
Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

2019

Distributed multi-label learning on Apache Spark Distributed multi-label learning on Apache Spark

Jorge Gonzalez Lopez
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Numerical Analysis and Scientific

Computing Commons, and the Theory and Algorithms Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/5775

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/147?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/5775?utm_source=scholarscompass.vcu.edu%2Fetd%2F5775&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

DISTRIBUTED MULTI-LABEL LEARNING ON APACHE SPARK

APRENDIZAJE MULTI-ETIQUETA DISTRIBUIDO EN APACHE SPARK

A Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor

of Philosophy at Virginia Commonwealth University and the University of Córdoba.

by

JORGE GONZALEZ LOPEZ

Ph.D. Candidate

Director: Alberto Cano,

Assistant Professor, Department of Computer Science,

Virginia Commonwealth University

Director: Sebastian Ventura,

Professor, Department of Computer Science & Numerical Analysis,

University of Córdoba

Virginia Commonwealth University

Richmond, Virginia

University of Córdoba

Córdoba, Spain

April 2019

The document entitled “Distributed multi-label learning on Apache Spark”, reported

by Jorge González López to qualify for the doctoral degree, has been conducted under

the program ‘Engineering, Doctor of Philosophy (Ph.D.) with a concentration in computer

science/Computer Science Ph.D. with the University of Cordoba”at the Virginia Commonwealth

University, under the supervision of the doctors Alberto Cano Rojas (Virginia Commonwealth

University) and Sebastián Ventura Soto (University of Córdoba) fulfilling, in their opinion,

the requirements demanded by this type of works and respecting the rights of other authors

to be cited, when their results or publications have been used.

Richmond, April 2019

El Doctorando

Fdo: Jorge González López

El Director

Fdo: Alberto Cano Rojas

El Director

Fdo: Sebastián Ventura Soto

La memoria titulada “Distributed multi-label learning on Apache Spark”, que presenta

Jorge González López para optar al grado de doctor, ha sido realizada dentro del programa

dual de doctorado “Doctorado (Ph.D.) en Ciencias de la Computación” de la Virginia

Commonwealth University, bajo la dirección de los doctores Alberto Cano Rojas (Virginia

Commonwealth University) y Sebastián Ventura Soto (University of Córdoba) cumpliendo,

en su opinión, los requisitos exigidos a este tipo de trabajos y respetando los derechos de

otros autores a ser citados, cuando se han utilizado sus resultados o publicaciones.

Richmond, Abril de 2019

El Doctorando

Fdo: Jorge González López

El Director

Fdo: Alberto Cano Rojas

El Director

Fdo: Sebastián Ventura Soto

“Shoot for the moon. Even if you miss, you’ll land among
the stars.”

— Norman Vincent Peale

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Cano, for granting me

the incredible opportunity to move to the U.S. where I could carry out my doctoral studies.

Additionally, I would like to thank all the people involved in the execution of this thesis.

My deepest gratitude goes out to my parents and my brother. This dissertation would

not have been possible without their long-distance support through all these years.

All my appreciation to my friends, which fortunately are too many to be listed here. I

am thankful to my friends in Spain for welcoming me every time I go there as if I never left

and to my friends in the U.S. for helping me feel at home and patiently listening every time.

I am also grateful to Dylan for his friendship and his ability to cheer me up.

The last words of acknowledgment are saved for my dear wife, Kwan, for her warm love,

continued patience, and endless support.

Table of Contents

Table of Contents . ii

List of Tables . iv

List of Figures . vi

Abstract (English) . x

Abstract (Spanish) . xi

Resumen . xii

1 Introduction . 16

1.1 Contributions of the Thesis . 20

2 Background . 23

2.1 Multi-label learning . 23

2.1.1 Formal definition and notation . 26

2.1.1.1 Threshold calibration . 28

2.1.1.2 Label correlations . 29

2.1.2 Learning algorithms . 30

2.1.2.1 Problem transformation methods 32

2.1.2.2 Algorithm adaptation methods 42

2.1.3 Evaluation metrics . 56

2.1.3.1 Example-based metrics . 56

2.1.3.2 Label-based metrics . 58

2.1.3.3 Multi-label data statistics . 59

2.1.4 Benchmark datasets . 60

2.1.5 Open source multi-label libraries . 64

2.2 Distributed systems . 65

2.2.1 Characteristics of distributed systems 68

2.2.2 Categories of distributed systems . 70

2.2.3 Distributed computing . 73

2.2.3.1 MapReduce programming model 74

2.2.3.2 Apache Hadoop . 76

ii

2.2.3.3 Apache Spark . 77

3 Architectures for parallel and distributed multi-label learning 83

3.1 Proposed parallel and distributed architectures 84

3.2 ARFF data source for Apache Spark . 88

3.3 Experimental setup . 91

3.3.1 Datasets . 91

3.4 Experimental results . 93

3.4.1 Evaluation of predictions . 93

3.4.2 Evaluation of computational performance 94

3.5 Conclusions . 98

4 Distributed multi-label k nearest neighbors . 99

4.1 Nearest Neighbors background . 100

4.1.0.1 Tree indexes . 100

4.1.0.2 Hashing indexes . 102

4.1.0.3 Graph indexes . 102

4.2 Distributed ML-KNN . 103

4.2.1 Train phase: computing prior and posterior probabilities 104

4.2.2 Test phase: prediction of label set 106

4.3 Distributed Nearest Neighbors methods 107

4.3.1 Iterative Multi-label k Nearest Neighbors (ML-KNN-IT) 108

4.3.2 Hybrid Tree Multi-label k Nearest Neighbors (ML-KNN-HT) 110

4.3.3 Locally Sensitive Hashing Multi-label k Nearest Neighbors

(ML-KNN-LSH) . 113

4.4 Experimental setup . 115

4.4.1 Datasets . 115

4.4.2 Methods and parameters . 117

4.4.3 Hardware and software environment 118

4.5 Experimental study . 118

4.5.1 Prediction comparison: approximate versus exact 119

4.5.2 Performance comparison: execution times for train and test phases . 123

4.5.3 Scalability analysis on the number of instances, features, and labels 124

4.6 Conclusions . 127

5 Distributed feature selection of multi-label data 128

5.1 Multi-label feature selection background 129

5.1.1 Problem transformation methods . 130

5.1.2 Algorithm adaptation methods . 131

5.2 Preliminaries . 133

5.2.1 Basic definitions . 134

iii

5.2.2 Estimators . 136

5.2.2.1 Mutual information estimator between continuous features . . 138

5.2.2.2 Mutual information estimator between continuous and discrete

features . 139

5.3 Mutual information estimator for multi-label data 140

5.4 Proposed methods . 143

5.4.1 Distributed implementation for continuous features on Apache Spark 146

5.4.2 Distributed implementation for discrete features on Apache Spark . 147

5.5 Experimental setup . 149

5.5.1 Datasets . 149

5.5.2 Methods and parameters . 150

5.5.3 Evaluation metrics . 151

5.6 Experimental results for continuous features 151

5.6.1 Synthetic datasets comparison . 152

5.6.2 Subset accuracy comparison . 154

5.6.3 Runtime comparison . 158

5.7 Experimental results for discrete features 159

5.7.1 Synthetic datasets comparison . 160

5.7.2 Subset accuracy comparison . 162

5.7.3 Runtime comparison . 166

5.8 Conclusions . 167

6 Conclusions . 169

7 Future Work . 172

Bibliography . 174

Vita . 197

iv

List of Tables

2.1 Summary of symbols and notation . 27

2.2 Example multi-label dataset . 32

2.3 Simple transformations . 34

2.4 Binary Relevance data transformation . 35

2.5 Label Powerset data transformation . 38

2.6 Ranking pairwise comparison data transformation 42

2.7 Summary of multi-label datasets and associated statistics (I) 61

2.8 Summary of multi-label datasets and associated statistics (II) 62

2.9 Summary of multi-label datasets and associated statistics (III) 63

3.1 Implementation summary . 88

3.2 Multi-label datasets and their statistics . 92

3.3 Metrics averaged across all multi-label datasets and p-values comparison 93

3.4 Execution time (s) of Mulan and speedups of each proposed implementation . . . 95

4.1 Summary description of the datasets . 116

4.2 Hamming loss and subset accuracy results obtained by the three methods 121

4.3 Micro-average F1 and macro-average F1 results obtained by the three methods . 122

4.4 Execution times for the train and test phases in minutes for the three methods . 123

5.1 Summary of problem transformation methods for multi-label feature selection . . 130

5.2 Summary of algorithm adaptation methods for multi-label feature selection . . . 132

v

5.3 Example of MI between four features and three labels. The bottom presents

the MI of each label depending on which strategy is used to select two features. . 145

5.4 Summary description of the benchmark datasets. 149

5.5 Subset accuracy comparison by dataset averaged across all feature subset sizes. . 154

5.6 Algorithm ranks for each of the multi-label performance metrics across all

datasets and feature sizes. 157

5.7 Wilcoxon statistical test analysis for subset accuracy. MIM, mRMR, ENM

and GMM vs reference methods (p-values< 0.01 indicate statistically significant

differences). 157

5.8 Subset accuracy comparison by dataset averaged across all feature subset sizes. . 162

5.9 Algorithm ranks for each of the multi-label performance metrics across all

datasets and feature sizes. 165

5.10 Wilcoxon statistical test analysis for subset accuracy. MIM, mRMR, ENM

and GMM vs reference methods (p-values< 0.01 indicate statistically significant

differences). 165

vi

List of Figures

2.1 Example annotation of movie genre annotation 24

2.2 Example annotation of semantic scene classification 25

2.3 Example annotation of text categorization . 26

2.4 Multi-label learning algorithm categorization . 31

2.5 Schematic view of a typical traditional and distributed systems 66

2.6 Types of network processing . 67

2.7 Workflow of word counting on MapReduce . 75

2.8 Apache Spark framework overview . 78

2.9 Apache Spark components diagram . 79

2.10 Apache Spark workflow . 80

3.1 Mulan distributed implementation . 85

3.2 Mulan distributed threading implementation . 86

3.3 Spark implementation . 87

3.4 ARFF data source class diagram for Apache Spark. 89

3.5 Speedup comparison on each proposed implementation 97

4.1 Ml-knn train phase: prior probabilities . 105

4.2 Ml-knn train phase: posterior probabilities . 106

4.3 Ml-knn test phase . 107

vii

4.4 Test phase for Ml-knn-it . 109

4.5 Train phase for Ml-knn-ht . 111

4.6 Test phase for Ml-knn-ht . 112

4.7 Train phase for Ml-knn-lsh . 114

4.8 Test phase for Ml-knn-lsh . 115

4.9 Ml-knn-lsh subset accuracy on Medical, Scene, Emotions, and Birds datasets . 120

4.10 Execution times according to the number of instances 125

4.11 Execution times according to the number of features 125

4.12 Execution times according to the number of labels 126

5.1 Venn diagram showing the relationships for entropy and MI associated with

two correlated variables A and B . 136

5.2 Venn diagram showing the relationships for entropy and MI associated with one

feature fi and two labels {yj , yk}. 141

5.3 The surface represents the combinations of MI between a given feature and three

labels with a total sum of 1.0. ENM and GMM would select the features with MI

values in the purple and yellow areas respectively. 146

5.4 Distributed MI between a two features {fi, fi+1} and a variable λ which would

either be a label in MI(f,Y) or a previously selected feature in MI(f, fj). 147

5.5 Distributed MI between a two features {fi, fi+1} and a variable λ which would

either be a label in MI(f,Y) or a previously selected feature in MI(f, fj). 148

5.6 Subset accuracy obtained selecting up to 50 features on synthetic datasets. . . . 153

5.7 Scatter plot that shows the order of feature selection. The indices [0, 24],

[25, 39], and [40, 49] indicate relevant, redundant, and irrelevant features,

respectively. 153

5.8 Subset accuracy obtained selecting up to 50 continuous features on the datasets. 155

5.9 Runtime obtained selecting up to 50 features on all the datasets. 158

5.10 Subset accuracy obtained selecting up to 50 features on synthetic datasets. . . . 161

viii

5.11 Scatter plot that shows the order of feature selection. The indices [0, 24],

[25, 39], and [40, 49] indicate relevant, redundant, and irrelevant features,

respectively. 161

5.12 Subset accuracy obtained selecting up to 50 discrete features on the datasets. . . 163

5.13 Runtime obtained selecting up to 50 features on all the datasets. 166

ix

Abstract (English)

This thesis proposes a series of multi-label learning algorithms for classification and

feature selection implemented on the Apache Spark distributed computing model.

Five approaches for determining the optimal architecture to speed up multi-label learning

methods are presented. These approaches range from local parallelization using threads to

distributed computing using independent or shared memory spaces. It is shown that the

optimal approach performs hundreds of times faster than the baseline method.

Three distributed multi-label k nearest neighbors methods built on top of the Spark

architecture are proposed: an exact iterative method that computes pair-wise distances, an

approximate tree-based method that indexes the instances across multiple nodes, and an

approximate local sensitive hashing method that builds multiple hash tables to index the

data. The results indicated that the predictions of the tree-based method are on par with

those of an exact method while reducing the execution times in all the scenarios.

The aforementioned method is then used to evaluate the quality of a selected feature

subset. The optimal adaptation for a multi-label feature selection criterion is discussed and

two distributed feature selection methods for multi-label problems are proposed: a method

that selects the feature subset that maximizes the Euclidean norm of individual information

measures, and a method that selects the subset of features maximizing the geometric mean.

The results indicate that each method excels in different scenarios depending on the type of

features and the number of labels.

Rigorous experimental studies and statistical analyses over many multi-label metrics

and datasets confirm that the proposals achieve better performances and provide better

scalability to bigger data than the methods compared in the state of the art.

x

Abstract (Spanish)

Esta Tesis Doctoral propone unos algoritmos de clasificación y selección de atributos

para aprendizaje multi-etiqueta distribuidos implementados en Apache Spark.

Cinco estrategias para determinar la arquitectura óptima para acelerar el aprendizaje

multi-etiqueta son presentadas. Estas estrategias vaŕıan desde la paralelización local utilizando

hilos hasta la distribución de la computación utilizando espacios de memoria compartidos

o independientes. Ha sido demostrado que la estrategia óptima permite ejecutar cientos de

veces más rápido que el método de referencia.

Se proponen tres métodos distribuidos de “k nearest neighbors” multi-etiqueta sobre

la arquitectura de Spark seleccionada: un método exacto que computa iterativamente las

distancias, un método aproximado que usa un árbol para indexar las instancias, y un método

aproximado que utiliza tablas hash para indexar las instancias. Los resultados indican que

las predicciones del método basado en árboles son equivalente a aquellas producidas por un

método exacto a la vez que reduce los tiempos de ejecución en todos los escenarios.

Dicho método es utilizado para evaluar la calidad de un subconjunto de atributos. Se

discute el criterio para seleccionar atributos en problemas multi-etiqueta, proponiendo: un

método que selecciona el subconjunto de atributos cuyas medidas de información individuales

poseen la mayor norma Eucĺıdea, y un método que selecciona el subconjunto de atributos con

la mayor media geométrica. Los resultados indican que cada método destaca en escenarios

diferentes dependiendo del tipo de atributos y el número de etiquetas.

Los estudios experimentales y análisis estad́ısticos utilizando múltiples métricas y datos

multi-etiqueta confirman que nuestras propuestas alcanzan un mejor rendimiento y proporcionan

una mejor escalabilidad para datos de gran tamaño respecto a los métodos de referencia.

xi

Resumen

La aparición de nuevas tecnoloǵıas ha dado lugar a un incremento exponencial del

volumen de datos almacenados en los sistemas modernos. La cantidad de datos generados

por los consumidores continúa creciendo en números absolutos. Por otra parte, el volumen

de datos generados por otros sistemas de computación también está sufriendo un rápido

incremento. Al mismo tiempo que los datos aumentan en volumen, también lo hacen en

complejidad, lo cual supone un obstáculo a la hora de utilizarlos para diferentes fines. El

crecimiento exponencial de los datos, tanto en tamaño como en complejidad, han producido

la necesidad de encontrar técnicas que puedan extraer la información útil de forma precisa,

eficiente y escalable.

Aprendizaje Automático (Machine learning) engloba el conjunto de técnicas más avanzadas

para la extracción de información de una serie de datos. Esta metodoloǵıa extrae la información

generalizando por experiencia, es decir, es capaz de aprender reglas y relaciones entre datos

ya conocidos y extrapolarlos a otros datos. Uno de los paradigmas dentro de este campo es

conocido como aprendizaje multi-etiqueta, en el cual cada instancia de los datos es asociada

con múltiples variables (etiquetas) simultáneamente.

Desafortunadamente la capacidad de cómputo de los procesadores no ha incrementado

de la misma forma que el volumen y la complejidad de los datos. Por lo que la mayoŕıa de los

investigadores y empresas se ha visto forzada a migrar el cómputo de las tareas a entornos

compuestos por múltiples máquinas. Estos entornos requieren de nuevas herramientas de

programación orientadas a sistemas distribuidos. El modelo de programación más popular

orientado a la computación de datos a gran escala es MapReduce. Este modelo define cómo la

xii

computación se puede distribuir entre varias máquinas mediante un particionamiento de los

datos. Una de las primeras implementaciones de este modelo es Hadoop, desafortunadamente

Hadoop depende del uso de almacenamiento secundario lo cual introduce una alta latencia.

Apache Spark es un framework que soluciona este problema mediante la posibilidad de

mantener y operar con los datos en memoria. Esto hace que Spark se proclame como la

mejor opción en la actualidad para la ejecución de aplicaciones con una alta intensidad de

cómputo, como por ejemplo Aprendizaje Automático.

La presente Tesis Doctoral propone una serie de algoritmos para problemas multi-

etiqueta utilizando Apache Spark como modelo de programación distribuido. El objetivo

es proponer nuevos métodos para el aprendizaje y procesamiento de datos multi-etiqueta

caracterizados por una gran cantidad de instancias, atributos, y/o etiquetas. Para ello se

han estudiado una serie de propuestas, con un enfoque ascendiente en el cual cada una ha

establecido la base de la siguiente.

En primer lugar, se han estudiado diferentes estrategias para la distribución del aprendizaje

de datos multi-etiqueta. Para ello se propusieron el estudio de cinco estrategias diferentes:

una implementación base que utilizaba unúnico hilo en una única máquina, una versión que

utilizaba múltiples hilos en una misma máquina, una versión distribuida que utilizada la

versión mono-hilo en múltiples máquinas, otra versión distribuida que utilizaba la versión

multi-hilo en múltiples máquinas, y, por último, una versión que extend́ıa los métodos

nativos de Spark. Esta versión construye modelos colaborativos distribuyendo las instancias,

mientras que las anteriores requieren de todas las instancias en todas las máquinas y cada

una utiliza diferentes conjuntos de etiquetas. El análisis de los resultados demuestra que la

distribución de las instancias en el modelo nativo de Spark produce un mayor rendimiento

y mejor escalabilidad.

Utilizando esta estrategia para el aprendizaje de modelos multi-etiqueta, se decide

estudiar uno de los métodos con más aplicaciones pero que a su vez sufre de grandes

problemas de rendimiento: multi-label k Nearest Neighbor (Ml-knn). Este método hace

xiii

predicciones en base a la distancia que separa diferentes instancias. Por lo tanto, requiere

del almacenaje de todas las instancias conocidas. Para discernir de la mejor estrategia para

poder incorporar este método a sistemas distribuidos y que aprenda de un gran volumen de

datos, se estudian diferentes implementaciones: una implementación iterativa que comprueba

las distancias entre todas las instancias, otra que utiliza un árbol para indexar las instancias

a través de múltiples máquinas, y, por último, una que utiliza una serie de hashes para

indexar y agrupar las instancias. Estos métodos son comparados y evaluados respecto a sus

predicciones, sus tiempos de ejecución, y su escalabilidad respecto al número de instancias,

atributos, y etiquetas. Los resultados del estudio indican que el método basado en un

árbol permite ejecutar cientos de veces más rápido que los otros métodos manteniendo una

precisión equivalente a la de los métodos exactos.

