = 20 T2 2.662× 103

max. exec. req. of a vertex (E) = 200 T3 84.634× 103

tmax = 368.353× 103

Set 3 T1 8.657× 103

#vertices/task graph = 30 T2 4.975× 103

max. exec. req. of a vertex (E) = 200 T3 104.517× 103

tmax = 823.834× 103

Set 4 T1 7.017× 103

#vertices/task graph = 40 T2 13.906× 103

max. exec. req. of a vertex (E) = 200 T3 55.96× 103

tmax = 806.714× 103

Set 5 T1 6.861× 103

#vertices/task graph = 50 T2 13.005× 103

max. exec. req. of a vertex (E) = 200 T3 8.945× 103

tmax = 1431× 103

Table 2.3: Number of checks required in Step (ii) of the proposed interactive schedu-
lability analysis, versus tmax, which is equal to the number of checks that a regular
schedulability analysis algorithm would perform.

analysis, thereby saving the overheads associated with these traversals due to the

potentially complicated data structures. This observation stems from our attempt

to integrate this schedulability analysis algorithm inside a tool-suite [30] where

the task graphs were specified using a graphical user interface and were embedded

inside other data structures that were a part of this tool-suite. In this implementa-

tion we observed 20× speedups using our algorithm for task graphs with less than

40 vertices. However, with the optimized C++ implementation of our algorithm,

such speedups could only be seen for task graphs with around 200 vertices.



46

2.3.2 Experiments with Step (ii)

In Section 2.2.2, we had outlined an efficient method to perform Step(ii) of our

proposed interactive schedulability analysis. This section illustrates the savings

obtained by using that method. For our experiments, we generated five task sets

with each set consisting of three task graphs. The number of vertices in these task

graphs ranged over 10 to 50, with the first task set consisting of task graphs with

10 vertices, the second task set consisting of task graphs with 20 vertices, and so

on. The value of E for all the task graphs was set to 200.

We randomly chose a vertex of a task graph and constrained its deadline. We then

computed the number of checks that were needed to perform Step(ii), following

the description in Section 2.2.2. The results obtained are shown in Table 2.3.

This experiment was repeated for each task graph in the five task sets. The table

shows the results for five task sets, with each set containing three task graphs.

The numbers in the rightmost column are the number of checks in Step (ii) when

the deadline associated with a randomly chosen vertex of the task graph in the

same row is constrained. Note from Table 2.3 that there are cases where the num-

ber of checks of the schedulability condition reduce to almost 0.5% of the total

number of checks that would be performed by a regular schedulability analysis

algorithm. This again illustrates the potential savings that our interactive schedu-

lability analysis can achieve.

2.4 Providing Feedback to the System Designer

In what we have seen so far, if a task set fails the schedulability test for a certain t̂,

a system designer is allowed to randomly select some of the vertices of certain task

graphs, relax their deadlines and rerun the analysis. However, relaxing the deadline
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of some randomly selected vertex might not make the task set schedulable. Hence,

it would be meaningful to provide some feedback to the designer about potential

vertices, whose deadlines might be changed to make the task set schedulable. Other

types of feedback like changing the periods of certain task graphs or increasing the

intertriggering separation times associated with some of the edges of a task graph

might also be meaningful. Such feedback can be provided using the scheme we

have presented in this chapter.

Towards this, the algorithm used for computing the dbf-table (i.e. Algorithm 1)

needs to be changed, so that some additional data structures are computed. These

data structures, Qi,e and Qe
i,e, are computed by Algorithm 4.

Recall that each cell in our dbf-table contains three different values: tii,e, ti,e, and

flagi,e. In addition to these, we now store two lists Qi,e and Qe
i,e in each cell. Qi,e

records the subset of vertices from the set {v1, . . . , vi}, whose triggering demands

an execution time of e, within any time interval of length ti,e. Similarly, Qe
i,e lists

the subset of vertices from {v1, . . . , vi}, which ends with the vertex vi and has an

execution requirement of e within any time interval of length tii,e. Algorithm 4 not

only returns T ′.dbf(t), but also the list of vertices Q(t) whose triggering results in

the execution demand of T ′dbf(t).

We now explain how Q(t) can be used to provide useful feedback to a system

designer. Recall from Section 2.1.2 that we create a list of T.dbf(t) for all “small”

values of t. To this list, we now add the data structure Q(t) containing the vertices

that contribute to T.dbf(t). During the schedulability test in step (ii), suppose

the test fails at t̂. If t̂ is “small”, then we can find the desired list of vertices

Q(t̂) directly from the table. If t̂ is “large”, we check whether T.dbf(t̂) is equal

to ⌊t̂/P (T )⌋E(T ) + T.dbf(t̂ mod P (T )) or (⌊t̂/P (T )⌋ − 1)E(T ) + T.dbf(P (T ) +

t̂ mod P (T ))(see Eqn. 2.1) (T.dbf(t̂) has to be equal to either of these two values).



48

Algorithm 4 Computing of T ′.dbf(t) with data structures for providing feedback

Require: Task graph T ′, and a real number t ≥ 0

1: for e← 1 to nE do

2: if e(v1) = e then

3: t1,e ← d(v1)

4: flag1,e ← SELF

5: enqeue(Q1,e, v1)

6: else

7: t1,e ←∞

8: flag1,e ← PREVIOUS

9: end if

10: t11,e ← t1,e

11: end for

12: for i← 1 to n− 1 do

13: for e← 1 to nE do

14: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

15: ti+1
i+1,e ←





min{t
ij
ij ,e−e(vi+1) − d(vij ) + p(vij , vi+1)+

d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,

d(vi+1) if e(vi+1) = e, and∞ otherwise

16: Let vmin be the vertex from amongst the set of vertices vi1 , vi2 , . . . , vik , which

gave us the minimum value for the expression evaluated in line number 15

17: if e(vi+1) < e then

18: Qi+1
i+1,e ← Qmin,e−e(vi+1)

19: enqueue(Qi+1
i+1,e, vi+1)

20: else if e(vi+1) = e then

21: enqueue(Qi+1
i+1,e, vi+1)

22: end if

23: ti+1,e ← min{ti,e, t
i+1
i+1,e}

24: if ti+1,e = ti+1
i+1,e then

25: Qi+1,e ← Qi+1
i+1,e

26: flagi+1,e ←SELF

27: else

28: Qi+1,e ← Qi,e

29: flagi+1,e ←PREVIOUS

30: end if

31: end for

32: end for

33: T ′.dbf(t)← max{e | tn,e ≤ t}

34: Q(t)← Qn,e
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Figure 2.9: Task graphs (a) T1 and (b) T2 of our example task set τ .

If T.dbf(t̂) is equal to the former expression then we select the vertices listed as

Q(t̂ mod P (T )) from our table, otherwise we select the vertices corresponding to

Q(P (T ) + t̂ mod P (T )).

Hence, given any t̂ for which the schedulability test failed, for any task graph T we

can identify the legal sequence of vertices whose triggering contributed to T.dbf(t̂).

This sequence of vertices can now be used by the system designer to modify their

associated deadlines or the intertriggering separations associated with their edges.

In what follows, we refer to this sequence of vertices as the critical path of a task

graph that is responsible for its (non-) schedulability.

2.4.1 Illustration of the Feedback Provided for an Example

Task Set

Consider a task set τ , consisting of two task graphs T1 and T2, shown in Figure 2.9.

Now assume that we would like to verify whether τ is schedulable, and in case it is

not, we would like to change the deadlines of the appropriate vertices in order to

make it schedulable. Here we illustrate how the scheme that we presented above

can be used to effectively identify such appropriate vertices.

T ′1 and T ′2 (shown in Figure 2.10) were obtained by joining two copies of T1 and T2
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Figure 2.10: Task graphs (a) T ′1 and (b) T ′2 obtained from T1 and T2 respectively.

respectively, and will be used to compute dbf(t) for “small” values of t.

Clearly, the schedulability analysis returns a negative answer for the task set τ .

Further, Algorithm 4 provides the following feedback concerning the potential

vertices whose deadlines may be relaxed:

• Critical Path for Task Graph T ′1: v6

• Critical Path for Task Graph T ′2: v7

Indeed from Figure 2.10, we see that v6 of T ′1 and v7 of T ′2, both demand 1 unit

of execution time within a time interval of 1 unit. Thus,
∑

T∈T T.dbf(1) = 2,

implying that the condition
∑

T∈T T.dbf(t) ≤ t is not satisfied at t = 1. Now,

one might choose to relax the deadlines associated with v3 and v7 of T ′2 from 1

to 2. It may be noted here that in practice, the task graphs T ′1 and T ′2 will not

be visible to a designer and he or she will only work with the original graphs T1

and T2. Any changes made in these two task graphs can easily be translated to

appropriate changes in T ′1 and T ′2.
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Now we re-run the analysis and find that the task set is still not schedulable, along

with the following feedback:

• Critical Path for Task Graph T ′1: v3, v4

• Critical Path for Task Graph T ′2: v8

To see that these paths are indeed critical to schedulability, note that from the path

v3, v4 we get T ′1.dbf(2) = 2. Similarly, in task graph T ′2, v8 leads to T ′2.dbf(2) = 1.

Thus,
∑

T∈T T.dbf(t) > t, at t = 2. Again, to move towards a schedulable system,

we now relax the deadline of v4 of T ′1 from 1 to 2, and rerun the analysis.

However, the task set is still not schedulable, and the feedback provided is as

follows:

• Critical Path for Task Graph T ′1: v3, v4, v5, v6

• Critical Path for Task Graph T ′2: v3, v4, v5

One can verify that the above sequence of paths lead to
∑

T∈T T.dbf(6) = 7,

thereby failing the schedulability test. This time we select v5 of T ′2, and relax its

deadline from 2 to 3, thereby obtaining a schedulable system.

In the above example, we have seen the benefits of the feedback mechanism on a

small task set. In larger systems where many more task graphs and more vertices

would be involved, this mechanism would certainly be of immense benefit.

2.5 Summary

In this chapter we presented a scheme for efficient schedulability analysis of re-

curring real-time task sets, where the schedulability analysis is repeatedly invoked
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with small modifications in the task set. Since this scheme is used in an interactive

fashion, we referred to it as interactive schedulability analysis.

As discussed in Chapter 1, many system-level design tools in the electronic design

automation domain are being used by the designers in a interactive fashion during

design space exploration. Since, our method exploits this repeated invocation of

the algorithm to achieve speed-ups as well to provide feedback, it has the potential

to be applied to all such problems.



Chapter 3

Efficiently Computing

Performance Tradeoffs using

Multicriteria Schedulability

Analysis

As mentioned in Chapter 1, performance analysis of real-time embedded sys-

tems occupy a major chunk of their overall design time in iterative design space

exploration. In this context, we also discussed some of the reasons that lead

to the tedious design sessions for schedulability analysis and mulitcriteria hard-

ware/software co-design. In Chapter 2, we introduced our interactive schedula-

bility analysis framework to ease the tedious design cycles, and in this chapter,

we shall be concerned with computing tradeoffs in a standard mulitcriteria hard-

ware/software co-design problem.

Real-time embedded systems are increasingly becoming heterogeneous and consist

of a mix of fully- and partially-programmable processors, fixed-function hardware
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accelerators and different kinds of buses and memory modules. Applications to

be implemented on such systems are partitioned and mapped onto these different

processors and hardware components. This results in a large number of implemen-

tation possibilities with different performance tradeoffs. As a result, a designer is

no longer interested in one implementation that meets the real-time constraints

associated with a given application (i.e. is schedulable), but would rather like

to identify all schedulable implementations that expose the different possible per-

formance tradeoffs. In this chapter, we shall introduce an efficient and formal

methodology towards this.

As a simple example where identifying multiple performance trade-offs is crucial,

consider two applications (or tasks) T1 and T2 which are required to run concur-

rently and have predefined deadline constraints. Both T1 and T2 can be partially

implemented in hardware, with their remaining parts implemented as software

running on the same programmable processor P . Such a scheme is in line with two

possible realistic realizations. First, there is the fine-grained approach of customiz-

able processors where the system designer may choose to implement frequently

occurring computation patterns in hardware. For example, Xtensa [34] from Ten-

silica is a configurable processor core. The XPRES compiler provided by Tensilica

generates the custom instructions from the C code corresponding to a task, and

the designer may choose to map them directly to the hardware. Secondly, such

a scheme is also in line with CPU/FPGA architectures (e.g. Virtex-II PRO from

Xilinx), which consist of one or more programmable processors embedded within

the FPGA’s logic fabric. Various techniques have been proposed to partition a

given application for such hardware-software architectures [49].

In such scenarios, the portions (or even fractions) of two tasks, T1 and T2 to be im-

plemented in hardware constitute the different implementation options. The two

objectives to be optimized are the total hardware cost and the minimum clock fre-
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quency of P (which, for example, might influence its power consumption). Clearly,

there can be different implementation options which satisfy T1 and T2’s deadline

constraints. If larger fractions of T1 and T2 are implemented in hardware, then

the hardware cost increases and the required clock frequency of P decreases, and

vice versa. For any schedulable implementation, if (c, f) denotes the corresponding

hardware cost and clock frequency, then a designer will be interested in identify-

ing all possible tuples (c1, f1), . . . , (cn, fn) which capture the different performance

tradeoffs. In the multicriteria optimization parlance, the set {(c1, f1), . . . , (cn, fn)}

is referred to as the Pareto curve and each point (ci, fi) in this set is called a

Pareto-optimal solution [26] (see Figure 3.1). Each (ci, fi) in this set has the prop-

erty that there does not exist any schedulable implementation of T1 and T2 with

a performance vector (c, f) such that c ≤ ci and f ≤ fi, with at least one of the

inequalities being strict. Further, let S be the set of performance vectors corre-

sponding to all schedulable implementations. Let P be the set of performance

vectors {(c1, f1), . . . , (cn, fn)} corresponding to all the Pareto-optimal solutions.

Then for any (c, f) ∈ S − P there exists a (ci, fi) ∈ P such that ci ≤ c and

fi ≤ f , with at least one of these inequalities being strict (i.e. the set P contains

all performance tradeoffs). The vectors (c, f) ∈ S−P are referred to as dominated

solutions, since they are “dominated” by one or more Pareto-optimal solutions as

shown in Figure 3.1.

In this chapter we present a polynomial-time approximation algorithm for comput-

ing the Pareto curve P = {(c1, f1), . . . , (cn, fn)}. This result is interesting because

even the single-criteria version of the problem in very simple settings turns out to

be intractable (NP-hard). Given a set of tasks and a processor P running at a

predefined clock frequency, the single-criteria version of this problem is to come up

with a schedulable (on P ) implementation of these tasks with the minimum hard-

ware cost. In other words, the processor has a predefined clock frequency which is
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Figure 3.1: Pareto-optimal solutions.

provided as an input. Note that the well-studied schedulability analysis problem

[11, 17] — where the goal is to decide whether the task set is entirely schedulable

on P — is a special case of the single-criteria version of our problem.

The second reason which makes our work interesting is that there can be an expo-

nentially large number of performance vectors (ci, fi) in the Pareto curve P , which

makes it impossible to compute this entire set in polynomial time. Hence, our

polynomial-time approximation algorithm by default also implies approximating

the (potentially exponential size) set P with only a polynomial number of points.

In a typical design or performance debugging scenario, a system designer inspects

all the tradeoffs in the set P and then selects one, or at most a few implementa-

tions. Hence, from a practical perspective, it is more meaningful if the designer is

presented with a reasonably few well-distinguishable tradeoffs in the set P , rather

than an exponentially large number of solutions, many of which are very similar to

each other. Our approximation algorithm is therefore not only attractive in terms

of time-complexity, but also returns more meaningful solutions, as we show later

in this chapter.
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Overview of the proposed scheme

Our proposed scheme takes as an input an error parameter ǫ and returns an ǫ-

approximate Pareto curve which we denote as ǫ-Pareto curve (or Pǫ) in the rest

of this thesis. Given a Pareto curve P = {(c1, f1), . . . , (cn, fn)}, an ǫ-approximate

Pareto curve is defined as any set Pǫ = {(c′1, f
′
1), . . . , (c

′
m, f ′m)} such that for any

(ci, fi) ∈ P, there exists a (c′j, f
′
j) ∈ Pǫ for which c′j ≤ (1 + ǫ)ci and f ′j ≤ (1 + ǫ)fi.

In other words, corresponding to any point on the Pareto curve P , there exists

a point on Pǫ, each of whose coordinates are at most ǫ distance away from the

corresponding coordinates of the point on P . Hence, each “tradeoff” in P has an “ǫ-

approximation” in Pǫ, where the semantics of ǫ-approximation are as defined above.

In Figure 3.1, each point on the Pareto curve (denoted by •) is approximated by

some point (denoted by ×) which may be a Pareto-optimal solution or a dominated

solution. The set of × points depend on the value of ǫ, and constitute the set

Pǫ. Since ǫ is an input provided by the system designer, the error between the

approximate and the optimal Pareto curves can be made as small as desired. The

running time of our approximation algorithm, as we show later, is polynomial

in the size of the problem instance and polynomial in 1
ǫ
, but exponential in the

number of objectives/criteria. However, since the number of objectives is typically

small for most real-life problems, this should not pose any problem. Finally, as one

might expect, the running time of the algorithm increases as the error parameter

ǫ is made smaller.

Our algorithm is made up of the following two parts.

(i) The first part is a polynomial-time approximation algorithm for solving the

single-criteria version of the problem. Recall that here we are given a proces-

sor P with a predefined clock frequency (or alternatively, a target processor

utilization). The goal is to compute a partition of each task such that the
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portions mapped onto P are schedulable and the total hardware cost is min-

imized. As we describe later, we assume that each task comes with a spec-

ified number of hardware implementation possibilities, i.e. certain subtasks

or portions which might be implemented in hardware or in software, and the

remaining can only be implemented in software. We believe that this is more

realistic than assuming that a task can be arbitrarily partitioned into hard-

ware and software. The approximation algorithm for the single-criteria ver-

sion takes as an input an error parameter ǫ. It returns a hardware cost which

is guaranteed to be no more than (1 + ǫ) times the minimum cost incurred

to schedule the tasks on P with the predefined clock frequency or processor

utilization. Alternatively, it says that there does not exist any schedulable

implementation of the task set under the possible hardware-implementation

options.

