. mathematics

Article

ML-k’sNN: Label Dependent k Values for Multi-Label
k-Nearest Neighbor Rule

José M. Cuevas-Muiioz ' and Nicolés E. Garcia-Pedrajas *

check for
updates

Citation: Cuevas-Muiioz, ].M.;
Garcia-Pedrajas, N.E. ML-k’sNN:
Label Dependent k Values for
Multi-Label k-Nearest Neighbor Rule.
Mathematics 2023, 11, 275. https://
doi.org/10.3390/math11020275

Academic Editors: Xibei Yang, José

Antonio Sanz and Liangxiao Jiang

Received: 17 October 2022
Revised: 6 December 2022
Accepted: 26 December 2022
Published: 5 January 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

t

Department of Computing and Numerical Analysis, University of Cérdoba, 14071 Cérdoba, Spain
* Correspondence: npedrajas@uco.es; Tel.: +034-957211032
t These authors contributed equally to this work.

Abstract: Multi-label classification as a data mining task has recently attracted increasing interest
from researchers. Many current data mining applications address problems with instances that
belong to more than one category. These problems require the development of new, efficient methods.
Multi-label k-nearest neighbors rule, ML-kNN, is among the best-performing methods for multi-label
problems. Current methods use a unique k value for all labels, as in the single-label method. However,
the distributions of the labels are frequently very different. In such scenarios, a unique k value for
the labels might be suboptimal. In this paper, we propose a novel approach in which each label is
predicted with a different value of k. Obtaining the best k for each label is stated as an optimization
problem. Three different algorithms are proposed for this task, depending on which multi-label
metric is the target of our optimization process. In a large set of 40 real-world multi-label problems,
our approach improves the results of two different tested ML-kNN implementations.

Keywords: multi-label learning; instance selection; instance-based learning

MSC: 68T05

1. Introduction

Many modern applications involve vast amounts of data that need to be classified into
increasingly complex categorization schemes in which one data instance may simultane-
ously belong to several topics. This task is typically termed multi-label learning [1,2]. In
contrast with single label classification, where each instance is associated with only one
class, multi-label classification is concerned with learning from instances in which each
instance can be associated with multiple labels. Many multi-label learning algorithms have
been developed and applied to diverse problems: text categorization [3,4], the automatic
annotation of multimedia contents [5], web mining [6], rule mining [7], cheminformatics [8],
bioinformatics [9], information retrieval [10] and scientific applications [11] among others.

Examples of multi-label problems appear in almost any application field. For instance,
in extracting the aspects of restaurant reviews from social network comments. In this
context, the author of the text may mention none or all aspects of a preset list, such
as, service, food, anecdotes, price, and ambiance. When classifying text by the topics
included any text can contain one or several topics. In predicting subcellular localization of
proteins [12] each protein can be localized in more than one part of the cell. In sentiment
analysis a text can be classified as containing more than one sentiment at the same time [13].

The key challenge of multi-label learning is taking advantage of the correlations among
labels to address the exponential growth of the label space as the number of distinct labels
increases; when the number of distinct labels is g, the label space is 29. One of the best-
performing methods in multi-label learning is the adaptation of the k-nearest neighbors for
multi-label datasets, the Multi-Label k-Nearest Neighbors (ML-kNN) [14] method. There
are other adaptations of k-NN based on a binary relevant approach where the base classifier

Mathematics 2023, 11, 275. https:/ /doi.org/10.3390/math11020275

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math11020275
https://doi.org/10.3390/math11020275
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4488-6849
https://doi.org/10.3390/math11020275
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11020275?type=check_update&version=1

Mathematics 2023, 11, 275

2 of 24

is a k-NN rule [15]. Any advance in the ML-kNN method is relevant as it is able to achieve
very good performance, improving the results of much more complex algorithms [16].

ML-kNN uses the k nearest neighbors of every instance to predict the a posteriori
probability of each label. However, the distribution of the labels across a particular dataset
are very different for each label [17]. The algorithm is less accurate when the number of
labels in the training set is not balanced and when the training instances are unevenly
distributed in space [18]. In those cases, using the same value of k for all labels might be a
suboptimal approach. The multi-label nature of ML-kNN does not depend on using the
same k for all labels, so we propose the use of a different k for each label. We name this
method “Multi-Label k’s-Nearest Neighbors” (ML-k’sNN).

In ML-k’sNN, instead of using a single k value for all labels, we use a vector
k = (kq,kz, ..., k). A method for obtaining k must be devised to derive a useful approach.
We state the problem as an optimization task and propose three different algorithms. The
contribution of our paper is two-fold. Firstly, we have devised a new definition of ML-kNN
adapted to the use of different values of k depending on each label. Secondly, we have
developed a method for obtaining the optimal value of each k for every label. In a large set
of 40 problems, we compare our method with two different implementations of standard
ML-kNN and achieve a significant improvement. A further experiment is carried out
to compare our proposal with ten different variants of ML-kNN. We have also carried
out different studies on the behavior of our proposal depending on characteristics of the
datasets such as number of features, number of labels and label diversity.

Furthermore, we have combined ML-k’sNN with instance selection and showed how
our proposal is able to achieve better results than standard ML-kNN with a reduction
ability above 95%. Finally, we have also shown the ability of our method to be adapted to
other instance-based multi-label methods, such as LAML-kNN, with very good results.

The remainder of this paper is organized as follows: Section 2 describes the existing
related work; Section 3 describes our proposal in depth; Section 4 explains the experimental
setup; Section 5 presents and discusses the experimental results and, finally, Section 6
summarizes the conclusions of our work.

2. Related Work

Since ML-kNN was first developed [14], several modifications and improvements have
been proposed. Xu [19] proposed and adaptive method based on quadratic programming
to weight the votes of the different neighbors. Wang et al. [20] proposed a locally adaptive
multi-label k-nearest neighbor (LAML-kNN) method where the instances are first clustered
into different groups and then each cluster is separately processed to obtain the a posteriori
probabilities. Jiang et al. [18] developed a weighted modification of ML-kNN where
different weights are assigned to each label according to the proportion of labels and
the mutual information regarding the spatial distribution of unseen instances to training
instances. The author states that this method can reduce the probability of misjudging the
unseen instance’s label set. This method can easily adapted to our proposal using a different
value of k for each label together with the corresponding label weight. Wang et al. [21]
proposed a multi-label classification algorithm based on k-nearest neighbors and random
walk. This method constructs the set of vertices from a random walk graph for k-nearest
neighbor training of samples of certain test data and the edge set of correlations among
the labels of the training samples. Although this method can also be adapted to our
philosophy its computational cost would be too high as the original method has serious
scalability problems.

Other methods have been developed to improve ML-kNN. Younes et al. [22] proposed
a dependent multi-label k-nearest neighbors (DMLk-NN) algorithm to take label association
into account. While predicting the relevance of a label A; for x;, along with the label A;,
DML-KNN utilises all the other labels A; € £ — {A;} of the datapoints in the neighbor of
the new datapoint x;. As for the previous two methods, DML-kNN can be adapted to use



Mathematics 2023, 11, 275

3 0f24

label dependent k values with almost no modifications. Pakrashi and Mac Namee [23]
proposed Stacked-MLKNN, which follows the stacking methodology [24].

Using a fuzzy approach, Lin and Chen [25] developed Mr.KNN (Soft Relevance
for Multi-label Classification) which combines a fuzzy c-means algorithm with a voting
mechanism based on the k-nearest neighbors of every sample. The method voting stage
can also be adapted to our label dependent approach. Vluymans et al. [26] developed a
fuzzy rough multi-label classifier, FRONEC (fuzzy rough neighborhood consensus).

On a different task, the concept of label specificity has been also applied for feature
selection for multi-label datasets. Hang and Zhang [27] developed a method called Col-
laborative Learning of label semantlcs and deep label-specific Features (CLIF) for multi-label
classification.

As showed above, one of the advantages of our proposal is that, as it modifies the basic
definition of the standard ML-kNN method, it can be applied to any other implementation
of the method, such as those cited above. In the experiments, we will compare standard
ML-kNN and LAML-kNN. Although it could applied to other MI-kNN methods we restrict
ourselves to two implementations to avoid too repetitive experiments.

3. Multi-Label k’s-Nearest Neighbors (ML-k’sNN)

Formally, we define a multi-label problem as follows [2]: Let T be a multi-label
evaluation dataset consisting of p multi-label instances x; and their associated label set
yi, where T = {(x;,y;)},1 <i<p, (x; € X,y; € Y = {0,1}7) with a label set L, where
|L| = g. Let h be a multi-label classifier and h(x;) = {0,1}7 be the set of labels predicted by
h for the instance x;. Let f(x;, ), x; € X, y; € Y be a real-valued function f : X x J — R.
A successful learning system would tend to output larger values from function f for the
labels in y; versus those not in y;. The real-valued function f can be easily transformed to
a ranking function, rank(x;,y;), where rank; is the predicted rank of label y; for instance
x;. For example, if f represents the probability of every instance of being relevant, which
is the case for many multi-label classifiers, rank(x;,y;) can be obtained assigning to y; its
position within the sorted values of f. h(x;) can be obtained from f(x;) when an appropriate
threshold is set.