Una de las caracteŕısticas que más dificulta el aprendizaje de los modelos multi-etiqueta

es la gran dimensionalidad de los datos, es decir, el gran número de atributos asignado a

las instancias. Por otra parte, se ha demostrado en múltiples ocasiones que la calidad de

los modelos aumenta descartando atributos irrelevantes y/o redundantes. Pero aún existe

mucho debate en torno a la forma en la que se puede evaluar cada uno de los atributos

respecto a múltiples etiquetas. Por lo tanto, realizamos un análisis detallado de las diferentes

estrategias discutiendo sus ventajas y desventajas. Tras lo cual seleccionamos el método

que consideramos más conveniente, especialmente para datos caracterizados por su gran

número de instancias y atributos. En base a esta estrategia proponemos dos métodos

nuevos, los cuales no requieren de ningún tipo de transformación de datos y son capaces

de utilizar múltiples etiquetas simultáneamente. El primer método selecciona los atributos

cuyas medidas individuales de información forman la mayor normal Eucĺıdea, mientras que el

segundo método selecciona aquellos que presentan la mayor media geométrica. Los resultados

indican que el primer método presenta los mejores resultados para datos binarios y con

un menor número de etiquetas, mientras que el segundo método en preferible para datos

continuos o con un mayor número de etiquetas.

xiv

Todos los algoritmos y métodos de la presente Tesis Doctoral han sido evaluados mediante

una serie de test no paramétricos. Los algoritmos propuestos han sido comparados frente a

los algoritmos más utilizados en el estado del arte en cada una de las tareas, por lo tanto,

validando la eficiencia de cada una de las propuestas.

Finalmente se presentan una serie de ĺıneas de investigación orientadas a ampliar o

mejorar las conclusiones obtenidas en la presente Tesis Doctoral. Todas estas ĺıneas de

investigación están relacionadas con el aprendizaje multi-etiqueta y/o el aprendizaje en

sistemas distribuidos.

xv

CHAPTER 1

INTRODUCTION

The emergence of new technologies has led to an exponential increase in the volume of data

that is produced worldwide. Some of the most relevant factors that leading this growth are

the incremental use of the Internet and social networks, the falling costs of the technology

devices, the migration from analog to digital systems, the growth of machine-generated

data, among others. According to International Data Corporation (IDC), the amount of

data created, replicated and consumed worldwide was about 16 ZB (1 ZB = 1012 GB) in

2016 [1]. Moreover, the current predictions forecast that by 2025, the global data will grow

to 163 ZB [2], which is more than 10 times the amount of data generated so far.

Consumers usually have accounted for around 70% of the total data created and consumed

per year. While the amount of data created by consumers will continue to grow in absolute

numbers, the volume of data generated by machines continues to grow quickly. The amount

of information created by consumers is being replaced by the information being created about

them [3]. Consequently, the percentage of data that is generated by machines per year is

increasing. This presents a promising scenario since the readings from machines monitoring

our world usually are more valuable than the data generated by consumers, which many

times is entertainment related. IDC estimates that by 2020, as much as 33% of the digital

data will contain valuable information if analyzed.

The rise of the big data age poses serious problems and challenges besides the obvious

benefits. As data becomes larger, it also becomes more complex and inexplicable, which

would pose substantial difficulties in deciphering and interpreting it by the limited mental

16

capabilities of humans [4]. Additionally, almost every business has a high demand for data

processing in real-time, because of business demands and competitive pressure. As a result,

the first problem is how to mine valuable information from massive data efficiently and

accurately. The second problem is to choose appropriate techniques that may harness the

worthwhile information in the vast collections of data.

Data scientists were the early pioneers in the big data research, and it has been one of

the most popular topics due to commercial and political values [5]. The analysis of the data

is often done using data mining techniques, which is the cross-disciplinary field that focuses

on describing the properties and finding patterns in the data. However, people usually incur

mistakes during analysis, or when trying to establish relationships in large and complex data.

Machine learning can be successfully applied to these problems, which is a technique that

extracts information from data by generalizing from experience. Data mining algorithms

build models that are a representation of the previously known data.

Every real-world object (instance) used on machine learning is represented by a set of

features. If the instances are given known labels then the type of learning is called supervised,

in contrast to whenever the instances are unlabeled, then it is called unsupervised. Traditional

supervised learning is the most popular task in machine learning and associates each instance

to their corresponding output. The problem is known as classification whenever the output

belongs to a set of categories, whereas a real-valued output is known as regression.

Although traditional supervised learning is prevailing and widespread, the assumption

that each object has only one unique label arises issues with many real-world scenarios.

Modern data is characterized by its ever-increasing volume and complexity, where an object

might be associated with multiple labels simultaneously. Following that consideration,

the multi-output learning paradigm emerges. Multi-output learning is a generalization of

traditional supervised learning, that ignores the constraint on how many outputs an instance

is assigned to.

17

This paradigm can consider a fixed number of real-valued outputs, therefore it is known

in the literature as multi-target [6]–[10], multi-variate [11]–[13], or multi-response [14], [15]

regression. On the other hand, whenever the paradigm assigns to each instance a set of

discrete labels, it is known as multi-label classification.

Multi-label classification was originally conceived to solve automatic text categorization

problems [16]. However, researchers later realized of the presence of multi-label tasks in

many other real-world problems which then draw more and more attention to this paradigm.

Multi-label objects, which are annotated with multiple labels, are found in many scenarios

from automatic annotation of multimedia contents [17]–[20], to bioinformatics [21]–[25], web

mining [26]–[28], rule mining [29]–[31], information retrieval [32], [33], tag recommendation [34],

[35], sentiment classification [36], music genre classification [37]–[39], etc.

Unfortunately, the processing capabilities of single machines have not kept up with the

ever-increasing volume and complexity of modern data. As a result, many organizations and

researchers are migrating their computations across multiple machines, i.e., clusters. This

distributed environment comes with several issues and challenges [40], namely: Heterogeneity,

which describes a system consisting of multiple distinct components; Openness, the property

of each subsystem to be open for interaction with other systems; Security, the information

should be safe and protected against any corruption; Failure handling detects failures and

allows the system to recover; Transparency, making the system to be perceived as a single

machine by the users, thus local and remote resources are accessible in the same way;

Concurrency, the capability to handle several requests to access a shared resource simultaneously;

Scalability, a system is scalable if it remains effective as the number of users, data, or resources

increase.

Consequently, a wide range of programming models has been designed for distributed

environments. At first, Google introduced the MapReduce [41] programming model in 2003,

which is considered one of the first distributed frameworks for large-scale data processing.

The term MapReduce refers to the two individual tasks that are performed. First, the map

18

task takes a set of data and converts it into another set of data, where the elements are

broken down into key-value tuples. Second, the reduce task takes the output from a map

as input and combines those previous results. Programs written in this functional style are

automatically parallelized and executed on a large cluster. The run-time system takes care

of the details of partitioning the data, scheduling the execution across a set of machines,

handling the failures, and managing the required inter-machine communication.

One of the first implementations of the MapReduce model was Apache Hadoop [42].

Hadoop started as a Yahoo project in 2006, becoming a top-level Apache open-source project

later on. Despite the Hadoop ecosystem has grown and matured over the years, it presents

some important weaknesses. Some of these issues are the impossibility to maintain data in-

memory, thus it reads the same data iteratively and materializes intermediate results in local

disks in each iteration, requiring lots of disk accesses and unnecessary computations [43]–[45].

Consequently, these issues lead to poor performance on online, interactive, and/or iterative

methods, which are crucial for data scientists in machine learning and data mining.

Apache Spark [46] was initially developed by the AMPLab at UC Berkeley in 2012. It

is also a top-level Apache project based on the MapReduce programming model to process

data in parallel across a cluster. Spark has become the most powerful engine for the big

data scenario, overcoming the limitations of Hadoop. Spark is able to cache intermediate

results and reused data in-memory, to query it repeatedly using in-memory primitives, thus

making it suitable for large iterative jobs. Using in-memory data has been proved to be of the

most relevance in machine learning scenarios. In fact, Spark has been shown to outperform

Hadoop in many cases (up to 100x in memory) [47].

In this thesis, several approaches have been devised for scalable multi-label learning

on large-scale data. Especially, the high-dimensionality of the multi-label data has been

addressed by implementing, on the proposed distributed architectures, a classifier sensitive

to the quality of the features and a series of selection methods to select the most relevant

features.

19

1.1 Contributions of the Thesis

Most of the current multi-label methods are built using the capabilities of single machines,

which considerably limits the computational resources of the system. Multi-label learning

is a challenging task characterized by the properties of its data, such as a large number of

instances, the high-dimensionality of the features, the number of labels, and the dependencies

between labels, among others. These characteristics also present the opportunity to capture

and exploit possible dependencies between labels, at an increased computational complexity.

Therefore, there is a pressing need to develop scalable algorithms to harness the worthwhile

information present in the label dependencies. This thesis aims to define a distributed

architecture that would allow scaling traditional and our novelty processing techniques and

learning methods efficiently according to the properties of multi-label data.

The core of this thesis identifies multi-label data as an aggregation of the information of

all the labels. This phenomenon leads to the characteristic high-dimensionality of the multi-

label data. As a result, there is plenty of irrelevant information that could be filtered in order

to improve the learning process. The final goal of this thesis is to define the best methodology

to learn multi-label data by detecting and filtering this information. However, due to the

novelty of multi-label learning on Apache Spark, it was required to build everything from

scratch. Therefore, the research carried out has to lead to the following contributions to the

field of multi-label classification:

- Parallel and distributed multi-label architectures: Evaluating the performance

of five approaches to speed up a multi-label ensemble method: the baseline Mulan

implementation using a single thread on a single machine, a multi-threading version of

Mulan on a single machine, a distributed version of Mulan where multiple instances of

Mulan are deployed in each machine, a distributed version of Mulan where each machine

has a multi-threading version of Mulan, and a Spark native implementation of the

multi-label learning paradigm. The analysis compares the quality of the predictions,

as well as the execution time and scalability of the different approaches.

20

- Distributed multi-label k nearest neighbors: Design and evaluation of a distributed

multi-label k nearest neighbors method. This method considered three approaches,

which represent the main strategies to find nearest neighbors in a distributed environment:

an iterative pair-wise distance computation, a tree-based method that index the instances

across multiple nodes, and a local sensitive hashing method that builds multiple hash

tables to index the data. Each of these methods was compared and evaluated with

respect to the reliability of the predictions, execution times for train and test phases,

and a study of scalability with respect to the number of instances, features, and labels.

- Multi-label mutual information measure: Analysis of the feature selection strategies

for multi-label learning and the mutual information adaptation for multi-label data.

The best strategy to adopt mutual information was discussed, in order to clarify the

debate into how to consider the information between a feature and a set of labels.

- Distributed multi-label selection methods for continuous features: Proposing

the implementation of two distributed feature selection methods on continuous features

for multi-label data: a method that maximizes the mutual information of the selected

feature subset (MIM), and a method that maximizes the relevance of the selected

features while minimizing the redundancy among the selected features (mRMR). These

methods handled continuous features directly, and their performance was compared to

three multi-label feature selection methods which require the values discretization.

- Distributed multi-label selection methods for discrete features: Proposing

two distributed feature selection methods on discrete features for multi-label data: a

method that selects the features with the largest L2-norm (ENM), and a method that

selects the features with the largest geometric mean (GMM). These methods study

two opposite approaches to aggregate the MI of multiple labels. Their performance

was compared to three multi-label feature selection methods and the two previously

proposed methods.

21

- Comparison of proposed methods to traditional methods: Comparison of our

proposed methods against three distributed implementations of traditional feature

selection methods. Traditional methods require discrete features, therefore we applied

the Freedman-Diaconis rule [48] for the continuous features, which to the best of our

knowledge is the first time it was applied to a multi-label scenario. The results were

evaluated using the distributed multi-label k nearest neighbors method. The analysis

studies the accuracy and execution time produced by an increasing feature subset.

This thesis is structured as follows:

- Chapter 2 provides an in-depth study of multi-label learning and distributed systems.

- Chapter 3 discusses the different approaches to build a distributed multi-label architecture.

- Chapter 4 presents the distributed multi-label k nearest neighbors.

- Chapter 5 introduces a series of distributed feature selection methods for multi-label

problems.

- Chapter 6 provides a synthesis of the contributions and concluding remarks.

- Chapter 7 discusses future lines of research and work.

22

CHAPTER 2

BACKGROUND

This chapter presents the theoretical background and establishes the foundations of our thesis

based on multi-label classification and distributed computing. First, the multi-label learning

paradigm is discussed, introducing the definition of the problem, the evaluation metrics,

and the different strategies to solve it. Second, the distributed computing background is

presented, and the MapReduce programming model is introduced.

2.1 Multi-label learning

Multi-label learning is considered a case of traditional supervised learning, i.e., learning

from a training set of instances correctly identified with their label. However, multi-label

classification generalizes this problem, by relaxing the property that assigns each instance

with a label and allowing to each instance to belong to multiple labels simultaneously [49].

This paradigm reflects the true nature of modern data, and as a result, it has attracted a

growing interest in the last decade from industry and academia [17]–[19], [27], [37]–[39]

Figure 2.1 shows two movies selected from the IMDb website1, which contains more

than 4 millions titles. Each of the movies has assigned a score out of ten, the MPAA rating,

and some genres, among other information. There is a finite number of rating categories

(G, PG, PG-13, R, NC-17), and each movie can only be categorized with only one out of

those. Therefore, classifying a movie within those rating categories is considered a multi-

1https://www.imdb.com

23

(a) Movie1 = {Adventure, Drama, Sci-Fi} (b) Movie2 = {Drama, Horror, Thriller}

Fig. 2.1.: Example annotation of movie genre annotation

class classification problem. Similarly, predicting the numerical score of a movie would

be a regression problem. On the other hand, predicting genre tags represent a different

problem. Each movie can be assigned with multiple categories, e.g., the first movie belongs

to {Adventure, Drama, Sci-Fi} genres, while the second movie belongs to {Drama, Horror,

Thriller}. The task of the multi-label classification is to predict the different genres that a

movie belongs to.

Figure ?? presents two pictures containing a beach in a semantic image annotation

scenario. In traditional classification, both of these pictures would belong to the class Beach,

despite representing complete different scenes. The first picture could be associated with

the labels {Beach, Mountain, Clear Sky}, while the second picture belongs to a different

scenario and is associated with the labels {Beach, Urban, Cloudy Sky}. Multi-label data

is instinctively associated with a semantic image classification scenario, where the pictures

would always belong to multiple categories [17], [20].

24

(a) Image1 = {Beach, Mountain, Clear Sky} (b) Image2 ={Beach, Urban, Cloudy Sky}

Fig. 2.2.: Example annotation of semantic scene classification

Another popular multi-label application uses text data. Text analytics is a difficult task

since it involves structuring the input text and deriving patterns within the structured data.

Typical text tasks include entity extraction, sentiment analysis, document summarization,

text categorization, text clustering, etc. Many of these task associate multiple outputs to

each text, for example, text categorization involves the assignment of one or more predefined

categories based on their content. Figure 2.3 presents two news headlines which have been

categorized as {Google, Web, Tech} and {Tech, Transportation, Artificial Intelligence},

respectively. Therefore, the task to learn a model that assigns these categories to each

news fall under the multi-label paradigm.

These are just a few examples of the many scenarios where multi-label learning can be

applied. In these scenarios, extra information can be derived from the dependencies between

labels. However, this is a non-trivial task due to many factors such as the high-dimensionality

of the features and labels, as well as the size of the data.

There are some variations to the multi-label learning paradigm, where each instance

is represented by a bag of instances [50], or where the output is structured following a

hierarchy [24], [51]. In order to avoid confusion, we only consider single-instance representation

associated with unstructured label sets.

25

(a) News1 = {Google, Web, Tech} (b) News2 = {Tech, Transportation, Artificial Intelligence}

Fig. 2.3.: Example annotation of text categorization

2.1.1 Formal definition and notation

Let X = Rd (or Zd) be a d-dimensional input space of numerical or categorical features,

and Y = {y1, y2, . . . , yq} be the label space with q possible class labels. Each multi-label

instance (xi, Yi), xi ∈ X is a d-dimensional feature vector (xi1, xi2, . . . , xid) and Yi ⊆ Y is

the set of labels associated with xi. The set Yi is also known as the set of relevant labels

of xi, thus the complement Y i is the set of irrelevant labels. Labels associations usually are

represented as a q dimensional binary vector y = (yi, y2, . . . , yq), where its j-th component

yj is 1 if its a relevant label (yj ∈ Y) and 0 otherwise. Table 2.1 summarizes the notation,

based on [52], which is used to establish the formal definitions from previous works, as to

explain into detail our contributions.

Multi-label classification is concerned with learning the function h : X → 2Y , which

outputs a bi-partition of the set of labels into relevant and irrelevant. For any unseen

instance x ∈ X , the multi-label classifier h(·) predicts h(x) ⊆ Y as the set of relevant labels

for x. On the other hand, label ranking defines a function f : X × Y → R, which outputs

the ordering of the labels according to their relevance. Thus, f(x, y) can be regarded as the

26

Table 2.1.: Summary of symbols and notation

Notation Definition

X Instance space Rd (or Zd)
x d-dimensional feature vector xi = (xi1, . . . , xid), xi ∈ X
d Number of features

Y Label space {y1, y2, . . . , yq}
Y Label set associated to x (Y ∈ Y)

Y Complementary set of Y

Z Predicted label set (Y ∈ Y)

q Number of labels

D Multi-label training set {(xi, Yi), 1 ≤ i ≤ m}
m Number of training instances

S Multi-label test set {(xi, Yi), 1 ≤ i ≤ p}
p Number of test instances

h(·) Multi-label classifier h : X → 2Y , where h(x) returns the relevant labels for x

f(·, ·) Real-valued function f : X × Y → R, where f(x, y) returns the confidence of y

t(·) threshold function t : X → R, where h(x) = {y | f(x, y) > t(x), y ∈ Y}

δ(·) δ(y) returns the frequency of label y

| · | | A | operator that returns the cardinality of a set A
[[·]] [[π]] operator that returns 1 if the predicate π holds, and 0 otherwise

φ(·, ·) φ(Y, y) returns 1 if y ∈ Y, and 0 otherwise

Dj Binary training set {(xi, φ(Yi, yj))} derived from D for label yj

ψ(·, ·, ·) ψ(Y, yj , yk) returns 1 if yj ∈ Y and yk /∈ Y , and 0 if yj /∈ Y and yk ∈ Y
Djk Binary training set {(xi, ψ(Yi, yj , yk))} derived from D for labels (yj , yk)

σ(·) Injective function σY : 2Y → N mapping the subsets of Y to natural numbers

D†Y Multi-class training set {(xi, σY(Yi))} derived from D
B Binary learning algorithm

M Multi-class classification algorithm

27

confidence of y ∈ Y being the proper label of x. Note that a classifier h(·) can be derived

from the function f(·, ·) by: h(x) = {y | f(x, y) > t(x), y ∈ Y}, where t : X → R is a

threshold function which partitions the label space into relevant and irrelevant labels.

This document focuses primarily on the multi-label classification problem since all the

proposed methods and contributions aim to improve the quality of the predictions over the

relevance set of labels. The label ranking problem concerns about finding the right ordering

which requires specific processing and learning methods.

2.1.1.1 Threshold calibration

Although multi-label classification and label ranking are two tasks whose aim is to solve

different problems, in practice most of the multi-label learners build a real-valued function

f(·, ·) as the inferred model [52]. These models can be applied directly to the label ranking

problems; or they can be used into multi-label classification through the use of a threshold

function, i.e., the real-valued function f(x, y) on each label should be calibrated with the

threshold function t(x) in order to predict the set of relevant labels h(x).

The calibration of the threshold function is usually done by setting a constant value.

Assuming that f(x, y) returns values in R, the most straightforward approach is to set the

value to zero [17]. However, the default calibration value in most of the implementations is

0.5, considering that function f(x, y) returns the posterior probability of y being a relevant

label of x [21]. Furthermore, the threshold value can be set up to minimize some multi-label

metric between the training and test instances, such as the label cardinality [53].

Consequently, the threshold value can be determined using more complex approaches.

For example, a linear model for the t(x) can be built stacking the real-valued outputs from

the function f(x, y) for each label. Then, the weights of the model can be found solving the

linear least square problem that uses the target output for each instance that partition Y

and minimizes the number of miss-classifications [23], [54].

28

2.1.1.2 Label correlations

Multi-label classification poses the challenge of learning an output space whose label set

space grows exponentially with the number of labels. However, it also presents the possibility

of exploiting the correlations (or dependencies) among labels, in order to considerably

improve the final predictions [55], [56]. For example, in the semantic scene scenario, the

beach images have a high probability of being annotated with other labels such as Sea, Ship,

Sand, Volley, but probably not with labels like River, Truck, Road, or Basketball. Using the

IMDb website scenario, a movie being classified as Horror will possibly be associated with

other genres such as Thriller or Drama, but possibly not with Family or Animated.

Therefore, additional and valuable information about what the object is can be provided

by the labels, in contrast to information about the characteristics of the object provided by

the features. Using this extra information is crucial, but as it has been shown, the more

labels the more possible label sets with many levels of interactions can be considered. These

interactions are known as correlations, and depending on how they are exploited the learning

techniques can be categorized into the following groups [52], [55], [56]:

- First-order strategies : It refers to the techniques that address the multi-label learning

by considering the labels independently, thus ignoring interactions between different

labels. The most common approach decomposes the multi-label problem into multiple

binary classification problems [17], [21]. The main advantage of these methods lies in

its simplicity. However, inferred models will ignore any correlations between labels.