(ii) The second part of our algorithm involves imposing a k-dimensional grid on

the objective space, where k is the number of objectives being considered.

In the case of our bicriteria example (where k = 2), this boils down to a

rectangular grid. We then (approximately) solve a single-criteria version

of our problem for each grid point by using our approximation algorithm

outlined in part (i) and retain only the Pareto-optimal solutions (or rather

the “Pareto-optimal grid points”). The crux of this step is in the choice of

the grid dimensions, which are also functions of the error parameter ǫ that

was used in part (i). By appropriately choosing the grid dimensions, we can

guarantee that the approximate Pareto curve is within ǫ distance from the

optimal Pareto curve. Further, the number of calls to the approximation

algorithm in part (i) is restricted to a polynomial in the problem size and in

1
ǫ
, but exponential in the number of objectives k.

In summary, both parts (i) and (ii) incur an error in the computation of the Pareto
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curve. However, the cumulative error is bounded such that the resulting points in

the objective space still cover the entire Pareto curve and approximate it with a

maximum error of ǫ in all the objectives.

Related Work

There exists a large body of work on multiobjective optimization [26] and also on

multicriteria scheduling and decision making [78]. However, a significant portion of

these approaches address the problems from an engineering perspective and relies

on heuristics and randomized search techniques such as evolutionary algorithms

(e.g. see [23]). Our work in this thesis differs from these approaches by taking a

classical approximation algorithms standpoint, where the goal is to provide formal

guarantees on the quality of the results obtained.

Further, we are also not aware of any work on multicriteria schedulability analysis of

the form that we present in this thesis. Flexible scheduling with multiple concerns

is considered to be an important problem in the real-time systems domain (e.g.

see [13]). However, to the best of our knowledge, no formal algorithmic solution

to this problem is known so far. Our work is also tangentially related to a number

of recent papers on performance debugging of real-time and embedded systems

from a timing/schedulability analysis perspective. For example, [15, 66, 68, 69, 83]

address the problem of sensitivity analysis of real-time systems where the goal is

to compute permissible changes in certain system parameters that do not result in

the required timing/schedulability constraints to be violated. Such changes, espe-

cially in a multidimensional setting [68], might be viewed as possible schedulable

implementations which are associated with different performance tradeoffs. Simi-

larly, [14] addressed the problem of computing the “schedulable region” or space of

task periods and worst-case execution times that lead to schedulable systems. The
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main difference between this line of work and our results is that both sensitivity

analysis and schedulable region computation do not explicitly consider schedulable

implementation tradeoffs, which is our main focus.

The algorithmic techniques presented in this chapter have been motivated by [46]

and [61]. More specifically, [46] used a partitioning technique to divide a multidi-

mensional objective space into hyper-rectangles – as we do in part (ii) of our scheme

– but used it for improving the search quality of a randomized search algorithm.

The result that any Pareto curve can be ǫ-approximated by a polynomial-size ap-

proximate Pareto curve was first proved in [61]. However, for many problems,

efficiently (i.e. in polynomial time) computing such approximate Pareto curves

might not be possible. Our work in this thesis shows that for the multicriteria

schedulability analysis problem, such approximate Pareto curves can also be com-

puted in polynomial time.

Organization of this Chapter

The rest of the chapter is organized as follows. In the next section we introduce

our task model and some necessary notations. In Section 3.2 we then formally

define the single-criteria version of the problem, prove that it is NP-hard and

derive a polynomial-time approximation scheme for solving it. This is followed by

our solution to the multicriteria problem. Some of the experimental results we

obtained are described in Section 3.4. Finally, we conclude in Section 3.5.

For ease of exposition, all the algorithms presented in this chapter are for a bicri-

teria schedulability analysis problem; more specifically, the one we described as an

example at the beginning of this chapter. However, all our results trivially extend

to higher dimensional settings. Similarly, we also considered a simple sporadic
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task model [11, 52]. Again, it is possible to extend our algorithms to more general

task models such as multiframe [55], generalized multiframe [10], and recurring

real-time [9] models.

3.1 Task Model

In this work, we use the sporadic task model in a preemptive uniprocessor envi-

ronment to illustrate our approximation scheme. Thus, we are interested in the

schedulability analysis of a task set τ = {T1, T2, . . . , Tm} consisting of m hard real-

time tasks. Any task Ti can get triggered independently of other tasks in τ . Each

task Ti generates a sequence of jobs; each job is characterized by the following

parameters:

• Release Time: the release time of two successive jobs of the task Ti is sepa-

rated by a minimum time interval of Pi time units.

• Deadline: each job generated by Ti must complete by Di time units since its

release time.

• Workload : the worst case execution requirement of any job generated by Ti

is denoted by Ei.

Throughout this thesis, we assume the underlying scheduling policy to be the

earliest deadline first (EDF). Again, our algorithm can be suitably modified to

handle other scheduling policies as well. Assuming that for all tasks Ti, Di ≥ Pi,

the schedulability of the task set τ can be given by the following condition.

Theorem 3.1.1 A set of sporadic tasks τ is schedulable under EDF if and only if
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Tasks in the Task Set Workload Cost

10 15
# choices for task T1 = 3 8 45

E1 = 12, P1 = 40 4 90

# choices for task T2 = 2 5 24
E2 = 6, P2 = 16 2 42

8 11
# choices for task T3 = 3 6 26

E2 = 6, P3 = 25 5 82

Table 3.1: Implementation choices for three different tasks in a task set. Each row of
this table shows the new execution requirement (on a programmable processor) because
of a part of the task being implemented in hardware, along with the incurred hardware
cost.

(U =
m∑

i=1

Ei

Pi

) ≤ 1

where U is the processor utilization due to τ [11, 52].

3.2 The Single-Criteria Problem

In this section, we formally state the single-criteria version of the problem along

with an illustrative example. We then show that this problem is intractable even

for the simple sporadic task model described in Section 3.1. Finally, we derive a

fully polynomial-time approximation scheme (FPTAS) [40] for solving it.

Recall that we are given a processor P with a predefined clock frequency, and a

specified number of subtasks of each task Ti which can be implemented in hard-

ware. Our goal is to identify the implementation choices that lead to the minimum

hardware cost, provided the portions of the tasks mapped onto P are schedulable.

If the task set is entirely schedulable on the processor P (i.e. U ≤ 1), then the

problem is trivial and we need not incur any hardware costs. However, if the
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entire task set is not schedulable on P , then certain portions of some of the tasks

in the set will have to be implemented in hardware to reduce the load on P . The

problem is then that of identifying which portions or subtasks of each task should

be mapped onto hardware such that the minimum hardware cost is incurred.

For each task Ti, let there be ni hardware implementation choices. Each of these

ni choices is associated with a certain hardware cost. Choosing the jth imple-

mentation choice for the task Ti lowers its execution requirement on P from Ei

to ei,j. Equivalently, the amount by which the execution requirement of Ti gets

lowered on P is δi,j = Ei − ei,j. Hence, for each task Ti we have a set of choices

Si = {(δi,1, ci,1), . . . , (δi,n1 , ci,n1)}, where ci,j is the hardware cost associated with

the jth implementation choice. The goal is to identify one choice for each task,

which would lower the processor utilization to less than or equal to one, and mini-

mize the total hardware cost. In what follows, we shall refer to this as the minimum

cost schedulability analysis problem.

We now illustrate this problem with the help of an example. A task set τ has

three tasks {T1, T2, T3} with {E1 = 12, P1 = 40}, {E2 = 6, P2 = 16}, and {E3 =

11, P3 = 25}. Clearly the processor utilization U > 1 and hence this task set

is not schedulable, without some of the subtasks being mapped onto hardware.

The different possible hardware implementation choices for each task in this set is

shown in Table 3.1. Each row of this table shows the new execution requirement

of a task on P after a part of this task is implemented in hardware, and the

associated hardware cost. Note that as the execution requirement or workload of

a task decreases, its associated hardware cost increases.

Following the notation we introduced above, for T1 we have e1,1 = 10, e1,2 = 8

and e1,3 = 4. The corresponding hardware costs are c1,1 = 15, c1,2 = 45 and

c1,3 = 90. Hence, the implementation choices for T1 are given by the set S1 =
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{(2, 15), (4, 45), (8, 90)}. The choices for T2 and T3 can be similarly computed

from this table. Note that while T1 and T3 have three choices each, T2 has only

two choices. Thus, n1 = n3 = 3 and n2 = 2. The goal is to select one choice from

each set S1, S2 and S3, such that we obtain a minimum-cost schedulable system.

3.2.1 NP-hardness

We show that the minimum cost schedulability analysis problem is NP-hard using

a polynomial-time transformation from the 0-1 knapsack problem [40].

Theorem 3.2.1 The minimum cost schedulability analysis problem is NP-hard.

Proof: The decision version of the minimum cost schedulability analysis problem

asks whether there is a set of choices of the execution requirements such that the

condition U ≤ 1 is satisfied, and the total cost is ≤ C.

The knapsack problem specifies m items with integral weights wi and profits pi,

i = 1, 2, . . . ,m, an integral weight constraint W and a profit goal G. Let the

m binary variables xi ∈ {0, 1} correspond to the selection of the ith item. The

knapsack decision problem asks if there exists a subset of items, the sum of whose

profits
∑m

i=1 pixi ≥ G and the sum their weights is
∑m

i=1 wixi ≤ W .

We transform the knapsack problem into a special instance of our problem which

is obtained by setting ni = 1, for i = 1, 2, . . . ,m. Towards this, let δi,1 = pi and

ci,1 = wi. Hence, corresponding to each item i in the knapsack problem with weight

wi and profit pi, there is a task Ti with δi,1 = pi and cost ci,1 = wi. For this problem

instance, let all the m tasks in the task set τ have the same deadline D. Further,

let all the periods be equal to their deadlines, i.e. Pi = D for all {i = 1, 2, . . . ,m}.
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The values D and Ei are chosen such that the
∑

Ei −D = G. Our claim is that

the minimum cost schedulability analysis decision problem returns a Yes answer

if and only if the knapsack problem returns a Yes. To verify this, let us first

consider the if direction. This immediately implies that
∑m

i=1 cixi ≤ C for the

problem instance we constructed. For our special instance, where ni = 1, the

binary variable xi ∈ {0, 1} corresponds to the selection of the {i, 1}th choice.

Again, a solution to the knapsack problem also implies that:

m∑

i=1

pixi ≥ G

⇒
∑

δi,1xi ≥
∑

Ei −D

⇒
∑

Ei −
∑

δi,1xi ≤ D

⇒(E1 − δ1,1x1) + (E2 − δ2,1x2) + · · ·+ (Em − δm,1xm) ≤ D

⇒U ≤ 1

The claim can be similarly verified in the other direction. Thus, the special case

of the minimum cost schedulability analysis problem is NP-hard and the theorem

follows. ⊔⊓

3.2.2 Approximating the Minimum Cost Schedulable So-

lution

In this section we first present a dynamic programming algorithm (Algorithm 5)

to compute the minimum cost that must be incurred to obtain a schedulable task

set. This algorithm runs in pseudo-polynomial time. We then use this algorithm

to derive a fully polynomial-time approximation scheme (FPTAS) for the same

problem.

Let Ui,j be the minimum utilization that might be achieved by considering only a
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subset of tasks from {1, 2, . . . , i} when the cost is exactly j. If no such subset exists

we set Ui,j = ∞. Let the maximum cost be C i.e. C = max(i=1,2,...,n;j=1,2,...,ni)ci,j.

Clearly, mC is an upper bound on the total cost that might be incurred. All other

notations used are as introduced in Section 3.2.

Lines 1 to 5 of Algorithm 5 initialize U0,0 to
∑m

i=1 Ei/Pi, and U0,j to ∞ for j =

{1, 2, . . . ,mC}. The values Ui,j for i = 1 to i = m are computed using the iterative

procedure in lines 7 to 26. For an iteration where (i = i′) and (j = j′), we say

that Ui′,j′+ci,k
is updated using the recursive computation in lines 16 to 23 where

Ui′,j′+ci,k
is assigned the value {Ui′−1,j−δi′,k/Pi′}. Thus, Ui′,j′+ci,k

6= Ui′−1,j′+ci,k
, i.e.

Ui′,j′+ci,k
does not carry the value from the previous iteration but is updated with

a new value. When such an updated entry is accessed after a few iterations (i.e.

when j = j′ + ci,k), this updated value should not get re-initialized to its previous

value (line 10). This is taken care of in lines 9 to 12 with the help of the if-else

conditional statements on the variable tagj . Towards this, the value tagj is set to

0 for updated entries in lines 18 to 19. It can be easily verified that the running

time of Algorithm 5 is O(nmC), where n =
∑m

i=1 ni, and its space complexity is

O(m2C).

Next, we present an FPTAS for the minimum cost schedulability analysis problem.

Towards this, we divide the cost space between 1 and mC into O(n log1+ǫ mC)

intervals as (1, (1 + ǫ)1/n], ((1 + ǫ)1/n, (1 + ǫ)2/n], . . ..

Our FPTAS is based on Algorithm 5. But instead of running it for all possible

cost values, from 0 to mC, we only consider the value 0 and the upper end points

of the partitioned intervals we described above. Let Ũi,ej, represent the utilization

value with the cost at most j̃, where j̃ always takes the value 0 or the value of

one of the upper endpoints of the above mentioned intervals. During the iteration

for the current entry Ũi,ej, the following procedure is executed for the recursive
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Algorithm 5 Minimum-cost schedulability analysis
Require: The task set τ , and a set Si for each task Ti.
1: U0,0 ←

∑m
i=1 Ei/Pi

2: tagj ← 1
3: for j ← 1 to mC do

4: U0,j ←∞
5: tagj ← 1
6: end for

7: for i← 1 to m do

8: for j ← 0 to mC do

9: if tagj = 1 then

10: Ui,j = Ui−1,j

11: else

12: tagj = 1
13: end if

14: For each pair (δi,k, ci,k) that belongs to the set Si

15: if (j + ci,k) ≤ mC then

16: if tagj+ci,k
= 1 then

17: Ui,j+ci,k
← min{Ui−1,j+ci,k

, Ui−1,j − δi,k/Pi}
18: if Ui,j+ci,k

= Ui−1,j − δi,k/Pi then

19: tagj+ci,k
= 0

20: end if

21: else

22: Ui,j+ci,k
← min{Ui,j+ci,k

, Ui−1,j − δi,k/Pi}
23: end if

24: end if

25: end for

26: end for

27: MinCost← min{j |Un,j ≤ 1}

equations in lines 17 and 22 of Algorithm 5. The cost of [̃j + ci,j] is rounded up

to the next upper endpoint ũ. The value in this entry i.e. Ũi−1,eu is compared with

Ũi,ej − δi,j/Pi, and the minimum of the two is stored in Ũi,eu. This explains how

to update the main recursive equation in lines 15 and 17. The value for tagj can

be updated in a similar way (lines 19 and 20). The running time of the resulting

algorithm is O(n2 log1+ǫ mC) (which is bounded by a polynomial in the problem

size and in 1
ǫ
).

Theorem 3.2.2 Our approximation algorithm for the minimum cost schedulabil-

ity analysis problem is a (1 + ǫ)-approximation scheme.
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Proof: The algorithm can be proved to be a (1 + ǫ)-approximation scheme if we

can show that j̃ ≤ (1+ǫ)j. This is achieved by proving the following two properties

for all values of i and j.

Property 1: Ũi,ej ≤ Ui,j

Property 2: j̃ ≤ (1 + ǫ)i/mj

We will prove these two properties using induction on i. First, consider the items

only from the task T1, i.e. i = 1. This implies that in the exact algorithm, there

will be an update for Ui,p1,k
corresponding to all k = {1, 2, . . . , n1}. Property 1

holds by equality. We can easily verify that j̃/(1+ ǫ)1/n ≤ ci,k (Property 2) follows

from the fact that j̃ is the upper bound in the same interval as j, and hence j̃/(1+ǫ)

will definitely be in the preceding interval.

Let us now consider the induction step for any i > 1, assuming that both the

properties hold true for i − 1, i.e. we have dealt with the tasks T1 to Ti−1. This

step considers the pairs (δi,k, ci,k) in the set Si. The entries in the array Ui,j which

are not updated definitely satisfy both the properties.

Now consider entries which are updated i.e. an item (δi,k, ci,k) was added to Ui,j

such that Ui,j+ci,k
was updated. Since the claim is true for i− 1, there exists Ũi−1,ej

such that j̃ ≤ (1 + ǫ)i−1/nj. Now, we consider ci,k which will be added to j̃, and

is rounded up to ũ. Given the manner in which we constructed our intervals, we

have

ũ/(1 + ǫ)1/n ≤ j̃ + ci,k ≤ j̃(1 + ǫ)i−1/n + ci,k

ũ/(1 + ǫ)1/n ≤ (j̃ + ci,k)(1 + ǫ)i−1/n

⇒ ũ ≤ (j̃ + ci,k)(1 + ǫ)i−1/n
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Property 1 can be verified using the following steps, where the inequality holds by

induction.

Ũi,ej = min{Ũi,ej, Ui−1,ej − δi,ej/Pi}

≤ {Ui−1,j − δi,j/Pi} = Ui−1,j+ci,k

⊔⊓

3.3 Multicriteria Schedulability Analysis

In the previous section we addressed the single-criteria version of the problem,

namely we assumed the processor’s clock frequency to be prespecified. In this

section, we relax this assumption and present a scheme to compute the Pareto curve

containing the Pareto-optimal set of performance vectors {(c1, f1), . . . , (cn, fn)},

where (ci, fi) denotes the hardware cost and the clock frequency for a particular

schedulable implementation.

