331 research outputs found

    A neural network approach to audio-assisted movie dialogue detection

    Get PDF
    A novel framework for audio-assisted dialogue detection based on indicator functions and neural networks is investigated. An indicator function defines that an actor is present at a particular time instant. The cross-correlation function of a pair of indicator functions and the magnitude of the corresponding cross-power spectral density are fed as input to neural networks for dialogue detection. Several types of artificial neural networks, including multilayer perceptrons, voted perceptrons, radial basis function networks, support vector machines, and particle swarm optimization-based multilayer perceptrons are tested. Experiments are carried out to validate the feasibility of the aforementioned approach by using ground-truth indicator functions determined by human observers on 6 different movies. A total of 41 dialogue instances and another 20 non-dialogue instances is employed. The average detection accuracy achieved is high, ranging between 84.78%±5.499% and 91.43%±4.239%

    VIDEO SCENE DETECTION USING CLOSED CAPTION TEXT

    Get PDF
    Issues in Automatic Video Biography Editing are similar to those in Video Scene Detection and Topic Detection and Tracking (TDT). The techniques of Video Scene Detection and TDT can be applied to interviews to reduce the time necessary to edit a video biography. The system has attacked the problems of extraction of video text, story segmentation, and correlation. This thesis project was divided into three parts: extraction, scene detection, and correlation. The project successfully detected scene breaks in series television episodes and displayed scenes that had similar content

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    A framework for dialogue detection in movies

    No full text
    In this paper, we investigate a novel framework for dialogue detection that is based on indicator functions. An indicator function defines that a particular actor is present at each time instant. Two dialogue detection rules are developed and assessed. The first rule relies on the value of the cross-correlation function at zero time lag that is compared to a threshold. The second rule is based on the cross-power in a particular frequency band that is also compared to a threshold. Experiments are carried out in order to validate the feasibility of the aforementioned dialogue detection rules by using ground-truth indicator functions determined by human observers from six different movies. A total of 25 dialogue scenes and another 8 non-dialogue scenes are employed. The probabilities of false alarm and detection are estimated by cross-validation, where 70% of the available scenes are used to learn the thresholds employed in the dialogue detection rules and the remaining 30% of the scenes are used for testing. An almost perfect dialogue detection is reported for every distinct threshold. © Springer-Verlag Berlin Heidelberg 2006

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach

    Audio-coupled video content understanding of unconstrained video sequences

    Get PDF
    Unconstrained video understanding is a difficult task. The main aim of this thesis is to recognise the nature of objects, activities and environment in a given video clip using both audio and video information. Traditionally, audio and video information has not been applied together for solving such complex task, and for the first time we propose, develop, implement and test a new framework of multi-modal (audio and video) data analysis for context understanding and labelling of unconstrained videos. The framework relies on feature selection techniques and introduces a novel algorithm (PCFS) that is faster than the well-established SFFS algorithm. We use the framework for studying the benefits of combining audio and video information in a number of different problems. We begin by developing two independent content recognition modules. The first one is based on image sequence analysis alone, and uses a range of colour, shape, texture and statistical features from image regions with a trained classifier to recognise the identity of objects, activities and environment present. The second module uses audio information only, and recognises activities and environment. Both of these approaches are preceded by detailed pre-processing to ensure that correct video segments containing both audio and video content are present, and that the developed system can be made robust to changes in camera movement, illumination, random object behaviour etc. For both audio and video analysis, we use a hierarchical approach of multi-stage classification such that difficult classification tasks can be decomposed into simpler and smaller tasks. When combining both modalities, we compare fusion techniques at different levels of integration and propose a novel algorithm that combines advantages of both feature and decision-level fusion. The analysis is evaluated on a large amount of test data comprising unconstrained videos collected for this work. We finally, propose a decision correction algorithm which shows that further steps towards combining multi-modal classification information effectively with semantic knowledge generates the best possible results
    corecore