- Second-order strategies : This approach tackles the label correlations in a pairwise

manner. Either by considering the ranking between the relevant labels and irrelevant

labels [22], [23], [57] or by considering the interactions between any pair of labels [18],

[33], [58], [59]. This strategy exploits the direct correlations between labels. However,

it ignores deeper dependencies such as those arising between all the labels, or those

that influence other correlations, in turn.

29

- High-order strategies : This approach can either consider the influence that all the

labels have on each other [60]–[63] or address the correlations among certain subsets

of labels instead [53], [64]–[66]. This strategy allows a stronger influence between the

labels, thus eventually leading to harnessing more worthwhile information from the

data. However, this comes at a high cost since the more correlations are considered,

the more challenging and less scalable becomes on high-dimensional label spaces.

The previous categorization groups the strategies by the level of correlations. The

correlations, in turn, can be categorized from a probabilistic point of view into conditional

and unconditional (marginal) label dependences [67]–[70]. The conditional dependences

capture the correlations between labels given a certain instance [65], [67]. While, marginal

dependences capture the correlations between labels, or how likely are they to occur together,

independently of any instance [60], [71], [72].

2.1.2 Learning algorithms

This section covers the most representative methods of each category. The methods were

selected with respect to the following criteria: broad spectrum that covers a wide range of

design strategies, innovative discoveries which have led to a number of follow up methods,

direct or indirect relation to our contributions, and highly cited algorithms in the field.

The methods detailed are strictly restricted to the multi-label classification problem,

therefore ignoring those targeting the label ranking problem. Additionally, we do not include

multi-label hierarchical classification methods since it has been shown that they perform

similarly to those with a flat representation of the labels [73]. For example, [74] compared

the performance of a naive Bayes method using a flat and a hierarchical structure, to find

out that they performed similarly. Furthermore, [73] compared a regular flat classification

against two types of hierarchies. The results indicated that the hierarchies offer little to

no benefit to the predictions, while a the same time introduced an overhead which causes

memory problems in the larger datasets. The lack of considerable prediction improvement

30

Multi-label learning algorithms

Problem Transformation

Simple transformations

Binary methods

Label combination methods

Pairwise methods

Algorithm Adaptation

Decision trees

Support Vector Machiines

Lazy learning

Neural networks

Probabilistic methods

Fig. 2.4.: Multi-label learning algorithm categorization

is due to the fact that the errors propagate down the hierarchy, and the label correlations

being narrowed down to concerned label subset.

The most accepted taxonomy for the multi-label learning algorithms categorize the

methods in two main approaches: problem transformation and algorithm adaptation [75].

The former transforms the multi-label problem into one or more single label problems,

thus it maps the predictions of single label algorithms onto multi-label. The latter consists

of extending existing single label algorithms in order to handle multi-label data directly.

Figure 2.4 presents the taxonomy of the multi-label learning algorithms covered in this

section. The notation and definitions of the multi-label learning methods are based on

on [52], [76], [77].

31

Table 2.2.: Example multi-label dataset

Instance Multi-label output
Labels y1 y2 y3 y4

1 {2, 3, 4} 0 1 1 1
2 {1} 1 0 0 0
3 {1, 3} 1 0 1 0
4 {1, 4} 1 0 0 1
5 {1, 2, 3} 1 1 1 0

2.1.2.1 Problem transformation methods

Table 2.2 presents a multi-label training set D with five instances, this example data will

be used to describe the main problem transformation methods. Note that the feature values

of each instance are ignored here since the transformations are done on the label space.

Simple transformations

The most straightforward approach is based on transforming the multi-label problem into a

multi-class classification problem by just using a single label. These transformations define

a strategy to pick a label in each instance, or even none (thus discarding the instance).

The ignore transformation simply ignores all the instances that belong to more than

one label simultaneously. Therefore, it selects the instances whose relevant label set has a

cardinality equal to one.

D†Y = {(xi, y1) | |Yi| = 1, 1 ≤ i ≤ m} (2.1)

The copy transformation takes each multi-label instance and makes as many copies as

relevant labels are present. Each new instance retains the information of a single label.

D†Y = {(xi, yj) | yj ∈ Y , 1 ≤ i ≤ m, 1 ≤ j ≤ q} (2.2)

32

This method can be extended by incorporating the weight of each instance, which would

be inversely proportional to the number of relevant labels of that instance.

D†Y = {(xi, yj,
1

|Yi|
) | yj ∈ Y , 1 ≤ i ≤ m, 1 ≤ j ≤ q} (2.3)

The select transformation replaces the set of relevant labels of each instance by selecting

one of its members. There are three main strategies: select-max transformation which uses

the member that is most frequent in the data, select-min transformation that selects the most

infrequent member, and select-random transformation that selects a member randomly.

D†Y = {(xi, yj) | arg max
yj∈Yi

δ(yj), 1 ≤ i ≤ m} (2.4)

D†Y = {(xi, yj) | arg min
yj∈Yi

δ(yj), 1 ≤ i ≤ m} (2.5)

D†Y = {(xi, yrand) | 1 ≤ i ≤ m} (2.6)

For an unseen instance x, these methods just predict the most relevant label, e.g., the

label with the highest confidence in the multi-class problem. Therefore, the predicted set of

labels Y will only have one member. Table 2.3 shows the results of applying the different

transformations according to the example data in Table 2.2.

These methods transform multi-label problems using simple approaches to single-label

problems. However, none of these approaches is likely to maintain the underlying data

distribution and therefore will probably make less accurate predictions. Although most of

these transformations usually are never present in literature comparisons, due to their poor

performance, some of these techniques have been used for other purposes such as feature

selection [78].

33

Table 2.3.: Simple transformations

Instance Label

2 4

(a) Ignore transf.

Instance Label

1 2
1 3
1 4
2 1
3 1
3 3
4 1
4 4
5 1
5 2
5 3

(b) Copy transf.

Instance Label Weights

1 2 0.33
1 3 0.33
1 4 0.33
2 1 1.0
3 1 0.5
3 3 0.5
4 1 0.5
4 4 0.5
5 1 0.33
5 2 0.33
5 3 0.33

(c) Copy-weight transf.

Instance Label

1 3
2 1
3 1
4 1
5 1

(d) Select-max transf.

Instance Label

1 2
2 1
3 3
4 4
5 2

(e) Select-min transf.

Instance Label

1 4
2 1
3 3
4 1
5 2

(f) Select-random transf.

Binary methods

The Binary Relevance (BR) method decomposes the multi-label data into q = | Y |

binary independent single-label datasets, where each one corresponds to a label in the label

space [17]. Each of these datasets keeps the original number of instances and categorizes

each of them depending on whether they belonged to the corresponding label or not.

BR constructs a binary classification dataset Dj for the j-th label according to the

relevance of each training example to yi, thus:

Dj = {(xi, φ(Yi, yj)) | 1 ≤ i ≤ m}

where φ(Yi, yi) =

1, if Yi ∈ yj

0, otherwise

(2.7)

34

Table 2.4.: Binary Relevance data transformation

Instance Label

1 0
2 1
3 1
4 1
5 1

(a) D1 : y1

Instance Label

1 1
2 0
3 0
4 0
5 1

(b) D2 : y2

Instance Label

1 1
2 0
3 1
4 0
5 1

(c) D3 : y3

Instance Label

1 1
2 0
3 0
4 1
5 0

(d) D4 : y4

Once the label space has been split into individual binary labels, a binary learning

algorithm B can be applied to induce a classifier B(D|) → gj, i.e., gj : X → R. As a

result, any instance (xi, Yi) will be involved in the training processing of q binary classifiers.

Whether they will be labeled positively if yi ∈ Yi and zero otherwise. Table 2.4 shows the

transformation results of applying BR to the example multi-label data in Table 2.2.

Once all the binary classifiers have been built, BR can predict the associated label set

of an unlabeled instance by combining the relevant labels of the individual predictions.

Y = {yj | gj(x), 1 ≤ j ≤ q} (2.8)

BR is a straightforward approach with relatively low complexity. It scales linearly with

the number of labels, and since they are treated independently they could be added and

removed in an evolving and dynamic scenario [53]. On the other hand, BR presents a series

of disadvantages [49], [76] which are directly related to the fact that is a first-order approach,

handling each label independently which can fail to predict label combinations and rankings

besides the ignoring the label correlations. Additionally, it introduces the problem of instance

imbalance since after the transformation it is expected that the negative instances outnumber

the positive ones. This issue increases with the number of labels, which also increments the

number of binary classifiers.

35

The Classifier Chains (CC) [53] method addresses the incapability of BR to handle

label correlations. This algorithm transforms the multi-label learning problem into a chain

of binary classification problems, i.e., BR transformations, by incorporating in the features

of the training instances of each binary classifier the label predictions of the preceding ones.

Let ρ : {1, . . . , q} → {1, . . . , q} be a permutation function which is used to define a order

of all the labels, i.e., yρ(1) � yρ(2) � · · · � yρ(q). CC would construct a binary classification

dataset Dj for the j-th label by appending each instance with its relevance to those labels

preceding yρ(j) :

Dρ(j) = {
(
[xi, pre

i
ρ(j)], φ(Yi, yj))

)
| 1 ≤ i ≤ m}

where preiρ(j) = (φ(Yi, yρ(1)), . . . , φ(Yi, yρ(j−1)))

(2.9)

Here, preiρ(j) represents the binary predictions {0, 1} of the preceding labels of yρj on xi.

After the predictions have been concatenated to xi a binary learning algorithm B is applied

to induce a classifier B(Dρ(|))→ gρ(j), i.e., gρ(j) : X ×{0, 1}j−1 → R. Therefore, bρ(j) predicts

whether yρ(j) is a relevant label or not.

For an unseen instance x, CC can predict its associated label set Y by querying iteratively

the chain of classifiers as follows:

Y = {yρ(j) | λxρ(j), 1 ≤ j ≤ q}

where λxρ(j) = gρ(j)([x, λ
x
ρ(1), . . . , λ

x
ρ(j−1)]), (2 ≤ j ≤ q)

(2.10)

Predictions of CC highly depend on the ordering specified by the ordering function ρ.

This issue has been addressed by using an Ensemble of Classifier Chains (ECC) [53]

which builds n random chains over the label space, i.e., {ρ1, . . . , ρn}. Two different approaches

have been proposed over this method, one where the chain ρr uses a sampling of D without

replacement (| Dr | = 0.67· | D |) or with replacement (| Dr | = | D |).

CC is considered an extension of BR, as it keeps the advantages of BR while incorporating

the correlations between labels. Therefore, it is considered a high-order approach, despite

incorporating the correlations in a random manner. However, the iterative nature of this

algorithm loses the possibility of parallelization of BR due to the chaining property.

36

Label combination methods

The Label Powerset (LP) method [37] transforms the multi-label data by considering

each unique combination of labels as a class. As a result, it transforms the multi-label

classification problem into a multi-class problem.

LP uses a function σY : 2Y → N to map each power set of Y present in the training set

into the natural numbers. The algorithm also defines an inverse function σ−1Y : N → 2Y to

map back from the natural numbers into the label space, therefore:

D†Y = {(xi, σ(Yi)) | 1 ≤ i ≤ m} (2.11)

where the set of classes covered, whose cardinality is min(m, 2q), would be:

Γ
(
D†Y
)

= {σY(Yi) | 1 ≤ i ≤ m} (2.12)

The new learning problem can be solved by applying a multi-class learning algorithm

M to induce a multi-class classifier M(D†Y) → g†Y , i.e., g†Y : X → Γ(D†Y). Therefore, any

instance (xi, Yi) will be assigned a new class σY(Yi), and then will be used in the training

process of the multi-class classifier. Table 2.5 shows the transformation results of applying

LP to the example multi-label data in Table 2.2.

After the multi-class classifier has been trained, the relevant set of labels associated with

an unseen instance can be predicted by querying the multi-class classifier and mapping the

result back to Y with the inverse function:

Y = σ−1Y
(
γY(x)

)
(2.13)

LP succeeds over BR in considering the correlations between labels, since it learns

complete subsets of Y . Additionally, it only needs to learn one single-label classifier, in

contrast to BR whose number of classifiers is equal to the number of labels. However, LP

has a series of major limitations directly related to the dimensionality of the label space.

The larger the number of labels, the less frequent most of the combinations will be in the

37

Table 2.5.: Label Powerset data transformation

Instance Label

1 4
2 1
3 2
4 3
5 5

training set, thus leading to an extreme class imbalance. Additionally, this low frequency on

many label combinations can lead to some of them to do not appear into the training set

at all, as a result, the multi-class classifier would never learn those combinations, therefore

LP would be limited to predict only the label sets present in the training set. Additionally,

the number of classes that the function maps to increases exponentially with the number

of labels, since it is bounded by min(m, 2|Y|), thus leading to an exponential complexity in

the worst-case scenario. Those issues are the reason for the quick deterioration of the LP

performance for larger label sets [60].

The Pruned Problem Transformation (PPT) method [79] addresses these issues

by pruning away the instances with a label set whose frequency is below than a user-defined

threshold τ before applying the LP method.

PPT uses a function freq(Yi) that computes the frequency of a label set Yi in the

training set. Using this function, an instance (xi, Yi) would be removed if the frequency of

its label set freq(Yi) is smaller than the defined threshold τ , as follows:

D†Y = {(xi, Yi) | δ(Y1) ≥ τ, 1 ≤ i ≤ m} (2.14)

Once the multi-label training set has been transformed, PPT applies the LP algorithm

(although it could apply any other). Therefore, the resulting training set D†Y would be used

to learn a multi-label classifier. For any unseen instance x, the learned multi-label classifier

should be queried to predict the set of relevant labels.

38

However, since some of the patterns are discarded from the original data, this is an

irreversible transformation in which there may be a loss of information. As a result, the

performance may be limited by the threshold parameter which is generally unknown in

practical situations.

Nonetheless, pruned instances can be reintroduced into the transformed set D†Y with

a smaller and more frequent label set. The method uses a strategy to prevent an obvious

increase of the size of the transformed set or a decrease of the average number of labels per

instance which, in turn, can cause too few labels to be predicted for an unseen instance.

Therefore, it proposes to generate every subset {si ∈ Yi | freq(si) ≥ τ} and rank these

subsets by the number of labels it contains | si | and select the top-ranked subsets without

label repetitions. The loss of information is the main drawback of the PS method, therefore

some methods have tried to minimize the impact of this problem. The Ensemble of Pruned

Sets (EPS) algorithm [79] addresses the issue of information loss by applying a set of

PS methods to a sampled training set using bootstrap. This method has been shown to

outperform PS and LP methods while remaining competitive in terms of efficiency.

The RAndom k-labELsets (RAkEL) method [65] builds an ensemble of LP classifiers,

although as an ensemble method it could use any other multi-label classifier. Each of

the classifiers is trained with a random subset of Y of k labels. This strategy avoids the

exponential computational cost and the extremely instance imbalance associated with high

dimensional label space. Therefore, RAkEL keeps the simplicity and advantages of LP, while

at the same time overcoming its major drawback.

RAkEL considers Yk the collection of all the random label subsets, where the l-th subset

is denoted as Yk(l), i.e., Yk(l) ⊆ Y , | Yk(l) | = k, 1 ≤ l ≤
(
q
k

)
. Therefore, a multi-class

classifier can be built using the labels of the training instances that intersect with the selected

random subset:

D†Yk(l)
= {
(
xi, σ(Yi ∩ Yk(l))

)
| 1 ≤ i ≤ m} (2.15)

39

where the set of classes covered in D†Yk(l)
are:

Γ
(
D†Yk(l)

)
= {σYk(l)(Yi ∩ Yk(l)) | 1 ≤ i ≤ m} (2.16)

After the dataset is transformed, a multi-class learning algorithm M can be used to

induce a multi-class classifier M(DYk(l))→ g†Yk(l)
, i.e., g†Yk(l)

: X → Γ(D†Yk(l)
).

For an unseen instance x, RAkEL predicts the relevant set of labels by combining the

predictions of the component classifiers. RAkEL regards a certain label yj as relevant as

long as at least half the classifiers, whose random subsets contain it, vote so:

Y = {yj |
µ(x, yj)

φ(x, yj)
> 0.5, 1 ≤ j ≤ q}

φ(x, yj) =
n∑
r=1

[[yj ∈ Yk(lr)]], (1 ≤ j ≤ q)

µ(x, yj) =
n∑
r=1

[[yj ∈ σ−1Yk(lr)

(
kYk(lr)(x)

)
]], (1 ≤ j ≤ q)

(2.17)

Here, φ(x, yj) counts the number of classifiers that contain yj in their label subset

space, i.e., the maximum number of possible votes. While µ(x, yj) counts the number of

classifiers that actually predict yj as a relevant label, i.e., the actual number of votes. The

recommended settings for RAkEL is to use k = 3 and n = 2q [65], therefore each label is

present on nk/q random subsets on average.

RAkEL is considered a high-order approach where the degree of correlations between

labels is controlled by the size of the random subsets. This algorithm succeeds to bound

the quality of the predictions of its base classifier while remaining competitive in terms of

computational complexity. However, each label is present on nk/q random subsets which

is probably more than those that are directly correlated with it. As a result, RAkEL

successfully takes the label correlations into account at the cost of blindly guessing which

subsets could be correlated.

40

Pairwise methods

The Ranking Pairwise Comparison (RPC) [57] method transforms the multi-label

classification problem with q possible labels, into a q(q − 1)/2 (or
(
q
2

)
) binary classification

problems. Each of these new classifiers will learn from the generated data resulting from

comparing each label pair (yj, yk) (1 ≤ j < k ≤ q). Although this method generally aims to

obtain the ranking of the labels, the definition here will focus on how it is used to learn the

relevant set of labels in the multi-label classification problem.

RPC constructs a binary training set for each label pair (yj, yk), 1 ≤ j < k ≤ q. The

training set will consider the instances that belong to at least one of the labels in the pair,

but not both. Therefore, the instances are selected based on the relative relevance of yj with

respect to yk:

Dj,k = {(xi, ψ(Yi, yj, yk)) | φ(Yi, yj) = φ(Yi, yk), 1 ≤ i ≤ m}

where ψ(Yi, yj, yk) =

1, if yj ∈ Yi and yk /∈ Yi

0, if yj /∈ Yi and yk ∈ Yi

(2.18)

After all the binary training sets have been built, a binary learning algorithm B can be

applied to each of them to induce a classifier B(Dj,k) → gjk, i.e., gjk : X → R. Therefore,

any instance (xi, Yi) will be involved in the training process of a maximum of
(
q
2

)
binary

classifiers. Table 2.6 shows the transformation results of applying RPC to the example

multi-label data in Table 2.2.

For any unseen instance x, RPC will query the
(
q
2

)
trained binary classifiers to combine

and average their predictions on each label:

Y = {yj |
ζ(yj)

q − 1
, 1 ≤ j ≤ q}

where ζ(yj) =

j−1∑
k=1

gkj(x) ≤ 0.5 +

q∑
k=j+1

gjk(x) > 0.5

(2.19)

41

Table 2.6.: Ranking pairwise comparison data transformation

Instance Label

1 0
2 1
3 1
4 1

(a) D12 : y1 vs. y2

Instance Label

1 0
2 1
4 1

(b) D13 : y1 vs. y3

Instance Label

1 0
2 1
3 1
5 1

(c) D14 : y1 vs. y4

Instance Label

3 0

(d) D23 : y2 vs. y3

Instance Label

4 0
5 1

(e) D24 : y2 vs. y4

Instance Label

3 1
4 0
5 1

(f) D34 : y3 vs. y4

Here ζ(yj) sums the predictions for yj of all the binary classifiers where the label is

involved, either as a positive value or as zero.

RPC is categorized as a second-order approach since it considers the correlations of

pairs of labels. This method is usually involved in the label ranking problem since it is

straightforward to extend it to produce an ordering of labels by counting the votes on each

label [57]. A modification of this method, known as Calibrated Label Ranking (CLR),

has been proposed for label ranking problems where a virtual label is included to separate

the set of relevant and irrelevant labels.

2.1.2.2 Algorithm adaptation methods

This category of algorithms modifies the traditional classifiers to handle multi-label

problems directly. Most of these methods have been proposed with a specific problem in

mind, for example, algorithm adaptations for decision trees were presented to tackle the

biological datasets [21], [80], while probabilistic models were used on text categorization [81].

42

Furthermore, algorithm adaptation methods inevitably involve inner transformations,

these transformations are carried out internally by the classifier in order to adapt to multi-

label data. Despite most of these algorithms do not apply explicitly problem transformations,

they can still be categorized as Binary, Label combination or Pair-wise transformations.

There is a wide range of algorithms that have been proposed in the literature, this section

will cover the most relevant ones grouped by their nature. Although many algorithms report

very successful results in comparison to problem transformation approaches, their formula

derivations are based on the concepts used by the problem transformations.