As an example if we have a problem with g = 5, and instance x, y is composed for a
sample x of a certain dimension d, x € R? and y = {0,1}°). y = (01100) means that labels
2 and 3 are relevant for instance x and labels 1, 4 and 5 are not relevant.

Our method is based on two different ideas. First, we modify ML-kNN to use a
different k; value for the prediction of I-th label. We must mention that the use of multiple
values for the number of neighbors k, one per label, does not modify the computational
cost of the method at testing stage as both methods, ML-kNN and ML-k’sNN, must obtain
the distance of the query instance to all the prototypes. The second idea describes a way
to obtain the k; values for each label I € ). The first idea is rather straightforward, the
modification affects only the number of neighbors considered when obtaining the different
probabilities for each label. Algorithm 1 depicts the proposed approach. Thus, once the
vector of k values is obtained, the algorithm is similar to ML-kNN. We termed our method
Multi-Label k’s-Nearest Neighbors (ML-k’sNN) as it uses a variety of k values instead of
just one. In this way, we will never have a ML-4’sNN in the same sense that a ML-4NN, as
the number of different k’s will depend on the number of labels.

As in the standard ML-kNN algorithm, P(H!}) (P(HL)) is the prior probability of label

I being relevant (irrelevant) and P (E]l |H{) (P(E ]l | Hé)) is the posterior probability of label I
being relevant (irrelevant), N j(xi) is the set of neighbors of x; for label ;.



Mathematics 2023, 11, 275 4 of 24
Algorithm 1: ML-k’sNN: Multi-label k’s nearest neighbors algorithm.
Data: A training set T = {(x;,y;)},1 <i<p, (xi € X,yi € Y ={0,1}7),k, t,s
Result: [y;, r¢]
/* Computing prior probabilities */
forl ) do
(1 P(H) = (s + Ty yx (1) / (x x 2+ m)
[2] p(Hé) =1-P(H))
end
/* Computing posterior probabilities */
[3] Identify Nj(x;),j € {1,2,...q},i € {1,2,...,m}
forl € Y do
forj e {0,1,...,k} do
[4] ‘ cjl=c[j]=0
end
forie {1,2,...,m} do
[5] o= Cxi (l) = ZaeNl(xi) Ya (l)
if yx; == I then
[61 | cld] =c[o]+1
else
[71 | ] =c6]+1
end
end
forjc {0,1,...,k} do
(8] P(ENH]) = (s +c[j])/ (s x (ki +1) + Ehyclp])
[91 P(E;\Hé):(s—&-c’[j]) s><(k1+1)+):p o C'[p)
end
end
/* Computing i and 1y */
[10] Identify N;(t),j € {1,2,...q}
forl € Y do
[ | Cl) = Tuenyy %)
[12] yi(l) = argmaXpe{o,1} P(H )P (Eizt(l)‘Hll;)

(181 | (1) = P(H|EL ) = (P(H})P(EL, ) |HL))/P(EL ) =
(

PUHP(EL 1 IH))/P(Eb )/ (peton) PUHL)P(EL ) D)
end
[14] Return [y, 1¢]

Once we have defined the new algorithm, we must establish how k is obtained. In
the standard ML-kNN, k is either arbitrarily fixed or obtained using cross-validation. It is
evident that letting the expert to fix an a priori value of k = (ky,k, ..., kq) for every label is
unreasonable as there is not way of knowing optimal values for every label. Thus, we must
design a method that establishes the best values for k;,i € {1,...,q}. We define this task as
an optimization problem.

This optimization problem is defined in the following way: first, we set an interval
from which the values of k will be chosen [kmin, kmax|- Then, a certain metric, m (for multi-
label performance metrics refer to Zhang and Zhou [2]), is chosen to evaluate each vector of
k’s. Our algorithm must optimize m over all the possible values of k. As a base algorithm,
we first define a single-label approach to the problem. In this algorithm, we obtain k; as
the optimum value for a standard single-label k-NN algorithm used to classify only label
Y;. This single-label approach is named ML-k’sNN.SL (shown in Algorithm 2). However,
we must bear in mind that this algorithm does not optimize the value of metric m, as it is
based on a single-label approach.

Algorithm 2: ML-k’sNN.SL: Multi-label k’s nearest neighbors algorithm single-
label approach.

Data: A training set T = {(x;,v;)},1 <i<p, (xi € X,yi € Y ={0,1}9), t, 5, [kmin, kmax]
Result: k
for!/ € Y do
fork € [kmmr km/zx] do
[1] Evaluate single-label classification metric for label / using single-label <-NN
if Performance is best then
[2] | k=k
end

end
end
[3] Returnk




Mathematics 2023, 11, 275

50f24

Thus, we must devise a multi-label approach. However, when the optimization
problem is addressed as a multi-label problem, the method for obtaining the vector of ks
depends on the metric. For multi-label classification metrics, the prediction of whether a
certain label Y; is relevant to a given instance depends only on the value of k;. Thus, we
can optimize the value of every k; independently and that guarantees the optimal value.
However, for label ranking, the position of a label y; for an instance x; depends on all the
values of r;. In that case, we cannot obtain optimal values of k by independently searching
over each label.

When we plan as optimization target a classification metric we must bear in mind is
that for every instance x;, we will use the classification given by y; as defined in Algorithm 1.
The result of the testing stage of the algorithm is the prediction of relevant and irrelevant
labels for a test label x;, y;, and the ranking function for the query instance, h;, as defined
above. This algorithm shows that y;(I) depends only on k; to predict whether label !
is relevant, while y;(I) = argmaxycg1} P(Hé)P(Ele(l) |H!) does not depend on k;. This
observation means that any classification metric used for multi-label problems can be
optimized by obtaining the optimal value for every k; independently. Thus, a simple way
to optimize the given metric is to carry out a search for every k; separately. This method is
fast and has the additional advantage of easy parallelization. The method is outlined in
Algorithm 3. This method is named ML-k’sNN.ML, where ML stands for multi-label. This
additional calculation of the optimal k for every label has a computational cost comparable
with obtaining the optimal k for standard ML-kNN using cross-validation.

Algorithm 3: ML-k’'sNN.ML: Multi-label k’s nearest neighbors algorithm multi-
label approach.

Data: A training set T = {(x;,v:)},1 <i<p, (xi € X,yi € Y ={0,1}9),t, 5, [kmin, kmax]
Result: k
forl € Y do
fork € [kmmr km/zx] do
[1] Evaluate performance metric for label / using k
if Performance is best then
[2] | k=k
end

end
end
[3] Returnk

In several cases the performance of different values for k achieves the same value for
the metric used. In such cases, we select, from among the equally best k’s, the nearest one
to the best value for ML-kNN, obtained by 10-fold cross-validation.

However, if our optimization target is, or contains, a ranking metric, this procedure
cannot be used. Although the prediction of every label is independent from the prediction
of the rest of the labels in ML-kNN, the ranking of the labels does depend on all the obtained
values. In such a case, an independent search for each k; cannot be performed. We must
search for the optimal vector of k values k. In this case, we must optimize metric m for all
possible vectors of k’s, k, with k; € {kmin, kmax }. Due to the size of the search space, an
exhaustive search such as the one used in ML-k’sNN.ML is not feasible.

In such complex optimization processes, evolutionary computation has proven to be
a very efficient tool. We propose a simple evolutionary algorithm where each solution is
codified as a vector of integer values. The fitness of every individual is obtained using
the method shown in Algorithm 1. New individuals were generated using BLX-« [28]
crossover and no mutation was applied. We intentionally use a very simple evolutionary
method to avoid obscuring the results of our approach with the use of a very complex opti-
mization process. This method is named ML-k’sNN.EC, where EC stands for evolutionary
computation.

4. Experimental Setup

To produce a fair comparison between the standard ML-kNN algorithm and our
proposal, we considered 40 datasets whose characteristics are shown in Table 1. These



Mathematics 2023, 11, 275

6 of 24

datasets represent a varied number of problems with different numbers of instances,
features and labels. Furthermore, the label densities among the datasets are very different.
The selection of the datasets was carried out with the aim of using a wide variety of
problems in terms of instances, features, number of labels, label density and label cardinality.
Datasets from different application fields were selected as well, such as text categorization,
image classification and Bioinformatics.

Table 1. Description of the datasets.