For simplicity of exposition, we will henceforth assume that the processor P ’s clock

frequency is constant and all the execution times of the tasks are specified with

respect to this clock frequency. Our objective will be to minimize P ’s utilization

(by mapping certain subtasks onto hardware) and at the same time also minimize

the total hardware cost. In other words, our goal is to compute the cost-utilization

Pareto curve {(c1, u1), . . . , (cn, un)} for a prespecified clock frequency of P . It is

straightforward to see that such a Pareto curve can be easily transformed into a

cost-frequency Pareto curve with P ’s utilization being ≤ 1 for the different fre-

quency values.

Unfortunately, computing the exact cost-utilization Pareto curve is computation-
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Figure 3.2: The GAP problem corresponding to our cost-utilization tradeoff problem.

ally intractable. This can be easily verified from the following two facts. First,

the Pareto curve would typically contain an exponential number of points (which

obviously cannot be computed in polynomial time). Second, computing any one

point on the Pareto curve is NP-hard, as we showed in Section 3.2. Hence, our

goal is to approximately compute this curve in polynomial time.

Recent work by Papadimitriou and Yannakakis [61] has shown that for any mul-

tiobjective optimization problem, there exists a polynomial-sized ǫ-approximate

Pareto curve Pǫ for any given ǫ. Further, [61] showed that a necessary and suffi-

cient condition for computing such a Pǫ in polynomial time is the existence of a

polynomial-time algorithm for solving, what was referred to as the GAP problem.

In what follows, we state the version of the GAP problem that arises in our setting

and show that it can be solved in polynomial time.

3.3.1 The GAP Problem

For a two-dimensional multiobjective optimization problem, the GAP problem can

be stated as follows: Given a vector b = (b1, b2), either return a solution whose

vector dominates b, or report that there is no solution whose vector is better than
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Figure 3.3: An FPTAS for computing Pǫ using an algorithm for solving GAP.

b by at least a factor of 1 + ǫ in both dimensions. In our setup, the objective is to

minimize the utilization U(S) =
∑m

i=1
Ei−xi,jδi,j

Pi
and the cost C(S) =

∑m
i=1 ci,jxi,j,

where S is the chosen implementation among the various available options (see

Table 3.1). Hence, the corresponding GAP problem can be stated as: Given a

cost c, a utilization u and an ǫ ≥ 0, either return a solution S such that C(S) ≤ c

and U(S) ≤ u, or else declare that there is no solution S such that C(S) ≤ c
1+ǫ

and U(S) ≤ u
1+ǫ

(see Figure 3.2). In this section, we will show that there exists a

polynomial-time algorithm to solve this GAP problem.

Note that a polynomial-time algorithm to solve the GAP problem implies an FP-

TAS for computing Pǫ. This is because the following FPTAS can be devised using

the algorithm for solving GAP (shown schematically in Figure 3.3). First, geomet-

rically partition the objective space along all dimensions with a ratio 1 + ǫ′, where

ǫ′ = (1+ǫ)1/2−1. For each corner point of this grid, call the GAP routine (i.e. the

algorithm for solving GAP) with the parameter ǫ′, and keep all the undominated

solutions (see Figure 3.4 for an illustration of this procedure). This implies that for

each rectangle which contains a solution in the exact Pareto curve, there will also

be a solution within the same rectangle which belongs to Pǫ. The distance between
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these two solutions can be bounded using the dimensions of the rectangle. Hence,

for every solution s in the Pareto curve, there exists a solution q in Pǫ such that

q
(1+ǫ)

≤ s. Moreover, because the number of rectangles is polynomially bounded,

it follows that the number of points in Pǫ will also be a polynomial.

Theorem 3.3.1 There exists an algorithm for constructing the cost-utilization ǫ-

Pareto curve, which runs in time polynomial in the size of the input and in 1
ǫ
.

Proof: As discussed above, a necessary and sufficient condition for the existence

of an FPTAS for computing the approximate cost-utilization Pareto curve Pǫ is

that the following GAP problem should be solvable in time, which is polynomial

in the input size and in 1/ǫ.

Problem Statement: Given a cost c, utilization u and an ǫ ≥ 0 either return

a solution S such that C(S) ≤ c and U(S) ≤ u, or else declare that there is no

solution S such that C(S) ≤ c
1+ǫ

and U(S) ≤ u
1+ǫ

.

Solution to the GAP Problem: We now present a polynomial-time algorithm

to solve this GAP problem. It involves the following two steps:

• Transforming Costs

Let r =
⌈

m
ǫ

⌉
. Modify each cost ci,j to c′i,j such that c′i,j =

⌈ ci,jr

c

⌉
. This leads

to the following properties:

(a) If a solution with the transformed costs satisfies C ′(S) ≤ r, then C(S) ≤

c.
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Figure 3.4: Solving the GAP problem for the corner point A will either return a domi-

nating solution or declare that there is no solution in the shaded area.

Proof of Property (a):

∑
c′i,jxi,j =

∑ ⌈ci,jxi,jr

c

⌉
≥

r

c

∑
ci,jxi,j

Hence, C ′(S) ≤ r ⇒
r

c

∑
ci,jxi,j ≤ r

This implies that C(S) ≤ c.

(b) If the solution satisfies C(S) ≤ c
1+ǫ

, then C ′(S) ≤ r.

Proof of Property (b):

C(S) ≤
c

1 + ǫ
⇒

∑
ci,jxi,j ≤

c

1 + ǫ

⇒
∑ ci,jxi,j

c

m

ǫ
≤

m

ǫ(1 + ǫ)

⇒
∑ ⌈ci,jxi,jr

c

⌉
≤

⌈
m

ǫ(1 + ǫ)

⌉

⇒C ′(S) ≤
⌈m

ǫ

⌉
= r ⇒ C ′(S) ≤ r

Consider the problem of determining if there exists a solution with the mod-

ified costs such that C ′(S) ≤ r. Let us call this problem GAP′. From

property (a), we know that if this problem returns an affirmative answer

then the GAP problem would also return a dominating solution. On the
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other hand, if GAP′ returns a negative answer then property (b) leads to the

conclusion that there is no solution with cost ≤ c/(1 + ǫ). Hence, from the

above properties we can infer that solving GAP′ is equivalent to solving the

original GAP problem.

• Solving GAP′

We present a dynamic programming algorithm to solve the GAP′ problem.

This algorithm can be constructed with the following adjustments to Algo-

rithm 5.

1. Run Algorithm 5 with the modified costs c′i,j.

2. Instead of iterating over all the cost values up to mC, iterate only up

to a cost value of at most r.

3. Finally, if the minimum value in the final array Un,{1,...,r} is such that

it is ≤ u, then return the solution otherwise declare that there is no

solution.

Computing each row of the table built by this dynamic programming al-

gorithm requires O(nir) running time. Hence, this algorithm runs in time

O(nm/ǫ), where n =
∑

ni.

Hence, a polynomial-time algorithm exists for solving the GAP problem, which in

turn proves our theorem. ⊔⊓

Now that we have presented the GAP subroutine for our problem, we can present

the full algorithmic details for computing the cost-utilization Pareto curve. Recall

that we already outlined this scheme in Figure 3.3. Algorithm 6 specifies the steps

to compute the ǫ-approximate cost-utilization Pareto curve in some more detail.

Note, that in step 1 of Algorithm 6 we partition only the cost space (and not both

utilization and cost space). This is because if a point (c, u) dominates the corner
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Algorithm 6 Approximating the Pareto curve.

1: Partition the range of costs from 1 to mC geometrically with a ratio 1 + ǫ′ =
(1 + ǫ)1/2, thus dividing the cost space into O(log1+ǫmC) coordinates.

2: For each coordinate b, call Algorithm 1 with transformed costs c′i,j =
⌈ ci,jr

b

⌉
,

where r =
⌈

m
ǫ′

⌉
.

3: For each run of Step 2, find the solution with the minimum utilization.
4: Retain all the undominated solutions from the solutions found in Step 3. This

will represent a ǫ-Pareto curve.

(c1, u1) and u1 < u2, then (c, u) definitely dominates (c1, u2) . In steps 2 and 3, we

scale the costs, run Algorithm 1 for every co-ordinate in the partitioned cost space

and retain the minimum utilization at each co-ordinate. The runtime complexity

of this algorithm is O(nm
ǫ

log1+ǫmC).

3.4 Experimental Results

In this section we report some of the experimental results that we obtained by

running our approximation algorithm on a set of synthetic task sets. (Note that to

compute the exact Pareto curve, we need to run the Algorithm 5 and then retain all

the undominated solutions.) We also compared these results with those obtained

by running the optimal algorithm. In Section 3.4.1 we show the running times of

the optimal and the approximation algorithms. In Section 3.4.2 we illustrate the

difference in the sizes of Pǫ and the exact Pareto curve.

For our experiments we randomly generated tasks with execution requirements

between 200 and 600 time units; the periods were between 600 and 20000 time

units. The number of hardware implementation choices associated with any task

was varied between 1 and 10, i.e. 1 ≤ ni ≤ 10. For each choice, the maximum

value associated with any δi,j was set to Ei.

All the CPU times reported below were measured on a machine with Windows
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Figure 3.5: Graph comparing the running times of the exact and the approximate

algorithms for various task sets with C = 10000.

XP, running on a 3.0 GHz CPU with 1 GB RAM. All the implementations were

done in C++.

3.4.1 Running Times

Figure 3.5 shows the running times involved in computing the exact Pareto curve

and the FPTAS for three different values of ǫ when the number of tasks in the

task set is progressively increased from 10 to 50. These task sets were generated

with the parameter C = 10000. It can be seen that even for small values of ǫ (e.g.

when ǫ = 0.69) the approximate algorithm runs about 40 times faster than the

exact algorithm. For larger values of ǫ (e.g. ǫ = 3), the speedups are even more

significant (note that ǫ need not be ≤ 1).

The reason behind choosing the values 0.21, 0.44, and 0.69 for ǫ is as follows. Our

approximation algorithm involves the computation of the value (1 + ǫ)1/2. This

value might turn out to be an irrational number if ǫ is not carefully chosen. Hence,

to avoid any possible rounding-off errors in our implementation, the above values
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were chosen for ǫ.

3.4.2 Size of the Pareto Curves

As discussed in Section 3.3, the cost-utilization Pareto curve typically contains an

exponential number of points. The approximation algorithm generates a polynomial-

sized ǫ-approximate Pareto curve. In this section, we compare the number of points

in the exact Pareto curve and in Pǫ. To help visualize the difference in their sizes,

we choose a relatively smaller problem instance for our algorithm with a task sets

of 10 tasks in each set and C = 5000. Figure 3.6 shows the exact Pareto curve and

the Pǫ generated by our algorithm.

The following two observations can be easily visualized from these graphs: (i) the

number of points in Pǫ decrease with a corresponding increase in the value of ǫ,

and (ii) the gap between the exact and approximate curves widens with larger

values of ǫ, implying that the relative error indeed increases.

These graphs show the Pareto curves for a task set with 10 tasks. Table 3.2 lists

the number of points in the exact Pareto curve and in Pǫ for task sets with 10, 20,

30, 40 and 50 tasks. The numbers in the rightmost column in this table are the

number of points in Pǫ when the value of ǫ is set to 0.21, 0.44, 0.69, and 3. From

this table it can once again be seen that as the relative error is allowed to increase,

the size of the approximate Pareto curve decreases. Note from Table 3.2 that for

small values of ǫ (e.g. ǫ = 0.21), the size of the Pǫ contains up to 96% less points

compared to the optimal Pareto curve.



78

(a) ǫ = 0.21

(b) ǫ = 0.44

(c) ǫ = 0.69

(d) ǫ = 3
Figure 3.6: The exact and approximate Pareto curves for a task set with 10 tasks.
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Task Sets ǫ # Points on Pǫ

0.21 40
# tasks in the task set τ1 = 10 0.44 26

# points in the exact Pareto curve 0.69 22
= 62 3 9

0.21 60
# tasks in the task set τ2 = 20 0.44 38

# points in the exact Pareto curve 0.69 26
= 239 3 11

0.21 63
# tasks in the task set τ3 = 30 0.44 37

# points in the exact Pareto curve 0.69 27
= 828 3 12

0.21 76
# tasks in the task set τ4 = 40 0.44 44

# points in the exact Pareto curve 0.69 31
= 1061 3 12

0.21 72
# tasks in the task set τ5 = 50 0.44 42

# points in the exact Pareto curve 0.69 30
= 2033 3 12

Table 3.2: Number of points in Pǫ generated by our proposed approximation algorithm,
versus the number of points in the optimal Pareto curve.

3.5 Summary

In this chapter we introduced a multicriteria version of the classical schedulabil-

ity analysis problem, which arises in hardware/software co-design setting. We

showed that this problem is NP-hard even for simple task models and presented

an approximation algorithm for solving it. The experimental results show that our

approximation algorithm is not only computationally efficient, but also returns

more meaningful results from a practical perspective (as discussed in Section 3).

There are a number of directions in which this work can be extended. The most

notable among these being a possible extension of our scheme to account for com-

munication costs and dependencies between parts of a task, some of which are
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implemented in hardware and the remaining in software. Such details were ab-

stracted away in this work for the sake of a clean theoretical formulation. For

example, if the sub-tasks are realized on a reconfigurable device like the FPGA,

it would be a challenging problem to extend the framework to incorporate the

multitasking hardware tasks.



Chapter 4

GPU-Based Acceleration of

System-Level Analysis Tools

In Chapter 2 and Chapter 3, we have discussed novel algorithmic techniques to

speed-up computationally expensive cores in system-level performance analysis

problems, namely, schedulability analysis and hardware/software co-design. In

this chapter, we explore the possibility of using commodity graphics processing

units (GPUs) to accelerate such computational kernels, and thereby improve the

running time and usability of the design space exploration tools that use them.

There are two main reasons behind exploiting GPUs for such non-graphics re-

lated applications (in contrast to using, say, FPGA-based accelerators): (i) mod-

ern GPUs are extremely powerful (e.g. high-end GPUs such as nVIDIA GeForce

8800 GTX have a FLOPS rating of around 330 GigaFLOPS, whereas high-end

general-purpose processors are only capable of around 25 GigaFLOPS) (ii) GPUs

are now commodity items as their costs have dramatically reduced over the last

few years. Hence, the attractive price-performance ratios of GPUs gives us an

enormous opportunity to change the way design automation tools perform, with
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almost no additional cost. In fact, recent years have seen the increasing use of

graphics processing units (GPUs) for different general-purpose computing tasks.

These span across numerical algorithms [35, 45], computational geometry [2], data-

base processing [3], image processing [56, 58], astrophysics [67] and bioinformatics

[53]. On the other hand, in spite of a wide variety computationally expensive

system-level design and analysis problems that need to be regularly solved by de-

sign tools running on desktops and laptops equipped with high-end GPUs, the use

of GPUs for accelerating such problems has not been sufficiently explored so far.

From a computer architecture standpoint, GPUs naturally support what are re-

ferred to as streaming algorithms [82]. In this chapter we reformulate a schedulabil-

ity analysis problem and a multicriteria design space exploration problem related

to hardware/software partitioning as a streaming algorithm which can be effi-

ciently implemented on a GPU. Our results in this chapter show that using GPUs

it may result in more than 16× speedup of the schedulability analysis problem and

upto 100× speedup of the core of the design space exploration algorithm. These

speedups will certainly improve the usability of a tool for system-level analysis,

especially when used in an interactive fashion (i.e. where the designer repeatedly

makes small changes to the problem and invokes the tool until a satisfactory so-

lution is obtained). Our contributions are also significant because one of the core

problems that we solve is a general knapsack problem (viz. the multiple-choice

knapsack problem). Given the generality of this combinatorial optimization prob-

lem we believe that our results might initiate an interest to explore the use of

GPUs for accelerating other problems as well.
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Related Work

Over the last two decades, numerous approaches have been proposed to accelerate

computationally expensive algorithms arising in the EDA domain. Many of these

approaches are similar to our work in the sense that they also exploit some form

of parallelism in the application. The most notable approaches have used multi-

processors and reconfigurable hardware like FPGAs. However, none of them have

explored the possibility of employing GPUs, which in contrast to FPGAs involve

no extra hardware cost since most computing platforms today are equipped with

GPUs. Further, high-level APIs and programming languages such OpenGL [71]

and CUDA [25] have greatly simplified the task of programming GPUs.

Results reported in [73, 87] represent early efforts towards using multiprocessors

to reduce computation time of EDA algorithms like VLSI routing. In [29] paral-

lel algorithms for design space exploration to be run on a multiprocessor system

have been described. More recently, [43] has proposed techniques for reducing

simulation time by building simulation models for execution on multiprocessor

systems. Further, the use of reconfigurable computing to accelerate problems from

the EDA domain has been proposed in [1, 72, 88]. All of these proposals are for

accelerating the Boolean SAT problem which also lies at the core of several EDA

applications. Other efforts in this direction include hardware-based acceleration

for fast simulation [12, 39, 44]. Towards this, hardware acceleration is used to

offload compute-intensive tasks from the software simulator.

In contrast to the above threads of work, the main advantage of our approach

stems from the low cost associated with GPU-based acceleration since all desktop

and notebook computers are now invariably equipped with GPUs. Hence, no extra

hardware investment is necessary and EDA design tools can seamlessly incorporate

our technique in a manner that is completely transparent to the end-user or the
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design engineer using the tool. Further, as mentioned above, with the development

of high-level APIs and programming languages for graphics programming, it is

now easy to exploit GPUs to accelerate the back-end of any EDA design tool with

relatively low additional programming effort and graphics-specific knowledge.

Organization of this Chapter

The rest of this chapter is organized as follows. In the next section we discuss

the GPU architectures. In Section 4.2 we present our GPU-based schedulability

analysis algorithm, followed by the description of the GPU-based engine for design

space exploration algorithm in Section 4.3.