Decision trees

The Multi-label Decision Tree (ML-DT) method [21] adapts the popular decision tree

algorithm to handle multi-label data directly. This implementation allows multiple labels

to be in the leaves nodes and modifies the information gain criterion to describe how much

information was needed to represent all the labels that belong to it.

ML-DT modifies the information gain criterion using a multi-label entropy definition to

build a decision tree recursively. Given a multi-label training set D with m instances, the

information gain achieved by splitting the dataset along the attribute is:

IG(D, A) = HML−DT (D)−
∑
υ∈A

| Dυ |
| D | HML−DT (Dυ) (2.20)

Here, Dυ refers to the subset of D with a value υ for attribute A. For real-value features,

the information gain could be adapted by subtracting to the total entropy of D the sum of

the entropies of the subsets with larger and smaller values than υ.

ML-DT follows the same strategy to build the tree as the C4.5 tree [82]. First, it finds

value υ that splits the data while maximizing the information gain, and then it creates two

child nodes with the corresponding subsets. The process is invoked recursively until a certain

stop criterion is met, e.g., the size of a child node is below a certain threshold.

43

In order to compute the information gain over a specific set of multi-label instances, a

multi-label entropy formulation needs to be defined. The proposed multi-label entropy is

the sum of the information needed to describe the membership or non-membership of each

label. Therefore, using p(yi) as the probability of membership of a given label in D, the

multi-label entropy can be redefined as follows:

HML−DT (D) = −
q∑
j=1

((
p(yj) log p(yj)

)
+
(
(1− p(yj)) log (1− p(yj))

))
where p(yj) =

∑m
i = 1[[yj ∈ Yi]]

m

(2.21)

For an unseen instance x, ML-DT is queried by traversing the tree from the root node

to the leaf nodes. The instance will be sent to a specific child node according to a defined

rule in each node based on the splitting value υ in A. Once the instance reaches a leaf node,

the predicted label set corresponds to:

Y = {yj | p(yj) > 0, 5, 1 ≤ j ≤ q} (2.22)

Here, p(yj) refers to the probability of the label yj within the training instances that

fell into the same leaf node, therefore the unseen instance will assume the label distribution

of those that took the same path of the tree.

This method is a simple extension of the decision tree algorithm for the multi-label

problem. ML-DT is considered a first-order approach since it assumes the label independence

in the multi-label entropy calculation. The main advantage of this method is the efficient

computational complexity since it handles multi-label data directly.

A number of learning algorithms have been proposed based on the discoveries of this

method. Clustering Trees (PCT) [80] considers the construction of the tree by choosing

the splitting value which minimizes the variance. Additionally, this method was extended

to an ensemble in Random Forest of Predictive Clustering Trees (RF-PCT) [83].

44

Support Vector Machines

Ranking Support Vector Machine (Rank-SVM) [22] adapts the maximum margin

concept to multi-label problems directly. Given a multi-label training set with q labels, this

method creates q linear classifiers W = {(wj, bj) | 1 ≤ j ≤ q}, where wj Rd stands for the

weight vector, and bj ∈ R stands for the bias, for the j-th label yj. The multi-label definition

of the learning margin over an instance (xi, Yi) considers the ranking performance over the

relevant and irrelevant labels. Thus, the decision boundary for each pair of relevant and

irrelevant labels corresponds to the hyperplane 〈wj − wk, x〉+ bj − bk = 0.

min
(xi,Yi)∈D

min
(yj ,yk)∈Yi×Yi

〈wj − wk, xi〉+ bj − bk
|| wj − wk || (2.23)

Here, the decision boundary is represented by the L2 distance to each instance. Assuming

that the training set is well ranked, the parameter wj can be normalized such that:

〈wj − wk, x〉+ bj − bk ≥ 1 (2.24)

Therefore, the formulation that maximizes the margin over all the training set S and

all the decision boundaries W can be expressed as:

max
W

min
(xi,Yi)∈D

min
(yj ,yk)∈Yi×Yi

1

|| wj − wk ||2

subject to: 〈wj − wk, x〉+ bj − bk ≥ 1, (1 ≤ i ≤ m, (yj, yk) ∈ Yi × Yi)
(2.25)

Assuming that the problem is not ill-conditioned, i.e., for each pair of labels (yj, yk)

(j 6= k), there exists (x, Y) ∈ D such that (yj, yk) ∈ Yi × Yi. The objective function can be

reformulated as:

min
W

max
1≤j<k≤q

|| wj − wk ||2

subject to: 〈wj − wk, x〉+ bj − bk ≥ 1, (1 ≤ i ≤ m, (yj, yk) ∈ Yi × Yi)
(2.26)

45

The maximum operator can be approximated by the sum operator:

min
W

q∑
j=1

|| wj ||2

subject to: 〈wj − wk, x〉+ bj − bk ≥ 1, (1 ≤ i ≤ m, (yj, yk) ∈ Yi × Yi)
(2.27)

In pursuance of extrapolating the problem to the cases where the training set cannot be

ranked exactly, the ranking loss function can be expressed following the previous constraints.

Therefore, if 〈wj − wk, x〉 + bj − bk ≥ 1 − ξijk, (ξijk ≥ 0, 1 ≤ i ≤ m, (yj, yk) ∈ Yi × Yi), the

ranking loss on the training set can be expressed as:

1

m

m∑
i=1

1

| Yi || Yi |
∑

(yj ,yk)∈Yi×Yi

θ(−1 + ξijk) (2.28)

Here, θ is the Heaviside function. The final objective function consists of two parts,

which are balanced by the parameter C. The first part of the function corresponds to the

margin width, whereas the second part corresponds to the ranking loss.

min
W

q∑
j=1

|| wj ||2 + C
m∑
i=1

1

| Yi || Yi |
∑

(yj ,yk)∈Yi×Yi

ξijk

subject to: 〈wj − wk, x〉+ bj − bk ≥ 1− ξijk, (ξijk ≥ 0, 1 ≤ i ≤ m, (yj, yk) ∈ Yi × Yi)
(2.29)

This algorithm allows incorporating kernels to solve non-linear separable problems [84],

which can be achieved by solving the dual form of the objective function.

For an unseen instance x, Rank-SVM needs to derive the set of relevant labels from the

real-value ranks (f(x, y1), . . . , f(x, yq)). It uses a stacking procedure which assumes a linear

model for t(·), i.e., t(x) = 〈w∗, f ∗(x)〉 + b∗, where f ∗(x) = (f(x, y1), . . . , f(x, yq)) ∈ Rq is a

q-dimensional vector stacking the real-valued outputs of each label. To find the optimal w∗

and b∗, it solves the linear least squares problem on the training set D:

min
w∗,b∗

m∑
i=1

(
〈w∗, f ∗(xi)〉+ b∗ − s(xi)

)2
s(xi) = arg min

t∈R

(
| {yj | yj ∈ Yi, f(xi, yj) ≤ t} | + | {yk | yk ∈ Y i, f(xi, yk) ≥ t} |

) (2.30)

46

Here, s(xi) represents the outputs of the stacking model which partitions the labels into

relevant and irrelevant sets with minimum miss-classifications.

The prediction for each label yj is computed according to the trained parameters w∗

and f ∗(x). Therefore, the predicted set of relevant labels for an unseen instance x would be:

Y = {yj | 〈wj, x〉+ bj > 〈w∗, f ∗(x)〉+ b∗, 1 ≤ j ≤ q} (2.31)

This method is considered a second-order approach which adapts the margin strategy

from traditional SVM to multi-label problems. The algorithm defines the margin over

hyperplanes that bipartition the relevant and irrelevant label pairs. Although Rank-SVM

presents promising results, it suffers from the same problems than the pair-wise methods,

i.e., it posses a quadratic complexity with respect to the number of labels.

A number of extensions have been proposed based on the foundations of this method.

For example, in [85] they propose a formulation that involves features extracted jointly from

inputs and outputs. Additionally, in [86] they present a cutting plane algorithm that solves

the optimization problem in polynomial time.

Instance-based algorithms

Multi-label k Nearest Neighbors (Ml-knn) [87] adapts the k-nearest neighbors techniques

to the multi-label problem, by using the Maximum A Posteriori (MAP) principle to consider

the labels of the neighboring instances in the prediction process.

For an unseen instance x, let N (x) be the set of k nearest neighbors within the training

instances in D. Unless directly specified, the nearest neighbors algorithm always assumes

the Euclidean distance as the similarity metric employed. Therefore, for the j-th label, the

algorithm defines the membership counting as:

Cj =
∑

(x∗,Y ∗)∈N (x)

[[yi ∈ Y∗]] (2.32)

47

Let Hj be the event that x has label yj, P (Hj|Cj) represents the probability that Hj

holds under the condition that x has exactly Cj neighbors with label yj. Consequently,

P (¬Hj|Cj) represents the probability that Hj does not hold under the same condition.

Following the MAP principle, Ml-knn can assign the value of Y by determining for each yj

whether P (Hj|Cj) is greater than P (¬Hj|Cj) or not:

Y = {yj|
P (Hj|Cj)
P (¬Hj|Cj)

> 1, 1 ≤ j ≤ q} (2.33)

Using the Bayesian rule, the prediction formulation can be reformulated as:

Y = {yj |
P (Hj)× P (Cj|Hj)

P (¬Hj)× P (Cj|¬Hj)
> 1, 1 ≤ j ≤ q} (2.34)

where P (Hj) represents the prior probability that Hj holds, thus P (¬Hj) represents the

probability that Hj does not hold. Next, P (Cj|Hj) represents the posterior probability that

x has exactly Cj neighbors with label yj and that Hj holds. Hence, P (Cj|¬Hj) represents

the probability of the same event but when Hj does not hold.

All the information needed to predict the label vector of an instance is the prior

probabilities P (Hj) and P (¬Hj), and the posterior probabilities P (Cj|Hj) and (P (Cj|¬Hj),

which can be estimated from the training data using frequency counting.

Firstly, the prior probabilities are calculated by counting the number of training instances

associated with each label:

P (Hj) =
s+

∑m
i=1[[yj ∈ Yi]]

s× 2 +m
, 1 ≤ j ≤ q

P (¬Hj) = 1− P (Hj)

(2.35)

Here, s is a smoothing parameter that is used to control the strength of the uniform

prior (by default s is set to 1 which yields the Laplace smoothing).

48

Secondly, the posterior probabilities use the nearest neighbors of the training instances.

For the j-th label, it computes two frequency arrays each containing k + 1 elements:

κj[r] =
m∑
i=1

[[yj ∈ Yi]]× [[δj(xi) = r]], (0 ≤ r ≤ k)

κ̃j[r] =
m∑
i=1

[[yj /∈ Yi]]× [[δj(xi) = r]], (0 ≤ r ≤ k)

δj(xi) =
∑

(x∗,Y ∗)∈N(xi)

[[yj ∈ Y ∗]]

(2.36)

where δj(xi) finds the number of neighbors for xi that have label yj. Thus, kj[r] stores

the number of training instances that have label yj and have exactly r neighbors with label

yj. Therefore, k̃j[r] counts the number of training instances which do not have yj and have

exactly r neighbors with label yj. Using these frequency arrays, the posterior probabilities

can be estimated:

P (Cj|Hj) =
s+ κj[Cj]

s× (k + 1) +
∑k

r=0 κj[r]
, (1 ≤ j ≤ q, 0 ≤ Cj ≤ k)

P (Cj|¬Hj) =
s+ κ̃j[Cj]

s× (k + 1) +
∑k

r=0 κ̃j[r]
, (1 ≤ j ≤ q, 0 ≤ Cj ≤ k)

(2.37)

The final set of relevant labels of an unseen instance can be determined by substituting

the prior probabilities (Eq. 2.35) and the posterior probabilities (Eq. 2.37) into Eq. 2.34.

Ml-knn is a first-order approach since it considers each label independently. This

algorithm has the advantage of inheriting the advantages of both lazy learning and Bayesian

reasoning [52]. The decision boundary can be adjusted by using a varying number of

neighbors in each query instance. Additionally, the class imbalance, which is a common

problem in multi-label data [88], is mitigated due to the prior probabilities estimated for

each label. The computational complexity has been also addressed using Graphic Processing

Units (GPUs) [89], [90] to speed up Ml-knn in streaming scenarios [91].

Some extensions of Ml-knn have been proposed to smooth the first-order approach or

the negative impact of the number of labels. DML-knn [92] which instead of using only

the statistical information from positive instances, it also considers the negative instances.

49

BR-knn [93] combined multiple knn, one per label, in a binary relevance manner. They

use the count of labels in the set of neighbors as the confidence score for the predictions.

MLCW-knn [94] improves the previous method by assigning weights to each of the instances

according to their distances to the query sample. In a similar manner, the labels can be

ranked according to the probabilities of the label association using the neighboring samples

around a query sample [95]. Finally, IBLR-knn [60] combines the linear regression and knn

algorithms, having one classifier per label as in BR methods.

Neural Networks

Backpropagation for Multi-label Learning (BP-MLL) [23] adapts the backpropagation

algorithm from neural networks. This adaptation is done by replacing its error function with

an adaptation of the ranking loss, where the relevant labels of a given instance should be

ranked higher than its irrelevant labels.

Given a multi-label training set D with q labels, BP-MLL defines a neural network with

three layers in its topology. The first layer corresponds to the input layer which has d input

units, each corresponding to the d-dimensional feature space. The second layer is known as

the hidden layer and has r hidden units. Finally, the third layer corresponds to the output

layer, with q units, each corresponding to one of the labels. The input and the hidden layer

are fully connected with weights υhs, (1 ≤ s ≤ r, 1 ≤ j ≤ q) and the hidden layer is also

fully connected to the output layer with weights wsj(1 ≤ s ≤ r, 1 ≤ j ≤ q). The bias of the

hidden units γs, (1 ≤ s ≤ r) are shown as weights from an input unit a0 with a fixed value

of 1. Similarly, the bias of the output units ζj(1 ≤ jleqq) are represented as weights from a

hidden unit b0 with a fixed value of 1.

A traditional neural network would be trained by updating the weights of its network

based on the error function (usually the least mean square), computed by the difference

between the expected result and the actual output. However, in a multi-label problem the

error metric needs to consider multiple labels simultaneously, therefore BP-MLL addresses

50

the characteristics of multi-label problems by re-writing the general error function as follows:

E =
1

| Yi || Yi |
∑

(yj ,yk)∈Yi×Yi

exp(−(cij − cik)) (2.38)

Here, cij − cik measures the difference between the outputs of the network for one label

yj ∈ Yi that belongs to the instance xi, and another label yk ∈ Yi that belongs to the

complementary set of Yi, i.e., a label that does not belong to the set of relevant labels.

Therefore, the larger the difference between both labels, the better the overall performance

of the network. This error is negated and used in an exponential function in order to

substantially increase the penalty of the error term.

Assuming that tanh is the activation function for the units in the network:

f(x) =
ex − e−x
ex + e−x

(2.39)

Therefore, the output bs and input netbs values associated with the s-th unit in the

hidden layer can be defined as follows:

bs = f(netbs + γs)

netbs =
d∑

h=1

ahυhs

(2.40)

Here, ah is the h-th feature of xi and υhs is the weight connecting the h-th input unit

to the s-th hidden unit.

Similarly, the output cj and input netcj values associated with the j-th unit in the

output layer are:

cj = f(netcj + ζj)

netcj =
r∑
s=1

bswsj

(2.41)

Here, bs refers to the previously defined output of the s-th hidden unit and wsj is the

weight connecting the s-th hidden unit and the j-th output unit.

51

Since the tahn function is differentiable, the general error of any given unit is:

− ∂Ei
∂neti

(2.42)

Therefore, the general error for the j-th output unit can be defined as:

dj = − ∂Ei
∂netcj

= −∂Ei
∂cj

∂cj
∂netcj

= −∂Ei
∂cj

f ′(netcj + ζj) (2.43)

Then, considering the following simplifications:

∂Ei
∂cj

=
∂
[

1
|Yi||Yi|

∑
(yj ,yk)∈Yi×Yi exp(−(cij − cik))

]
∂cj

∂Ei
∂cj

=

− 1
|Yi||Yi|

∑
yl∈Y i

exp(−(cj − cl)), if yj ∈ Yi
1

|Yi||Yi|

∑
yk∈Yi exp(−(ck − cj)), if yj ∈ Y i

(2.44)

f ′(netcj + ζj) = (1 + cj)(1− cj) (2.45)

Finally, the general error for the j-th output unit is defined as:

dj =

(

1
|Yi||Yi|

∑
yl∈Y i

exp(−(cj − cl))
)

(1 + cj)(1− cj), if yj ∈ Yi(
− 1
|Yi||Yi|

∑
yk∈Yi exp(−(ck − cj))

)
(1 + cj)(1− cj), if yj ∈ Y i

(2.46)

In a similar manner, the general error for the s-th hidden unit is defined as follows:

es = − ∂Ei
∂netbs

= −∂Ei
∂bs

∂bs
∂netbs

= −
(q∑
j=1

∂Ei
∂netcj

∂netcj
∂bs

)
f ′(netcj + γj) (2.47)

Then, considering the following simplifications:

dj = − ∂Ei
∂netcj

(2.48)

netcj =
r∑
s=1

bswsj (2.49)

f ′(netbs + γs) = (1 + bs)(1− bs) (2.50)

52

Finally, the general error for the s-th hidden unit is defined as:

es =
(q∑
j=1

dj
∂
[∑r

s=1 bswsj
]

∂bs

)
f ′(netbs + γs)

es =
(q∑
j=1

djwsj
)
f ′(netbs + γs)

es =
(q∑
j=1

djwsj
)
(1 + bs)(1− bs)

(2.51)

Using all the previous definitions, it is possible to define the change of the weights by

using the gradient descent strategy, i.e., updating the weights proportionally to the negative

gradient:

∆wsj = −α ∂Ei
∂wsj

= −α ∂Ei
∂netcj

∂netcj
∂wsj

= αdj

[
∂
(∑r

s=1 bswsj
)

∂wsj

]
= αdjbs (2.52)

∆υhs = −α ∂Ei
∂υhs

= −α ∂Ei
∂netbs

∂netbs
∂υhs

= αes

[
∂
(∑d

h=1 ahυhs
)

∂υhs

]
= αesah (2.53)

∆ζj = αdj

∆γs = αes

(2.54)

where α denotes the learning rate whose value is in the range of (0, 1).

For an unseen instance x, BP-MLL uses the results from the output units cj(1 ≤ j ≤ q)

to produce a label ranking. Therefore, the relevant set of labels depends on a threshold

function. This presents the same problem as in Rank-SVM since both of them define

the ranking loss as their error criterion. In this case, BP-MLL decides to follow the same

approach, which is to model t(x) by a linear function, as it can be seen in Eq. 2.30. Therefore,

once the parameters of the linear function (w∗, b∗) have been learned, the set of relevant labels

can be set as follows:

Y = {yj | cj > 〈w∗, f ∗(x)〉+ b∗, 1 ≤ j ≤ q} (2.55)

53

BP-MLL is considered a second-order approach which adapts the traditional back-

propagation error to multi-label problems. This approach compares the relevant and irrelevant

label pairs in the error function, in order to adjust the weights of the network. This method

achieves competitive performance but at a high computational cost, which is a common

characteristic of the neural networks.

Some extensions to the concepts presented by BP-MLL have been proposed in other

works. For example, in [96] a deep neural network for multi-label data, where they used

up to five hidden layers each composed of up to 1000 units. Another popular method is

Multi Label Radial Basis Function (ML-RBF) [97] which adapts the radial basis function

to multi-label problems. ML-RBF consists of two hidden layers: the first layer is formed

by conducting clustering analysis on instances of each possible label, where the centroid of

each group is regarded as the prototype vector of a basis function. The second layer learns a

series of weights by minimizing the sum of the square errors function. Here, the information

encoded in the prototype vectors corresponding to all classes is fully exploited to optimize

the weights corresponding to each specific label.

Probabilistic models

Multi-label Naive Bayes (MLNB) [98] adapts the naive Bayes classifier to multi-label

data by using the Bayesian rule. Therefore, it assumes independence among the features.

For an unseen instance x, let Hj be the event that x considers yj as a relevant label,

P (x|Hj) represents the label conditional probability that Hj holds on x with label yj.