Dataset Instances Features Labels Cardinality Density Diversity Proportion of Distinct Labels MeanIR CVIR Source

1 bibtex 7395 1836 159 2.40 0.0151 1654 0.2237 12.50  0.4051 [29]

2 birds 645 271 19 1.86 0.0981 132 0.3761 5.41 0.8169  [29]

3 CAL500 502 68 174 26.04 0.1497 495 0.9861 20.58  1.0871 [29]

4 corel16k005 13,847 500 160 2.86 0.0179 1784 0.1288 3494 07282  [29]

5 Corel5k 5000 499 373 3.52 0.0094 1453 0.2906 189.57  1.5266  [29]

6 enron 1702 1001 53 3.38 0.0637 753 0.4424 7395 1959  [29]

7  EukaryoteGO 7766 12,689 22 1.15 0.0521 112 0.0144 45.01 14070  [30]

8 EukaryotePseAAC 7766 440 22 1.15 0.0521 112 0.0144 45.01 14070  [30]

9 genbase 662 1185 27 125 0.0464 32 0.0483 37.31 14494  [29]
10 HumanGO 3106 9844 14 1.19 0.0847 85 0.0274 1529  1.0850  [30]
11 HumanPseAAC 3106 440 14 1.19 0.0847 85 0.0274 1529  1.0850  [30]
12 LLOG-F 1460 1003 75 1.38 0.0183 278 0.2219 3927 13106  [31]
13 medical 978 1449 45 1.25 0.0277 94 0.0961 89.50  1.1476  [31]
14 OHSUMED-F 13,929 1002 23 1.66 0.0723 1147 0.0823 7.87 0.8920  [31]
15 rcvlsubsetl 6000 47,236 101 2.88 0.0285 837 0.1395 5449 20806  [29]
16  rcvlsubset2 6000 47,236 101 2.63 0.0261 800 0.1333 45.51 17148 [29]
17 rcvlsubset3 6000 47,236 101 2.61 0.0259 783 0.1305 68.33 29901 [29]
18 rcvlsubset4 6000 47,236 101 248 0.0246 698 0.1163 89.37 23336  [29]
19  rcvlsubset5 6000 47,236 101 2.64 0.0262 782 0.1303 69.68 26979  [29]
20 REUTERS-K500-EX2 6000 500 103 1.46 0.0142 618 0.1030 5198 19707  [31]
21 SLASHDOT-F 3782 1079 22 1.18 0.0537 156 0.0412 17.69 24155  [31]
22 Stackex_chemistry 6861 540 175 2.11 0.0121 1452 0.2088 56.88  0.8964  [32]
23 Stackex_chess 1675 585 227 242 0.0106 508 0.3038 8579  0.8167  [32]
24 Stackex_coffee 225 1763 123 1.99 0.0162 149 0.6622 2724 05715  [32]
25 Stackex_cooking 10,491 577 400 2.25 0.0056 1712 0.1653 3786  0.6513  [32]
26  Stackex_cs 9270 635 274 2.57 0.0094 1489 0.1613 85.00  0.7596  [32]
27  Stackex_philosophy 3971 842 233 2.28 0.0098 1072 0.2708 68.75 07989  [32]
28 Water-quality 1060 16 14 5.10 0.3644 824 0.7818 1.77 03016  [33]
29  Yahoo_Arts 7484 23,146 26 1.65 0.0636 599 0.0800 94.74  3.8059  [29]
30 Yahoo_Business 11,214 21,924 30 1.60 0.0533 233 0.0208 880.18 28112  [29]
31 Yahoo_Computers 12,444 34,096 33 151 0.0457 428 0.0344 176.70  1.9062  [29]
32 Yahoo_Education 12,030 27,534 33 1.46 0.0443 511 0.0425 168.11  1.7756  [29]
33 Yahoo_Entertainment 12,730 32,001 21 1.41 0.0673 337 0.0265 6442 15398  [29]
34  Yahoo_Health 9205 30,605 32 1.64 0.0514 335 0.0364 65353 19399  [29]
35 Yahoo_Recreation 12,828 30,324 22 143 0.0650 530 0.0413 1220 1.3899  [29]
36 Yahoo_Reference 8027 39,679 33 117 0.0356 275 0.0343 461.86  2.0073  [29]
37 Yahoo_Science 6428 37,187 40 145 0.0362 457 0.0711 52.63  1.6349  [29]
38  Yahoo_Social 12,111 52,350 39 1.28 0.0328 361 0.0298 257.70  2.3431 [29]
39  Yahoo_Society 14,512 31,802 27 1.67 0.0619 1054 0.0726 30207 45633  [29]
40 yeast 2417 103 14 4.24 0.3026 198 0.0819 7.20 1.8838  [29]

The tables shows a detailed description of the characteristics of the datasets. The tables
shows the number of instances of the datasets, the number of inputs, the number of labels,
the label cardinality, the label density, the label diversity, the proportion of distinct labels,
and MeanIR and CVIR measures [2,17]. The table also show the source of every dataset.

Regarding comparisons, we used the Wilcoxon test [34] as the main statistical test
for comparing pairs of algorithms. For groups of methods, we first carry out an Iman-
Davenport test to ascertain whether there are significant differences among methods. When
the Iman-Davenport test rejects the null hypothesis, we can proceed with a post hoc
Nemenyi test [35], which compares groups of methods.

Although there are several versions of ML-kNN [15,18,20], our proposal can be used to
modify most of them. In our experiments, we used the original ML-kNN, and LAML-kNN.
The source code, which was written in C and licensed under the GNU General Public
License, and the datasets are freely available upon request from the authors.

For evaluating the classification performance of the different methods we used 10-fold
cross-validation which is one of the most common methods in Machine Learning. k-fold
cross-validation involves randomly dividing the set of observations into k groups, or folds,



Mathematics 2023, 11, 275

7 of 24

of approximately equal size. The first fold is treated as a validation set, and the method is
fit on the remaining k — 1 folds [36]. This process is repeated for each one of the k folds and
the performance metrics reported are the average values over the k repetitions.

The evaluation of multi-label classification methods is more difficult because the
prediction result for an instance is a set of labels, and the result can be fully correct, partially
correct (with different levels of correctness) or fully incorrect [37-39]. The metrics can be
divided into two major groups: example-based (EB) metrics and label-based (LB) metrics. The
former group evaluates the learning system for each instance (example) separately and
then obtains a unique measure for the average value across the test set.

There are many metrics defined in the literature [2]. Among them, we have chosen
accuracy and F1 metrics to compare the results of the studied methods. The precision and
recall metrics are not usually reported individually because each can always be maximized
by selecting no relevant label or all labels as relevant. These two metrics are devoted to clas-
sification. We also consider three metrics used for measuring the ability of a classifier from
the point of view of ranking the labels: coverage, ranking loss and average precision [2].
Finally, for label-based metric we report F1 micro averaged and F1 and macro averaged.

In the experiments, we show the results of using all of these metrics as well as the
results of using a subset of them in certain cases. The use of different metrics is justified
because they represent the performance of the models from different points of view.

5. Experimental Results

The first set of experiments was devoted to the comparison of ML-k’sNN and LAML-
k’sNN against ML-kNN and LAML-kNN. As we stated in a previous section, we carry out
a different procedure depending on whether the target metric is a classification metric or a
ranking metric. The first set of experiments was carried out using classification metrics.
As described above, we used accuracy, F1, the macro-averaged F1 and micro-averaged F1.
Tables 2-5 show the comparison among the different methods in terms of the Wilcoxon test.
The tables show, for every experiment, the average value of the performance metric (row
Mean in the table), the average Friedman'’s rank (row Rank), the win/loss record of the
method in the column against the method in the row (row w /1), the p-value of the Wilcoxon
test (row p) and the R /R~ values of the Wilcoxon test (row R /R™). The average rank

defined above is R; = % Y rﬁ the average rank for N datasets being rf the rank of j-th
algorithm on i-th dataset, where in case of ties, average ranks are assigned.

Individual results for each dataset are shown in Figure 1. This figure represents the
results for every datasets of ML-kNN and ML-k’sNN. Points above the main diagonal
correspond to problems where our method outperformed ML-kNN. It can be seen in the
figure that almost all points indicate a better performance of ML-k’sNN. Figure 2 shows
the Nemenyi test for those same metrics using a graph representation [34]. In this plot, we
show the critical difference, CD. Then we show for every algorithm its average rank, R;.
Two algorithms i and j can be considered significantly different if [R; — R;| > CD. In order
to show that information, a horizontal line connects all groups of algorithms that do not
fulfill that condition and should be considered as performing equally. Iman-Davenport
tests for all four metrics obtained a p-value of 0.0000.



Mathematics 2023, 11, 275

8 of 24

0.8 -

0.6 -

MLk'sNN

0.6
ML-kNN

0.8

Accuracy
F1
F1-macro

Fl-micro
i

1.0

Figure 1. Results of ML-kNN and ML-k’sNN for the four metrics: accuracy, F1, Fl-macro and

Fl-micro.

Table 2. Comparison of the different methods using accuracy metric.

ML-kNN ML-k’'sNN.SL ML-k’'sNN.ML LAML-kNN

LAML-k’sNN.ML

Mean 0.3440 0.3544 0.3606 0.3314 0.3617
Ranks 3.7500 2.8375 2.0500 4.1000 2.2625
w/l 26/14 35/3 12/18 31/9
ML-kNN p 0.0155 0.0000 0.1231 0.0000
RY/R™ 590.0/230.0 772.5/47.5 295.5/524.5 720.0/100.0
w/l 25/14 10/30 24/16
ML-k'sNN.SL  p 0.1053 0.0006 0.1039
RY/R™ 530.5/289.5 153.0/667.0 531.0/289.0
w/l 6/34 17/22
ML-k'sNN.ML p 0.0000 0.4476
Rt /R~ 103.0/717.0 353.5/466.5
w/l 37/3
LAML-kNN [4 0.0000
RT/R™ 756.0/64.0

The first metric studied was accuracy. Table 2 shows the comparison using the
Wilcoxon test for the five studied methods and Figure 2a illustrates the Nemenyi test.
The first piece of information we obtain from the Figure is that the methods are sorted
from best (left hand side of the figure) to worst (right hand side) according to average



Mathematics 2023, 11, 275

9 of 24

ranks. This average rank is by itself a good indicator of the performance of any model. The
second piece of information is given by the critical difference (CD = 0.964). If two methods’
ranks differ more than 0.964 then Nemenyi test result tells us that there are significant
differences in their performance. That is the reason why the methods whose ranks are
below that difference are linked with a horizontal line. Thus, according to the Nemenyi
test, the single-label ML-k’sNN approach was able to significantly improve standard ML-
KkNN. Although it achieved a better average rank, the Nemenyi test did not find significant
differences. However, the Wilcoxon test found significant differences between ML-kNN
and ML-k’sNN.SL. A further study of the results showed that this approach tended to
exhibit over-learning. It was the best method in terms of training performance, but its
performance was worse in terms of testing accuracy. This behavior of ML-k’sNN.SL was
reproduced for all the remaining metrics. ML-k’sNN.ML demonstrated better performance
than ML-kNN, according to both tests. This method had a clear advantage over the stan-
dard approach, improving the results of ML-kNN for 35 of the 40 datasets. ML-k’sNN.ML
and LAML-k’sNN.ML improved the two studied versions of ML-kNN.