4.1 GPU Architectures

Before introducing our GPU based engine, we give a brief overview of the GPU

architecture in this Section — we highlight the GPU pipeline, the features that

make GPUs attractive stream processors and the challenges in programming the

GPUs.

The GPU Pipeline: All of today’s commodity GPUs structure their graphics

computation in a fixed order of processing stages called the graphics pipeline.

Figure 4.1 shows the pipeline stages in a modern GPU. The input to the pipeline is a

list of geometry, expressed as vertices in object (3D) co-ordinates and the output is

an image in a framebuffer (framebuffer is the portion of graphics card memory that

holds the information necessary to display a screen image). The first stage of the

pipeline (on vertex processors), performs geometric transformations on each vertex

and transforms each vertex from object space (3D) into screen space (2D) and
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Figure 4.1: The GPU graphics pipeline.

assembles the vertices into triangles. Thus, the output of the first stage or geometry

stage is triangles in screen space. The next stage, rasterization, determines the

screen positions covered by each triangle. The result of the rasterization stage is a

data stream of elements or fragments for each pixel location covered by a triangle.

Each incoming data element has a set of texture co-ordinates that reference a

texture memory (see Figure 4.1). The third stage or the fragment stage, consists

of multiple fragment processors. They generate the addresses into the texture

memory referred by the fragments and fetch their associated texture values. This

data is used by a user defined program executing on the processors to compute the

fragment color (i.e. the color for each pixel). The output is finally written to the

frame-buffer memory.

In this work, we will concentrate only on the fragment processors. In fact, a

vast majority of general-purpose GPU applications use only fragment programs

for their computation. This is because — (i) they are last in the graphics pipeline

and the output may be read directly (ii) they are highly parallel (they are more in

number than vertex processors) (iii) they have a better memory read performance

compared to the vertex processors.

GPUs as Streaming Processors: In order to meet the ever increasing perfor-

mance requirements set by the gaming industry, modern GPUs use two types of
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parallelism. First, multiple processors work on the vertex and fragment processing

stage, i.e. they operate on different vertices and fragments in parallel. For example,

a typical graphics card such as the nVidia GeForce 7900 GT has 8 vertex proces-

sors and 24 fragment processors. Second, each fragment processor can perform

four concurrent vector operations such as instructions on the texture coordinates

or on the color components of the incoming data stream.

Such explicit parallelism make GPUs an excellent platform for stream processing

applications. Streaming processors read an input stream (which is a collection

of records requiring similar computation), and apply the kernel (or operations

to be performed on each element) to the stream and write the results into an

output stream. Since there are no dependencies between the various elements

of the stream, they provide immense data parallelism for the multiple processors

running the kernels. Another feature of stream processing applications is that

several kernels often operate successively on the streams, and the output stream

of the leading kernel is the input stream for the following kernel (see Figure 4.2).

Figure 4.2: Streaming model that applies kernels to an input stream and writes to an
output stream.

The Challenge in Programming GPUs: Programming the GPU is not as

straightforward as implementing an application on the CPU. This is because, the

GPU follows a highly parallel stream processing computational paradigm. The

kernels on all of the fragment processors run in parallel and hence, can not have

data dependency on each other. Thus, the challenge is to correctly identify the data

parallel segments so that dependency constraints are not violated. Hence, given

any application, it must be first appropriately recast as an streaming application

for an efficient implementation on the GPU.
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4.2 Case Study 1: GPU-based Acceleration of

Schedulability Analysis Problem

In this section, we shall reformulate a standard demand bound criteria-based

schedulability analysis algorithm [10, 17] as a streaming algorithm which can be

efficiently implemented on a GPU. To illustrate this approach, we have chosen the

recently proposed recurring real-time task model [9]. As discussed in Section 2.1,

this model generalizes a number of well-known task models. Further, it can be

used to model realistic applications with conditional branches and fine-grained

deadline constraints. Hence, it forms a good starting point to explore the possibil-

ity of using GPUs for accelerating system-level timing and schedulability analysis

problems. We have already discussed the schedulability analysis of the recurring

real-time task model [9] in Section 2.1.1, and introduced the various notations as-

sociated with it. In the following Section, we shall briefly recall the scheme, and

list the algorithm which forms the computationally intensive core of the scheme.

4.2.1 Schedulability Analysis of Recurring Real-Time Task

Sets

Recall from Section 2.1.1 that the schedulability analysis of the recurring real-

time task set is based on the processor demand criteria methodology. Towards

this, the worst-case workload that can possibly be generated by a task (graph) is

represented by a function called the demand-bound function. The demand-bound

function of a task T , denoted by T.dbf(t), takes as an argument a positive real

number t and returns the maximum possible cumulative execution requirement

of jobs that can be legally generated by T and which have their ready-times and

deadlines both within a time interval of length t. A set of concurrently executing
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Algorithm 7 Computing T.dbf(t) using dynamic programming
Require: Task graph T , and a real number t ≥ 0
1: for e← 1 to nE do

2: t1,e ←

�
d(v1) if e(v1) = e
∞ otherwise

3: t11,e ← t1,e

4: end for

5: for i← 1 to n− 1 do

6: for e← 1 to nE do

7: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik
to vi+1

8: ti+1
i+1,e ←

8><>: min{t
ij

ij ,e−e(vi+1)
− d(vij

) + p(vij
, vi+1)

+d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

9: ti+1,e ← min{ti,e, ti+1
i+1,e}

10: end for

11: end for

12: T.dbf(t)← max{e | tn,e ≤ t}

tasks T is then schedulable under a fully preemptive uniprocessor model if and

only if for all 0 < t ≤ tmax,
∑

T∈T T.dbf(t) ≤ t, where tmax is a function of the

execution requirements of the tasks in T and their periods. This scheme therefore

involves two stages:

(i) Computing T.dbf(t) for all t ≤ tmax and T ∈ T , and

(ii) Checking that
∑

T∈T T.dbf(t) ≤ t, ∀ 0 < t ≤ tmax.

For the recurring real-time task model, it turns out that for an arbitrary task

graph T , computing T.dbf(t) for any t is NP-hard (see [20]) and therefore forms

the computationally intensive kernel of the schedulability analysis algorithm. We

had presented a dynamic programming (DP) based algorithm (Algorithm 1) for

computing T.dbf(t) for any task graph T and time interval length t, which was used

in the context of the interactive schedulability in Chapter 2. In Algorithm 7 we

re-list this algorithm (for computing T.dbf(t)), but without the statements (lines

11 to 16 of Algorithm 1) that were specially included for the creation of data struc-

tures used in the interactive framework (Chapter 2). This algorithm was already

explained in detail in 2.1.3. In the following Section 4.2.2, we reformulate this

computationally expensive algorithm as a streaming algorithm for implementing

it on a GPU.
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Figure 4.3: The overall scheme to design and implement a GPU based algorithm.

4.2.2 Schedulability Analysis on GPUs

Before discussing the details of our GPU-based engines, we outline the overall

scheme to reformulate any algorithm as a stream processing application to run

it on the GPU (Figure 4.3). The first and most important step is to identify

the data parallel kernels. Next, we need to compile the kernels to the fragment

processors and properly set up the GPU data structures. Finally, depending on

the application, we determine the number of iterations on the fragment processors,

and on completion, download the output to the CPU.

Following the above discussion, to take advantage of a GPU’s parallel computation

capability, we first identified portions of Algorithm 7 where computation on data

elements can be done independently from each other and there is a significant

amount of computational intensity relative to the time spent in transferring data.

In Algorithm 7 the computation of the matrix cells (storing ti,e and tii,e) in the

inner loop of the dynamic programming (DP) algorithm (i.e. lines 6 - 10) can

be done independently of each other. Therefore, the basic idea is to compute the

DP-based matrix in a row-by-row fashion.

This matrix is stored as a texture in the texture memory of the GPU. Kernels (as

explained in Section 4.1) are then used to implement the arithmetic operations
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Figure 4.4: Data dependency graph for Algorithm 7. Computation of a cell in the DP
matrix is dependent on texture fetching from already computed cells.

specified by the recurrence relations in lines 8 and 9 of Algorithm 7. A complete

row of the matrix is computed in parallel by the fragment processors in the GPU.

The newly-computed row is then stored in the texture memory. Finally, the sub-

sequent kernel reads previously-computed rows form this memory and this process

is repeated until the full matrix is computed.

Hence, our GPU-based implementation of Algorithm 7 requires n passes through

the rendering pipeline, where n is the number of vertices in a task graph T ′ as ex-

plained in Section 2.1.3. In each pass, dependent texture lookups (lookup texture

from computed addresses, i.e. lines 8 and 9 of Algorithm 7) must be performed.

Figure 4.4 shows an example of this dependency for the ti+1,eth cell – the com-

putation of the ti+1,eth cell depends on the values of the ti,eth, ti−1
i−1,e−3th and the

ti−3
i−3,e−3th cells. Clearly, such dependencies for any vertex i depends on the ver-

tices from which there are incoming edges to i. It may be noted that since the

GPU internal memory bandwidth is much slower compared to its compute ca-

pacity, dependent texture fetching does hamper the performance. However, the

speedup achieved in the computation offsets this loss in performance — the result-
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Algorithm 8 The Streaming Formulation of the DP
Require: Task graph T , and a real number t ≥ 0
1: for i← 1 to n− 1 do

2: Let there be directed edges from the vertices vi1 , vi2 , . . . , vik to vi+1

3: tmp = f()− e(vi+1)

4: tii,new ←





min{t
ij
ij ,tmp − d(vij ) + p(vij , vi+1)

+d(vi+1) | j = 1, . . . , k} if e(vi+1) < e,
d(vi+1) if e(vi+1) = e, and ∞ otherwise

5: ti,new ← min{ti,prev, t
i
i,new}

6: end for

ing overall speedup still being very attractive compared to a purely CPU-based

implementation.

Algorithm 8 shows the pseudo-code of recursive algorithm for a kernel. ti,prev and

tii,prev are the old values of a cell in the texture memory, and ti,new and tii,new are

the new values computed by the kernel. f() is a function which returns column

value of the cell which is being computed by this kernel i.e. the corresponding

value j (see Line 3). Lines 4 corresponds to the recursive equation in line 8 of the

Algorithm 9.

Data Structures

This section discusses the data structure created on the GPU memory for streams

of our GPU-based computation. The matrix computed by the DP algorithm (which

stores ti+1
i+1,e and ti+1,e values) is of size n × nE. As mentioned before, the GPU-

based implementation of our algorithm has n passes through the rendering pipeline.

Following the memory organization supported by GPU architectures, we used two

buffers to compute the matrix - one of which serves as the source buffer (containing

the already computed rows of the matrix) and the other serves as the destination

buffer (containing the row being computed in a certain pass). During each pass

through the rendering filter, the destination buffer of the previous pass serves as
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Figure 4.5: Data buffers in the GPU memory during the (i + 1)-th pass through the
rendering pipeline. Filling the destination buffer requires rendering a (i + 1) × nE
quadrilateral.

the current source buffer and their roles are interchanged from one pass to the

next. Corresponding to the dependency relation shown in Figure 4.4, Figure 4.5

illustrates the use of the source and destination buffers during the (i + 1)-th pass.

We represented a task graph using two RGB32 format textures. One texture was

used to store vertex-related information (i.e. execution requirements, deadlines and

the number of parent vertices). The other texture stored parental edge information

for each vertex (i.e. ID of the parent vertices and the minimum intertriggering

separation times).

The above matrix computation procedure was implemented using OpenGL’s [71]

Render-to-Texture support – Pbuffer extension or the newer lighter-weighted frame

buffer object extension (FBO). For the former, a double-buffered Pbuffer is de-

fined to avoid context switching. For FBO, two texture objects are attached to the

frame buffer object bound for rendering, with one texture for writing and the other

one for reading. These are swapped during each new pass as explained above. In

each pass, the previous render target buffer binds as texture for reading and the

previous buffer for reading becomes the render target.
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Current GPU architectures and memory models impose a limit to the size of the

dynamic programming problem that can be run on the GPU. For example, the size

of the 2D render target is limited to 4096 in each dimension. Therefore, the largest

possible matrix that it can hold is of size 16,777,216 cells. For a task graph with

150 vertices and maximum requirement of 600 per vertex, the required matrix size

is 13,500,000. Hence, this is almost an upper bound on the problem size that can

be supported.

Fortunately, GPUs offer a mechanism to write out multiple output targets in a

single pass of the rendering pipeline, using what are called multiple render tar-

gets (MRTs). With MRTs, the fragment program can output up to four sets of

color values; each set associated with Red/Green/Blue/Alpha (RGBA) compo-

nents. This means we can output up to 16 floating point values per pixel. Hence,

using MRTs it is possible to overcome the restriction on the problem size to a large

extent by aggregating four dynamic programming matrix entries in a single pixel.

The computations on each pixel can now handle four matrix entries instead of one.

Correspondingly, the fragment program has to be rewritten to perform computa-

tion on four consecutive table entries. With the MRT implementation, it is easily

possible to analyze task graphs of up to 250 vertices and execution requirements

of up to 600 per vertex, which might be sufficient for many practical systems.

4.2.3 Results and Discussion

Our experiments were performed on a 3.0 GHz Pentium 4 CPU with 1 GB of

RAM. It had a PCI express board equipped with an nVIDIA GeForce 8800 GTX

GPU with 768 MB RAM. We used OpenGL with Shader Model 3.0 support. For

render to texture support we have tried both the old Pbuffer extension and new

frame buffer objects (FBO) extension.
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n, E Running Time Running Time Upload time Total Time Speedup
(sec) (sec) (sec) (sec)

CPU only GPU (with FBO) GPU

50, 600 0.330 0.155 0.035 0.190 1.74

100, 600 2.281 0.395 0.128 0.523 4.36

150, 600 17.924 1.123 0.367 1.490 12.03

200, 600 30.656 1.723 0.483 2.206 13.90

250, 600 48.735 2.372 0.657 3.029 16.09

Table 4.1: Comparing the running times of a purely CPU-based schedulability analysis
versus a GPU-accelerated analysis.

We calculated the total processing time on the GPU to be the sum of data structure

uploading time and the computation time on the GPU. The downloading time is

negligible because we only need to download the last row of the matrix for each

task graph (see Algorithm 7).

We observed that there is not much difference between the double Pbuffer and

FBO extension based implementations. This is because they are both shortcuts to

high-level memory management operations that do not make significant differences

in performance. The main results of our study are tabulated in Table 4.1. As GPU

implementations with multiple render targets (MRTs) are more scalable (i.e. can

handle larger task graphs), we mostly show the results for this implementation.

The download and upload times are approximately linear in the size of the task

graph instances. As the overheads involved in the stream-oriented reformulation

of the schedulability analysis algorithm gets amortized by large task graphs, the

GPU-based analysis shows its competitive advantage. For task graph with 250

vertices and maximum execution requirement of 600 per vertex, the GPU-based

implementation shows more than 16× speedup.

For a set of synthetic task graphs, Figure 4.6 shows how the running times of the

schedulability analysis algorithm scales with increasing sizes of the graphs (the

maximum execution requirement associated with any vertex was always set to
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Figure 4.6: Running times of the schedulability analysis algorithm for a purely CPU-

based implementation, versus a GPU-based implementation with a single render target.

Figure 4.7: Running times of the schedulability analysis algorithm for a purely CPU-

based implementation, versus a GPU-based implementation with multiple render targets.

600). Using a single render target, the largest task graphs that may be analyzed

in our setup contain around 100 vertices. Compared to a purely CPU-based im-

plementation, the GPU-based analysis results in more than 4× speedups, with the

analysis times reducing from 2.2 sec to 0.5 sec. Much more attractive speedups

may be obtained with larger task graphs, which can be handled when multiple ren-

der targets are used. Figure 4.7 shows this comparison. From this figure, it may

be noted that for task graphs with around 250 vertices, the analysis time reduces

from approximately 49 secs to 2.3 seconds. When built into a design tool, such

speedups greatly improve the usability of the tool since feedback to any changes
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in a design can now be obtained instantaneously.

4.3 Case Study 2: GPU-based Acceleration of

Design Space Exploration Problem

In this section, we study our second case study where we use a common multi-

criteria design space exploration problem (Chapter 3) to establish the utility of

the GPUs in accelerating system-level design tasks. Recall that the multicriteria

optimization problem was to identify the set {(c1, f1), . . . , (cn, fn)} which is referred

to as the Pareto curve. Each point (ci, fi) in this set (called a Pareto-optimal

solution) has the property that there does not exist any schedulable implementation

of T1 and T2 with a performance vector (c, f) such that c ≤ ci and f ≤ fi, with at

least one of the inequalities being strict. Further, let S be the set of performance

vectors corresponding to all schedulable implementations. Let P be the set of

performance vectors {(c1, f1), . . . , (cn, fn)} corresponding to all the Pareto-optimal

solutions. Then for any (c, f) ∈ S − P there exists a (ci, fi) ∈ P such that ci ≤ c

and fi ≤ f , with at least one of these inequalities being strict (i.e. the set P

contains all performance tradeoffs). The vectors (c, f) ∈ S − P are referred to as

dominated solutions, since they are “dominated” by one or more Pareto-optimal

solutions as shown in Figure 3.6.

In this chapter, we present a GPU based engine, GPUPareto, for high speed com-

putation of the Pareto curve P = {(c1, f1), . . . , (cn, fn)}. Our algorithm consists

of the following two parts:

• The first part involves running a pseudo-polynomial time dynamic program-

ming algorithm to find all the design points. This algorithm is the compu-

tationally expensive core of the design space exploration and in this chapter
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we re-formulate this algorithm as a streaming algorithm to accelerate it on

GPUs.

• The second part involves retaining the non-dominated solutions from the set

of solutions found in the previous step. Since, this part is not amenable to

GPU based acceleration, we run it on the CPU for optimized performance.

In essence, GPUPareto involves both GPU and CPU to achieve optimal perfor-

mance improvement. In the following we shall briefly recall the task model and

the formal problem statement, before introducing the design of GPUPareto.