Consequently, ¬Hj represents the event that x consider yj as an irrelevant label. Therefore,

P (x|¬Hj) is the conditional probability that Hj does not hold conditioned to x. Following

that notation, MLNB determines the relevant set of labels by using the following maximum

a posteriori (MAP) principle:

Y = {yj|
P (Hj|x)

P (¬Hj|x)
> 1, 1 ≤ j ≤ q} (2.56)

54

Using the Bayesian rule under the assumption of label conditional independence among

the features, as it is assumed in the traditional Naive Bayes, the conditional probabilities

are rewritten as:

P (Hj|x) =
P (¬Hj)P (x|¬Hj)

P (x)
= P (¬Hj)

d∏
k=1

P (xk|¬Hj)

P (¬Hj|x) =
P (Hj)P (x|Hj)

P (x)
= P (Hj)

d∏
k=1

P (xk|Hj)

(2.57)

Assuming that the density of the k-th feature conditioned on the label follow the

Gaussian probability density function g(·, µjk, σjk), the conditioned probabilities are calculated

as follows:

P (Hj|x) = P (¬Hj) exp(φj)

where φj = −
d∑

k=1

(xk − µjk)2
2σ2

jk

−
d∑

k=1

lnφjk

P (¬Hj|x) = P (Hj) exp(¬σj)

where ¬φj = −
d∑

k=1

(xk − ¬µjk)2
2¬σ2

jk

−
d∑

k=1

ln¬σjk

(2.58)

Here, µjk refers to the mean, while σjk refers to the standard deviation, of the k-th

feature conditioned to Hj.

However, it is noticed that for a high number of features the term φmay be too negatively

large, therefore making the computation of exp(φ) exceed the floating precision. In order to

avoid that problem, it is proposed to compute the probability of P (Hj|x) as:

P (Hj|x) =
P (Hj)P (x|Hj)

P (Hj)P (x|Hj) + P (¬Hj)P (x|¬Hj)
=

P (Hj)

P (Hj) + P (¬Hj)
P (x|¬Hj)

P (x|Hj)

=
P (Hj)

P (Hj) + P (¬Hj) exp(¬φj − φj)

P (¬Hj|x) = 1− P (Hj|x)

(2.59)

In this case, the exponent of the difference (¬φj − φj) it is computationally feasible.

In order to predict the final set of relevant labels, these conditional probabilities can be

substituted into Eq. 2.56.

55

MLNB is considered a first-order approach since it evaluates the labels independently.

Since the naive version of the algorithm assumes label independence, the algorithm was

initially proposed to be combined with principal component analysis (PCA) and genetic

algorithms (GA) to mitigate the effect of that assumption. Furthermore, it used a specific

fitness function in the GA to address the label correlations explicitly. Although they report

competitive performance, this might be the consequence of the PCA and GA combination [98].

2.1.3 Evaluation metrics

Evaluation metrics for multi-label, in contrast to traditional learning, need to verify whether

a prediction is correct (all the labels have been predicted correctly), wrong (all the labels

predicted are wrong), or partially correct (some of the labels predicted are correct). As

a result, there are a number of evaluation metrics which capture different aspects of the

predictions. These metrics will be summarized following the taxonomy proposed in [52],

[65], [69], [77] which categorize them into example-based metrics and label-based metrics.

The metrics are defined according to the notation in Table 2.1, therefore given a test

set S with p test instances, Y stands for the true label set and Z for the predicted label set.

2.1.3.1 Example-based metrics

Example-based metrics evaluate the predictions in each of the test instances and then

averages across all the test set. These metrics give the same weight to all the instances, thus

ignoring any type of imbalance in the number of labels present in each instance, i.e., it gives

the same weight to an instance with only one label present than those with many.

Hamming loss computes the symmetric difference (∆) between the predicted set of

labels and the true labels. The Hamming loss is useful when the application wants to consider

errors of all types equally important, i.e., incorrect prediction of negative labels and missing

positive labels [99].

Hamming loss =
1

p

p∑
i=1

|Zi ∆ Yi| (2.60)

56

Subset accuracy requires the predicted set of labels to exactly match the real labels.

This is an overly strict evaluation measure, especially for high-dimensional label spaces,

which penalizes the subsets that are almost correct. This measure is very important in

applications where the prediction of values is one step in a chain, and if the values are

predicted incorrectly the rest of the process may fail [99].

Subset accuracy =
1

p

p∑
i=1

[[Zi = Yi]] (2.61)

In order to be able to measure partially correct predicted label sets, [61] proposed the

following definitions for the traditional accuracy, precision, recall, and F1.

Example-based accuracy is the proportion of correct predicted labels to the total

number of labels of that instance (true and predicted).

Accuracyexample =
1

p

p∑
i=1

| Yi ∩ Zi |
| Yi ∪ Zi |

(2.62)

Example-based precision is the proportion of correct predicted labels to the total

number of predicted labels.

Precisionexample =
1

p

p∑
i=1

| Yi ∩ Zi |
| Zi |

(2.63)

Example-based recall is the proportion of correct predicted labels to the total number

of true labels.

Recallexample =
1

p

p∑
i=1

| Yi ∩ Zi |
| Yi |

(2.64)

Example-based F1 is the harmonic mean between the example-based precision and

example-based recall, hence it takes into account both false positives and false negatives into

account.

F1-example =
1

p

p∑
i=1

2 | Yi ∩ Zi |
| Yi | + | Zi |

(2.65)

57

2.1.3.2 Label-based metrics

Label-based metrics evaluate the predictions per label and differ from the example-

based metrics in the way they are averaged. As mentioned previously in the notation, the

labels are usually represented as a binary vector, therefore any evaluation metric from binary

classification could be used. The label metrics can be categorized based on how they average

the binary evaluation metric, into either macro-averaged metrics and micro-averaged metrics.

Macro-averaged metrics: They are computed on individual instances first and then

averaged over all labels. These measures give equal weight to every label, regardless of its

frequency, thus is heavily influenced by the predictions of the under-represented labels.

Macro− average =
1

q

q∑
j=1

B(Y j, Zj) (2.66)

Accuracymacro =
1

q

q∑
j=1

[∑p
i=1 | Y j

i ∩ Zj
i |∑p

i=1 | Y j
i ∪ Zj

i |

]
(2.67)

Precisionmacro =
1

q

q∑
j=1

[∑p
i=1 | Y j

i ∩ Zj
i |∑p

i=1 | Zj
i |

]
(2.68)

Recallmacro =
1

q

q∑
j=1

[∑p
i=1 | Y j

i ∩ Zj
i |∑p

i=1 | Y j
i |

]
(2.69)

F1−macro =
1

q

q∑
j=1

[∑p
i=1 2 | Y j

i ∩ Zj
i |∑p

i=1 | Y j
i | + | Zj

i |

]
(2.70)

Micro-averaged metrics: They are computed globally over all instances and labels.

These measures give equal weight to every instance, therefore it tends to be more influenced

by the predictions of the most common labels.

Micro− average = B
(q∑
j=1

Y j, Zj
)

(2.71)

Accuracymicro =

∑q
j=1

∑p
i=1 | Y j

i ∩ Zj
i |∑q

j=1

∑p
i=1 | Y j

i ∪ Zj
i |

(2.72)

58

Precisionmicro =

∑q
j=1

∑p
i=1 | Y j

i ∩ Zj
i |∑q

j=1

∑p
i=1 | Zj

i |
(2.73)

Recallmicro =

∑q
j=1

∑p
i=1 | Y j

i ∩ Zj
i |∑q

j=1

∑p
i=1 | Y j

i |
(2.74)

F1−micro =

∑q
j=1

∑p
i=1 2 | Y j

i ∩ Zj
i |∑q

j=1

∑p
i=1 | Y j

i | + | Zj
i |

(2.75)

Although there is no agreement about when to use macro-averaged or micro-averaged

metrics, [100] stated that macro-averaged metrics should be used when the predictions need

to be consistent across all labels regardless of their frequency, while micro-averaged metrics

should be used when the distribution of the labels is important.

2.1.3.3 Multi-label data statistics

Multi-label data can use traditional indicators such as the number of instances, features,

and labels. However, there are other measures specific to describe the characteristics of a

label set [49], [52].

Cardinality is the average number of labels associated with each instance.

Cardinality(D) =
1

|D|

|D|∑
i=1

|Yi| (2.76)

Density is the normalized version of cardinality, i.e., it is the cardinality divided by the

number of labels.

Density(D) =
1

q
Cardinality(D) (2.77)

Distinct is the number of distinct label sets present across all the instances.

Distinct(D) = |{Y | ∃x : (x, Y) ∈ D}| (2.78)

Furthermore, there are many other indicators regarding the imbalance of the labels

and label sets, including the maximum imbalance ratio, the mean imbalance ratio, or the

coefficient of variation of IRLbl [88], [101], [102].

59

2.1.4 Benchmark datasets

Tables 2.7, 2.8, and 2.9, summarize the characteristics of the public multi-label benchmark

datasets. The datasets are ordered alphabetically, however, whenever they are used in the

experiments the order in which they are presented might change to facilitate its readability

with respect to the size of the problem to solve.

The considerable growth of the multi-label popularity in recent years has to lead to many

publicly available datasets from many different domains. These datasets have been collected

from the Knowledge Discovery and Intelligent Systems (KDIS) repository2, although originally

they could be found on the MULAN3, and MEKA4 repositories websites. Each of the datasets

in the tables has associated its domain, number of instances, total number of features and

its breakdown by type, number of labels, number of unique subsets, cardinality and density.

2KDIS: http://www.uco.es/kdis/mllresources
3MULAN: http://mulan.sf.net
4MEKA: http://meka.sf.net

60

http://www.uco.es/kdis/mllresources
http://mulan.sf.net
http://meka.sf.net

Table 2.7.: Summary of multi-label datasets and associated statistics (I)

Dataset Domain Instances Attributes Unary Binary Nominal Numeric Labels Distinct Cardinality Density

20NG Text 19,300 1,006 0 0 1,006 0 20 55 1.0289 0.0514
3Sources (BBC) Text 352 1,000 0 0 0 1,000 6 15 1.1250 0.1875
3Sources (Guardian) Text 302 1,000 0 0 0 1,000 6 14 1.1258 0.1876
3Sources (inter) Text 169 3,000 0 61 263 2,676 6 11 1.1420 0.1903
3Sources (Reuters) Text 294 1,000 0 0 0 1,000 6 14 1.1259 0.1876
Bibtex Text 7,395 1,836 0 0 1,836 0 159 2,856 2.4019 0.0151
Birds Audio 645 260 156 0 1 103 19 133 1.0140 0.0534
Bookmarks Text 87,856 2,150 0 0 2,150 0 208 18,716 2.0281 0.0098
CAL500 Music 502 68 68 0 0 0 174 502 26.0438 0.1497
CHD Medicine 555 49 0 0 42 7 6 34 2.5802 0.4300
Corel16k (1) Image 13,766 500 0 0 500 0 153 4,803 2.8587 0.0187
Corel16k (2) Image 13,761 500 0 0 500 0 164 4,868 2.8824 0.0176
Corel16k (3) Image 13,760 500 0 0 500 0 154 4,812 2.8286 0.0184
Corel16k (4) Image 13,837 500 0 0 500 0 162 4,860 2.8420 0.0175
Corel16k (5) Image 13,847 500 0 0 500 0 160 5,034 2.8577 0.0179
Corel16k (6) Image 13,859 500 0 0 500 0 162 5,009 2.8849 0.0178
Corel16k (7) Image 13,915 500 0 0 500 0 174 5,158 2.8859 0.0166
Corel16k (8) Image 13,864 500 0 0 500 0 168 4,956 2.8830 0.0172
Corel16k (9) Image 13,884 500 0 0 500 0 173 5,175 2.9301 0.0169
Corel16k (10) Image 13,618 500 0 0 500 0 144 4,692 2.8153 0.0196
Corel5k Image 5,000 499 0 0 499 0 374 3,175 3.5220 0.0094
Delicious Text 16,105 500 0 0 500 0 983 15,806 19.0200 0.0193
Emotions Music 593 72 69 0 0 3 6 27 1.8685 0.3114
Enron Text 1,702 1,001 0 0 1,001 0 53 753 3.3784 0.0637
Eukaryote (GO) Biology 7,766 12,689 0 0 12,689 0 22 112 1.1456 0.0521
Eukaryote (PseAAC) Biology 7,766 440 440 0 0 0 22 112 1.1456 0.0521

61

Table 2.8.: Summary of multi-label datasets and associated statistics (II)

Dataset Domain Instances Attributes Unary Binary Nominal Numeric Labels Distinct Cardinality Density

EUR-lex (DC) Text 19,348 5,000 116 0 25 4,859 412 1,615 1.2923 0.0031
EUR-lex (EV) Text 19,348 5,000 116 0 25 4,859 3,993 16,467 5.3102 0.0013
EUR-lex (SM) Text 19,348 5,000 116 0 25 4,859 201 2,504 2.2133 0.0110
Flags Image 194 19 1 0 6 12 7 54 3.3918 0.4845
Genbase Biology 662 1,186 1 1,185 0 0 27 1 27.0000 1.0000
Gnegative (GO) Biology 1,392 1,717 0 0 1,717 0 8 19 1.0460 0.1307
Gnegative (PseAAC) Biology 1,392 440 433 0 0 7 8 19 1.0460 0.1307
Gpositive (GO) Biology 519 912 0 0 912 0 4 7 1.0077 0.2519
Gpositive (PseAAC) Biology 519 440 366 0 0 74 4 7 1.0077 0.2519
Human Biology 3,106 440 440 0 0 0 14 85 1.1851 0.0847
Human (GO) Biology 3,106 9,844 0 0 9,844 0 14 85 1.1851 0.0847
Human (PseAAC) Biology 3,106 440 440 0 0 0 14 85 1.1851 0.0847
IMDB Text 120,919 1,001 0 0 1,001 0 28 4,503 1.9997 0.0714
LangLog Text 1,460 1,004 0 6 998 0 75 304 1.1801 0.0157
Mediamill Video 43,907 120 120 0 0 0 101 6,555 4.3756 0.0433
Medical Text 978 1,449 0 0 1,449 0 45 94 1.2454 0.0277
Nus-Wide (128D cVLAD+) Image 269,648 129 129 0 0 0 81 18,430 1.8685 0.0231
Nus-Wide (500D) Image 269,648 501 501 0 0 0 81 18,430 1.8685 0.0231
Ohsumed Text 13,929 1,002 0 0 1,002 0 23 1,147 1.6631 0.0723
Plant Biology 978 440 428 0 0 12 12 32 1.0787 0.0899
Plant (GO) Biology 978 3,091 0 0 3,091 0 12 32 1.0787 0.0899
Plant (PseAAC) Biology 978 440 428 0 0 12 12 32 1.0787 0.0899
Reuters-K500 Text 6,000 500 98 0 36 366 103 811 1.4622 0.0142
Reuters-RCV1 (1) Text 6,000 47,236 27,686 6,385 12,184 981 101 1,028 2.8797 0.0285
Reuters-RCV1 (2) Text 6,000 47,236 27,631 6,422 12,197 986 101 954 2.6342 0.0261
Reuters-RCV1 (3) Text 6,000 47,236 27,694 6,476 12,076 990 101 939 2.6142 0.0259
Reuters-RCV1 (4) Text 6000 47229 27876 6444 11929 980 101 816 2.4837 0.0246
Reuters-RCV1 (5) Text 6000 47235 27863 6460 11923 989 101 946 2.6415 0.0262

62

Table 2.9.: Summary of multi-label datasets and associated statistics (III)

Dataset Domain Instances Attributes Unary Binary Nominal Numeric Labels Distinct Cardinality Density

Scene Image 2,407 294 0 0 0 294 6 15 1.0740 0.1790
Slashdot Text 3,782 1,079 0 1,079 0 0 22 156 1.1809 0.0537
Stackex (Chemistry) Text 6,961 540 0 0 540 0 175 3,032 2.1093 0.0121
Stackex (Chess) Text 1,675 585 0 18 567 0 227 1,078 2.4113 0.0106
Stackex (Coffee) Text 225 1,763 0 1,482 281 0 123 174 1.9867 0.0162
Stackex (Cooking) Text 10,491 577 0 1 576 0 400 6,386 2.2248 0.0056
Stackex (CS) Text 9,270 635 0 0 635 0 274 4,749 2.5562 0.0093
Stackex (Philosophy) Text 3,971 842 0 2 840 0 233 2,249 2.2720 0.0098
TMC2007 Text 28,596 49,060 130 48,930 0 0 22 1,341 2.1579 0.0981
TMC2007 (500) Text 28,596 500 0 500 0 0 22 1,172 2.2196 0.1009
Virus (GO) Biology 207 749 0 749 0 0 6 17 1.2174 0.2029
Virus (PseAAC) Biology 207 440 0 0 264 176 6 17 1.2174 0.2029
Water quality Chemistry 1,060 16 0 0 4 12 14 825 5.0726 0.3623
Yahoo (Arts) Text 7,484 23,146 4 5,188 17,954 0 26 599 1.6539 0.0636
Yahoo (Bussiness) Text 11,214 21,924 5 4,139 17,780 0 30 233 1.5990 0.0533
Yahoo (Computers) Text 12,444 34,096 30 8,027 26,039 0 33 428 1.5072 0.0457
Yahoo (Education) Text 12,030 27,534 6 6,131 21,397 0 33 511 1.4632 0.0443
Yahoo (Entertainment) Text 12,730 32,001 15 5,393 26,592 1 21 337 1.4137 0.0673
Yahoo (Health) Text 9,205 30,605 18 11,051 19,536 0 32 335 1.6441 0.0514
Yahoo (Recreation) Text 12,828 30,324 6 5,481 24,837 0 22 530 1.4289 0.065
Yahoo (Reference) Text 8,027 39,679 15 11,658 28,006 0 33 275 1.1744 0.0356
Yahoo (Science) Text 6,428 37,187 9 11,176 26,002 0 40 457 1.4498 0.0362
Yahoo (Social) Text 12,111 52,350 30 14,684 37,635 1 39 361 1.2793 0.0328
Yahoo (Society) Text 14,512 31,802 21 3,487 28,293 1 27 1,054 1.6704 0.0619
Yeast Biology 2,417 103 0 0 0 103 14 198 4.2371 0.3026
Yelp Text 10,806 671 0 671 0 0 5 32 1.6383 0.3277

63

2.1.5 Open source multi-label libraries

There are a series of advantages to incorporating the open source philosophy to the machine

learning research [103], such as reproducibility of the experiments, the fair comparison of

methods, the detection of errors, the combination of advances, the emergence of standards,

and the faster adoption of new methods, among others.

There have been some efforts towards the goal of creating open source libraries for

multi-label learning. These libraries usually differ in the methods that have implemented,

especially for the algorithm adaptation methods since they are more complicated to develop.

Nevertheless, multi-label learning is still a relatively new adopted paradigm by the machine

learning community. The most popular open source libraries for multi-label learning are:

• Mulan [104]: It can be considered the first multi-label learning library, developed

by Tsoumakas et al. in 2010. Mulan is a Java programmatic library built on top of

Weka [105] and available under the GNU GPL license. Mulan was the pioneer library

in multi-label learning, therefore it includes most of the first algorithm adaptations

methods that cannot be found in newer libraries.

• Meka [106]: It is a very popular library which was built to address the performance

issues from Mulan. Meka is also a Java library built on top of Weka and available under

the GNU GPL license. Meka specializes in the problem transformation methods, in

particular, the classifier chains paradigm, implementing at least 10 variations; and also

meta-learners for combining them together.

• Scikit-Multilearn [107]: It is a multi-label learning library that was built on top of

Scikit-learn using Python and under the BSD license. They report performance on

par with Meka, and superior to Mulan using the RAkEL method. Scikit-Multilearn

specializes in label space division, which uses a graph with co-occurrences of labels to

divide the output space using community detection methods from the igraph library.

64

2.2 Distributed systems

The computational throughput of current systems can only be improved by either increasing

the clock speed of the processors or by increasing the number of processors. Increasing the

number of processors in a system would lead to better performance and higher bandwidth.

There are many definitions of distributed systems in literature [108], however, the most

appropriate for currents systems (and for this work) is: “a collection of independent computers

that appears to its users as a single coherent system” [109] and “a collection of autonomous

computers linked by a computer network with distributed system software” [40]. As indicated

by their definitions, these systems do not have a shared memory or a shared clock and

communicate with each other by passing information over the network. This collection

of computers appears to the user as a single system, despite their possible differences in

hardware and software.

Figure 2.5 presents a simple diagram of traditional and distributed systems. A distributed

system has a series of advantages over traditional systems, such as: sharing computational

resources and data, logical simplicity since each data in a remote machine can be considered

an object, more reliable because the failure of a machine does not imply the failure of the

whole system, modular because it allows adding resources easily, and lower cost than a single

bigger system. However, they possess a series of challenges related to the communication

and synchronization over the network which can lead to potential delays in the computation.

If a traditional system would see its workload drastically increased, the only way to

increase the throughput of the system is by upgrading its hardware. This concept is called

scaling vertically, also known as scaling up. This type of scaling requires to shut the system

down while the new resources are being added. It is also limited by the latest hardware

capabilities, however, in most of the cases, these capabilities are insufficient for moderate to

big workloads.