Table 3. Comparison of the different methods using F1 metric.

ML-kNN ML-k’sNN.SL ML-k’'sNN.ML LAML-kNN LAML-k’'sNN.ML

Mean 0.4205 0.4339 0.4417 0.4068 0.4426
Ranks 3.7125 2.9500 2.0750 4.0750 2.1875
w/l 23/17 35/3 12/19 33/7
ML-kNN 4 0.0438 0.0000 0.0388 0.0000
RT/R™ 560.0/260.0 786.5/33.5 256.5/563.5 751.0/69.0
w/l 26/14 11/29 24/16
ML-k'sNN.SL  p 0.0783 0.0003 0.0760
RT /R~ 541.0/279.0 138.0/682.0 542.0/278.0
w/1 4/35 19/18
ML-k'sNN.ML p 0.0000 0.9250
RT/R~ 67.5/752.5 403.0/417.0
w/l 35/5
LAML-kNN 14 0.0000
RY/R™ 788.0/32.0

Table 3 shows the comparison for F1 metric. For this metric, our proposed method
obtained very good results. The two studied versions of ML-k’sNN based on the multi-
label approach outperformed both versions of ML-kNN. The differences are significant in
all cases and for both tests, Wilcoxon and Nemenyi. ML-k’sNN.SL improved the results
of ML-kNN according to the Wilcoxon test, although the Nemenyi test failed to find
significant differences. The improvement of LAML-k’sNN.ML with respect to LAML-kNN
is remarkable.

We also carried out experiments for macro- and micro-averaged versions of the F1
metric. The results of the comparisons are shown in Tables 4 and 5, respectively. Iman-—
Davenport tests for all three metrics obtained a p-value of 0.000. For these two metrics,
ML-k’sNN.ML and LAML-k’sNN.ML improved the results for the standard versions ML-
kNN and LAML-kNN. ML-k’sNN.SL achieved a better average rank than ML-kNN, but
without significant differences, according all the tests.



Mathematics 2023, 11, 275 10 of 24

Table 4. Comparison of the different methods using F1macro metric.

ML-kNN ML-k’'sNN.SL ML-k’'sNN.ML LAML-kNN LAML-k’sNN.ML
Mean 0.2313 0.2305 0.2413 0.2237 0.2387
Ranks 3.6500 3.0750 21125 3.5750 2.5875
w/l 25/15 34/4 17/15 25/15
ML-kNN p 0.6095 0.0000 0.6865 0.0174
R*/R- 448.0/372.0 762.5/57.5  380.0/440.0 587.0/233.0
w/l 28/12 17/23 23/17
ML-K’sNN.SL ~ p 0.0013 0.1923 0.0397
R*/R- 649.0/171.0  313.0/507.0 563.0/257.0
w/l 10/30 16/21
ML-K'sNNML  p 0.0003 0.2422
R*/R- 140.0/680.0 323.0/497.0
w/l 31/9
LAML-kNN  p 0.0001
R*/R- 697.0/123.0

Table 5. Comparison of the different methods using F1 .y, metric.

ML-kNN ML-k’sNN.SL ML-k'sNN.ML LAML-kNN LAML-k’sNN.ML

Mean 0.4126 0.4173 0.4300 0.4038 0.4258
Ranks 3.5875 3.0750 2.0750 3.9500 2.3125
w/l 23/17 35/3 8/19 30/10
ML-kNN [4 0.3332 0.0000 0.0230 0.0003
RT/R™ 482.0/338.0 779.5/40.5 241.5/578.5 681.0/139.0
w/l 24/16 16/24 26/14
ML-K'sNNSL  p 0.0078 0.0139 0.0397
RY/R~ 608.0/212.0 227.0/593.0 563.0/257.0
w/l 5/34 17/22
ML-k'sNN.ML p 0.0000 0.2290
R*/R™ 48.5/771.5 320.5/499.5
w/l 34/6
LAML-kNN [4 0.0000
RT/R™ 756.0/64.0
I CD (0.964) |
5% 45 l%O 35 3.0 25 20
LAMLKNN (4.100) | L) 2
[ 67 | [ S
MLK'SNN.SL (2.837)
(a) Accuracy
| CD (0964) |
Sl) 45 |4.() 35 3.0 25
TAMLKNN (4.075)
MLKNN (3.712) |
MLK'SNNSL (2.950)
(b) F1
| CD (0964) |
4% 35 32 ! 3.0 28 25 22 20
LAML kM\ (3 575) LAML-K'sNN.ML (2.587)
(C) F 1macro

Figure 2. Cont.



Mathematics 2023, 11, 275

11 of 24

| CD (0.964) |
1% 38 35 32 l 3.0 28 25 22 20
TAMLENN (5,950; _ ‘ — ‘ ‘ ‘ ‘ 4—‘=
T e [ELRITNEL)

(d) Flmicro

Figure 2. Nemenyi test for the different methods and the different classification metrics.

Our second set of experiments was devoted to ranking metrics. The results for the
tests are shown in Tables 6-8 for average precision, ranking loss and coverage, respectively.
Figure 3 illustrates the results for ML-kNN and ML-k’sNN for the same three metrics. To
obtain a homogeneous plot, ranking loss is represented as 1-“ranking loss” and coverage
is represented as the relative coverage with respect to the optimal value. In that way;, all
the points above the main diagonal demonstrate the superior performance of our proposal.
Nemenyi test results are shown in Figure 4.

0.8 -

0.6 -

MLk'sNN

04 -

0.0 - ®  Ranking-loss

@  Average precision
®  Coverage

0.0 02 04 0.6 08 10
ML-kKNN

Figure 3. Results for ML-kNN and ML-k’sNN for the three metrics: average precision, coverage, and
ranking-loss.

As explained above, an evolutionary computation method was used to obtain the
optimal k values when the ranking metrics needed to be optimized. The single-label version
of our method, ML-k’sNN.SL, demonstrated poor performance for the three ranking
metrics. This was not an unexpected result, as this method does not consider any kind



Mathematics 2023, 11, 275

12 of 24

of multi-label information. On the other hand, ML-k’sNN.EC achieved remarkably good
performance. For all three metrics, it improved the results of the standard version, according
to both the Wilcoxon and Nemenyi tests. LAML-k’sNN.EC improved the results of LAML-
kNN for average precision and coverage. However, ranking loss obtained a worse average

ranking, although the differences were not significant.

Table 6. Comparison of the different methods using average precision metric.

ML-KNN ML-k’'sNN.EC LAML-kNN LAML-k’'sNN.EC ML-k’sNN.SL

Mean 0.5070 0.5341 0.4970 0.5338 0.5014
Ranks 3.2375 1.8750 3.8625 2.3500 3.6750
w/l 32/8 12/19 25/15 16/24
ML-kNN 4 0.0000 0.0837 0.0007 0.3134
R*/R™ 750.0/70.0 281.5/538.5 662.0/158.0 335.0/485.0
w/l 5/35 15/25 7/33
ML-k’sNN.EC [4 0.0000 0.3007 0.0000
RY/R™ 65.0/755.0 333.0/487.0 59.0/761.0
w/l 32/8 24/16
LAML-KkNN P 0.0000 0.2763
RY/R~ 769.0/51.0 491.0/329.0
w/l 6/34
LAML-k'sNN.EC p 0.0000
R*/R™ 61.0/759.0

Table 7. Comparison of the different methods using coverage metric.

