5 research outputs found

    ML-k’sNN: Label Dependent k Values for Multi-Label k-Nearest Neighbor Rule

    Get PDF
    Multi-label classification as a data mining task has recently attracted increasing interest from researchers. Many current data mining applications address problems with instances that belong to more than one category. These problems require the development of new, efficient methods. Multi-label k-nearest neighbors rule, ML-kNN, is among the best-performing methods for multi-label problems. Current methods use a unique k value for all labels, as in the single-label method. However, the distributions of the labels are frequently very different. In such scenarios, a unique k value for the labels might be suboptimal. In this paper, we propose a novel approach in which each label is predicted with a different value of k. Obtaining the best k for each label is stated as an optimization problem. Three different algorithms are proposed for this task, depending on which multi-label metric is the target of our optimization process. In a large set of 40 real-world multi-label problems, our approach improves the results of two different tested ML-kNN implementations

    Multi-label classification via incremental clustering on an evolving data stream.

    Get PDF
    With the advancement of storage and processing technology, an enormous amount of data is collected on a daily basis in many applications. Nowadays, advanced data analytics have been used to mine the collected data for useful information and make predictions, contributing to the competitive advantages of companies. The increasing data volume, however, has posed many problems to classical batch learning systems, such as the need to retrain the model completely with the newly arrived samples or the impracticality of storing and accessing a large volume of data. This has prompted interest on incremental learning that operates on data streams. In this study, we develop an incremental online multi-label classification (OMLC) method based on a weighted clustering model. The model is made to adapt to the change of data via the decay mechanism in which each sample's weight dwindles away over time. The clustering model therefore always focuses more on newly arrived samples. In the classification process, only clusters whose weights are greater than a threshold (called mature clusters) are employed to assign labels for the samples. In our method, not only is the clustering model incrementally maintained with the revealed ground truth labels of the arrived samples, the number of predicted labels in a sample are also adjusted based on the Hoeffding inequality and the label cardinality. The experimental results show that our method is competitive compared to several well-known benchmark algorithms on six performance measures in both the stationary and the concept drift settings

    Distributed multi-label learning on Apache Spark

    Get PDF
    This thesis proposes a series of multi-label learning algorithms for classification and feature selection implemented on the Apache Spark distributed computing model. Five approaches for determining the optimal architecture to speed up multi-label learning methods are presented. These approaches range from local parallelization using threads to distributed computing using independent or shared memory spaces. It is shown that the optimal approach performs hundreds of times faster than the baseline method. Three distributed multi-label k nearest neighbors methods built on top of the Spark architecture are proposed: an exact iterative method that computes pair-wise distances, an approximate tree-based method that indexes the instances across multiple nodes, and an approximate local sensitive hashing method that builds multiple hash tables to index the data. The results indicated that the predictions of the tree-based method are on par with those of an exact method while reducing the execution times in all the scenarios. The aforementioned method is then used to evaluate the quality of a selected feature subset. The optimal adaptation for a multi-label feature selection criterion is discussed and two distributed feature selection methods for multi-label problems are proposed: a method that selects the feature subset that maximizes the Euclidean norm of individual information measures, and a method that selects the subset of features maximizing the geometric mean. The results indicate that each method excels in different scenarios depending on type of features and the number of labels. Rigorous experimental studies and statistical analyses over many multi-label metrics and datasets confirm that the proposals achieve better performances and provide better scalability to bigger data than the methods compared in the state of the art