On the other hand, whenever a distributed system sees its workload increase it just needs

to add more resources rather than upgrading the hardware of a single machine. This concept

65

Processor Processor Processor

Memory

(a) Traditional system

Processor

Memory

Processor

Memory Processor

Memory

Processor

Memory

(b) Distributed system

Fig. 2.5.: A traditional system with three processors sharing memory space and a distributed

system with four processors, with independent memory spaces, connected through a network

is known as scaling horizontally, also known as scaling out, and it is significantly cheaper

than vertical scaling after a small threshold. The distributed systems are characterized by

having no cap in how much it can scale, whenever there is a need for more performance,

more machines can be added to the system.

Figure 2.6 shows the types of networks according to [110]. Here, a network is considered

a collection of interlinked nodes that exchange information, where a node is simply a user or

a machine. These networks can be categorized into three categories that would be applicable

to the architecture of computer systems.

In a centralized network, a series of terminals are connected to a single machine. The

main machine is in charge of performing the main computation and provide the results to

the terminals. This type of system is easy to maintain since there is only a single point of

failure, however, this makes the system very unreliable since a failure on the main machine

could take the whole system down. This system can only scale vertically by upgrading the

main machine on the network. However, this approach can be deployed straightforward by

applying the desired framework to the machine. This type of system was used in old libraries,

where there were a series of terminals which would connect to the main catalog and allow

the user to query the database.

66

(a) Centralized (b) Decentralized (c) Distributed

Fig. 2.6.: Types of network processing

A decentralized system considers that each terminal is connected to the network or

subnetwork. The computation can be either be performed at a terminal or by any other node,

and the resulting system behavior is the aggregation of all the responses. Conceptually, it is a

network of centralized networks, where the terminals could interact with the system through

many entry points. These systems have better stability and fault tolerance, but if you kill

one of the main nodes in a subnetwork many of the terminals would experience issues. It

also posses better scalability since it allows for both vertical and horizontal scalability.

In a distributed network there are no central machines and each terminal is connected

to various other terminals, the data simply travels through whichever terminal allows the

most convenient route to the recipient. In a distributed system the computation is done in

each machine, still, in some cases there are leaders which other terminals must follow. These

systems are the most difficult to maintain, however, they are very stable and a single failure

barely harms the system. Their scalability is completely horizontal, the more terminals

connected the larger the network. These systems are very hard to deploy as it needs to

handle some details such as information sharing and communication.

67

The systems considered in this thesis can be considered centralized distributed systems

in the technical sense. Although most of them were conceived as a decentralized system, in

practice there is an owner of the system which provides its entry point. This entry point

takes care of most of the issues in a distributed environment such as synchronization, resource

allocation, naming, configuration, etc.

2.2.1 Characteristics of distributed systems

Although it is possible to build a distributed system in many cases, it is not recommendable

to distribute all the problems. There are some problems which are not worthy of distribution,

therefore doing so would be pointless. A distributed system is characterized by solving the

following challenges:

- Heterogeneity: A system is heterogeneous if it is composed of dissimilar hardware

and software. Distributed systems allow to scatter the information among a heterogeneous

collection of machines by implementing common standards, otherwise, the representation

of primitive data and message structure could differ between machines. Whenever there

is not a standard agreed and adopted, the distributed systems define a middleware layer

which masks the underlying differences between the systems. This layer ensures to

translate the messages to the appropriate format by considering the unique characteristics

of each device.

- Openness: It is the characteristic that enables systems to be extended to meet

new application requirements and user needs. This is achieved by specifying and

documenting the key software interfaces of a system and making them available to

software developers, i.e., the interfaces are published [40].

- Security: The resources in a distributed system need to be secure by achieving three

goals [40]: confidentiality that guarantees protection against disclosure to unauthorized

individuals, integrity which provides protection against alteration or corruption, and

availability that grants protection against interference with the means to access the

68

resources. These challenges are addressed by two main parts of the security system:

authentication and authorization. The first considers guaranteeing that an entity is

what it claims to be [111], and the former determines the user privileges permitting

only those privileges to be available.

- Scalability: It is the ability of a distributed system to grow without users or applications

being affected. A system is defined as scalable if it will remain effective when there is a

significant increase in the number of resources and the number of users [40]. Scalability

is a major factor in distributed systems and it should be considered while designing

the components. It is hard to scale systems that have not been designed to do so, thus

it is required that applications and platforms were conceived for that purpose.

- Failure handling: A distributed system is considered to be fault tolerant if it is

able to continue processing when one or more components of the system fail. Each

component of the distributed system needs to be aware of the possible ways in which

the components it depends on may fail or be designed to deal with each of those

failures appropriately [40]. There are a series of techniques for dealing with failures in

a distributed environment:

? Detecting failures : The detection of failures can be done actively by sending a ping

type request, or passively by waiting for the components to send a communication

to the monitor. Another type of errors considers corrupted data, which can be

detected by applying checksum.

? Masking failures : Some errors can be hidden to the user, or in the worst case

at least subdue their impact. For example, whenever there is an error with

transmitted data it can be resent again, or stored data can be duplicated in

case it gets corrupted.

69

? Tolerate failures : It is not feasible to attempt to detect and mask all the failures

that might happen in a distributed system. This technique involves the user

tolerating the errors.

? Recovery from failures : If the nature of the error can be completely and accurately

acceded, then it is possible to remove those errors and enable the system to

continue. This technique is known as forwarding error recovery. On the other

hand, if the nature of the error cannot be accessed, the only way to remove those

errors from the system state is by returning to a previous error-free stable state.

This technique is known as a backward error recovery.

? Redundancy : When an error is produced at some point during the execution, the

redundant component can serve two purposes: first, to provide backup service

while the main component is down, and second, to restore the failed component

to an error-free state.

- Concurrency: It refers to the possibility that multiple processes interact with the

same resource simultaneously. In order to guarantee the correct behavior of the

system, while maintaining its output, the system ensures the use of a shared resource

is synchronized among different processes.

- Transparency: It defines the concealment from the user and from the application

programmer of the separation of components in a distributed system so that the system

is perceived as a whole rather than as a collection of independent components [40], [112].

2.2.2 Categories of distributed systems

A distributed system is usually a conglomerate of complex components or even different

distributed systems. According to their goal, and fulfilling the previous characteristics,

the distributed systems can be categorized into the following: Databases, Computing, File

Systems, Messaging, Applications, and Ledgers.

70

Distributed Databases

A distributed database is a database in which not all storage devices are attached to a

common processor. These type of database systems follow the CAP theorem, which states

that only two of the following three properties can be met:

- Consistency: Any read operation that begins after a write operation completes must

return the updated value [113]. This definition aligns better with linearizability [114],

which is a very specific (and very strong) notion of consistency.

- Availability: Every request received by a non-failing node in the system must result

in a response [113]. It also considers the case in which a sibling node was updated, the

current node could queue requests until it is able to reflect the most recent changes.

- Partition tolerance: It refers to the possibility to lose arbitrarily any message sent

through the network [113]. If this property is not met, it considers that a single node

going down would take the whole system with it.

When a distributed database gets partitioned it can only guarantee consistency or

availability, not both. The only way to meet both properties would be to have a traditional

relational database, which drops the partition property.

Given a distributed database with two nodes, assume that the connection network

between both nodes fails and each of them is isolated. The distributed database has two clear

choices: to keep both nodes fully running, however, the changes in each node will not appear

in the other (it violates consistency), or to make sure only one of them accepts requests until

the connection with the other node can be reestablished (it violates availability).

The systems that prioritize the availability settle for eventual consistency which means

that if no new updates are made to a given item, eventually all accesses to that item will

return the latest updated value. Some distributed databases which prioritize availability are

Cassandra, Riak, Voldemort, and CouchDB. While other systems focus on having a strong

consistency, such as Neo4j, Google Bigtable, MongoDB, HBase, Hypertable, Redis.

71

Distributed Computing

Distributing computing is the methodology that splits extremely large tasks, which cannot

be executed in a single machine, into smaller independent tasks that can be performed on

many machines in parallel. This description could fit easily in traditional parallel computing,

where many tasks are sent to different processors in a single machine. However, all these

processors share their memory space allowing all the task to access the same data. On the

other hand, a distributed computing system does not have a global address space across all

the processors, consequently, the information is exchanged through a network.

Some examples of distributed computing frameworks are PVM, MPI, Hadoop, Spark,

Scalding, Pig. The choice of the distributed computing framework was a key issue during

our research. This category of distributed systems is studied in depth in the Section 2.2.3,

focusing on the evolution of the systems and comparing the most important features.

Distributed File Systems

A distributed file system is a file system that has its components spread across multiple

machines with proper authorization rights. Just like in a traditional operative system the

files are organized in a hierarchical file management system, the distributed file system uses

a uniform naming convention and a mapping scheme to keep track of where files are located.

When a process requests a file, it is sent to the local machine where it can be read and

modified, after it is no longer needed it is sent back over the network to update its state.

The difference between a distributed file system and a distributed data store is that a

distributed file system allows files to be accessed using the same interfaces and semantics

as local files. For example, mounting/unmounting, listing directories, read/write at byte

boundaries, system’s native permission model. Distributed data stores, by contrast, require

using a different API or library and have different semantics (most often those of a database).

Some examples of distributed file systems are HDFS, GFS, DFS, GlusterFS, Ceph, HekaFS.

72

Distributed Messaging

Distributed messaging is based on the concepts of reliable message queuing. These messages

are queued asynchronously between users and the messaging system. This allows decoupling

your application logic or your users from directly talking with your other systems.

Most of these systems follow the publish-subscribe model where the senders of the

messages are known as publishers and the receivers are called consumers. Once a message

has been published by the sender, the consumers can subscribe to one or more messages

using some filtering options. These filters are usually topic-based or content-based, and help

to select the desired messages. The most popular distributed message system are Kafka,

RabbitMQ, and Amazon SQS.

Distributed Applications

A distributed application is software that is executed on multiple machines within a network

to achieve specific goals or tasks. It is very important to emphasize that we do not consider a

traditional application using a distributed database to be a distributed application. Although

technically, it uses multiple machines to execute, they do not collaborate towards the task.

Distributed applications usually follow the peer-to-peer (P2P) computing model, where

peers are equally privileged and equipotent participants in the application. Peers make a

portion of their resources, such as processing power, disk storage or network bandwidth,

directly available to other network participants, without the need for central coordination

by servers or stable hosts. Some examples of distributed applications are Bittorrent, Bitcoin,

SETI, FAROO, Tor.

2.2.3 Distributed computing

Distributed computing is accomplished by using parallel processing but in a pool of loosely

coupled computers which collaborate towards a common goal. This environment contrast to

a tightly coupled system where all the processors belonging to the same device. A task can

73

be parallelized by splitting it into multiple chunks and compute those independently. If the

task cannot be divided, e.g., a form of a linear sequence of repeated steps where each step

is needed to perform the subsequent step, the task is not suitable for distribution. However,

if none of the tasks need to execute in a specific sequence, e.g., many forms of search where

each worker can take a particular area and do their job independently, the job is appropriate

for distribution.

Parallel Virtual Machine (PVM) [115] is the ancestor of distributed computing. This

system uses a message-passing model to allow programmers to use distributed computing

across a wide variety of systems. The key to PVM is that it makes a collection of heterogeneous

computers appear as one large virtual machine. Message-Passing Interface (MPI) [116] is a

standardized and portable message-passing standard designed for distributed computation.

MPI describes the communications between computational nodes to coordinate calculations.

Both are specifications for libraries that can be used for distributed computing based

on message-passing, though, they were designed with different goals [117]. PVM was aimed at

providing a portable, heterogeneous environment for using clusters of machines communicated

using TCP/IP sockets. While MPI focused on proving an interface to write distributed

applications capable of delivering high performance on processors. Therefore MPI performs

better respect to execution times, while PVM focuses on network performance [118].

2.2.3.1 MapReduce programming model

The MapReduce [41] programming model was originally designed by Google and it was

proposed for distributed processing and generating large data over several machines. This

model is suitable for processing large data because of its low infra-cluster communication

and its fault-tolerant mechanism, which are highly recommendable for long time executions

over large data.

74

Data A

Data B

Red
Yellow
Green

Red
Blue

Yellow
Green
Blue

Blue
Red

Red
Green

Red, 1
Yellow, 1
Green, 1

Red, 1
Blue, 1

Yellow, 1
Green, 1
Blue, 1

Blue, 1
Red, 1

Red, 1
Green, 1

Red, 1
Red, 1
Red, 1
Red, 1

Yellow, 1
Yellow, 1

Blue, 1
Blue, 1
Blue, 1

Green, 1
Green, 1
Green, 1

Red, 4

Yellow, 2

Blue, 3

Green, 3

Red, 4
Yellow, 2
Blue, 3

Green, 3

Input Map Shuffle Reduce Final
Result

Fig. 2.7.: Workflow of word counting on MapReduce

MapReduce is a completely different paradigm than message-passing models. MapReduce

partitions and distributes the data in order to perform the computations locally in each of the

workers. Thus, MapReduce takes advantage of local storage to avoid the network bottleneck,

which is especially relevant on large volumes of data. On the other hand, message-passing

models are best suited for efficient inter-process communication, especially if the application

requires asynchronous communication. As a consequence, MapReduce should be the choice

for data-oriented scenarios, such as machine learning [119].

The MapReduce framework takes care of the details of partitioning the input data,

scheduling the program‘s execution across a set of machines, handling machine failures, and

managing the required inter-machine communication [41]. This model takes its name from

the two primitives inspired by the functional languages: Map and Reduce. The Map phase

75

maps the data into a collection of < key, value > pairs, each of these collections can later

be read and transformed into another set of pairs (intermediate results). The Reduce phase

combines the key coincident pairs in the same node and merges them into the final result.

Figure 2.7 presents the canonical MapReduce use case, where the frequencies of each

word are counted for multiple documents. First, the input data is read from as many

documents as needed. Second, the Map function takes a set of words and transforms it into

< word, counter > where word represents the key and counter represents the value (starting

with 1). Third, the data is shuffled in order to have all the tuples with the same key together.

Fourth, the Reduce function receives for each key all the values present in the tuples and

produces a new tuple with the result, in this case, it just sums the counters of each word.

Finally, the results from all the Reduce functions are combined into a set of pairs, where

each word has associated its frequency across all the documents.

2.2.3.2 Apache Hadoop

Apache Hadoop [42] is a collection of open source utilities that facilitate using distributed

systems. The core of Apache Hadoop consists of a storage part, known as Hadoop Distributed

File System (HDFS), and a processing part which is a MapReduce programming model.

HDFS is a distributed file system that provides scalable, fault-tolerant, cost-efficient storage.

By distributing the storage across multiple machines, the combine storage resource can grow

horizontally. The MapReduce framework allows writing distributed applications that process

large amounts of structured and unstructured data in HDFS.

Hadoop splits the input data into blocks and distributes them among the nodes in the

cluster. Then, each of the nodes receives a packaged code which will be used to process

the data in parallel. This approach uses the data locally since the nodes only process the

data that they have access to. This allows processing data faster and more efficiently than

it would be in message-passing systems or traditional super-computers where the data and

computation are sent over the network.

76

Hadoop is built around an acyclic data flow model from stable storage to stable storage.

This model has the advantages that it can decide in execution time were to run the tasks and

can automatically recover from failures. However, it is not suitable for applications that reuse

a set of data across multiple operations, as well as interactive data analysis tools. Therefore,

Hadoop is considered a poor fit for low-latency applications and iterative computations, such

as machine learning and graph algorithms.

2.2.3.3 Apache Spark

Apache Spark [120] is a distributed computing platform that has become one of the most

powerful tools for the big data scenario. Spark was designed to overcome the limitations of

Hadoop by generalizing the MapReduce computation model, while dramatically improving

performance and ease of use.

The generalization of Spark comes from including a wide range of workloads that

previously would have been covered by separate frameworks, including batch applications,

iterative algorithms, interactive queries, and streaming. Spark allows to seamlessly combine

different processing types while reducing the burden of maintaining separate tools. Moreover,

Spark introduces a considerable performance improvement by offering the possibility to

maintain data in memory across multiple computations, which has been shown to outperform

Hadoop by up to 100x times [47]. The system is also more efficient for complex computations

running on disk, which has also shown a performance improvement of up to 10x.

Spark contains multiple closely integrated libraries. Figure 2.8 presents the components

of the ecosystem. The framework is built around Spark Core, which performs the scheduling,

optimizations, data abstractions, as well as connection to the correct filesystem (HDFS, S3,

RDBMs, or Elasticsearch). There are multiple libraries that operate on top of the Spark

Core, such as Spark SQL, which allows handling data in a SQL manner, MLlib for machine

learning, GraphX for graph computation and Streaming for processing of live streams of

data.

77

Spark Core

Spark SQL MLLib GraphX Streaming

Fig. 2.8.: Apache Spark framework overview

Apache Spark architecture

Figure 2.9 presents the diagram of an application running in a cluster with two nodes. The

architecture and workflow of Spark are built around the following concepts:

- Driver : Separate process to execute user applications. It creates the SparkContext to

schedule jobs executions and negotiates with the Cluster Manager.

- Cluster Manager : An external service for acquiring resources on the cluster, e.g.,

standalone manager, Mesos, YARN.

- Node (or Worker): Any node that can run application code in the cluster.

- Executors : A process launched on a node, that runs tasks and keeps data in memory

or disk storage across them. Each application has its own executors.

- Task : A unit of work that will be sent to one executor.

- Job: A parallel computation consisting of multiple tasks that get spawned in response

to a Spark action, e.g., save, collect.

- Stage: Each job gets divided into smaller sets called stages that depend on each other.

The steps an application follows on a cluster are: the application starts and instantiates

the SparkContext to communicate with the Master in the Cluster Manager. Once connected,

the application acquires Executors on nodes in the cluster. Next, it sends your application

code to the executors. Finally, the SparkContext can request jobs to be run in the cluster,

by splitting them into multiple tasks that will be distributed to the executors.

78

Driver

SparkContext
Node 1

Task

Executor
Cache

Task

Task Task

Task

Executor
Cache

Task

Task Task

Task

Executor
Cache

Task

Task Task

Node 2

Task

Executor
Cache

Task

Task Task

Task

Executor
Cache

Task

Task Task

Cluster Manager

Master

Fig. 2.9.: Apache Spark components diagram

Data abstraction

The main abstraction Spark provides is a Resilient Distributed dataset (RDD) [47], which is

a collection of elements partitioned across the nodes of the cluster that can be operated on

in parallel. RDDs are initially created with a file in the Hadoop file system (or any other

Hadoop-supported file system), or an existing Scala collection in the driver, and convert

it. RDDs can be persisted in memory, allowing to reuse them efficiently across parallel

operations. Additionally, RDDs can recover automatically from node failures.

RDD defines a series of operations which can be categorized into transformations and

actions. The transformations are lazy operations on an RDD that define a new RDD, while

actions launch a computation that would execute the queued transformations and return a

value or write the data to external storage.

RDDs do not need to be materialized at all times. Instead, an RDD keeps the information

about the set of operations (lineage) that led to its current state. This allows them to

79

efficiently provide fault tolerance by logging the lineage rather than the actual data. In case

of a partition is lost, or there is a failure, the RDD has enough information to recompute just

that partition. Therefore, data can be recovered quickly, without the need for replication.

Apache Spark introduced another data abstraction which is built on top of RDD, known

as DataFrames. A DataFrame is an immutable distributed collection of structured data.

Unlike an RDD, data is organized into named columns, like a table in a relational database.

DataFrames are able to optimize its query plan (Catalyst Optimizer) and efficiently serialize

its object as well as generate compact bytecode (Project Tungsten) [121].

Execution workflow

Stage 3

Stage 1

Stage 2

GroupBy

Map Union

Join

Collect

DAG TaskSet

Cluster Manager

Master Task

RDDs DAG Scheduler Task Scheduler Executor

RDD

RDDRDD
GroupBy

Map

Union

Join

Collect

Executor
Cache

Task
Task

Task

Fig. 2.10.: Apache Spark workflow

Figure 2.10 represents the workflow of a series of RDD transformations, forming a

lineage, which is then executed by requesting an action. First, our application specifies a

series of transformations using three RDDs this lineage is then executed when the collect

action is called. Then, the DAG Scheduler (part of the SparkContext) creates a directed

acyclic computation graph (DAG) describing the distributed operations in a coarse-grained

way. Each of the stages is defined as a wide dependency, while pipelines inside the stage are

formed by narrow dependencies (it combines tasks that do not require a shuffle operation).

Next, the Task Scheduler communicates with the Cluster Manager to submit tasks that will

be performed by the executors.

80

Machine learning applications

MLlib [122] is one of the main components of Spark and the largest machine learning

library available for Spark. This library targets large-scale learning that benefits from

parallelism to store and operate on data and models. MLlib consists of efficient and scalable

implementations of standard learning algorithms and techniques including classification,

regression, collaborative filtering, clustering, and dimensionality reduction. There is also

an ongoing effort into adapting the machine learning methods to the Stream module [123],

allowing to execute on dynamic datasets.