ML-kNN ML-k’sNN.EC

LAML-kNN LAML-k’'sNN.EC ML-k’sNN.SL

Mean 29.8870 25.3049 27.3205 27.4480 36.7408
Ranks 3.1000 2.0125 3.5500 2.3875 B
w/l 28/12 8/22 26/14 17/23
ML-kNN 4 0.0008 0.0286 0.0372 0.0294
RT/R~ 659.0/161.0 247.5/572.5 565.0/255.0 248.0/572.0
w/l 9/30 14/26 5/35
ML-k’sNN.EC 4 0.0016 0.2016 0.0000
RT/R~ 175.5/644.5 315.0/505.0 87.0/733.0
w/l 30/9 14/26
LAML-KNN [4 0.0204 0.0061
RT/R~ 582.5/237.5 206.0/614.0
w/l 6/34
LAML-k’'sNN.EC p 0.0000
Rt /R~ 82.0/738.0
Table 8. Comparison of the different methods using ranking loss metric.
ML-KNN ML-k’'sNN.EC LAML-KNN LAML-k’sNN.EC ML-k’sNN.SL
Mean 0.1099 0.0827 0.1095 0.1256 0.1101
Ranks 2.9375 1.8375 3.3250 3.5875 3.3125
w/l 33/7 10/16 14/26 13/26
ML-kNN 4 0.0003 0.3408 0.0983 0.3232
Rt /R~ 676.0/144.0 339.5/480.5 287.0/533.0 336.5/483.5
w/l 7/33 8/31 11/29
ML-k’sNN.EC [4 0.0002 0.0001 0.0050
Rt /R~ 130.0/690.0 111.5/708.5 201.0/619.0
w/l 17/23 19/19
LAML-KkNN 4 0.2369 0.8350
Rt /R~ 322.0/498.0 394.5/425.5
w/l 23/17
LAML-k’'sNN.EC p 0.2264
Rt /R~ 500.0/320.0




Mathematics 2023, 11, 275

13 of 24

| CD (0.964) |

4 35 |5.0 25 20 15 10
TAMLKNN (5.862)I — [ ‘ ‘ _ — : NLKSNNEC (1875)
TAML-K'SNN.EC (2350)

(a) Average precision
I CD (0.964) |

4 38 35 32 ! 30 28 25 22 20
MLKSNNSL (5.950; - ' ™= ' ' ' ' | ' TMLRSNNEC (2013)
|— LAMLK'sNN.EC (2.388)

(b) Coverage

| CD (0964) |

3.0 25 2.0 15 1.0

MLK'SNNEC (1.837)

TAML- kN 337 ML-KNN (2.958)

ML ksNN SL (3.312)

(c) Ranking loss

Figure 4. Nemenyi test for the different methods and the different ranking metrics.

In order to gain a deeper understanding of our proposal, we studied the average
value of the obtained k’s for all the labels. Figure 5a shows this average value when the
datasets are sorted according to the number of features. The average values exhibited
a tendency toward larger values for datasets with less features. It is also interesting to
point out that, although the values for the different labels in ML-k’sNN.ML show a large
variation, the averaged values were very similar to the best value obtained for ML-kNN
through cross-validation, as it shown in the figure. ML-k’sNN.SL obtained systematically
smaller values of k, due to the fact that, for its single-label approach, k = 1 was often the
best value.

Both LAML-kNN and LAML-k’sNN obtained smaller values than ML-kNN and ML-
k’sNN. As the former two methods work with smaller clusters, it is expected that the
optimal k within each cluster would be smaller.

Figure 5b shows the same average value of k when the datasets are sorted according
to the number of labels. Interestingly, ML-kNN and ML-k’sNN.ML obtained larger values
when the number of labels was small or large, and lower values for the datasets with a
medium number of labels.

Another interesting issue is the relative behavior of ML-k’sNN with respect to ML-
kNN, depending on the characteristic of the datasets. This is always a very difficult task, as
most algorithms do not show a clear trend of behavior in regard to particular characteristics
of the datasets. We studied the performance of the standard method and our approach
regarding the diversity of the datasets. Figure 6 shows the difference in performance using
the F1 metric between ML-k’sNN and ML-kNN when the datasets are sorted in terms of
increasing diversity.

The figure displays a tendency of ML-k’sNN to improve its relative performance
when the diversity of the datasets increases. To obtain a clearer idea of the general trend
of the differences, the figure shows a linear regression of the difference in terms of the F1
metric. Thus, linear regression has a clear upward slope. This an interesting property of
our proposal, as datasets with higher diversity are usually more difficult to address. A
similar study that considered the number of labels was carried out (see Figure 7). Again,
our proposed method demonstrated better behavior as the number of labels increased.
These two figures shows that ML-k’sNN is more effective when the multi-label problem is
more difficult, i.e., when there are many labels and many diverse sets of relevant labels.



14 of 24

Mathematics 2023, 11, 275

z 2
zZ22z2Z% -
= w = M m - ol OUEX - Bupjood xprIg
L - QIsqNSTAN = SgpI0)
+ «” ° + 4 - [19sqns A2 -0 xayeIg
- H12SqNSTAdI - fydosopyd "xayprig

- SSIUYD XIP
10 ps =S00%9112100

- Anstwa”xaydeIg

- 2uas9p4 00yEA ~00STVD

- 0UA1GT00YEL ~<00491 2100
- X1q1q
-33}j00 xaPRIg

- s1andwo)~ooyey

- JUDWUIELANUY 00YEY
~A1a08™00yex - TXE00SY- YA
~WIEAH 00UER - pasqnsTA

- UONEAIAY 0OYEX - 18qNSTA

Dataset

n
- uoneNpy00yEx m - C1asqns AN 1”
Sy 00yex. u = F1ISqNST A b
-
- ssauisng—00yex % - GIasqns A1 h
- QDAn0&myng - -4D0TI [m
o
- oouEwNy o ~uomd o
-x1q1q — - [eapawt v
— = v — = b A H-00SN-SYE,
39100 XRIG o Q -30U3PS 00YEY 53 .Nw
g - & 2 e Ly oogrx
- [e2tpaw 3 m - [B1D0S00YEx. 54 u 173}
- asequag Hnu - uoneanpg” 0oyex n .m
- FLOTHSYTS >, - szondwio)~ooyeg .w/. o] ————
-4-00TI QO - 20Ua13joY00YEX - ..m Loocto
-4-QINNISHO ..m ~QIUIH 00yux L v
SsouISn [
~uowd - - ssauisng~ooyex = -
= o X
- fydosopyd "xaxoerg o - f1apog~ooyex [¥)p) =
95 e
-0 xae] - asequag N
s pi N 2 2
- 559y XIS < - suy”ooyex ~ =
= =
~Sunjood xprIg - - AINNSHO °
- Ansiway Xy = OVVasg0AIE Ny r.nM
~€00%91 (2300 - 0D2104mmyny ou.»
- TXH-00SH-SYALOR - #LOAHSYTS = L LOGHSYTS
-¢gpI0) ~UOnEaAY00YEx > RN
- O¥Vasg0dIENg - WDWUIELANUY OOYEL M
- OVyasqUELIE -spaq no.»o =
- OVVasquBwng < %
o B
158k z Z - OoueRWNY =
£225% 2 £ Doviasaany
o 22 =22 nb-1ey A Z
= & ST
SE=53 1584 . =2 N o
BRER ‘v I
P ! v
g 2 2 = B = 5] 2 2 F ] = = z g = g g
A A rm.o 1

Figure 6. Difference in F1 metric between ML-k’sNN.ML and ML-kNN sorted by increasing dataset

diversity. A linear regression of the difference in terms of the F1 metric is plotted in red color.



Mathematics 2023, 11, 275

15 of 24

—*—  MLksNN.ML - ML-kNN ¥
0.08-

0.06-

= 004~

002~ e

000~ T K

Stackex_cooking -

Dataset

Figure 7. Difference in F1 metric between ML-k’sNN.ML and ML-kNN, sorted by increasing number
of dataset labels. A linear regression of the difference in terms of the F1 metric is plotted in red color.

5.1. Comparison with Other Instance-Based Learning Methods

In the previous section we have shown that our algorithm was able to beat the standard
ML-kNN algorithm and another version of that algorithm, LAML-kNN. However, other
modifications of ML-kNN have been proposed in the literature. In this section we present
a comparison with several versions of ML-kNN and other instance-based methods. We
compared the best version of our proposal, ML-k’sNN.ML for classification metrics and
ML-k’sNN.EC for ranking metrics, with ML-kNN, LAML-kNN, two binary relevance
implementations of k-NN in scikit learn Python package [40], BRkKNNa and BRkNND,
stacked ML-kNN [41] (SMLKNN), dependent ML-kNN (DMLKNN) [22], soft relevance
for multi-label classification [25] (Mr.KNN), the combination of instance-based learning
and logistic regression for multilabel classification, IBLR-ML and IBLR-ML+ [42], and a
recent method for obtaining local k values for ML-kNN, ML-localkNN [43]. Figures 8 and 9
show the Nemenyi test for classification and ranking metrics, respectively. BRkNNa and
BRKNND are not implemented for ranking metrics so they are not shown in Figure 9. The
Iman-Davenport test found significant differences for all seven metrics.

| CD (2387) |
1o 9.0 80 | 7.0 60 50 40 3.0 20

BRKNND (9.950) | ' ' ' ' i : L
MEKNN (9.450) J |

MLKSNN.ML (2.300)
IBLRML+ (3.625)
ML-localkNN (3.725)
MIKNN (3.775)
LAMLKNN (4.200)

(a) Accuracy

| €D (2387) |
10,0 9.0 80 | 70 60 50 0 30 20

BRKNND (9.900) |3 ! T TMLKSNNML (2212)

TBLRAML (9.488) — | L o 3.000)
MrKNN (9.175) ML-localkNN (3.500)
BRKNNa (8338) MLKNN (3.837)

DMLKNN (6.862) LAMLKNN (4.250)

SMLKNN (5.438)

(b) F1
Figure 8. Cont.