4.3.1 Task Model

In this chapter, we use the sporadic task model in a preemptive uniprocessor

environment to illustrate our GPU based design space exploration scheme. Thus,

we are interested in the schedulability analysis of a task set τ = {T1, T2, . . . , Tm}

consisting of m hard real-time tasks. Any task Ti can get triggered independently of

other tasks in τ . Each task Ti generates a sequence of jobs; each job is characterized

by the following parameters:

• Release Time: the release time of two successive jobs of the task Ti is sepa-

rated by a minimum time interval of Pi time units.

• Deadline: each job generated by Ti must complete by Di time units since its

release time.

• Workload : the worst case execution requirement of any job generated by Ti

is denoted by Ei.
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Throughout this chapter, we assume the underlying scheduling policy to be the

earliest deadline first (EDF). Again, our algorithm can be suitably modified to

handle other scheduling policies as well. Assuming that for all tasks Ti, Di ≥ Pi,

the schedulability of the task set τ can be given by the following condition.

Theorem 4.3.1 A set of sporadic tasks τ is schedulable under EDF if and only if

(U =
m∑

i=1

Ei

Pi

) ≤ 1

where U is the processor utilization due to τ [11, 52].

4.3.2 The Problem Statement

In this section, we briefly recall the the multi-objective problem, and the pseudo-

polynomial time algorithm for solving it, which were discussed in Section 3.2.

Recall that we are given a processor P , and a specified number of subtasks of

each task Ti which can be implemented in hardware. For simplicity of exposi-

tion, we will henceforth assume that the processor P ’s clock frequency is constant

and all the execution times of the tasks are specified with respect to this clock

frequency. Our objective will be to minimize P ’s utilization (by mapping certain

subtasks onto hardware) and at the same time also minimize the total hardware

cost. In other words, our goal is to compute the cost-utilization Pareto curve

{(c1, u1), . . . , (cn, un)} for a prespecified clock frequency of P . It is straightforward

to see that such a Pareto curve can be easily transformed into a cost-frequency

Pareto curve with P ’s utilization being ≤ 1 for the different frequency values.

For each task Ti, let there be ni hardware implementation choices. Each of these

ni choices is associated with a certain hardware cost. Choosing the jth imple-

mentation choice for the task Ti lowers its execution requirement on P from Ei
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to ei,j. Equivalently, the amount by which the execution requirement of Ti gets

lowered on P is δi,j = Ei − ei,j. Hence, for each task Ti we have a set of choices

Si = {(δi,1, ci,1), . . . , (δi,n1 , ci,n1)}, where ci,j is the hardware cost associated with

the jth implementation choice. In this setup, the objective is to minimize the

utilization U(S) =
∑m

i=1
Ei−xi,jδi,j

Pi
and the cost C(S) =

∑m
i=1 ci,jxi,j, where S is

the chosen implementation among the various available options. In Chapter 3 we

had illustrated this problem with the help of an example (see Section 3.2).

4.3.3 A Pseudo-polynomial Time Algorithm

Unfortunately, computing the exact cost-utilization Pareto curve is computation-

ally intractable. This can be easily verified from the following two facts. First, the

Pareto curve would typically contain an exponential number of points (which obvi-

ously cannot be computed in polynomial time). Second, computing any one point

on the Pareto curve is NP-hard. This result on complexity was shown in 3.2.1 by

a polynomial transformation of the knapsack problem.

Now, we present our algorithm to compute the Pareto curve. It consists of two

parts. First, a dynamic programming algorithm (Algorithm 9) computes the min-

imum utilization that might be achieved for each possible cost. This algorithm

runs in pseudo-polynomial time, and hence, turns out to be the expensive kernel

of our scheme. In Section 4.3.4, we reformulate this algorithm to derive an accel-

erated GPU based scheme. The second part involves finding out all undominated

solutions (cost-utilization Pareto curve) from the entire solution set found by the

dynamic programming algorithm. This is a straightforward implementation, and

is not a subject of discussion in this thesis.

Algorithm 9 description: Let Ui,j be the minimum utilization that might be

achieved by considering only a subset of tasks from {1, 2, . . . , i} when the cost is
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Algorithm 9 Minimum-cost schedulability analysis
Require: The task set τ , and a set Si for each task Ti.
1: U0,0 ←

∑m
i=1 Ei/Pi

2: for j ← 1 to mC do

3: U0,j ←∞
4: end for

5: for i← 1 to m do

6: for j ← 0 to mC do

7: For each pair (δi,k, ci,k) that belongs to the set Si

8: Ui,j ← min{Ui−1,j , Ui−1,j−ci,k
− δi,k/Pi}

9: end for

10: end for

exactly j. If no such subset exists we set Ui,j =∞. Let the maximum cost be C i.e.

C = max(i=1,2,...,n;j=1,2,...,ni)ci,j. Clearly, mC is an upper bound on the total cost

that might be incurred. All other notations used are as introduced in Section 4.3.1

and Section 4.3.2. Lines 1 to 4 of Algorithm 9 initialize U0,0 to
∑m

i=1 Ei/Pi, and

U0,j to ∞ for j = {1, 2, . . . ,mC}. The values Ui,j for i = 1 to i = m are computed

using the iterative procedure in lines 5 to 10. Thus, any non-infinity value Un,j for

j = {1, 2, . . . ,mC} implies a feasible design choice of the task set with utilization

Un,j and cost j. It can be easily verified that the running time of Algorithm 9 is

O(nmC), where n =
∑m

i=1 ni, and its space complexity is O(m2C).

We illustrate the working of the Algorithm 9 with the help of a toy task set.

Consider a task set with 2 tasks — T1 and T2. The characteristics of jobs of

task T1 and T2 are {P1 = D1 = 5, E1 = 4}, and {P2 = D2 = 5, E2 = 2}.

The set of implementation choices for T1 and T2 are respectively S1 = {(δ1,1 =

1, c1,1 = 2), (δ1,2 = 2, c1,5 = 5)}, and S2 = {(δ2,1 = 1, c1,3 = 2)}. The dynamic

programming table for the utilization values Ui,j built by the Algorithm 9 for

this toy task set is shown in Table 4.2. We have chosen a small task set with

only 2 tasks and a small value of C = 5, so that the table is small enough to

be fit within the space restrictions of this paper. Row 0 in the table is filled

according to the initialization in lines 1 to 4 of the Algorithm 9. For example,
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i↑ j →
0 1 2 3 4 5 6 7 8 9 10

2 1.2 ∞ 1 1 ∞ 0.8 ∞ ∞ 0.6 ∞ ∞

1 1.2 ∞ 1 ∞ ∞ 0.8 ∞ ∞ ∞ ∞ ∞

0 1.2 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 4.2: Illustration of the table built by Algorithm 9.

U0,0 =
∑m

i=1 Ei/Pi = (2/5) + (4/5) = 1.2. Row 1 and row 2 are constructed using

the recursive procedure (lines 5 to 10 in Algorithm 9). Consider the computation

of U1,2 at row 1 and j = 2 (lines 7 and 8 in Algorithm 9). Row 1 corresponds to

T1, and hence the pairs of the set S1 are being considered — {δ1,1 = 1, c1,1 = 2}

and {δ1,1 = 1, c1,1 = 2}. With the first choice {δ1,1 = 1, c1,1 = 2}, we get U1,2 =∞,

and with {δ1,2 = 2, c1,5 = 5}, U1,2 evaluates to 1. Thus, the final value of U1,2 = 1,

which is the minimum of the two. The values of other cells in this table may be

worked out similarly.

4.3.4 The Design of GPUPareto

We outlined the overall scheme to reformulate any algorithm as a stream processing

application to run it on the GPU (Figure 4.3). Recall that, we first need to

appropriately identify the data parallel computation of the dynamic programming

(DP) algorithm, Algorithm 9 to be mapped to the GPU. This is crucial because

in Algorithm 9, the computation of the recurrence relation (line 7 to 8) involves

non-trivial data dependencies. Towards this, we constructed the data dependency

graph — Figure 4.8 shows the dependency for the Ui,jth cell. Recall that Ui,j

be the minimum utilization that might be achieved by considering only a subset

of tasks from {1, 2, . . . , i} when the cost is exactly j. The computation of Ui,j

depends on the Ui−1,jth cell and on the values of Ui−1,j−ci,k
i.e the Ui−1,j−ci,1

th cell,

the Ui−1,j−ci,2
th cell, and so on. (Recall that ci,j is the hardware cost associated

with the jth implementation choice of task Ti.) Thus, the figure depicts the fact
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that the computation of Ui,j depends only on previously computed cells i.e cells in

i− 1th row and not on cells in the ith row.

The observation here is that computation of Ui,j1 in the ith iteration is independent

of Ui,j2 , where j1 and j2 may be any values between 1 and mC. In other words, given

any iteration i computing any two values of Ui,j for different j are independent of

each other. Hence, in Algorithm 9, the computation of the cells in the inner loop of

the dynamic programming algorithm (i.e. lines 6 to 9) can be done independently

of each other. Therefore, the basic idea is to compute the DP-based matrix in a

row-by-row fashion.

Now we are ready to describe our formulation of this DP as a streaming application

— the cells in a previously computed row are the streams, and the arithmetic

operations specified by the recurrence relations in lines 7 and 8 of Algorithm 9

are implemented as kernels. Each row (streams) of the DP-based matrix is stored

as a texture in the texture memory of the GPU, and the recurrence relations

(kernels) are compiled to the fragment processors (as explained in Section 4.1). A

complete row of the matrix is computed in parallel by the fragment processors in

the GPU. Note that since we have correctly mapped the data parallel sections to

the fragment processors, there are no incorrect data fetches and we can achieve

correct results. The newly-computed row is then stored in the texture memory.

Finally, the subsequent kernel (i.e the next iteration of the DP) reads this computed

row form this memory and this process is repeated for m passes, where m is the

number of tasks in a task set τ as explained in Section 4.3.1. Of course, at the

start of our streaming application, we have to set the initial value of the cells of

the first row in the texture memory according to the initialization in lines 1 to 4

of Algorithm 9. Algorithm 10 shows the pseudo-code of recursive algorithm for a

kernel. Uprev is the old value of a cell in the texture memory, and Unew is the new

value computed by the kernel. f() is a function which returns column value of the
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Figure 4.8: Data dependency graph for Algorithm 9.

Algorithm 10 The Streaming Formulation of the DP
Require: The task set τ , and a set Si for each task Ti.
1: for i← 1 to m do

2: For each pair (δi,k, ci,k) that belongs to the set Si

3: tmp = f()− ci,k

4: Unew ← min{Uprev, Utmp − δi,k/Pi}

5: end for

cell which is being computed by this kernel i.e. the corresponding value j (see Line

3). Thus, Utmp − δi,k/Pi (line 4) corresponds to the recursive equation in line 8,

Algorithm 9.

Data Structures

This section discusses the data structure created on the GPU memory for streams

of our GPU-based computation. We need to store two rows (which stores Ui,j

values) each of size m × C – one previously computed row is being read and one

row is being currently computed by the DP algorithm. Following the memory

organization supported by GPU architectures, we used two texture buffers to store

the cells of the row - one of which serves as the source buffer (containing the

previously computed row of the matrix) and the other serves as the destination

buffer (containing the row being computed in a certain pass). During each pass

through the GPU pipeline, the destination buffer of the previous pass serves as
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Figure 4.9: Data buffers in the GPU memory during the (i)-th pass through the
rendering pipeline.

the current source buffer and their roles are interchanged from one pass to the

next. Corresponding to the dependency relation shown in Figure 4.8, Figure 4.9

illustrates the use of the source and destination buffers during the (i)-th pass.

The above matrix computation procedure was implemented using OpenGL’s [71]

Render-to-Texture support. The two texture objects are attached to the frame

buffer object bound for rendering, with one texture for writing and the other one

for reading. These are swapped during each new pass as explained above. In

each pass, the previous render target buffer binds as texture for reading and the

previous buffer for reading becomes the render target.

In this Section we have discussed the GPU based dynamic programming algorithm,

which is the first part our design space exploration algorithm. The second part

involves retaining the undominated solutions (cost-utilization Pareto curve) from

the entire solution set found in the previous step. Since, this is not compute

intensive and is not amenable to GPU-based acceleration, we implement it on

the CPU. (The algorithm is straightforward and is not elaborated due to space

constraints.) Thus, our engine, GPUPareto leverages both CPU and GPU for

efficient design space exploration.
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(a) Only DP Algorithm Analysis Time

(b) The Overall Analysis Time

Figure 4.10: Running times for a purely CPU-based implementation, versus a GPU-

based implementation - GPUPareto.

4.3.5 Experimental Results

In this section we report some of the experimental results that were obtained by

running our GPUPareto engine on a set of synthetic task sets. We compared these

results with those obtained by running a pure CPU implementation.

For our experiments we randomly generated tasks with execution requirements

between 200 and 600 time units; the periods were between 600 and 20000 time

units. The number of hardware implementation choices associated with any task

was varied between 1 and 10, i.e. 1 ≤ ni ≤ 10. For each choice, the maximum

value associated with any δi,j was set to Ei. The parameter C, which is the
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n Upload time Running Time Download Compute Total Time Total Time Speedup
(seconds) (seconds) Time (sec) Undominated (sec) (seconds) (seconds)

GPU GPU GPU CPU GPUPareto only CPU

10 0.01598 0.03095 0.00865 0.03489 0.09 1.572 17.380

20 0.02838 0.0778 0.01031 0.88549 1.002 7.695 7.680

30 0.03857 0.19547 0.01534 1.99349 2.243 19.542 8.713

40 0.04868 0.30509 0.02056 4.49815 4.872 31.171 6.397

50 0.06009 0.47448 0.02542 7.85111 8.411 67.981 8.082

Table 4.3: Detailed breakdown of time taken by GPUPareto and comparison with a
purely CPU-based analysis.

maximum cost associated with any implementation choice was set to 16384 for our

experiments. This number was chosen because graphics processors lack integer

arithmetic. Using floating point values might lead to wrong address calculations

(see line 3, Algorithm 10) due to improper rounding-off. Thus, if C is not a power

of 2 for a given task set, one needs to choose the next higher power of 2 as an upper

bound. To show that this is not a restriction of our scheme, we choose 16384 (214)

and show that even for such large values our DP algorithm runs within fraction of

a second. Furthermore, with C = 16384, there are upto 16384 design points, and

typically around 6100 points on the pareto curve for task set with around 50 tasks.

Such large design space instances are clearly very suitable to test the applicability

of a the GPUPareto scheme.

All the CPU times reported below were measured on a machine with Windows

XP, running on a 3.0 GHz CPU with 1 GB RAM. Our machine had a PCI express

board equipped with an nVIDIA GeForce 8800 GTX GPU with 768 MB RAM,

where we conducted our GPU experiments. All the implementations were done

in C++. For the GPU implementation, we used OpenGL with Cg as the shader

language (for programming the fragment processors).

Figure 4.10(a) shows the time taken to compute the DP on the CPU versus time

taken on the GPU, when the number of tasks in the task set is progressively in-

creased from 10 to 50. Our efficient implementation on the GPU achieves tremen-

dous (upto 100×) speedup. Figure 4.10(b) shows the overall running time involved
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Figure 4.11: The Pareto curve obtained for a task set of 10 tasks.

in computing the exact Pareto curve on the CPU versus time taken by the GPU-

Pareto engine. In order to accurately report the total processing time on the GPU,

we take into account the sum of data structure uploading time to GPU memory,

the computation time on the GPU and the downloading time from GPU memory.

The total time taken by the GPUPareto engine adds this sum with the time taken

to run the second part of our algorithm, which is run on the CPU. (Recall, that

to compute the exact Pareto curve, we need to run (i) the Algorithm 9 (GPU

implementation) and (ii) then retain all the undominated solutions (CPU imple-

mentation).) For the interested reader, the detailed breakdown of our results for

the 5 different task sets is tabulated in Table 4.3. The table also presents the

comparison with a CPU based implementation in the last column.

Compared to a purely CPU-based implementation, the GPU-based analysis re-

sults in significant speedups, with the analysis times reducing from more than a

minute to less than 9 seconds. Such speedups allow a designer to get almost in-

stantaneous feedback during an interactive design session with an automated tool,

thereby improving design productivity. Further, this comes at no additional cost,

assuming that the desktop/notebook computer running the design tool already has

a commodity GPU.

Finally, we show the results that are obtained by GPUPareto for two different task
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sets. In Figure 4.11, the Pareto Curve is shown for a task set with 10 tasks. The

shaded region in the graph show the dominated solutions and the thick line depicts

the Pareto curve.

4.4 Summary

Using two case studies, we showed that modern commodity graphics hardware

may be exploited to accelerate computationally expensive kernels in design space

exploration tools. In particular, we presented GPU based engines to solve a heavy-

duty schedulability analysis problem of a generalized task model and a standard

multiobjective hardware/software co-design problem. We showed that our imple-

mentations achieve very attractive speedups compared to a standard CPU-based

implementation.

It is worth mentioning here that GPUs also have certain disadvantages. Firstly,

they consume significant amounts of power. However, we do not envision this to be

a problem because any design space exploration tool using GPUs will typically run

in a general purpose computation environment where resources are not hard limita-

tions. Secondly, of late the recent increase in precision to 32-bit floating point has

enabled a host of new GPGPU applications, but 64-bit double precision arithmetic

still remains a distant promise [59]. Although the lack of double precision hampers

or prevents GPUs from being applicable to very large-scale computational science

problems, as our case studies show a large number of design space exploration tools

may still leverage the GPU acceleration power without loss of accuracy. Hence,

inspite of the challenges, we believe that the potential benefits are too large to

ignore as demonstrated in this work.