Additionally, Spark has been successfully applied by a number of researchers and industry

experts to other machine learning techniques that are not covered by the official MLlib

library. Some of the most relevant are:

Deep learning : Although MLlib supports Multilayer Perceptron classifier, which

is a feedforward neural network, most of the features are still in the development stage.

Therefore, a number of third-party frameworks have emerged [124], which aim to scale deep

learning in a distributed environment. Here, we list the most relevant ones that are open

source and public available to use: DeepLearning4j 5, H20 Deep Water 6 [125], CaffeOnSpark 7,

TensorFlow on Spark 8, and SparkNet9 [126] among others.

Natural language processing : The original MLlib library from Spark provides some

feature extraction methods that can be used in natural language processing. However,

there is not a dedicated part of the library for natural language processing. As a solution,

developers can decide to combine Spark with a Java-based library such as OpenNLP, which

is open source, or Stanford NLP, which requires licensing in order to use in a commercial

5https://deeplearning4j.org/
6https://www.h2o.ai/deep-water/
7https://github.com/yahoo/CaffeOnSpark
8https://github.com/yahoo/TensorFlowOnSpark
9https://github.com/amplab/SparkNet

81

product. Another option is to incorporate spaCy, a Python-based library that has become

very popular for its trade-offs between analytical accuracy and performance. However, this

requires to transform the data back and forth, which can have a considerable impact on

the final performance. Finally, the most efficient and practical option is to use a library

which extends the MLlib source code and can work seamlessly with Spark. John Snow

Labs’ NLP10 extends the MLlib library to include techniques like a tokenizer, a lemmatizer,

sentence boundary detection, and paragraph boundary detection among others.

Others : There are various machine learning methods that have been developed for

Spark. Some of them are adaptations of widely known algorithms and others are novelty

algorithms, some of the most popular are: a distributed Newton method for solving logistic

regression as well linear SVM [127], a one-vs-one SVM for multi-label classification [128], an

iterative k nearest neighbors classifier [129], a parallel genetic algorithm for pairwise test suite

generation [130], an improved implementation of random forest [131], a simulated annealing

method for solving unconstrained optimization problems [132], an extreme learning machine

implementation [133], among others.

10https://nlp.johnsnowlabs.com/

82

CHAPTER 3

ARCHITECTURES FOR PARALLEL AND
DISTRIBUTED MULTI-LABEL LEARNING

Many algorithms have been specifically designed to tackle multi-label problems, however,

most of them have a considerable computational complexity. This issue can be addressed

by introducing a parallel computation. However, there are many approaches to parallelize

the computation in order to increase the scalability of the system, e.g., local parallelization

using same memory space, distributed parallelization using independent memory spaces, or

distributed parallelization using shared memory.

In order to study the different approaches, it is required to select a suitable problem that

would evaluate equally each of the approaches. A popular method to address the additional

complexity of predicting multiple labels is to use ensemble techniques. Ensemble techniques

have become increasingly popular as they have demonstrated the ability to improve the

results of individual classifiers [134]. Ensembles are built using a combination of base

classifiers, thus suffering from high computational complexity.

Traditional implementations of multi-label learning methods focus on performing each

task sequentially, even when there is not any kind of dependency between them. There

are many scenarios in which a multi-label ensemble classifier needs to build each of their

components sequentially, such as Ensemble of Classifier Chains. However, we will focus on

the scenario where each of the components can be built independently since they do not incur

into any data dependencies. A popular multi-label ensemble falling in this category would

be RAndom k-labELsets (RAkEL), described in Section 2.1.2.1. RAkEL builds a multi-label

83

ensemble by splitting the label space Y into random subsets of k labels. The components of

RAkEL are multi-label classifiers which target each of these random subsets.

RAkEL meets the requirements for this study: it is widely used and complex enough to

seek parallelization. Additionally, it can be easily parallelized using multiple approaches, thus

covering all the possible strategies that should be considered to propose a high-performance

multi-label framework.

3.1 Proposed parallel and distributed architectures

1. Mulan

The first implementation is the original RAkEL from Mulan [104], which is built on top of

Weka [105]. The Mulan implementation is used as a reference to study the performance

of the traditional ensemble methods. This method only supports sequential single-threaded

execution, hence it is limited by the resources of a single node. Therefore, it is not scalable

to large datasets [135]. The data is read once and loaded into memory, but since the

construction of the models is sequential, they do not compete for memory.

2. Mulan threading

This implementation parallelizes the construction of the ensemble components, e.g., multi-

label classifier. Each of these classifiers works in a different label subset, therefore a thread

can be assigned to each of them to work independently. It is expected to have a speedup

bounded by the number of cores available in the machine being executed. All the threads

execute locally, therefore they are able to share the available memory avoiding unnecessary

copies of the data. However, this implementation is limited by the computational and

memory resources available in a single machine. Building all the base classifiers in parallel

will impact the total memory consumption, then being severely limited to small dataset

sizes.

84

Node 1

Driver

SparkContext

Cluster Manager

Master

Executor
Cache

Train

Mulan

ya ynode1.1

Train

Node 2

Executor
Cache

Train

Mulan

yb ynode2.1

Fig. 3.1.: Mulan distributed implementation. Each node has multiple executors, where each

of them will handle a subset of labels using Mulan

3. Mulan distributed

This method is based on wrapping the Mulan functionality and distribute the workload using

Spark. This method uses the out of the box classifiers provided by Mulan. Therefore, it

requires to serialize the Mulan library to deploy it in each of the executors. Figure 3.1 presents

how the computation and data are distributed. The driver extracts the label information

from the training dataset. Then each executor gets assigned a series of labels, thus using a

local copy of the whole training dataset to build a Mulan model.

The principal advantage of this method is delegating the parallelism to Spark. Spark

takes care of the transparency and fault-tolerance mechanisms, thus allocating the resources

properly for parallelization. Also, this approach avoids any communication between executors.

On the other hand, this requires each executor to read the full training data, which leads to

multiple reads of the same data in the same machines.

85

Node 1

Cluster Manager

Master

Executor
Cache

Train

Mulan

ya ynode1

Node 2

Executor
Cache

Train

Mulan

yb ynode2

Driver

SparkContext

Train

Fig. 3.2.: Mulan distributed threading implementation. Each node has a single executor

that will handle a subset of labels using multiple threadings and Mulan

4. Mulan distributed threading

This implementation takes the previous approach one step forward and uses Spark only

to control the distribution of the tasks, not the parallel execution of those. Figure 3.2

summarizes the execution of this method. As mentioned previously, the driver extracts

the label information and distributes the workload among the executors. However, in this

case, the executors declare a thread pool which handles the concurrency of the tasks. In

order to avoid multiple unnecessary reads of the data, which would take unnecessary time

and duplicated memory allocations, and having multiple executors competing for the shared

resources, this method uses a single executor per node. Despite avoiding successfully the

multiple reads of the data, the same data is still fully read in each node.

86

Node 1

Driver

SparkContext

Cluster Manager

Master

Executor
Cache

Train1

MLlib

Node 2

Executor
Cache

Train4

MLlib

Fig. 3.3.: Spark implementation. The nodes have multiple executors, each of them with a

local partition of the training data with the full label set to build collaboratively a model

5. Spark

The Spark native implementation is built on top of the native machine learning library

MLlib [122]. Figure 3.3 presents a diagram with the implementation. This method reads the

dataset which can be in a Distributed File System (e.g. HDFS), therefore the partitions are

already allocated in the nodes. Then, each executor handles their local partition in order to

perform intermediate tasks that will lead to the construction of the full model.

This method reads the data a single time, and if the partitions are correctly allocated

in the system, no information needs to be initially sent over the network. Therefore, this

approach fully shares the resources in the system allowing to handle large-scale datasets.

Additionally, this approach performs intermediate tasks based on the partitions of the data,

which are subsets of instances, thus allowing to use all the available cores simultaneously

especially for datasets with a large number of instances.

87

Table 3.1.: Implementation summary

Implementation Distributed Redundant
data reads

Shared
memory

Scalability

Mulan 7 7 7 7

Mulan Threading 7 7 3 Num. cores
Mulan Distributed 3 3 7 Num. executors
Mulan Distributed Threading 3 3 3 Num. cluster cores
Spark 3 7 3 Num. cluster cores

Architectures summary

Table 3.1 summarizes the key aspects of the five approaches. It presents the following series of

characteristics: distribution of the computation, multiple reads of the dataset, construction

of various models in the same memory space, and the resources that influence the scalability.

3.2 ARFF data source for Apache Spark

The data source API at a high level is an API for turning data from various sources into

Spark DataFrames and facilitates to manage the structured data in any format. Apache

Spark has some built-in data sources such as Parquet, LibSVM, Parquet, JSON, JDBC,

etc. Out of those, LibSVM is the only data source specifically designed for machine learning

applications. However, this format is unable to specify information about the attributes,

thus limiting its application to real-valued attributes and traditional learning paradigms.

Here we present a native data source to support the Attribute-Relation File Format

(ARFF) on Apache Spark1. This data source infers additional information about the attributes

and relationships among them, allowing to define new learning paradigms such as multi-label

learning. The implementation extends seamlessly the Apache Spark source code, therefore

the implementation uses the same syntax as with the official supported formats. Figure 3.4

shows a class diagram with the structure of the data source.

1https://github.com/jorgeglezlopez/spark-arff-data-source/

88

https://github.com/jorgeglezlopez/spark-arff-data-source/

ARFFFileFormat

ARFFInferSchema

ARFFAttributeParser

ExtendedAttributeGroup

ARFFAttributeCategory

ExtendedAttribute

StringAttribute

DateAttribute

ExtendedAttributeKeys

ExtendedAttributeType

Attribute
NominalAttribute

BinaryAttribute

AttributeKeys

AttributeType

NumericAttribute

ARFFInstanceParser

ARFFOptions

org.apache.spark.ml.attribute

org.apache.spark.ml.attribute

org.apache.spark.ml.source.arff

TextBasedFileFormatFileFormat DataSourceRegister

org.apache.spark.sql.execution.datasources org.apache.spark.sql.sources

Fig. 3.4.: ARFF data source class diagram for Apache Spark.

89

• ARFFFileFormat : It is the entry point of the data source from the DataFrameReader

interface. This class inherits from a series of interfaces in order to ensure the correct

communication from the DataFrameReader. The first interface is the DataSourceRegister

which can register the data source under an alias. The second set of interfaces is the

TextBasedFileFormat and FileFormat, which define the methods that will be called

from the DataFrameReader in order to create the proper DataFrame. The creation of

the DataFrame is split into creating a suitable schema for the attributes and parsing

all the instances. Both processes are isolated to each other because of the FileFormat

interface.

• ARFFInferSchema: This class receives the header and the options defined by the

user. The header comes either from the beginning of the file or from an independent

file. The class uses the ARFFAttributeParser class to extract the information of each

attribute using regular expressions. This information is used to create the required

schema that matches the learning paradigm, as well as to store the information of

the attributes in the metadata. Each column uses the ARFFAttributeParser and the

ExtendedAttributeGroup to transform the corresponding information of the header into

metadata. The ExtendedAttributeGroup adds support for new types of attributes, such

as String and Date.

• ARFFInstanceParser : It parses each of the lines of data in the file into Rows for

the DataFrame. It reconstructs the ARFFAttributeParser of each attribute from the

metadata received in the schema. Once all the parsers have been constructed, it

reads each line of data allowing to read both dense and sparse instances. In every

instance, the original values are transformed into a numeric format and stored in the

corresponding fields of a Row following the same order they present in the header.

• ARFFOptions : This class handles the options set by the user, which can only be set

from there at the beginning and will be final during the execution of the data source.

90

This data source has a series of advantages over the libSVM data source, which is the

data source used by the machine learning library. The main functionalities and advantages

are:

• Support for different types of learning paradigms, each with a different schema.

• Automatic conversion of all the features to numeric types. It transforms types such as

Date, String, or Nominal to a Double. This allows using the Dataframe directly with

the machine learning methods.

• Storage of the information of each attribute in the metadata of the schema. This

information can be used in different algorithms such as finding the best splits in decision

trees over nominal data.

• Dynamic and automatic conversion to either dense or sparse instances, whichever uses

less storage space.

This data source has been used with the Spark native implementation in order to

correctly load the multi-label datasets in a distributed fashion. This data source ensures that

the datasets are partitioned by instances and those partitions are assigned to the different

executors.

3.3 Experimental setup

The experiments were executed in a cluster with 144 cores and 288 GB of memory. The

system used Mulan 1.5 for the single-node classifiers and Spark 2.0.0 for the distributed

computation. The method evaluated was RAkEL using BR as the base classifier which, in

turn, used a decision tree whose maximum height is set to eight.

3.3.1 Datasets

Table 3.2 list the datasets, sorted by the number of instances, and their most important

characteristics. More information about these datasets can be found in Section 2.1.4. These

datasets were selected attending to the label dimensionality and the number of instances.

91

Table 3.2.: Multi-label datasets and their statistics

Dataset Instances Attributes Labels Cardinality Density

Flags 194 26 7 3.39 0.48
Emotions 593 78 6 1.87 0.31
Birds 645 279 19 1.01 0.05
Genbase 662 1,213 27 1.25 0.05
Medical 978 1,494 45 1.25 0.03
Plant 978 452 12 1.08 0.09
Enron 1,702 1,054 53 3.38 0.06
Scene 2,407 300 6 1.07 0.18
Yeast 2,417 117 14 4.24 0.30
Human 3,106 454 14 1.19 0.08
Reuters-RCV1 (1) 6,000 601 101 2.88 0.03
Bibtex 7,395 659 159 2.40 0.02
Yahoo (Arts) 7,484 526 26 1.65 0.06
Yahoo (Health) 9,205 532 32 1.64 0.05
Yahoo (Business) 11,214 530 30 1.60 0.05
Yahoo (Social) 12,111 539 39 1.28 0.03
Yahoo (Entertainment) 12,730 521 21 1.41 0.07
Corel16k (1) 13,766 653 153 2.86 0.02
Yahoo (Society) 14,512 527 27 1.67 0.06
Delicious 16,105 1,483 983 19.02 0.02
20NG 19,300 1,026 20 1.03 0.05
EUR-lex (DC) 19,348 912 412 1.29 0.00
EUR-lex (EV) 19,348 4,493 3,993 5.31 0.00
EUR-lex (SM) 19,348 701 201 2.21 0.01
TMC2007 28,596 500 22 2.21 0.10
Mediamill 43,907 221 101 4.38 0.04
Bookmarks 87,856 708 208 2.03 0.01
IMDB 120,919 1,029 28 2.00 0.07
NUS-WIDE (128D cVLAD+) 269,648 129 81 1.87 0.02

The experiments were performed using 10-fold cross-validation in order to objectively

evaluate the models’ performances. The data is divided fairly into 10 equally sized folds

where, at every iteration of the cross-validation evaluation, a fold is held out as the test

instances, while the remainder of the data is used for train instances. These sets are stored

and used by each algorithm, ensuring that the instances held in each of the fold are the same

for all of them. This procedure ensures the model is not optimistically biased towards the

full dataset and the algorithms are evaluated fairly over the same data in each fold.

92

3.4 Experimental results

This section presents the experimental study carried out to compare the performance impact

of each implementation. The first part of the study compares the quality of the predictions,

while the second part compares the execution performance.

3.4.1 Evaluation of predictions

In this experiment, we analyze the prediction results of the different implementations over

all the datasets. To evaluate the predictions we use the multi-label classification metrics

presented in Section 2.1.3 which show different perspectives of the same results.

Table 3.3 presents the averaged measures obtained for all the metrics. The measures

are grouped attending to the type of averaging: example-based, micro-averaged, and macro-

averaged. Additionally, it shows the results of the Wilcoxon rank sum test for subset

accuracy, which allows us to identify whether there are significant differences in a pairwise

comparison between two algorithms. A p-values < 0.01 indicates significant differences

between the Spark method and the Mulan based methods.

Table 3.3.: Metrics averaged across all multi-label datasets and p-values comparison

Type Metric Mulan Spark p-value

Example-based

Hamming loss 0.0699 0.0670 1.04E-01
Subset accuracy 0.1298 0.2382 1.70E-05
Accuracy 0.2365 0.3717 1.49E-08
Precision 0.2296 0.4688 1.87E-05
Recall 0.2695 0.4246 1.49E-08
F1 0.2746 0.4221 8.80E-06
Specificity 0.9654 0.9597 8.86E-04

Micro-averaged

Precision 0.5417 0.5721 5.68E-02
Recall 0.2447 0.3919 1.49E-08
F1 0.3013 0.4410 1.49E-08
Specificity 0.9658 0.9603 1.73E-03

Macro-averaged

Precision 0.2928 0.3557 2.09E-04
Recall 0.2187 0.2941 1.35E-05
F1 0.2263 0.3001 5.16E-05
Specificity 0.9560 0.9967 1.20E-04

93

The p-values obtained by comparing the different measures support the hypothesis that

there are statistical differences between the predictions produced Mulan-based methods and

Spark. Therefore, we can conclude that each category of methods produces significantly

different predictions.

The results highlight that Spark produces more competitive results than Mulan in

terms of average values. These differences are introduced by the training process of the

decision trees. Spark considers that any attribute with ten (or less) different values, is a

nominal attribute and uses this information to find better split candidates, thus leading to a

considerable improvement of the predictions. Additionally, Spark uses a sampled fraction of

the data to find the best splits over continuous features. Finally, it is important to highlight

that the results obtained by Spark are not influenced by the number of partitions used since

this parameter only affects the parallelization level.

3.4.2 Evaluation of computational performance

In this experiment, we investigate how the parallelization and distribution of the computation

affect execution times in the training process of the multi-label ensembles. Table 3.4 presents

a comparison of the executions times and the resulting speedup using the full datasets. The

left column shows the execution time of the original Mulan method as the reference. The

right group of columns indicates the speedup of the proposed implementations with respect

to the original Mulan.

The Mulan threading method outperforms the sequential version in every case, achieving

a linear speedup of roughly four. This implementation has the best results for the smallest

datasets. However, the execution times for larger datasets are still unacceptably long.

On the other hand, the performance of the distributed approaches for the Mulan-based

and Spark-based implementations is significantly better for larger datasets. The distribution

of the data, and hence the computation, comes with a small network overhead due to

serialization, transfer, and synchronization. This overhead has a significant impact when

the data size is small, and therefore it actually takes more time to distribute the data

94

Table 3.4.: Execution time (s) of Mulan and speedups of each proposed implementation

Dataset
Mulan -

Execution
time (s)

Speedup
Mulan

thread.
Mulan

distrib.
Mulan

distrib.
thread.

Spark

Flags 5.53E-01 5.03 0.12 0.09 0.05
Emotions 2.23E+00 4.09 0.29 0.25 0.16
Birds 9.83E+00 4.14 0.55 0.53 0.35
Genbase 3.94E+00 2.44 0.46 0.35 0.26
Medical 6.71E+01 4.1 4.61 4.01 1.66
Plant 9.04E+01 4.27 2.53 2.92 2.63
Enron 1.18E+03 3.9 5.15 5.17 19.9
Scene 3.47E+01 4.07 1.52 1.29 2.41
Yeast 3.64E+01 3.84 1.89 1.54 1.19
Human 4.40E+02 3.73 6.31 7.08 8.38
Reuters-RCV1 (1) 1.70E+03 4.83 16.67 18.24 13.47
Bibtex 4.24E+03 4.96 38.97 38.6 26.8
Yahoo (Arts) 7.48E+03 4.41 15.53 15.96 100.5
Yahoo (Health) 7.80E+03 4.47 15.05 15.13 90.68
Yahoo (Business) 1.22E+04 3.81 9.68 12.67 112.37
Yahoo (Social) 1.24E+04 3.83 16.87 21.87 131.89
Yahoo (Entertainment) 1.21E+04 3.65 10.92 13.89 170.04
Corel16k (1) 8.92E+03 3.71 13.3 13.11 28.08
Yahoo (Society) 2.90E+04 3.25 14.67 21.84 369.42
Delicious 1.95E+05 4.59 18.47 19.08 100.91
20NG 4.75E+04 4.05 15.19 31.96 525.04
EUR-lex (DC) 9.62E+04 4.06 70.46 75.17 111.32
EUR-lex (EV) 7.89E+05 4.03 96.71 54.88 48.93
EUR-lex (SM) 3.33E+04 1.97 81.46 77.78 165.5
TMC2007 2.66E+03 2.94 8.1 12.96 28.83
Mediamill 7.27E+03 3.43 32.72 34.23 40.07
Bookmarks 2.80E+05 4.32 74.04 76.17 513.56
IMDB 1.38E+06 3.73 24.07 27.7 729.07
NUS-WIDE (128D cVLAD+) 1.26E+05 4.12 28.47 30.11 437.27

than directly run the computation (achieving speedups smaller than one). However, this is

compensated when the datasets are large enough in terms of instances, which is when the

distribution of the data truly makes sense. Now, the bigger the dataset the better speedups

achieved.