Mathematics 2023, 11, 275

16 of 24

| €D (2387) |
100 9.0 80 | 70 60 50 40 30 20
IBLR-ML (10.000) ]‘ : i ' ' ! ! x . ML-k'sNN.ML (2.375)
BRKNND (10.000) LAMLKNN (3.650)
BRKNNa (8.287) MLIocalkNN (3.650)
MEKNN (8.037) MLKNN (3.700)
DMIKNN (6812) IBLRML+ (3.925)
SMIKNN (5.562)
(C) FlmaCI‘O
| oD (2387) |
10,0 9.0 80 | 70 60 50 40 30 20
BRRNND (0.925)] 3 ' ' ' ' : : : TMLKSNNAL (2.269)
TBLRML (9.588) J L Rwoes
MrKNN (9338) MLlocalkNN (3.750)
BRKNNa (8.037) LAMLKNN (3.862)
DMLKNN (6.388) IBLRML+ (3.875)
SMIKNN (5.400)
(d) Flmicro

Figure 8. Nemenyi test for the different variants of ML-kNN and the different classification metrics.

The first interesting result was that, in general, none of the modifications of ML-kKNN
showed a consistently better performance than the original proposal with the exception of
ML-localkNN and IBLRML+. The second interesting result was that our proposal always
achieved the best performance in terms of the average ranking regardless of the metric
considered. Nemenyi test found significant differences most of the times. These differences
are specially marked for ranking metrics.

| CD (1899) |
[70 65 60 s 150 45 40 35 30
SMIKNN (6.075)|— : | ' : : T TMLKSNNEC 3475)
TBLR-ML (6.050) MI-localkNN (4.575)
LAMLKNN (5.513) IBLRML+ (4.625)
DMIKNN (5.000) MrKNN (4.825)
MLKNN (4862)
(a) Average precision
| CD (1.899) |
[70 65 60 55 150 is 40 35 30
TAMLRNN (6.150) ———————— - - - TMIKSNNEC (35.750)
ML-ocalkNN (5.525) MEKNN (4.650)
MLKNN (5.263) DMIKNN (4.662)
SMIKNN (5.250) IBLRML+ (4.775)
IBLR-ML (4.975)
(b) Coverage
| CD (1.899)
ks 70 60 50 40 30 20
SMLKNN (7.312) .—' : | ’ ] - - . ML-k'sNN.EC (2.425)
IBLRML (6.888) | ———————— 7 ML-localkNN (3.725)
DMIKNN (6.800) MLKNN (3.750)
MrKNN (5.100) LAML-kNN (4.150)
IBLRML+ (4.850)
(c) Ranking loss

Figure 9. Nemenyi test for the different variants of ML-kNN and the different ranking metrics.

After applying the Iman-Davenport test, we carry out a Holm’s procedure [34] for
controlling the family wise error in multiple hypothesis testing. In Holm’s procedure,
the best-performing algorithm in terms of Friedman’s ranks is compared in a stepwise
manner against the other methods. We carried out this procedure for the seven metrics.
Figures 10 and 11 show a graphical representation of Holm test for classification and rank-
ing metrics, respectively. The methods are shown in increasing values of average ranks and
a bar plot shows the p-value of the statistical test. A horizontal line shows the critical value

of the test. Bars below this horizontal lines mean a significant difference.



Mathematics 2023, 11, 275

17 of 24

—— Threshold —— Threshold
0054 [0 pvalue — [0 pevalue I

0.14 4
0124
0.04 4

0104

0.08
= 00234
0024 J 0.06
00

0.024

ML-k'SNN.ML vs.

0.00

0.00

BRKNND {2
MEKNN

BRKNNa {2
BRKNND {2
MeKNN 42
BRKNNa 2

ks {2

L |

DMLKNN 2
SMLKNN
IBLRML+ 4

(a) Accuracy (b) F1
—— Threshold —— Threshold
0051 1 pvalue — 0051 1 p-value —

0.04 4 0.04 4

- 003 4 Z 0034

0027 o183 J 0027

0.014 0.014

ML-K'sNN.ML

0.00 0.00 2

= z z z + z E z z z
z £ 2 2 % % Z £ 2 Z
a2 s g
(C) I31macro (d) Flmicro

Figure 10. Holm test for the different variants of ML-kNN and the different classification metrics.

In Figure 10 we can see the good performance of ML-k’sNN. For the four classification
metrics it was able to significantly improve the remaining methods. For accuracy it showed
a significantly better performance than 7 of the 10 methods used for the comparison. For F1,
only ML-localkNN and IBLRML+ were not worse than ML-k’sNN. For F1nacro and Flpicro,
ML-k’sNN beat 6 of the 10 methods. As we cannot expect any algorithm to be always the
best performing one for every dataset and metric, the fact that MLk’sNN was able to obtain
the overall best results for the four metrics is remarkable. Furthermore, we must take into
account that most of these methods can also use our proposal to be improved.



Mathematics 2023, 11, 275

18 of 24

—— Threshold — Threshold o
0051 [0 pvalue — 0074 =1 p-value T

0.06 4
0.04 4

0.05 . L

ooz
0.03 4 |

=
L

ML-K'SNN.EC vs.
ML-k'SNN.EC vs,

=
L

0.02 4

0.02 4 yﬁ‘ J

0.014

00061
T T T 0.00
~ .
Z 5
z 2 %

(a) Average precision (b) Coverage

0.00

SMLKNN
IBLRML {2
ML-KNN
MrKNN 4
ML-KNN
SMLKNN
IBLR-ML
MrKNN 4

LAMLANN ﬂz

LAMLANN {2

MLlocalkNN D;

IBLRML+
ML-localkNN

IBLRML+ 4

DMLKNN

—— Threshold
0051 [ p-value —

0.04 4

0.03 4

MLK'SNN.EC vs.

0.02 4

0.014

000 v

LAMLKNN AD%

ML-kNN 4

SMLKNN 2
IBLRML -5
DMIKNN 2
MrKNN

IBLRML+

ML-localkNN

(c) Ranking loss

Figure 11. Holm test for the different variants of ML-kNN and the different ranking metrics.

For ranking metrics—see Figure 11—the performance of ML-k’sNN was even better.
For averaged precision it was better than all the methods with the exception of IBLRML+
and ML-localkNN. For ranking loss it improved the results of all the methods. For coverage
it also achieved the best results but the differences were not significant against the four best
performing methods.

5.2. Instance Selection

Instance selection is a widely used method in single-label classification that improves
the performance of instance-based methods and reduces the size of the training set [44].
For single-label problems, evolutionary algorithms have demonstrated better performance
and also a good scalability [45,46]. For multi-label datasets, only a few methods have been
developed [47-51].

An interesting aspect of this work is the study of whether our approach is able to
maintain its superior performance when instance selection is applied [52,53]. As we are
not proposing a new instance selection algorithm, we used for both the standard ML-kNN



Mathematics 2023, 11, 275

19 of 24

method and ML-k’sNN a very simple CHC evolutionary computational approach [54,55]
which has proven its efficiency for instance selection in single-label problems [56].

We used populations of 100 individuals evolved for 1000 generations. This experiment
was carried out using the F1 metric. Table 9 shows the comparison among the different
methods in terms of the F1 metric and reduction. Comparisons in terms of the Nemenyi
test are shown in Figure 12.

Table 9. Comparison of the different methods’ instance selection results.

F1 Metric
ML-KNN ML-k’sNN LAML-KNN LAML-K’sNN
Mean 0.3472 0.3803 0.3000 0.3729
Ranks 2.4625 1.8875 3.7000 1.9500
w/l 25/10 4/36 27/13
ML-kNN P 0.0006 0.0000 0.1789
RY/R™ 664.5/155.5 91.0/729.0 510.0/310.0
w/l 2/38 21/19
ML-k’sNN P 0.0000 0.9250
Rt/R~- 5.0/815.0 403.0/417.0
w/l 34/6
LAML-KNN % 0.0000
RY/R™ 724.0/96.0
Reduction
ML-KNN ML-k’sNN LAML-KNN LAML-K’sNN
Mean 0.9400 0.9558 0.9573 0.9424
Ranks 3.0875 2.0500 2.1000 2.7625
w/l 30/9 28/12 25/15
ML-kNN P 0.0004 0.0002 0.2589
RT/R™ 675.5/144.5 686.0/134.0 494.0/326.0
w/l 18/21 14/26
ML-k’sNN P 0.8350 0.0360
RY/R™ 4255/394.5 254.0/566.0
w/l 10/29
LAML-kNN P 0.0001
RY/R™ 108.5/711.5

Regarding the comparison between ML-kNN and ML-k’sNN, the tables demonstrate
the superior performance of our proposed method. ML-k’sNN achieved better results
in both reduction and the F1 metric. These differences were significant, according to the
Wilcoxon test. This behavior is illustrated in Figure 13, where the results of the geometric
mean of F1 and reduction are plotted for both ML-kNN and ML-k’sNN. With the exception
of dataset #24, Stackex_coffee, the combined performance of reduction and F1 is always
better for ML-k’sNN.