    Aprendizaje multi-etiqueta distribuido en Apache Spark

    Get PDF
    This thesis proposes a series of multi-label learning algorithms for classication and feature selection implemented on the Apache Spark distributed computing model. Five approaches for determining the optimal architecture to speed up the multi-label learning methods are presented. These approaches range from local parallelization using threads to distributed computing using independent or shared memory spaces. It is shown that the optimal approach performs hundreds of times faster than the baseline method. Three distributed multi-label k nearest neighbors methods built on top of the Spark architecture are proposed: an exact iterative method that computes pair-wise distances, an approximate tree-based method that indexes the instances across multiple nodes, and an approximate local sensitive hashing method that builds multiple hash tables to index the data. The results indicated that the predictions of the tree-based method are on par with those of an exact method while reducing the execution times in all the scenarios. The aforementioned method is then used to evaluate the quality of a selected feature subset. The optimal adaptation for a multi-label feature selection criterion is discussed and two distributed feature selection methods for multi-label problems are proposed: a method that selects the feature subset that maximizes the Euclidean norm of the individual information measures, and a method selects the subset of features that maximize the geometrical mean. The results indicate that each method excels in di_erent scenarios depending on type of features and the number of labels. Rigorous experimental studies and statistical analyses over many multi-label metrics and datasets con_rm that the proposals achieve better performances and provide better scalability to bigger data than the methods compared in the state of the art.Esta Tesis Doctoral propone unos algoritmos de clasificación y selección de atributos para aprendizaje multi-etiqueta distribuidos implementados en Apache Spark. Cinco estrategias para determinar la arquitectura óptima para acelerar el aprendizaje multi-etiqueta son presentadas. Estas estrategias varían desde la paralelización local utilizando hilos hasta la distribución de la computación utilizando espacios de memoria compartidos o independientes. Ha sido demostrado que la estrategia óptima permite ejecutar cientos de veces más rápido que el método de referencia. Se proponen tres métodos distribuidos de \k nearest neighbors" multi-etiqueta sobre la arquitectura de Spark seleccionada: un método exacto que computa iterativamente las distancias, un método aproximado que usa un árbol para indexar las instancias, y un método aproximado que utiliza tablas hash para indexar las instancias. Los resultados indican que las predicciones del método basado en árboles son equivalente a aquellas producidas por un método exacto a la vez que reduce los tiempos de ejecución en todos los escenarios. Dicho método es utilizado para evaluar la calidad de un subconjunto de atributos. Se discute el criterio para seleccionar atributos en problemas multi-etiqueta, proponiendo: un método que selecciona el subconjunto de atributos cuyas medidas de información individuales poseen la mayor norma Euclídea, y un método que selecciona el subconjunto de atributos con la mayor media geométrica. Los resultados indican que cada método destaca en escenarios diferentes dependiendo del tipo de atributos y el número de etiquetas. Los estudios experimentales y análisis estadísticos utilizando múltiples métricas y datos multi-etiqueta confirman que nuestras propuestas alcanzan un mejor rendimiento y proporcionan una mejor escalabilidad para datos de gran tamaño respecto a los métodos de referencia

    Graph Analysis and Applications in Clustering and Content-based Image Retrieval

    Get PDF
    About 300 years ago, when studying Seven Bridges of Königsberg problem - a famous problem concerning paths on graphs - the great mathematician Leonhard Euler said, “This question is very banal, but seems to me worthy of attention”. Since then, graph theory and graph analysis have not only become one of the most important branches of mathematics, but have also found an enormous range of important applications in many other areas. A graph is a mathematical model that abstracts entities and the relationships between them as nodes and edges. Many types of interactions between the entities can be modeled by graphs, for example, social interactions between people, the communications between the entities in computer networks and relations between biological species. Although not appearing to be a graph, many other types of data can be converted into graphs by cer- tain operations, for example, the k-nearest neighborhood graph built from pixels in an image. Cluster structure is a common phenomenon in many real-world graphs, for example, social networks. Finding the clusters in a large graph is important to understand the underlying relationships between the nodes. Graph clustering is a technique that partitions nodes into clus- ters such that connections among nodes in a cluster are dense and connections between nodes in different clusters are sparse. Various approaches have been proposed to solve graph clustering problems. A common approach is to optimize a predefined clustering metric using different optimization methods. However, most of these optimization problems are NP-hard due to the discrete set-up of the hard-clustering. These optimization problems can be relaxed, and a sub-optimal solu- tion can be found. A different approach is to apply data clustering algorithms in solving graph clustering problems. With this approach, one must first find appropriate features for each node that represent the local structure of the graph. Limited Random Walk algorithm uses the random walk procedure to explore the graph and extracts ef- ficient features for the nodes. It incorporates the embarrassing parallel paradigm, thus, it can process large graph data efficiently using mod- ern high-performance computing facilities. This thesis gives the details of this algorithm and analyzes the stability issues of the algorithm. Based on the study of the cluster structures in a graph, we define the authenticity score of an edge as the difference between the actual and the expected number of edges that connect the two groups of the neighboring nodes of the two end nodes. Authenticity score can be used in many important applications, such as graph clustering, outlier detection, and graph data preprocessing. In particular, a data clus- tering algorithm that uses the authenticity scores on mutual k-nearest neighborhood graph achieves more reliable and superior performance comparing to other popular algorithms. This thesis also theoretically proves that this algorithm can asymptotically find the complete re- covery of the ground truth of the graphs that were generated by a stochastic r-block model. Content-based image retrieval (CBIR) is an important application in computer vision, media information retrieval, and data mining. Given a query image, a CBIR system ranks the images in a large image database by their “similarities” to the query image. However, because of the ambiguities of the definition of the “similarity”, it is very diffi- cult for a CBIR system to select the optimal feature set and ranking algorithm to satisfy the purpose of the query. Graph technologies have been used to improve the performance of CBIR systems in var- ious ways. In this thesis, a novel method is proposed to construct a visual-semantic graph—a graph where nodes represent semantic concepts and edges represent visual associations between concepts. The constructed visual-semantic graph not only helps the user to locate the target images quickly but also helps answer the questions related to the query image. Experiments show that the efforts of locating the target image are reduced by 25% with the help of visual-semantic graphs. Graph analysis will continue to play an important role in future data analysis. In particular, the visual-semantic graph that captures important and interesting visual associations between the concepts is worthyof further attention
    corecore