Chapter 5

Performance Analysis of

FlexRay-based ECU Networks

So far, in this thesis we have dealt with issues in design space exploration that arise

in the context of general system-level analysis problems, namely, schedulability

analysis and multicriteria hardware/software co-design. In this chapter, we shall

be concerned practical issues which arise specifically in the automotive electronics

domain. Real-time embedded systems in this domain have been of particular

interest since the last two decades as there has been a phenomenal increase in the

use of electronic components in automotive systems, resulting in the replacement of

purely mechanical or hydraulic-implementations of many functionalities. The main

motivation behind this stems from lower cost, reduced weight, new and innovative

functionalities and the need for faster design cycles.

In spite of this rapid increase of software content and communication complexity,

the system-level analysis and design space exploration methodologies for the au-

tomotive domain are still not mature. In particular, newly introduced automotive

specific bus protocols have several characteristics which must be taken into account
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for such system-level timing analysis. This is will be of focus in the chapter, and

towards this, in the following section we present a brief background.

Background and Related Work

In earlier designs of automotive electronics, different functions were implemented

as stand-alone electronic control units (ECUs), with each ECU consisting of one or

more microcontrollers and a set of sensors and actuators. However, with the rapid

increase in the complexity of the different functionalities, it became imperative to

have distributed implementations, where different parts of a task are implemented

on different ECUs with messages and signals being exchanged between them. For

example, an ECU implementing crash preparation needs inputs from wheel rotation

sensors, radars, and ECUs implementing tasks such as object detection, data fusion

and object selection. Today, in high-end cars, it is common to have around 70 ECUs

exchanging upto 2500 signals between them [5]. Hence, it is infeasible to connect

the different ECUs with point-to-point links. This has led to the development

of bus-based ECU networks, where communications between multiple ECUs are

multiplexed over one or more shared buses. Consequently, this also gave rise to

the need for different communication protocols specifically targeting automotive

communication systems.

Today, the most commonly used protocols [57] include the Controller Area Network

(CAN) [18], the Local Interconnection Network (LIN) [51] and the J1850 from the

Society for Automotive Engineers (SAE) [41, 54]. The different protocols can

be classified into two major groups: (i) time-triggered, and (ii) event-triggered.

Communication activities in the latter class are triggered by the occurrence of

specific events and the protocol defines a policy for resolving the contention for

the shared bus when messages from multiple ECUs or tasks are ready at the same
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time. For example, in the case of CAN, data is segmented into frames and each

frame is labeled with a priority which is used to resolve bus contention. Time-

triggered protocols, on the other hand, schedule communication activities or frame

transfers at predetermined points in time, which are commonly referred to as slots.

The sequence of slots and their lengths for different message types are statically

defined and the resulting schedule repeats itself infinitely.

Event-triggered protocols are clearly more efficient in terms of communication

bandwidth usage and allow incremental system design (i.e. new ECUs or tasks can

be added without redesigning the system from scratch). However, they are diffi-

cult to analyze because of their dynamic nature. Hence, verifying timing properties

and detecting faults often become problematic. This poses a serious hindrance to

their deployment when the functions involved are safety-critical and require hard

real-time guarantees. On the other hand, time-triggered protocols are highly pre-

dictable in terms of their temporal behavior, but suffer from poor communication

bandwidth utilization and are inflexible. The addition of new ECUs, or the mod-

ification of any tasks require a complete redesign and reevaluation of the entire

system.

As a result, recently there has been a lot of emphasis on hybrid protocols, that com-

bine the time-triggered and event-triggered paradigms. Protocols in this class in-

clude TTCAN [80], FTT-CAN [31] and FlexRay [33]. FlexRay is currently backed

by many major automotive companies and will most likely become the de-facto

standard for automotive communication systems very soon. This has led to a lot

of recent interest in timing and predictability analysis techniques and tool-support

targeting FlexRay-based designs.

Our work is in line with these efforts and proposes an analytical framework for

compositional performance analysis of a network of ECUs that communicate via
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Figure 5.1: A FlexRay-based network of ECUs, with an application partitioned and
mapped onto multiple ECUs.

a FlexRay bus. Given a specification of the applications running on the system,

their partitioning and mapping on the different ECUs, their activation rates and

the mapping of the resulting messages onto the different FlexRay slots along with

the message priorities (see Figure 5.1), our framework can be used to answer var-

ious performance analysis-related questions. These include the maximum end-to-

end delay experienced by the different message types, the amount of buffer space

required within a communication controller associated with an ECU and the uti-

lizations of the different ECUs and the FlexRay bus. Our framework can also be

used for deriving the parameters of the FlexRay protocol (e.g. lengths of the static

and dynamic segments and priorities of the messages mapped onto the dynamic

segment). Further, it can help in resource dimensioning (e.g. designing the various

ECUs) and determining optimal scheduling policies for multitasking ECUs.

In the FlexRay protocol, a communication cycle consists of a combination of a

time-triggered or static (ST) segment and an event-triggered or dynamic (DYN)

segment. Such a communication cycle is repeated in a periodic fashion. The

ST segment uses a time-division multiple access (TDMA) scheme and the DYN

segment uses—what is often referred to as—Flexible TDMA. The ST segment has
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all the virtues of a time-triggered paradigm, i.e. the timing properties of messages

mapped onto this segment are highly predictable. But it is mostly suited for

periodic messages and has low communication bandwidth utilization. The DYN

segment compensates this drawback, but suffers from the usual shortcomings of

an event-triggered paradigm. As a result, most of the current implementations of

FlexRay heavily lean towards using only the ST segment, with the DYN segment

being unutilized. The only advantage of FlexRay that is being exploited in this

process is its high bandwidth. To fully utilize the benefits of this protocol, it is

important that suitable analysis techniques be developed that can provide timing

and performance guarantees for messages mapped onto the DYN segment as well.

This is complicated because of two reasons: (i) the DYN part of the protocol

is more complex than the ST part, and (ii) the potential messages targeted for

the DYN segment tend to be more irregular (e.g. high-volume multimedia data)

than those mapped onto the ST segment (the DYN segment has been specifically

designed for such messages).

Commercially available design tools for FlexRay-based systems (e.g. those from

dSPACE [28] and DECOMSYS [27]) today mostly rely on simulation. As a result,

they are time consuming to use and cannot provide formal performance guarantees,

which are important in the automotive domain. Although formal timing analysis

techniques have been proposed for protocols such as CAN [75, 77] and TTP [63],

none of them seem to extend in a straightforward manner to model the DYN

segment FlexRay.

Very recently, the first attempt to formally model the behavior of the DYN seg-

ment was reported in [64]. Given the arrival rates of the different message streams

mapped onto the DYN segment, [64] computes the worst-case delay experienced

by any message due to blocking by the ST segment and contention from higher

priority messages. Computing this worst-case delay was shown to be similar to
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a bin covering problem [24] and was solved using an integer linear programming

(ILP) formulation. Further, computationally efficient (but pessimistic) heuristics

were also presented to bound this delay. Although, this certainly represents an

important step towards formally analyzing the FlexRay protocol, it suffers from

certain drawbacks which might hamper its application to real-life problems. The

first, and most important of these being that [64] analyzes the FlexRay bus in isola-

tion, i.e. requires the input rates or periods of the arriving messages and computes

the worst-case delay due to transmission over the bus. A system designer, on the

other hand is typically interested in computing the worst-case end-to-end delays of

messages originating from a sensor, passing over multiple ECUs and the FlexRay

bus, and finally activating an actuator (see Figure 5.1 for an illustration). In this

process, a message stream arriving at the FlexRay bus need not be purely peri-

odic and might get modified depending on the scheduling policies on the different

ECUs.

The framework we present in this chapter addresses this concern. It is fully com-

positional and models both the ECUs and the FlexRay bus in a seamless manner.

Hence, it does not make any a priori assumption on the timing properties of the

message streams arriving at the bus. Further, in contrast to [64]—which is only

restricted to computing the worst-case response times of messages—our framework

can be used to answer a wider variety of performance-related questions and will

also be helpful for synthesizing a FlexRay schedule (i.e. determine the slot sizes

and message priorities) when maximum end-to-end delays are provided as design

constraints. Lastly, our approach does not involve any computationally expensive

step like solving an ILP and would hence scale to real-life settings. We have imple-

mented our framework using a combination of Java and Matlab, which can be used

as a stand-alone design tool, or can serve as a plugin to standard tool suites (e.g.

DECOMSYS Tools [27]). Such a plugin can be used to obtain hard performance
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guarantees, which can then be cross-validated using simulation.

Organization of the chapter

The rest of this chapter is organized as follows. In the next section we briefly discuss

the FlexRay protocol. In Section 5.2 we give an overview of our basic framework

and the challenges in modeling the DYN segment of FlexRay. In Section 5.3, we

introduce the working of our scheme with the help of small examples of FlexRay

based networks. This is followed by a formal performance model for FlexRay,

which is the main result of this work. A case study is presented in Section 5.5.

5.1 Overview of FlexRay

As mentioned in the previous section, each FlexRay communication cycle is parti-

tioned into a ST and a DYN segment. The lengths of these segments need not be

equal, but are fixed over the different cycles (hence these lengths are among the

parameters that need to be determined when the FlexRay schedule is synthesized).

The ST segment is further partitioned into a fixed number of equal-length slots.

Each slot is allocated to a specific task and a task is allowed to send a message

only during its allocated slot. If a task has no messages to send, then its slot goes

empty (i.e. other tasks are not allowed to use it).

The DYN segment is also partitioned into equal-length slots, but each slot size

is much smaller and is referred to as a minislot. Tasks which send messages on

the DYN segment are assigned fixed priorities. At the beginning of each DYN

segment, the highest priority task is allowed to send a message. The length of

such a message can be arbitrarily long (i.e. can occupy an arbitrary number of
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Figure 5.2: Two typical FlexRay communication cycles.

minislots), but has to fit within one DYN segment. However, if the task has no

message to send, then only one minislot goes empty. In either case, the bus is then

given to the next highest-priority task and the same process is repeated till the

end of the DYN segment. Further, when its turn comes, a task is only allowed

to send a message if it fits into the remaining portion of the DYN segment. For

further details of this protocol, we refer the reader to the excellent description in

[64] or to the full specification [33].

As an example, consider eight tasks T1, . . . , T8 mapped onto different ECUs, which

send messages on the FlexRay bus. Any message sent by a task Ti is labeled as

mi. Tasks T1, T2 and T3 send messages over the ST segment and T4 to T8 over the

DYN segment. For the DYN segment, the priorities of the tasks decrease from T4

to T8. Figure 5.2 shows two consecutive FlexRay communication cycles resulting

from this mapping. In the first cycle, task T2 has no message to send (hence the

corresponding slot in the ST segment is empty) and in the second cycle T1 and T3

have nothing to send.

Similarly, in the first cycle, tasks T5, T6 and T7 have messages to send, but not

T4 and T8. Hence, there is one empty minislot corresponding to T4 in the DYN

segment, followed by the message m5. The size of m6 is bigger than the remaining

length of the DYN segment, hence it is not sent; instead there is one empty minislot

in its place. This is followed by m7 and another empty minislot resulting out of

no message from T8. In the second cycle, T4 and T5 have no messages to send,
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which results in two empty minislots. These are followed by m6 which could not

be sent in the first cycle. The DYN segment ends with one empty minislot which

might either be because T7 had nothing to send or its message was longer than one

minislot.

It may be noted that (i) the ST and DYN segments are independent of each other,

and (ii) techniques for analyzing the timing behavior of the ST segment are already

known (because it uses a TDMA scheme) [63, 76]. Hence, from now on we will only

focus on modeling the behavior of the DYN segment (however, we will of course

take into account the blocking effects of the ST segment).

5.2 Basic Framework

In this section we give an overview of our basic modeling framework and the

challenges faced in modeling the DYN segment of FlexRay. In the next section we

show how these challenges are addressed. Our modeling techniques are motivated

by [22], where a mathematical framework was presented for analyzing the timing

properties of multiprocessor embedded systems. Our main contribution in this

work lies in appropriately modifying this framework to model the FlexRay protocol,

which turns out to be a non-trivial task, as we show in this section.

The system architectures we are interested in consist of multiple ECUs commu-

nicating via a FlexRay bus. One or more applications are partitioned into tasks,

which are then mapped onto different ECUs. ECUs running multiple tasks use a

scheduler to share the available processing resources as shown in Figure 5.1. Each

task is activated at a certain rate or is triggered by an output from another task.

Once activated, it needs to be processed and hence consumes a fixed number of

processor cycles from the ECU on which it is running.
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Figure 5.3: (a) αu and αl corresponding to a periodic activation. (b) βu and βl of an

unloaded processor.

At the heart of the framework being discussed lies the modeling of (i) the triggering

pattern of tasks (or the event model) which generates an execution demand on a

ECU and communication demand on the bus, and (ii) the service offered by a ECU

(or the bus) to each task running on it (i.e. the resource model).

Event Model:

The arrival rate of any event stream triggering a task is upper- and lower-bounded

by two functions αu(∆) and αl(∆). Let R(t) be the total number of events that

arrive during the time interval [0, t]. Then αl(∆) = mint≥0{R(t + ∆) − R(t)} for

any ∆. Similarly, αu(∆) = maxt≥0{R(t + ∆) − R(t)}. Hence, αu(∆) and αl(∆)

denote the maximum and minimum number of events that might arrive within

any interval of length ∆. The timing properties of standard event models — like

periodic, periodic with jitter and sporadic — as well as more arbitrary arrival pat-

terns can be represented by an appropriate choice of αu and αl. For example, a

periodic event stream with period 9 can be represented by an upper and lower

bound shown in Figure 5.3(a). It is also possible to determine the values of αu(∆)

and αl(∆) corresponding to any given arbitrary event trace (from measurements

or from simulation) and a real number ∆ by sliding a window of length ∆ over the
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trace and recording the minimum and maximum number of events lying within

the window respectively. The upper and the lower arrival curves corresponding to

the trace can be determined by following this procedure for different values of ∆.

Resource Model:

Similarly, let βu(∆) and βl(∆) denote upper and lower bounds on the service

available to a task. Let S(t) be the number of activations of this task that were

serviced during the time interval [0, t]. Then, βl(∆) = mint≥0{S(t + ∆) − S(t)}

for any ∆, and βu(∆) = maxt≥0{S(t + ∆) − S(t)}. If there are multiple tasks

running on an ECU, the service bounds βu and βl available to any task will clearly

depend on the scheduling policy being used. Further, if βu(∆) and βl(∆) are

expressed in terms of the maximum and minimum number of available processor

cycles, then they can easily be converted to service expressed as — the number

of task activations that can be serviced within any ∆. This is done by scaling

βu(∆) and βl(∆) with the execution requirement incurred by the task due to each

activation.

As an example, the upper and lower bounds on the service in the case of an un-

loaded ECU can represented as two straight lines that coincide with each other

(see Figure 5.3(b)). The slope of these lines denotes the clock frequency of the

ECU. Communication resources (e.g. buses) can be similarly modeled, the service

curves in this case typically bound the number of transmittable bits within any

given time interval. Such service curves can be derived from a formal model of the

resource, or from data sheets, or in some cases by simple measurements.

System Composition and Analysis:
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Figure 5.4: (a) Rate monotonic scheduling of two tasks. (b) Corresponding scheduling
network.

An event stream entering a resource gets processed, thereby generating an outgoing

stream of events/data which can activate other tasks on the same ECU, or might

be transferred over the bus to trigger tasks running on other ECUs. Let αu′(∆)

and αl′(∆) denote upper and lower bounds on the number of such events generated

within any time interval of length ∆. It can be shown that (see [84]):

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0
{αl(µ + λ)− βu(λ)}+ βl(∆− µ)}, βl(∆)} (5.1)

αu′(∆) = min{sup
λ>0
{ inf
0≤µ<λ+∆

{αu(µ) + βu(λ + ∆− µ)} − βl(λ)}, βu(∆)} (5.2)

Similarly, the bounds on the remaining service after processing the activations of

a task are given by:

βl′(∆) = sup
0≤λ≤∆

{βl(λ)− αu(λ)} (5.3)

βu′(∆) = max{ inf
λ>∆
{βu(λ)− αl(λ)}, 0} (5.4)

Given αu, αl and βu, βl, it is also possible to compute the maximum delay ex-

perienced by a task before its activation is serviced and the maximum number of
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backlogged activations with the following equations:

delay ≤ sup
t≥0
{inf

τ≥0
{αu(t) ≤ βl(t + τ)}} (5.5)

backlog ≤ sup
t≥0
{αu(t)− βl(t)} (5.6)

With the help of an example, we now show how a system architecture may be

modeled using the above results. Consider the setup shown in Figure 5.4(a). It

consists of two tasks T1 and T2 which are being scheduled using a rate monotonic

scheduler. Both T1 and T2 are activated periodically, with T1’s period being 4 time

units and T2’s period being 9 time units. Each activation of T1 and T2 requires

1 and 2 processor cycles respectively to process. The upper and lower bounds

on the activation of T2 (i.e. αu
2 and αl

2) were shown in Figure 5.3(a). They are

similar for T1, except for the difference in the length of the period. The upper and

lower bounds on the service offered by the unloaded ECU (in terms of the number

of processor cycles available over any time interval) were shown in Figure 5.3(b).

Since T1 has a smaller activation period, it has a higher priority (because of rate

monotonic scheduling) and hence the full service offered by the unloaded ECU is

available to it.

As discussed above, using αu
1 , αl

1 and βu
1 , βl

1, we can compute βu
1
′ and βl

1
′
, which

are bounds on the remaining service (that is left over after processing T1). This

remaining service is now available to the lower-priority task (i.e. T2). This concept

is illustrated in the form of a scheduling network for a rate monotonic (or any fixed

priority) scheduler in Figure 5.4(b).

β1
′ is used for servicing task T2 (see Figure 5.5(a)), which along with α2 can be

used to compute upper and lower bounds on the events generated by each serviced

activation of T2 (β and α often refer to the tuples βu, βl and αu, αl). These bounds
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Figure 5.5: (a) Bounds on the remaining service after processing task T1. (b) Bounds

on the messages generated by T2.