Mathematics 2023, 11, 275 20 of 24
I CD (0.742) |
40 35 30 25 20 15 10
SR — ! [MLKSN (1887)]
ML-kNN (2.462) TAML-K'SNN (1.950)
(a) F1
I CD (0.742) |
[ |
40 38 35 32 3.0 28 25 22 20
MLKNN (3.087) — oo (2.050)
TAML-K'SNN (2.763) L [LAML-kNN (2.100) |
(b) Reduction

Figure 12. Nemenyi test results from the different methods, measuring reduction and F1 metric.

0.8 -

0.6 -

MLk'sNN

0.0 -

® VReduction- Fl

0.0 0.2 0.4 0.6 0.8 L0
ML-kNN

Figure 13. Results from ML-kNN and ML-k’sNN for the geometric mean of F1 and reduction.

The comparison with LAML-kNN showed different results. LAML-k’sNN improved
the F1 metric performance of LAML-kNN but with a lower level of reduction. However,
the combined reduction and F1 metric performance—see Figure 14—was very favorable to
our proposed method. In most cases, the differences in performance are rather large, and
the performance of LAML-k’sNN is clearly superior.



Mathematics 2023, 11, 275

21 of 24

0.8 -

0.6 -

LAML-K'sNN

Y V Reduction- F1

0.0 0.2 0.4 0.6 0.8 1.0
LAML-KNN

Figure 14. Results from LAML-kNN and LAML-k’sNN for the geometric mean of F1 and reduction.

6. Conclusions

In this paper, we have proposed a new multi-label classification algorithm, ML-k’sNN,
based on the ML-kNN algorithm in which different values of k are used for each label.
Three different methods for obtaining the set of ks for every label are proposed and tested.
Depending on the metric to be optimized, a label independent or evolutionary approach
are used. The complexity of the three approached varies, so choosing the best one for a
specific task would depend on the available resources and performance constraints.

The proposed method is studied using two different implementations of ML-kNN,
the standard ML-kNN method and the locally adaptive ML-kNN method, LAML-kNN.
However, the proposed method can be applied to almost any other version of ML-kNN.
Using a large set of 40 problems with different characteristics, our proposed method
demonstrated better performance when compared to both ML-kNN implementations. A
further study has shown that our proposed method was able to improve, as a general rule,
its performance when there are more labels in the dataset or when the diversity of the
labels increases, although for some datasets it might not be the case. Furthermore, the
improvement demonstrated by ML-k’sNN was maintained when the method was coupled
with instance selection. In fact, the good performance of our approach was kept while
obtaining a large reduction in training set size.

A final experiment compared our algorithm with ten different ML-kNN variants. This
comparison showed the overall best performance of ML-k’sNN for all the four classification
metrics and the three ranking metrics.



Mathematics 2023, 11, 275 22 of 24

A promising research line is extending our approach to other methods based on ML-
kNN. Almost any variant of ML-kNN, such as the used in the experiments, can be adapted
to work with a k more appropriate for every label. In this way, our proposal may benefit
other variants of instance-based multi-label learning methods.

Author Contributions: All authors have contributed in the conceptualization, methodology, software,
validation, formal analysis and writing of this paper. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by grant PID2019-109481GB-100/ AEI/q10.13039/50110001
1033 from the Spanish Ministry of Science and Innovation and grant UCO-1264182 from the Junta de
Andalucia Excellence in Research Program and FEDER Funds.

Data Availability Statement: The source code and the datasets used in this paper are freely available
upon request from the authors.

Conflicts of Interest: The authors declare no conflict of interest, The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Zhang, M.L.; Zhou, Z.H. Multilabel neural networks with applications to functional genomics and text categorization. IEEE
Trans. Knowl. Data Eng. 2006, 18, 1338-1351. [CrossRef]

2. Zhang, M.L.; Zhou, Z.H. A review on Multi-Label Learning Algorithms. IEEE Trans. Knowl. Data Eng. 2014, 26, 1819-1837.
[CrossRef]

3. Wang, B.; Hu, X; Li, P; Yu, P.S. Cognitive structure learning model for hierarchical multi-label text classification. Knowl.-Based
Syst. 2021, 218, 106876. [CrossRef]

4. Ozmen, M.; Zhang, H.; Wang, P.; Coates, M. Multi-Relation Message Passing for Multi-Label Text Classification. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 22-27 May 2022; pp.
3583-3587. [CrossRef]

5. Zhang, H.; Qian, S.; Fang, Q.; Xu, C. Multi-modal Meta Multi-Task Learning for Social Media Rumor Detection. IEEE Trans.
Multimed. 2021, in press. [CrossRef]

6. Zheng, X,; Li, P; Chu, Z.; Hu, X. A Survey on Multi-Label Data Stream Classification. IEEE Access 2020, 8, 1249-1275. [CrossRef]

7. Zhu,Y,; Luo, W.; Chen, G.; Ou, J. A multi-label classification method based on associative rules. |. Comput. Inf. Syst. 2012, 8,
791-799.

8.  Toledano, J.PP; Garcia-Pedrajas, N.; Cerruela-Garcia, G. Multilabel and Missing Label Methods for Binary Quantitative
Structure-Activity Relationship Models: An Application for the Prediction of Adverse Drug Reactions. ]. Chem. Inf. Model. 2019,
59, 4120-4130. [CrossRef]

9.  Wang, H,; Yan, L.; Huang, H.; Ding, C. From protein sequence to protein function via multi-label linear discriminant analysis.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 503-513. [CrossRef]

10. Sarinnapakorn, K.; Kubat, M. Induction from multi-label examples in information retrieval systems: A case study. Appl. Artif.
Intell. 2008, 22, 407-432. [CrossRef]

11. Xiao, J.; Xu, J; Tian, C.; Han, P; You, J.; Zhang, S. A Serial Attention Frame for Multi-Label Waste Bottle Classification. Appl. Sci.
2022, 12, 1742. [CrossRef]

12.  Javed, E; Hayat, M. Predicting subcellular localization of multi-label proteins by incorporating the sequence features into Chou’s
PseAAC. Genomics 2019, 111, 1325-1332. [CrossRef] [PubMed]

13. Tao, ].; Fang, X. Toward multi-label sentiment analysis: A transfer learning based approach. J. Big Data 2020, 7, 1. [CrossRef]

14. Zhang, M.L.; Zhou, Z.H. ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognit. 2007, 40, 2038-2048.
[CrossRef]

15. Rastin, N.; Jahromi, M.Z.; Taheri, M. A Generalized Weighted Distance k-Nearest Neighbor for Multi-label Problems. Pattern
Recognit. 2021, 114, 107526. [CrossRef]

16. Zufferey, D.; Hofer, T.; Hennebert, J.; Schumacher, M.; Ingold, R.; Bromuri, S. Performance comparison of multi-label learning
algorithms on clinical data for chronic diseases. Comput. Biol. Med. 2015, 65, 34—43. [CrossRef]

17.  Charte, F.; Charte, D. Working with Multilabel Datasets in R: The mldr Package. R J. 2015, 7, 149-162. [CrossRef]

18. Jiang, M.; Du, L.; Wu, J.; Zhang, M.; Gong, Z. A classification algorithm based on weighted ML-kNN for multi-label data. Int. J.
Internet Manuf. Serv. 2019, 6, 326-342. [CrossRef]

19. Xu, J. Multi-Label Weighted k-Nearest Neighbor Classifier with Adaptive Weight Estimation. In Proceedings of the Neural

Information Processing, ICONIP 2011, Shanghai, China, 13-17 November 2011; Lu, B., Zhang, L., Kwok, J., Eds.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2011; Volume 7063, pp. 79-88.


http://doi.org/10.1109/TKDE.2006.162
http://dx.doi.org/10.1109/TKDE.2013.39
http://dx.doi.org/10.1016/j.knosys.2021.106876
http://dx.doi.org/10.1109/ICASSP43922.2022.9747225
http://dx.doi.org/10.1109/TMM.2021.3065498
http://dx.doi.org/10.1109/ACCESS.2019.2962059
http://dx.doi.org/10.1021/acs.jcim.9b00611
http://dx.doi.org/10.1109/TCBB.2016.2591529
http://dx.doi.org/10.1080/08839510801972827
http://dx.doi.org/10.3390/app12031742
http://dx.doi.org/10.1016/j.ygeno.2018.09.004
http://www.ncbi.nlm.nih.gov/pubmed/30196077
http://dx.doi.org/10.1186/s40537-019-0278-0
http://dx.doi.org/10.1016/j.patcog.2006.12.019
http://dx.doi.org/10.1016/j.patcog.2020.107526
http://dx.doi.org/10.1016/j.compbiomed.2015.07.017
http://dx.doi.org/10.32614/RJ-2015-027
http://dx.doi.org/10.1504/IJIMS.2019.103861

Mathematics 2023, 11, 275 23 of 24

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

Wang, D.; Wang, J.; Hui, F; Guogqing, L.; Zhang, X. A Locally Adaptive Multi-Label k-Nearest Neighbor Algorithm. In
Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, Australia, 3-6 June 2018;
Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2018; Volume 10937, pp. 81-93.

Wang, Z.W.; Wang, S..; Wan, B.T.; Song, W.W. A novel multi-label classification algorithm based on K-nearest neighbor and
random walk. Int. J. Distrib. Sens. Netw. 2020, 16, 1550147720911892.