Figure 5.6: (a) Performance model of the complete architecture (b) The bounds on the
service available on the TDMA bus to messages from T1.

are shown in Figure 5.5(b). From this figure, note that this event stream is periodic

with a period of 9 time units and a jitter of 1 time unit. It is straightforward to see

that the distance between αu
2
′, αl

2
′
is equal to twice the jitter of the event stream.

So far we described how to use this framework to analyze a ECU, but the same

technique is also applicable to communication resources (e.g. buses). To illustrate

this, we now model the complete architecture (along with the communication bus)

shown in Figure 5.4(a). Assume that the bus transmits the processed streams α1
′

and α2
′ as messages to another ECU (which is not shown in this architecture). The

performance model of the complete architecture including the bus is now shown
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Figure 5.7: (a) Upper and lower bounds on the transmitted messages over the bus

arising from T1. (b) Bounds on the transmitted messages from T2.

in Figure 5.6(a). Suppose that each serviced activation of T1 and T2 generates a

message of size 1 byte that is to be transmitted over the bus. The TDMA scheduler

running on the bus has a cycle length of 10 time units and provides slot sizes that

are suitable for transmitting 4 and 3 bytes of data from T1 and T2 respectively

during every cycle. The service curves corresponding to this bus availability to

T1 is shown in Figure 5.6(b). Finally, Figure 5.7 shows the timing properties (or

bounds on the arrival rate) of the transmitted messages from T1 and T2. From the

timing properties of the message stream injected by T2 on the bus (Figure 5.5(b))

and the timing properties of these transmitted messages (Figure 5.7(b)), it may

be noted that the jitter increases from 1 to 7.5 time units. These transmitted

messages can now trigger tasks running on other ECUs and the same procedure

may be applied to analyze them as well.

5.2.1 Difficulties in Modeling FlexRay

Recall from Section 5.1 that in the DYN segment of FlexRay, tasks are given access

to the bus in decreasing order of their priorities. In other words, the task with

the highest priority is offered access to the bus at the start of the DYN segment.
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Figure 5.8: (a) Computing maximum delay from αu and βl. (b) Total service offered
by the DYN segment.

Further, once given access to the bus, a task can occupy it till the end of the current

DYN segment. Hence, the most straightforward approach would be to model this

protocol as a fixed priority scheduler, as shown in Figure 5.4(b). Here, β would

be used to model the total service offered by the DYN segment and successive β′s

would be computed from the message sizes and message generation rates of the

different tasks. However, this approach does not work because of the following

properties of FlexRay: (i)A task can send at most one message in each DYN

segment (where the maximum length of the message can be equal to the length of

the DYN segment). (ii) One minislot is consumed from the available service each

time a task is not ready to transfer a message, before the next lower priority task

is allowed to send its message on the bus. (iii) If a DYN message is generated by

its sender task after the slot has started, the message to wait until the next bus

cycle starts in order to contend for the bus. (iv) A task is only allowed to send a

message if it fits into the remaining portion of the DYN segment, i.e. a message

cannot straddle two communication cycles.

The modeling framework presented above does not incorporate these restrictions

when representing the service availability of a resource using the upper and lower

bounds βu(∆) and βl(∆). To see this, consider Figure 5.8(a), which shows αu

corresponding to the arrival of a single message (of length equal to 8 minislots)
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that is to be transmitted over the DYN segment (of length 5 minislots). Here, the

length of each communication cycle (or period) is assumed to be p time units and

the length of the DYN segment is equal to d time units. The lower bound on the

service βl corresponding to the DYN segment is also shown in this figure. Note

that over time intervals ∆ of length less than or equal to p − d, no service might

be available from the DYN segment due to the blocking by the ST segment.

Since the length of the message in this case is longer than the length of the DYN

segment, this message will never get transmitted. However, the framework we

described above models the message to be transmitted over two communication

cycles, thereby incurring a delay equal to the maximum horizontal distance between

αu and βl (see Figure 5.8(a)). In the next Section, we will see how our framework

models all the FlexRay properties and thus, correctly analyzes scenario like this.

5.3 Illustrative Examples

In this section, we shall illustrate the working of our scheme with the help of small

examples of FlexRay based networks. This will be followed by a more formal

description in the next section.

Example 1

For the first example, consider a task T1 transmitting a single message, m1 of 2

bytes over the FlexRay DYN segment every 10 milli-seconds (ms). This set-up is

shown in Figure 5.9(a). We are considering a FlexRay cycle length of 10 ms and

a DYN segment length of 5 ms. Assume that m1 is the highest priority message.

Hence, its transmission has to begin in the first minislot in the DYN segment. For
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simplicity of exposition, we assume that number of minislots per milli-second is 1,

and that 1 byte is transmitted in 1 minislot. Thus, once m1 gets access to the bus,

it requires 2 minislots to be transmitted completely which turns out to be a time

interval of two milli-seconds.

Before describing our framework to evaluate the worst case delay of m1 over the

FlexRay bus, we perform an analysis by hand. Figure 5.9(b) graphically shows

this analysis. The worst case scenario occurs when the message is ready just

after its minislot starts. Thus, the message m1 has to wait the one FlexRay cycle

(DYN+ST=10ms) for its next turn, and then it gets transmitted over the next

2ms. Thus, the worst case delay is 12 ms.

Lets us now apply our framework and evaluate the delay of m1 over the FlexRay

bus. To compute the delay for m1 using our scheme, we require arrival curve α1,

and the service curve β1 for m1 (see Equation 5.5). Since the period of 10ms is

known for m1, α1 may be readily constructed (see Section 5.2). However, com-

puting β1 — the service that is available to message m1 is not straightforward

because of the FlexRay properties discussed in the previous section. In the fol-

lowing, we will illustrate how to construct β1 in a step-by-step fashion such the

FlexRay properties are correctly incorporated.

Step 1: We have seen that the total service available for the entire DYN segment

can be modeled as β (shown in Figure 5.9(c)). Here the sloped curve segments

represent the service available for each DYN segment. In our first step, we extract

2 minislots of service during each communication cycle from β. This models the

property 1 which implies that during any communication cycle at most 2 minislots

are available to T1 (since a task can send at most one message in each cycle).

Figure 5.9(c) shows step 1.

Step 2: In our second step, we subtract one minislot from each DYN segment to
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Figure 5.9: Example 1 (a) Architecture. (b) Analyzing actual delay of m1. (c) Step 1.

(d) Steps 2 and 3. (e) Step 4. (f) Delay of m1 computed by our framework.
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model property 2 of bandwidth loss (Section 5.2.1). The resulting service curve

is shown in Figure 5.9(d). This now ensures a bandwidth loss of one minislot in

each cycle where the service is not consumed. However, this would also lead to

pessimistic results because we have decreased available service even in cycles that

would be consumed. To avoid this, we adjust message size of m1 by subtracting 1

minislot, i.e 2− 1 = 1 minislots in the subsequent analysis of service consumption

for messages transmitted by task T1. Thus, we have ensured bandwidth loss as

well as consistency in computation of the delay.

Step 3: Property 3 mentions that a message must start at the beginning of the

communication slot. If a message is ready just after its minislot has started the

message has to wait for the next cycle. Thus, in each cycle either the entire service

is available or it is not available at all. To reflect this, in step 3, we discretized the

service bound obtained from Step 2, i.e. convert it into a step-function. This is

shown in Figure 5.9(d).

Step 4: Property 4 says a message cannot straddle two communication cycles.

We observe from Figure 5.9(b) that any interval ∆ of length less than 12ms can

be positioned to straddle two communication cycles. Hence,the minimum service

available from the DYN segment over intervals of length less than 12ms should

be equal to 0. However, from the Figure 5.9(d) we can observe that the resulting

service guarantees service availability within a time interval 7ms (length of ST

+ actual transmission time of m1). To achieve property 4, the service bound

resulting from step 3 is shifted by 5 (the length of DYN segment) time units.

Step 4 is reflected in Figure 5.9(e).

Finally, using β1 and the arrival curve α1 for m1, the delay 12ms is correctly

computed by our framework (see Figure 5.9(f)).
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Figure 5.10: Example 2 (a) Message does not fit into one DYN segment. (b) Step 1

results in nullified β1.

Example 2

Let us consider a second example with similar architecture as Example 1 but where

the message size is 8 bytes i.e. 8 minislots. Recall that this is essentially the same

scenario we described in the Section 5.2.1. Figure 5.10(a) shows that the message

would never be transmitted because it does not fit into a single DYN segment.

Figure 5.10(b) shows the step 1 for construction of the service curve β1 of this

message. We need to extract 8 minislots from each segment, which is greater than

available resource. In this case, our framework nullifies service available in such

communication cycles. The resulting service curve as shown in Figure 5.10(b)

correctly reflects that no service is available in any time interval. Now when we

compute delay for m1, our framework would return a infinite delay, as we had

analyzed in Section 5.2.1.

Example 3

Our third example is slightly more involved with two messages being transmitted

over the FlexRay bus as shown in Figure 5.11(a). This message is transmitted over

the DYN segment with priority 2, and the size of the message is 2 bytes. The rest

of the architecture is same as Example 1.
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Figure 5.11: Example 3 (a) Architecture. (b) Overview of our scheme. (c) Analyzing

actual delay of m2. (d) Transformation. (e) Delay of m2 computed by our framework.

Before describing our framework, we analyze the worst case delay for m2 over the

FlexRay bus (Figure 5.11(c)) . As in example 1, the worst case scenario occurs

when the message is ready just after its minislot starts. Thus, the message m2 has

to wait the one cycle (DYN+ST=10ms) for its next turn, and then gets transmitted

over the next 2ms. Thus, the worst case delay for m2 in this case is 12ms.

The architecture and parameters are similar to Example 1 for message m1. Thus,
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all the analysis described in Example 1 hold here as well. We are now interested

in the analysis of m2. In Example 1, we have seen how to obtain β1 from the

total service β, the service available to messages m1 and all lower priority message.

Similarly, once we find βT
2 — the total service available to m2 and lower priority

messages — we can apply the same technique to find β2. In the following, we

explain how to compute βT
2 .

The service available to the lower priority tasks, βT
2 (i.e. T2, . . . , Tn) is made up

of two components (i) service that was unavailable to T1, and (ii) service that was

unutilized by T1. In the following we describe these components:

(i) In Example 1 we extracted β1 from β, but the rest of the service i.e. service

that was unavailable to T1 will be available to lower to priority messages. This

component is given by the following equation

β̄l(∆) = sup
0≤λ≤∆

{βl(λ)− βi
1(λ)} (5.7)

(ii) The service that was unutilized by T1 will also be available to lower priority

messages and is denoted by βl
1
′
. Note that in this example however, m1 is triggered

every 10ms which means one instance of m1 is ready every FlexRay cycle, and hence

the service is consumed each cycle. Thus, entire service is utilized and unutilized

is effectively zero. This can be verified using Equation 5.3.

Thus, βT
2 , which represents the service available to the lower priority tasks is equal

to service that was unavailable to T1. This curve is shown in Figure 5.11(d), which

is then transformed in the same way as in Example 1, but using information specific

to messages from task T2 in order to obtain β2. Figure 5.11(e) shows the delay

12ms computed by our framework using β2.
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Figure 5.11(b) now shows an complete overview of our scheme. Here, α1 bounds

the arrival rate of m1 at the bus and β is the service offered by the unloaded bus.

β1 is the service available to m1 which has already been analyzed in Example 1.

β′ is the service remaining from β (i.e. unavailable to m1). β1
′ is the service that

is unutilized by m1 (from what was available to it). The sum of β′ and β1
′ is the

service available to m2 and lower priority messages gives us by βT
2 . Finally, the

triggering rate of T2 (which is equal to the arrival rate of m2 at the bus) is bounded

by α2.

Example 4

In our final example, we consider the an architecture similar to Example 3, but

with different parameters for the messages. Assume that m1 has a size 5 byte,

while m2 is a message with size 4 bytes and both are triggered every 20ms.

Figure 5.12(a) shows the worst case delay for m2 over the FlexRay bus. We have

already seen that the worst case scenario occurs when the message is ready just

after its minislot starts. In contrast to Example 2, the message m2 is now blocked

not for one cycle but two cycles (2×(DYN+ST=10ms)=20ms) for its next turn.

This is because m1 may occupy the entire DYN segment in the next cycle. Once

m2 accesses the bus, it gets transmitted over the next 2ms. Thus, the worst case

delay for m2 in this case is 22ms.

Following the discussion for the previous example we need to compute the total

service (βT
2 ) which is equal to the service (i) unutilized by m1 and (ii) the service

unavailable to m1. In this example, the service unavailable to the message m1

is zero over all time intervals. This is because m1 size is 5 minislots and thus,

entire DYN segment is available to the message. This may also be verified from
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Figure 5.12: Example 4 (a) Analyzing actual delay of m2. (b) Transformation. (c)

Delay of m2 computed by our framework.

Equation 5.7. Thus, the total service (βT
2 ) is equal to the unutilized service. The

unutilized service, β′1, by m1 is obtained from Equation 5.3. However, recall that

this is specific to messages from task T1 because this incorporates message size

dependent adjustments such that the respective service can be consumed just ac-

cording to the FlexRay restrictions. So it first needs to be transformed by applying

the “inverse” of Steps 2 and 3 that were applied to βl. Figure 5.12(b) shows the

relevant curves obtained .

Figure 5.12(e) shows the delay 38ms computed by our framework using β2. Note

the results are pessimistic because the Equation 5.3 returns bounds, which are not

tight [16].



134

Figure 5.13: (a) Steps 1 and 2 for transforming βl. (b) Shifting the resulting service
bound. (c) Blocking time.

5.4 Modeling FlexRay

Having described how to apply our framework for a series of small examples, we

now provide a formal description. FlexRay – as described in Section 5.2.1 – restricts

the amount of available service that can actually be used. Hence, while the service

bounds βu(∆) and βl(∆) capture the limits on the total service available to the

DYN segment, we need to model how much of this service can actually be used.

Towards this, assume that tasks T1, . . . , Tn send messages over the DYN segment

with any message from task Ti being denoted by mi and has a length of ki minislots.

The length of the DYN segment is assumed to be equal to k minislots (or d time

units) and the length of a communication cycle, as before, is equal to p time units.

Each minislot is assumed to be MS time units long.

Let βl(∆) be the lower bound on the service (expressed in terms of number of

minislots) offered by the unloaded DYN segment to all the tasks. Further, let βl
i

be the service offered by the DYN segment to task Ti. To obtain βl
1, the function
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βl needs to be algorithmically transformed. As one shall observe, our algorithm

essentially transforms each segment in the curve. It can be easily verified that

each “increasing” segment of the service curve βl corresponds to an additional

DYN segment (which is guaranteed to be available within the corresponding time

interval). The transformations applied to each slope of the service curve capture

the minimum guaranteed service that is available only to message m1 during each

DYN segment, and thus, produce the curve β1.

The algorithm to obtain βl
1 from βl consists of the following steps:

1. Extract k1 minislots of service during each communication cycle from βl.

This is because during any communication cycle at most k1 minislots are

available to T1 (since a task can send at most one message - property 1).

Nullify the communication cycles containing less then k1 minislots.

2. A minislot is lost even when a task does not transmit any message (property

2). This is accounted by subtracting one minislot from each communication

cycle corroborated with an adjusted message size of k1 − 1 minislots in the

subsequent analysis of service consumption for messages transmitted by task

T1. Steps 1 and 2 are shown in Figure 5.13(a).

3. Discretized the service bound obtained from Step 1, i.e. convert it into a step-

function. It reflects the property that a message must start at the beginning

of the communication slot. If a task just misses its turn in the DYN segment,

it has to wait for the next communication cycle (see Figure 5.13(b)).

4. The resulting service bound is shifted by d time units. This is to model that a

message has to be completely sent within a single DYN segment (property 4).

Note from Figure 5.13(c) that any interval ∆ of length less than p+MS×k1 can

be positioned to straddle two communication cycles. Hence, the minimum
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service available from the DYN segment over intervals of such length is equal

to 0. The shifted service bound in Figure 5.13(b) reflects this.

The resulting service bound, which we denote as βl
1 correctly represents the min-

imum or guaranteed service from the DYN segment that is available to messages

from T1. This βl
1 can now be plugged into the framework outlined in Section 5.2 to

compute the maximum delay suffered by any m1, the maximum number of back-

logged m1s and the timing properties of the transmitted messages (which might

trigger other tasks). Towards this αu
1(∆) is used as an upper bound on the number

of messages generated by T1 within any interval of length ∆.

The service available to the lower priority tasks, βT
2 (i.e. T2, . . . , Tn) is made up

of two components (i) service that was unavailable to T1, and (ii) service that was

unutilized by T1. The following steps describe the computation of these components

and their addition to obtain βT
2 :

1. The remaining service left after performing transformation 1 (i.e. the service

that was unavailable to T1) is given by the following equation

β̄l(∆) = sup
0≤λ≤∆

{βl(λ)− βl
1(λ)} (5.8)

2. The service that was unutilized by T1 can be computed from βl
1 and αu

1 using

Equation 5.3and is denoted by βl
1
′
.

3. However, βl
1
′
cannot be directly added to β̄l because it is specific to messages

from task T1 (i.e. incorporates message size dependent adjustments such

that the respective service can be consumed just according to the FlexRay

restrictions). So it first needs to be transformed by applying the “inverse”

of Steps 2 and 3 that were applied to βl, and the resulting function is added

to β̄l.
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Thus, βT
2 , which represents the service available to the lower priority tasks is

computed. This is then transformed in the same way as βl, but using information

specific to messages from task T2. This procedure is then repeated for all the tasks

T3, . . . , Tn.

5.5 Adaptive Cruise Control Application: A Case

Study

We will now show the utility of the framework discussed in Section 5.2 in modeling

an adaptive cruise control (ACC) application. This is followed by an illustration

of how this model can be used for formal performance analysis and debugging of

an architecture consisting of multiple heterogeneous ECUs communicating via a

FlexRay bus. When compared to simulation-oriented approaches—which can be

time consuming and do not provide any formal guarantees—our framework can be

used to quickly evaluate multiple design choices to determine whether they meet

the performance constraints at hand. The main challenge here is to determine end-

to-end timing properties of event/data streams which pass through multiple ECUs

(implementing different scheduling policies) and the FlexRay bus. Each of these

processing/communication elements modify the timing properties of the stream as

it passes through it.

System Description:

As shown in Figure 5.14, the ACC subsystem consists of five ECUs communicating

via a FlexRay bus. The bus has a communication cycle of 16 ms. The length of

the DYN segment is of 10 ms and consists of 140 minislots, and the length of ST

segment is 6 ms. Each minislot in the DYN segment can accommodate 4 bytes
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Figure 5.14: The system architecture of an Adaptive Cruise Control subsystem.

of data. ECU1 receives data from two radar sensors periodically every 60 ms,

and ECU2 periodically receives data from a wheel sensor every 250 ms. Note

that according to the FlexRay protocol specification [33], the communication cycle

length may be upto 16 ms. Thus, the parameters that we have chosen here for

our experiments conform to the FlexRay standard and may actually occur in real

world design scenario.

The data received by ECU1 from each radar is processed by an Object Detection

task. The processed data streams m1 and m2 are sent over the FlexRay bus to

ECU3 to be processed by the Data Fusion, Object Selection and Adaptive Cruise

Control tasks. The periodic data received by ECU2 from each radar is processed

by the task Wheel Sensor. The data processed by this task is sent over the bus as

the message stream m3, which triggers the task Anti-lock Braking System at ECU4.

The task Adaptive Cruise Control running at ECU3 also receives a message, m4

from the task Path Estimator running on ECU2. The resulting data stream from

ECU3, m6, is transmitted over the the bus to ECU4 which runs the Throttle and

Brake Arbitration task. The output from the Throttle and Brake Arbitration task

is fed into the Brake Control and Throttle Control tasks (ECU5) via the messages
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Bus ECUs

Message # Bytes Task WCET

m1 128 Data Fusion 10 ms

m2 128 Object Selection 1 ms

m3 64 Adaptive Cruise Control 4 ms

m4 64 Arbitration 5 ms

m5 128 Path Estimation 10 ms

m6 64 Brake Control 2 ms

m7 32 Throttle Control 2 ms

m8 32 Anti-Lock Braking System 8 ms

Wheel Sensor 4 ms

Object detection 4 ms

Table 5.1: The workload on the bus and the ECUs for the ACC subsystem.

m7 and m8, which in turn send their outputs to two different actuators. These

final output control signals are bounded by the functions αf
B and αf

T respectively.

Finally, ECU3 also transmits a message stream m4 to a Crash Control subsystem

via the DYN segment of the bus.

In Figure 5.14, the dashed lines represent messages transmitted via the DYN seg-

ment of the FlexRay bus (m1 has the highest priority, followed by m2 and so on).

The arrows between tasks in ECU2, ECU3, and ECU4 represent data depen-

dencies (i.e. data from the incoming arrow flows into the task pointed to by the

arrow). It may be noted that ECU1 uses a TDMA policy to schedule the tasks

running on it, and the rest use a fixed-priority scheduler. Finally, Table 5.1 shows

the lengths of the different messages and the execution times of the various tasks

running on the different ECUs.

Design Space Exploration:

For the ACC subsystem described above, we computed performance metrics like

end-to-end delays (radar to actuators), delays experienced by individual message

streams, and buffer requirements at the ECUs. We show how to use our framework
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to explore the optimal set of design parameters for such performance metrics.

In this work, we have used the Real Time Calculus (RTC) Toolbox [85] to perform

the necessary calculations for the performance analysis of the ACC model. The

RTC Toolbox is a toolbox within Matlab for system-level performance analysis of

distributed real-time and embedded systems. A Java kernel carries out the compu-

tations on the curves based on the real-time calculus (see equations in Section 5.2)

while a set of Matlab libraries connect the kernel to the Matlab command line.

Thus, in essence, the toolbox provides us with a library of Matlab functions for

compositional performance analysis. However, this helps to model only the basic

framework described in Section 5.2 and is not adequate to implement a FlexRay

based performance model. Therefore, we implemented the FlexRay model de-

scribed in Section 5.4 using a combination of Java and Matlab, and followed a

similar software architecture. This was then plugged into the existing RTC tool-

box, thus creating a single unified framework for realizing our performance analysis

models. Thus, our implementation framework can now model basic scheduling poli-

cies like fixed priority and TDMA, as outlined in Section 5.2 as well the FlexRay

scheduling policy.

We then implemented the performance model of ACC system in our framework.

Figure 5.15(a) shows the lower bounds on the resource availability for the DYN

segment of the FlexRay bus. In this figure, β denotes the lower bound on the

availability of the unloaded DYN segment of the bus. Similarly, βf denotes the

lower bound on the remaining capacity of this segment after accommodating all

the message streams that have been mapped onto it. β′m1 and β′m2 denote lower

bounds on the availability of the DYN segment after accommodating the message

streams m1 and m2.

Figure 5.15(b) shows the lower bounds on the arrival rates of the data from the

two radars and the wheel sensor. Since these data streams are periodic, the upper



141

Figure 5.15: (a) The bounds on the resource curves for the DYN segment. (b) The

bounds on the input and the output signals for the system.

bounds would be similar. This figure also shows the upper (αfu
T ) and lower (αfl

T )

bounds on the final output stream that feed into the throttle actuator. As explained

in Section 5.2, from these bounds it is possible to compute the maximum jitter of

this stream.

The computed end-to-end delay along the path from Object Detection to Data

Fusion (via the FlexRay bus) to the crash control subsystem is equal to 109.86 ms.

This delay includes the waiting time of a message at the two ECUs (ECU1 and

ECU2), as well as the delay experienced in the bus. On the other hand, the end-

to-end delay from the radars (Radar1) to the brake actuator is equal to 299 ms.

The delay and buffer requirements of all the different message streams are listed

in Table 5.2. These buffer sizes refer to the input buffers in which messages are

stored while they wait to access the FlexRay bus.

Given a set of performance constraints, this framework can now be used to quickly

evaluate whether a given design meets specified constraints. Further, it can also

be used to evaluate delay and buffer requirements of individual message streams

and ECUs, which can provide insights into performance bottlenecks and potential

hotspots in an architecture. Such insights can also help in appropriate resource
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DYN Segment

Message Delay Buffer

m1 28.29 ms 128 Bytes

m2 28.57 ms 128 Bytes

m3 26.86 ms 128 Bytes

m4 25.71 ms 64 Bytes

m5 26.86 ms 128 Bytes

m6 74.64 ms 512 Bytes

m7 96.64 ms 160 Bytes

m8 113.86 ms 224 Bytes

Table 5.2: Delay and buffer requirement of each message stream on the FlexRay bus.

Figure 5.16: Design Space Exploration: (a) Influence of sampling rates and bandwidth

on the end-to-end delay. (b) Influence of lengths of the static and dynamic segments on

the end-to-end delay.

dimensioning. Finally, this framework can also help in determining appropriate

combinations of scheduling parameters and activation rates of the different tasks for

optimal performance under specified resource constraints. The design of all modern

embedded systems involve determining the values of many system parameters,

which influence each other in complex ways. As a result, their impact on various

performance metrics is not immediately clear.

In what follows, we illustrate how our framework can be used to evaluate the impact

of various parameters on the end-to-end delay from the radar to an actuator in
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the ACC subsystem. Two such parameters that directly affect the delay are: (i)

the bandwidth of the FlexRay bus, and (ii) the data arrival rates from the radars.

Figure 5.16 (a) shows how the end-to-end delay varies for varying bandwidth of

the FlexRay bus and the different sampling rates (or periods) of the radar. As

the figure shows, the number of bytes per minislot is used as the measure for

bandwidth. It can be seen that a larger period of the sensor leads to smaller end-

to-end delays, albeit at the cost of some information loss due to the lower sampling

rate. Similarly a larger bandwidth of the FlexRay bus in leads to smaller delays.

So far, we have considered a system architecture where all the messages have been

mapped to the DYN segment. In reality however, the designer has the choice

of mapping certain messages to ST segment and others to the DYN segment.

In such a design scenario, deciding reasonable lengths for both the ST and the

DYN segment is a tedious task because this choice has a direct impact on the

performance metrics like end-to-end delay. Once again our analytical framework

proves to be a convenient tool towards sorting such design issues. Suppose m1 and

m2 in Figure 5.14 are mapped to the ST segment instead of the DYN segment.

Figure 5.16(b) now shows how the end-to-end delay varies for various combinations

of ST and DYN segment lengths for a bus cycle length (or period) of 16 ms (with

all the other parameters being as described in the system architecture).

It should be mentioned here that we have adopted an analytic method to deter-

mine the performance metrics. Such methods provide hard performance bounds,

but they are typically not able to model state-dependent behavior, which leads

to pessimistic (but still correct) analysis results. Recently, [62] provided some

interesting insights accuracy of the performance predictions provided by such an-

alytic tools. It should be noted here that although simulation based approaches

give tighter results, they suffer from insufficient corner case coverage. In future,

it would be interesting to develop formal methods for FlexRay analysis based on
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timed automata [6] which provide the exact performance predictions. However, we

note that such formal techniques giving exact results are often paid for by a large

analysis effort, i.e. may require long (or potentially unbounded) verification times.

5.6 Summary

In this chapter we presented a compositional performance model for a network

of heterogeneous ECUs communicating via a FlexRay bus. FlexRay, which is

backed by world’s automotive industry, is in the most likely position to become

the standard protocol in the industry. As such, of late there has been lot of interest

in performance analysis of FlexRay-based networks. Our main contribution was

a formal model of the protocol governing the DYN segment of FlexRay. We also

showed how our framework may be exploited for design space exploration and

thus assist the designer in choosing the optimal set of system parameters for his

design constraints. We developed a tool for our framework, and demonstrated

the applicability of our methods by evaluating a real world case study from the

automotive domain.



Chapter 6

Conclusion

In this thesis we looked into several issues that lead to tedious interactive design

exploration sessions for some common system-level analysis, namely, timing and

scheduling analysis and multi-objective hardware/software co-design. Although

these topics have already been widely studied, none of these studies focused on

challenges arising in the context of interactive design cycles. Our thesis has made

contributions in this direction, and the main results are summarized below.

• In this thesis, we presented a novel scheme for efficient schedulability analysis

of recurring real-time task sets, to be used in interactive design sessions where

the schedulability analysis is repeatedly invoked with small modifications in

the task set. Since this scheme is used in an interactive fashion, we referred

to it as interactive schedulability analysis.

This concept of interactive schedulability analysis is fairly general and can

be applied to a number of well-known task models. Our experimental results

show that using our scheme can lead to more than 20× speedup for each

invocation of the schedulability analysis algorithm, compared to the case

where the full algorithm is run. In our work, we have also devised a technique
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using which a system designer can be provided some feedback regarding which

system parameter(s) should be changed that would likely yield a feasible

solution.

• We developed an efficient scheme for multi-objective design space exploration

in the context of evaluating cost-utilization tradeoffs for real-time systems.

We derived a polynomial-time approximation algorithm for solving this NP-

hard multi-criteria problem. Traditional approaches address these problems

from an engineering perspective and rely on heuristics and randomized search

techniques such as evolutionary algorithms. Our work in this thesis differs

from these approaches by taking a classical approximation algorithms stand-

point, where the goal is to provide formal guarantees on the quality of the

results obtained.

Our work is also interesting because there can be an exponentially large num-

ber of points in the Pareto front, which makes it impossible to compute this

entire set in polynomial time. Hence, our polynomial-time approximation

algorithm by default also implies approximating the (potentially exponential

size) set with only a polynomial number of points. In a typical design or

performance debugging scenario, a system designer inspects all the tradeoffs

in the set and then selects one, or at most a few implementations. Hence,

from a practical perspective, it is more meaningful if the designer is presented

with a reasonably few well-distinguishable tradeoffs in the set, rather than

an exponentially large number of solutions, many of which are very similar

to each other. Our approximation algorithm is therefore not only attractive

in terms of time-complexity, but also returns more meaningful solutions.

• Using two case studies, we showed that modern commodity graphics hard-

ware may be exploited to accelerate computationally expensive kernels in de-

sign space exploration tools. In particular, we reformulated a schedulability
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analysis algorithm and a multi-criteria design space exploration as stream-

ing applications so that they maybe implemented on graphics hardware. We

showed that our implementation achieves very attractive speedups compared

to a standard CPU-based implementation.

Our contribution might also be valuable in light of the fact that the core

problems solved are a variant of a classic optimization problem – the knapsack

problem. This NP-hard problem is at the heart of numerous problems arising

in the context of EDA and other areas of computer science and engineering.

We believe that the generality of this problem might serve as a motivation to

explore the possibility of exploiting GPUs for a variety of other combinatorial

optimization problems. It might also be feasible to develop a toolbox for

mapping a class of optimization problems to the GPU.

• We presented a compositional performance model for a network of heteroge-

neous ECUs communicating via a FlexRay bus. Our main contribution was

a formal model of the protocol governing the dynamic segment of FlexRay.

We also showed how our framework may be exploited for design space ex-

ploration and thus assist the designer in choosing the optimal set of system

parameters for his design constraints. We developed a tool for our frame-

work, and demonstrated the applicability of our methods by evaluating a real

world case study from the automotive domain. Because we rely on analytical

models, our tool returns results in a matter of few seconds, and is ideal for

fast analysis in interactive design cycles. This is a distinct advantage over

the existing simulation based tools, which take long running times during

design processes.
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6.1 Future Work

In this thesis, we could successfully establish that it is possible to ease the tedious

interactive design space exploration sessions associated with some common per-

formance analysis problems using various novel techniques. However, more work

remains to be done to assess how relevant these methods and the results are in

the design process (i) of other system-level performance analysis problem as well

as (ii) of realistic systems in a practical/industrial setting. Towards this vision for

future, our work spawns many new and promising research directions and poses

some very interesting open questions, which are discussed below.

• Our framework for “interactive” schedulability analysis was established by

demonstrating the concept with respect to a particular parameter i.e the task

deadlines. However, in real-life designs the designer might like to have the

flexibility to alter a different parameter like the execution times of the tasks,

or the structure of the task graph. Extending the “interactive” framework

for all such parameters would yield very exciting results and make it a very

usable method.

We also believe that it would be interesting to identify specific classes of

changes for which the interactive analysis can be done in polynomial time.

Further work should also be done towards providing more directed feed-

back to a system designer, compared to what we have presented in this

thesis. Lastly, there are a number of recently developed tools for tim-

ing/schedulability analysis of embedded systems (see for example, [6, 38]). It

would certainly be meaningful to explore if our analysis can be incorporated

inside these tools in a smooth way.

Although in this thesis, we have focused on the specific problem of schedu-

lability analysis, we believe that such a interactive scheme can be used for a
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variety of timing analysis problems e.g. worst-case execution time analysis of

programs using program path analysis techniques. Moreover, many system-

level design tools in the electronic design automation domain are being used

by the designers in a interactive fashion. Since, our method exploits this

repeated invocation of the algorithm to achieve speed-ups as well to provide

feedback, it has the potential to be applied to all such problems.

• Our work on hardware/software design space exploration raises interesting

questions (Chapter 3) as well. In this thesis we derived a fully polynomial-

time approximation scheme (FPTAS) for solving this computationally in-

tractable problem, and showed the validity of the results from a performance

debugging perspective. However, this was solved only in a uni-processor en-

vironment. Nowadays multi-core platforms are increasingly becoming pop-

ular for design of real-time applications. Interestingly, the extension of the

existing framework to the even to the dual-processor case seems intuitively

difficult, and and FPTAS might not exist in this case. It would be interesting

to establish the complexity of the problem, and if the problem is intractable,

the challenge would be to propose suitable heuristics to solve the problem. It

will also be interesting to fill in the details to extend our algorithm to more

involved task models (e.g. the recurring real time task model).

It may be also be noted that although our algorithm generated polynomial-

sized Pǫ curves, they need not necessarily contain the fewest possible points

required to represent an ǫ-approximate Pareto curve. It would be interesting

to see whether it is possible to generate the smallest sized Pǫ in our setting,

based on the recent results from [81].

• Using specific case studies, this thesis showed that modern commodity graph-

ics hardware may be exploited to accelerate computationally expensive ker-

nels in design space exploration cycles. Our contribution is valuable in light
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of the fact that the core problem solved is a variant of a classic optimization

problem, viz. the knapsack problem. This NP-hard problem is at the heart

of numerous problems arising in the context of system-level design processes

and other areas of computer science and engineering. We believe that the

generality of this problem might motivate other researchers to explore the

possibility of exploiting GPUs for a variety of other system-level design prob-

lems as well (e.g. schedulability analysis problems in multiprocessor settings).

• Our work with regards to performance analysis of automotive networks may

also be extended in different dimensions. In practice multiple subsystems

of FlexRay and other bus protocols like CAN would be connected by gate-

ways to form larger networks. It would be meaningful to extend the existing

framework to model the components like gateways in order to analyze larger

networks. It would also be a practical extension to do a more formal back-

ward analysis i.e. to find the suitable periods at which the sensors might be

sampled, in order to meet a desired end-to-end delay.

Further, we have assumed that the designer has taken the appropriate deci-

sions regarding the issues of architecture selection, mapping and scheduling

policies beforehand. It would be particularly interesting to investigate how

these decisions affect the performance metrics. Also, in this thesis we have

assumed all messages from a specified task to be of constant (worst-case)

length. Relaxing this constraint to account for variable length messages will

require certain modifications to our framework which would be interesting to

explore. Again, from a practical perspective one would also like to explore

the possibilities of integrating our implementation into standard tools for

designing FlexRay-based systems such as those from DECOMSYS.
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