Younes, Z.; Abdallah, F.; Denoeux, T. Multi-label classification algorithm derived from k-nearest neighbor rule with label
dependencies. In Proceedings of the 16th European Signal Processing Conference, Lausanne, Switzerland, 25-29 August 2008;
pp- 1-5.

Pakhira, M.K. A Fast k -means Algorithm using Cluster Shifting to Produce Compact and Separate Clusters. Int. . Eng. Basics
Appl. Asp. 2015, 28, 35-43.

Dzeroski, S.; Zenko, B. Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 2004, 54, 255-273.
[CrossRef]

Lin, X.; Chen, X.W. Mr.KNN: Soft Relevance for Multi-Label Classification. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, Toronto, ON, Canada, 26-30 October 2010; Association for Computing
Machinery: New York, NY, USA, 2010; pp. 349-358.

Vluymans, S.; Cornelis, C.; Herrera, E; Saeys, Y. Multi-label classification using a fuzzy rough neighborhood consensus. Inf. Sci.
2018, 433—434, 96-114. [CrossRef]

Hang, ].Y.; Zhang, M.L. Collaborative Learning of Label Semantics and Deep Label-Specific Features for Multi-Label Classification.
IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 9860-9871. [CrossRef] [PubMed]

Eshelman, L.J.; Schaffer, J.D. Real-coded genetic algorithms and interval-schemata. In Foundations of Genetic Algorithms 2; Whitley,
L.D., Ed.; Morgan Kaufmann: San Mateo, CA, USA, 1993; pp. 187-202.

Tsoumakas, G.; Spyromitros-Xioufis, E.; Vilcek, J.; Vlahavas, I. Mulan: A Java Library for Multi-Label Learning. . Mach. Learn.
Res. 2011, 12, 2411-2414.

Xu, J; Liu, J.; Yin, J.; Sun, C. A multi-label feature extraction algorithm via maximizing feature variance and feature-label
dependence simultaneously. Knowl.-Based Syst. 2016, 98, 172-184. [CrossRef]

Read, J.; Reutemann, P.; Pfahringer, B.; Holmes, G. MEKA: A Multi-label /Multi-target Extension to Weka. J. Mach. Learn. Res.
2016, 17, 1-5.

Charte, F,; Rivera, A.].; del Jesus, M.].; Herrera, F. Addressing imbalance in multilabel classification: Measures and random
resampling algorithms. Neurocomputing 2015, 163, 3—16. [CrossRef]

Blockeel, H.; DZeroski, S.; Grbovic, J. Simultaneous prediction of multiple chemical parameters of river water quality with tilde.
In Proceedings of the Lecture Notes in Computer Science, Tokyo, Japan, 26-28 July 1999; Volume 1704, pp. 32—40.

Demsar, J. Statistical Comparisons of Classifiers over Multiple Data Sets. ]. Mach. Learn. Res. 2006, 7, 1-30.

Nemenyi, P.B. Distribution-Free Multiple Comparisons. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1963.

James, G.; Witten, D. An Introduction to Statistical Learning: With Applications in R; Springer Texts in Statistics; Springer:
Berlin/Heidelberg, Germany, 2017.

Boutell, M.R.; Luo, J.; Shen, X.; Brown, C.M. Learning multi-label scene classification. Pattern Recognit. 2004, 37, 1757-1771.
[CrossRef]

Sorower, M.S. A Literature Survey on Algorithms for Multi-Label Learning. Ph.D. Thesis, Computer Science, Oregon State
University, Corvallis, OR, USA, 2010.

Garcia-Pedrajas, N.; Cerruela-Garcia, G. Cooperative coevolutionary instance selection for multilabel problems. Knowl.-Based
Syst. 2021, 234, 10756. [CrossRef]

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Pakrashi, A.; Namee, B.M. Stacked-MLKNN: A stacking based improvement to Multi-Label k-Nearest Neighbours. Proc. Mach.
Learn. Res. 2017, 74, 51-63.

Cheng, W.; Hiillermeier, E. Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn.
2009, 76, 211-225. [CrossRef]

del Castillo, J.R.; Mendoza-Hurtado, M.; Ortiz-Boyer, D.; Garcifa-Pedrajas, N. Local-based k values for multi-label k-nearest
neighbors rule. Eng. Appl. Artif. Intell. 2022, 116, 105487. [CrossRef]

Brighton, H.; Mellish, C. Advances in Instance Selection for Instance-Based Learning Algorithms. Data Min. Knowl. Discov. 2002,
6,153-172. [CrossRef]

Garcia-Pedrajas, N.; de Haro-Garcia, A.; Pérez-Rodriguez, J. A scalable memetic algorithm for simultaneous instance and feature
selection. Evol. Comput. 2014, 22, 1-45. [CrossRef] [PubMed]

Garcia-Pedrajas, N.; del Castillo, J.A.R.; Cerruela-Garcia, G. SI(FS)2: Fast simultaneous instance and feature selection for datasets
with many features. Pattern Recognit. 2021, 111, 107723. [CrossRef]

Calvo-Zaragoza, J.; Valero-Mas, ].J.; Rico-Juan, J.R. Improving kNN multi-label classification in Prototype Selection scenarios
using class proposals. Pattern Recognit. 2015, 48, 1608-1622. [CrossRef]

Kanj, S.; Abdallah, E; Denoeux, T.; Tout, K. Editing training data for multi-label classification with the k-nearest neighbor rule.
Pattern Anal. Appl. 2016, 19, 145-161. [CrossRef]


http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1016/j.ins.2017.12.034
http://dx.doi.org/10.1109/TPAMI.2021.3136592
http://www.ncbi.nlm.nih.gov/pubmed/34928787
http://dx.doi.org/10.1016/j.knosys.2016.01.032
http://dx.doi.org/10.1016/j.neucom.2014.08.091
http://dx.doi.org/10.1016/j.patcog.2004.03.009
http://dx.doi.org/10.1016/j.knosys.2021.107569
http://dx.doi.org/10.1007/s10994-009-5127-5
http://dx.doi.org/10.1016/j.engappai.2022.105487
http://dx.doi.org/10.1023/A:1014043630878
http://dx.doi.org/10.1162/EVCO_a_00102
http://www.ncbi.nlm.nih.gov/pubmed/23544367
http://dx.doi.org/10.1016/j.patcog.2020.107723
http://dx.doi.org/10.1016/j.patcog.2014.11.015
http://dx.doi.org/10.1007/s10044-015-0452-8

Mathematics 2023, 11, 275 24 of 24

49.

50.

51.

52.

53.

54.

55.

56.

Arnaiz-Gonzélez, A.; Diez-Pastor, ].E; Rodriguez, J.J.; Garcia-Osorio, C. Local sets for multi-label instance selection. Appl. Soft
Comput. ]. 2018, 68, 651-666. [CrossRef]

Arnaiz-Gonzilez, A.; Diez-Pastor, ].F.; Rodriguez, ].J.; Garcia-Osorio, C. Study of data transformation techniques for adapting
single-label prototype selection algorithms to multi-label learning. Expert Syst. Appl. 2018, 109, 114-130. [CrossRef]

Devi, V.S.; Kuruvilla, S.A.; Aparna, R. Prototype selection and dimensionality reduction on multi-label data. In Proceedings of
the ACM India Joint 7th ACM IKDD Conference on Data Science and 25th International Conference on Management of Data,
CoDS-COMAD 2020, Hyderabad, India, 5-7 January 2020; pp. 195-199.

de Haro-Garcia, A.; Pérez-Rodriguez, ].; Garcia-Pedrajas, N. Combining three strategies for evolutionary instance selection for
instance-based learning. Swarm Evol. Comput. 2018, 42, 160-172. [CrossRef]

del Castillo, ].R.; Ortiz-Boyer, D.; Garcia-Pedrajas, N. Instance selection for multi-label learning based on a scalable evolutionary
algorithm. In Proceedings of the 2021 International Conference on Data Mining Workshops (ICDMW), Auckland, New Zealand,
7-10 December 2021; IEEE Computer Society: Los Alamitos, CA, USA, 2021; pp. 843-851. [CrossRef]

Eshelman, L.]. The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination;
Morgan Kauffman: San Mateo, CA, USA, 1990.

Pérez-Rodriguez, J.; Arroyo-Pefia, A.; Garcia-Pedrajas, N. Simultaneous instance and feature selection and weighting using
evolutionary computation: Proposal and study. Appl. Soft Comput. 2015, 37, 416—-443. [CrossRef]

Cano, J.R,; Herrera, F.; Lozano, M. Using Evolutionary Algorithms as Instance Selection for Data Reduction in KDD: An
Experimental Study. IEEE Trans. Evol. Comput. 2003, 7, 561-575. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1016/j.asoc.2018.04.016
http://dx.doi.org/10.1016/j.eswa.2018.05.017
http://dx.doi.org/10.1016/j.swevo.2018.02.022
http://dx.doi.org/10.1109/ICDMW53433.2021.00108
http://dx.doi.org/10.1016/j.asoc.2015.07.046
http://dx.doi.org/10.1109/TEVC.2003.819265

	Introduction
	Related Work
	Multi-Label k's-Nearest Neighbors (ML-k'sNN)
	Experimental Setup
	Experimental Results
	Comparison with Other Instance-Based Learning Methods
	Instance Selection

	Conclusions
	References