Interestingly, we noticed that the results for Mulan distributed and Mulan distributed

threading are very similar, with a small advantage towards the threading version. The

95

difference between both methods is how the parallelism in each node of the distributed

environment is handled. Mulan distributed delegates the parallelization to Spark and Mulan

distributed threading creates the threads manually, avoiding multiple reads from the same

data. The small difference indicates that the multiple reads from the data do not have a big

impact on the performance, this is expected since the datasets take less than a few seconds

of long execution times. However, this could change in a scenario of millions of instances.

Additionally, bigger data takes more space in memory, which eventually can lead to running

out of memory sooner in the Mulan distributed implementation. Furthermore, this small

difference indicates that the overhead introduced by Spark to handle the parallelization is

considerably small.

The Spark implementation outperforms the Mulan distributed approaches whenever the

dataset has at least 7,000 instances (arts). This indicates that the overhead introduced to

distribute the data among the workers and aggregate the results of the different tasks is only

recommended for the large datasets. Again, this implementation achieves the best results

for datasets with a large number of instances and/or labels, reducing the time to train the

ensembles hundreds of times with respect to the original implementation.

Another important aspect is to consider the evolution of the execution time with regards

to the size of the data. Figure 3.5 presents the speedup of the proposed implementations

together for all the datasets sorted by increasing the number of instances.

First, the scalability of the Mulan threading implementation is linear, achieving speedup

values limited to the number of cores available in a single node, which is relatively small.

Second, the speedup of the distributed implementations scales better the more instances in

the dataset. Third, the increase in the number of labels also affects the scalability of the

models. Mulan distributed implementations use a single core on the distributed environment

to train a given decision tree, which means that when there are more labels than cores in

the cluster the behavior will be similar to the Mulan threading implementation. Hence, they

are limited by the number of cores in the cluster.

96

Mulan Threading
Mulan Distributed
Mulan Distributed Threading
Spark

Fig. 3.5.: Speedup comparison on each proposed implementation

On the other hand, Spark achieves better speedup as soon as the data size grows enough

to justify the distribution. Spark distributes the partitioned data and uses all the available

cores to train for the partitioned data. This approach is more efficient and allows to handle

larger datasets since the limit is set by the memory available, allowing eventually to execute

using data from secondary storage. This sets a limit considerably larger than the ones

established by the other implementations.

3.5 Conclusions

In this chapter, we have presented and evaluated five alternatives on the scalability of multi-

label ensemble classification. RAkEL was selected as a reference classifier to evaluate the

benefits of distributing the construction of the components of an ensemble. A series of

parallel and distributed approaches were proposed and compared against their equivalent

method in the Mulan framework.

The experimental study evaluated and compared the performance of the models with

regards to the quality of the predictions and the execution times considering the data size as

measured by the number of instances and labels. The results evaluating the quality of the

predictions indicate that there are statistical differences between the predictions produced by

the methods based on Mulan and Spark, having Spark produced better results. Regarding the

scalability and overall performance, the distributed approaches significantly outperform the

single-node version. The native Spark implementation that used the distributed construction

of classifiers proved to be the most scalable, maximizing the use of all the available resources

in the cluster, especially for large datasets. Spark performed hundreds of times faster than

the Mulan implementations.

These results enhance the value of Spark as a solid framework to distribute the workload

of large computational tasks, such as multi-label learning and present an open challenge

demanding further research.

98

CHAPTER 4

DISTRIBUTED MULTI-LABEL
K NEAREST NEIGHBORS

Multi-label instances have the information of all the labels, regardless of the relevance.

Our research focus on this phenomenon, therefore, it is mandatory to define a way to

evaluate it. The level of relevant information will be measured by looking at the performance

improvement of a classifier that is greatly affected by the inclusion of irrelevant data.

There are two candidates that would be suitable to evaluate this problem: MLNB

and Ml-knn. MLNB assumes that the features are independent given the set of labels.

Therefore, the performance decreases with the number of features that are irrelevant to the

labels. On the other hand, Ml-knn assigns the class according to a similarity metric, which

in most of the cases is the Euclidean distance. This distance is linear respect the number of

features, therefore its performance decreases by adding misleading features.

We decided to use ML-knn because it is computationally expensive since for each unseen

instance it needs to find the nearest neighbors among the training instances. Therefore, it

is a good candidate for distributed computing. Moreover, this algorithm is particularly

challenging in a distributed environment since the data is spread among multiple nodes, and

the communication between them is considered computationally slow.

We propose to address this issue and to adapt ML-knn to our distributed multi-label

learning architecture on Spark. This algorithm will be used in future approaches, and it is

expected to provide a scalable version of ML-knn that can handle large datasets.

99

4.1 Nearest Neighbors background

Nearest neighbors (NN) is a classic non-parametric and instance-based technique that has

attracted the attention of the research community due to its simplicity and effectiveness.

This technique has a wide range of applications such as density estimation [136], dimensional

hashing [137], pattern recognition [138], data compression [139], and so on.

The nearest neighbors search is an optimization problem, whose goal is to find an

instance that minimizes a certain distance or similarity function [140], [141]. The most

popular distance used is the Euclidean distance, which measures the straight-line distance

between two points in Euclidean space. A straightforward generalization of this problem is

the k nearest neighbors search (knn) which finds the k instances minimizing the distance.

Whenever the search method performs a pair-wise comparison using all the instances,

it is called exact nearest neighbors search. This approach finds the exact nearest neighbors

at high computational cost, however, there are many techniques that reduce this complexity

by indexing the feature space.

4.1.0.1 Tree indexes

One of the first methods developed was the kd-tree [142]. This structure recursively

subdivides the feature space by a hyperplane that is orthogonal to one of the axes and that

partitions the data points as evenly as possible.

In [143] they propose to use simultaneously multiple kd-tree to increase the performance

of nearest neighbors searches. They use rotations of the dataset that would force the tree

to use features that otherwise would be discarded. They show that by rotating the dataset

to align it with its principal axis direction using PCA, and then applying random House-

holder transformations that preserve the PCA subspace of appropriate dimension, the kd-tree

performance can be significantly improved.

One of the weaknesses of kd-tree is that the indexed space can have a high aspect ratio,

which makes it impossible to use volume bounds. Arya et al. [144] introduced a Balanced

100

Box-Decomposition tree (bbd-tree) which guarantees both a balanced aspect ratio and a

logarithmic depth. This modification allows performing error bound approximate search by

considering (1+ε)-approximate nearest neighbors. This concept was also adapted by Duncan

et al. [145] using the Balanced Aspect Ratio tree (bar-tree), which was later extended to

higher dimensions [146]. This tree does not exclusively use axis-orthogonal hyperplane cuts,

which leads to good aspect ratio, balanced depth, and convex regions. Other variations of

the kd-tree are: the pca-tree[147], the rp-tree[148], and the trinary projection tree[149].

Another weakness of kd-tree is related to the curse of dimensionality. kd-tree is very

effective at low dimensions: after traveling down the nodes of the tree, all the instances in

one leaf tend to be much closer to each other than to instances in other leaves. However, this

property disappears in high dimensional spaces. This has been solved in a later method called

Metric tree [150] which subdivides the feature space by a hyperplane defined by the midpoint

of two instances (pivots). This partitioning creates two disjoint sets with no information

shared between them. The search process goes through the tree choosing the nearest node

in each level, allowing to “backtrack” in case that some branches have remained unpruned.

Spill tree [151] modifies the Metric tree avoiding the tedious backtracking process by allowing

an overlap area between the nodes. This overlapped buffer allows that the same instance can

be indexed by both pivots, which leads to an increased accuracy at the cost of redundancy.

In order to combine the advantages of both, Metric tree and Spill tree, [151] proposes

a combination called Hybrid tree. This structure allows having both types of nodes, where

a decision is made in each node whether to use an overlapping node or non-overlap node.

In the search process, it only does backtracking for non-overlap nodes (as in conventional

Metric tree), and defeatist search in overlapping nodes (Spill tree).

Some other approaches, which are based on completely different concepts, have been

proposed. For example, [152] presents the product quantification approach in which they

decompose the space into low dimensional subspaces and represent the instances by compact

codes computed as the quantification indices in these subspaces. These compact codes can

101

be compared to the query points using an asymmetric approximate distance. A modification

of the standard quantification process was introduced by [153] in which they use an inverted

index with product quantification that produces denser subdivision of the search space.

4.1.0.2 Hashing indexes

The best-known hashing based nearest neighbors technique is Locality Sensitive Hashing

(LSH) [154]. An LSH function maps the instances in the feature space to a space of reduced

dimensionality in a way that similar instances map to the same hash entries. Then, a

similarity search query can be answered by first hashing the query instance and then finding

the close instances within the instances that have been mapped to the same entry. To

guarantee both, good search quality and good search efficiency, one needs to use multiple

LSH tables and combine their results. Unfortunately, LSH requires a large number of hash

tables [155], [156]. There are some variants of LSH such as multi-probe LSH [157] in which

the number of hash tables is reduced by searching other entries in the hash tables within a

certain distance, and LSH Forest [158] in which they remove the data-dependent parameters

achieving better adaptation for skewed data distributions.

The performance of LSH methods is highly dependent on the hash function. There is a

large amount of research aimed at improving hashing methods by using data-dependent hash

functions using various techniques: parameter sensitive hashing [159], spectral hashing [160],

randomized LSH from learned metrics [161], kernelized LSH [162], learned binary embedding

[162], shift-invariant kernel hashing [163], semi-supervised hashing [164], optimized kernel

hashing [165], and complementary hashing [166].

4.1.0.3 Graph indexes

Nearest neighbors graph methods build a graph structure in which vertices represent

the instances and edges connect nearest neighbors. There are two critical components in

these methods: query strategy and graph construction.

102

There are multiple approaches that aim to minimize the impact of consulting the nearest

neighbors graph. In [167] the authors consider to use a sample of well-separated instances as

seeds and start the graph exploration using a best-first strategy. Similarly, [168] incorporate

a hill-climbing strategy and pick the starting points at random.

The graph construction is the target of substantial research, however, these methods do

not scale, or are specific to certain similarity measures. Paredes et al. [169] proposed two

methods for graph construction using general metric spaces and low empirical complexity.

However, both methods require a global data structure and are difficult to parallelize across

machines. Chen et al. [141] propose to use divide and conquer methods to recursive data

partitioning. In [170] authors presented a graph construction technique using Morton ordering

and based on space-filling curves. Dong et al. [171] present a graph construction method

based on local search. They consider that a neighbor of a neighbor is likely to be a neighbor

too. Therefore, by initializing each vertex with a random set of neighbors the method

iteratively improves the neighbors of each node.

Although there have been some methods which focused on efficiently building the nearest

neighbors graph before, it is considered that they are not efficient enough in a distributed

environment. Consequently, these techniques are not included in this study.

4.2 Distributed ML-KNN

We propose a Ml-knn implementation on Spark, which will focus on scaling the algorithm

in a distributed environment. The distribution of the computation can be achieved in both,

the train and test phases. The foundations of Ml-knn were described in Section 2.1.2.1.

Firstly, the train phase computes the statistical information of the training instances

by finding the prior and posterior probabilities. The prior probabilities can be found by

frequency counting of the labels. The posterior probabilities are more complex and need of

nearest neighbors to gather statistical information.

103

Secondly, the test phase uses the previously computed prior and posterior probabilities.

For each of the test instances, the probabilities are combined with the information gathered

by the nearest neighbors on the training instances to produce a probability for each of the

labels.

As can be seen, Ml-knn is a complex algorithm whose performance is limited by the two

nearest neighbors searches. The first one between all the training instances, and the second

one between the test and training instances. This introduces an increased complexity with

respect to lazy methods in traditional classification problems. Additionally, some aspects

such as broadcasting values or persisting the right data in-memory can have a large impact

on the final performance. This section provides a detailed explanation of the implementation

that maximizes the resources of a distributed environment.

4.2.1 Train phase: computing prior and posterior probabilities

The train phase is divided into computing the prior and posterior probabilities. The first

to perform a frequency count of the labels, and the second to perform a frequency count

subject to the neighbors.

Prior probabilities are defined as P (Hj) and P (¬Hj) and represent the probabilities

of a label yj being found in the dataset before the arrival of new information. Figure 4.1

presents the process to compute the probabilities in a distributed manner.

A user-defined reduce is applied to the collection of labels of all the training instances.

This operation adds the binary label vector Y to a vector µj =
∑m

i=1[[yj ∈ Yi]], which

counts the occurrence of each label. Next, the prior probabilities are computed averaging

and smoothing the count vector P (Hj) = (s+µj)/(s∗2+m). Additionally, we can compute

P (¬Hj) = 1− P (Hj) by finding the opposite probability.

Posterior probabilities are defined as P (Cj|Hj) and P (Cj|¬Hj), it represents the

probabilities of a label being present in exactly j instances among its k nearest neighbors,

conditioned to the event of having the label present. Figure 4.2 presents the steps to compute

the probabilities in a distributed manner.

104

Fig. 4.1.: Ml-knn train phase: Computation of the prior probabilities P (H) and P (¬H).

Frequency count of the labels followed by averaging and smoothing the values

First, it finds the k nearest neighbors for every training instance, followed by a user-

defined map applied to each instance. This operation computes the counts of each label

among its neighbors Cj. Next, it creates two frequency matrices Krj = κj[r] and K̃rj = κ̃j[r]

for each instance x. Each position (r, j) is initialized to 0, and it is updated with K(Cj, j) = 1

for yj ∈ Yi or K̃(Cj, j) = 1 for yj /∈ Yi.

Second, a user-defined reduce is applied to the collection of K and K̃ adding the matrices

of all the training instances. The final result stores the number of training instances that

have exactly r neighbors with j-th label, both for the case yj ∈ Yi and yj /∈ Yi.

Finally, the posterior probabilities are computed averaging and smoothing the frequencies:

P (Cj|Hj) = (s+KCj ,j)/(s× (k + 1)
∑k

r=0Kr,j)

P (Cj|¬Hj) = (s+ K̃Cj ,j)/(s× (k + 1)
∑k

r=0 K̃r,j)

105

Fig. 4.2.: Ml-knn train phase: Computation of Posterior probabilities P (C|H) and

P (C|¬H). A frequency count of the labels among each of the neighbors is performed per

instance, followed by averaging and smoothing the values

4.2.2 Test phase: prediction of label set

The test phase inducts the predicted label set for new unlabeled instances. This set relies

on the prior and posterior probabilities, previously computed in the train phase. Figure 4.3

shows the predictions of the test phase labels.

First, it finds the k nearest neighbors for every test instance among the training instances.

Next, a user-defined map is performed on each test instance to compute the counts of

each label Cj among its neighbors. Then, each test instance finds the corresponding value

in the posterior probabilities and assigns each label by determining for each yj whether

P (Hj)× P (Cj|Hj) is greater than P (¬Hj)× P (Cj|¬Hj).

106

Fig. 4.3.: Ml-knn test phase. First, the prior and posterior probabilities are broadcasted.

Then, each label set is predicted by combining the probabilities with the information collected

by the nearest neighbors

4.3 Distributed Nearest Neighbors methods

The Ml-knn performance is going to be bound by the k nearest neighbors search, both in

the train and test phases. The main issue of distributing the search process over a cluster of

nodes is that every time a node needs to access the information of another node it triggers a

shuffle operation, which sends information over the network and is considered to be a slow

process. Although the most naive strategy would be to use a cross product and exchange

the information of all the nodes with each other, in practice this is unfeasible because of

memory and network limitations.

107

There are multiple strategies that aim to minimize this impact, from distributed index

structures to hashing matching. We propose three versions of Ml-knn, to study their

impact on the overall performance of the algorithm. Each implementation represents one of

the strategies studied in Section 4.1, namely Ml-knn-it, Ml-knn-ht, and Ml-knn-lsh.

4.3.1 Iterative Multi-label k Nearest Neighbors (ML-KNN-IT)

Our first approach was to incorporate an iterative version of Ml-knn in Spark based on the

principles presented by Maillo et. al [129], [172], where they adapted the brute force algorithm

to a distributed environment. Despite being a naive approach, in which no index structure

had been used, it showed promising results. However, they only compared to another

algorithm that has been previously developed by themselves, hence it is difficult to appreciate

the real performance of the algorithm. Additionally, their original implementation1 suffers

from some limitations, such as an excessive number of parameters, it is limited by an outdated

version of Spark (not taking advantage of new functionality introduced in Spark 2.0+), it

inefficiently iterates over the test instances on the driver by assigning a partition id and

sorting the instances (triggering a shuffle operation), do not maintain the row structure

which discard any extra information on the instances, among others.

We modified the original method, solving the previously mentioned issues and adding

support to keep the label information. Our implementation performs an exact nearest

neighbors search by iteratively broadcasting a buffer of test instances, instead of broadcasting

full partitions of test data. However, both methods are comparable and if the buffer size is

set to the partition size, they would be equivalent. The combination of this search method

and our proposed Ml-knn is named Ml-knn-it. Figure 4.4 shows the functionality of

the test phase since this method does not require of any training. The diagram shows one

iteration of the method, thus finding the nearest neighbors of the test instances stored in

the buffer.

1knn-is: https://github.com/JMailloH/kNN_IS

108

https://github.com/JMailloH/kNN_IS

Fig. 4.4.: Test phase for Ml-knn-it. In each iteration a buffer of test instances is

broadcasted, which will be used to find the nearest neighbors among the training instances

First, it uses a local iterator of the test instances, which brings a partition at a time

to the driver avoiding to overload the memory. This iterator allows iterating locally over

the test instances while avoiding to filter the test instances by a partition id and collecting

the results. Next, a buffer of fixed size is filled with the local instances and broadcasted to

all the nodes. After that, a map operation over the train instances will find the k nearest

neighbors of the broadcasted instances within the local partition. Finally, a reduce by key

operation will combine all the partitions keeping the top k nearest neighbors of the buffer

instances. The data should be in-memory for two reasons: it will be accessed multiple times,

and this avoids undoing the transformations to restore the original state.

The main advantages of this method are that it performs an exact search and does not

require any training. Furthermore, the reduce by key operation is more efficient than other

operations which require a shuffle of data such as join.

109

On the other hand, this method suffers from the same problem than the traditional

implementation: pair-wise distance computation. Therefore, each instance will be broadcasted

to all the nodes once, no matter the size of the buffer or the number of iterations. Additionally,

the result is created by combining the train partitions and the broadcasted test instances,

hence it is not modifying the original test data. Instead, it is creating new test data with

the neighbors in it. Consequently, it will iteratively duplicate the test data, until the test

phase is over, and then the original test data can be discarded.

4.3.2 Hybrid Tree Multi-label k Nearest Neighbors (ML-KNN-HT)

This method was presented in [173] and aims to use a tree-based index structure to achieve

high accuracy and search efficiency in a distributed environment, also there is a public

implementation available2. The available implementation works seamlessly with the new

versions of Spark, as well as supporting the specification of the columns to be preserved in

the neighbors. Therefore, it can be easily incorporated into our Ml-knn algorithm, and it

is named Ml-knn-ht.

This algorithm uses two structures: a top tree (metric tree) and multiple subtrees (spill

trees) on the nodes, hence the combination of trees is named hybrid tree. This method

requires a train phase, where all the trees are built, and a test phase, in which we can query

the trees to find nearest neighbors. Figure 4.5 presents the process to build the trees.

First, it uses a randomized sample of the training instances to build the top tree (metric

tree), whose leaf nodes correspond to specific partitions of the data. A copy of the top tree

is broadcasted to all the nodes, so all the train instances can compute a value that identifies

the index of the partition where they belong. Next, the training data is repartitioned by the

index, hence it is sent to the partition indicated by the top tree. Then, each partition builds

a subtree (spill tree) which will index the local training data. In the end, both types of trees

(top tree and subtrees) are persisted in-memory since they can be consulted multiple times.

2knn-ht: https://github.com/saurfang/spark-knn

110

https://github.com/saurfang/spark-knn

Fig. 4.5.: Train phase for Ml-knn-ht. First, a top tree (metric tree) is built locally on

the driver using a sample of train instances. Next the instances are indexed and partitioned

using the top tree. Then, each partition builds a local subtree (spill tree)

Once all the trees are computed and broadcasted, we can query the structure to find

nearest neighbors among the training instances. Figure 4.6 shows the process to find nearest

neighbors for the test instances. First, each partition is indexed using the top tree and the

test instances are repartitioned by index. Next, each partition uses the local subtree to

find the nearest neighbors among the training instances. Then, the distance to the farthest

neighbors is used to evaluate if it is necessary to search for other partitions.

One of the parameters in this method is the overlap buffer width for the spill nodes.

This buffer needs to be large enough to always include the k nearest neighbors, but not so

large that it impacts negatively on the overall performance. The details of this parameter

estimation can be found in [173].

111

Fig. 4.6.: Test phase for Ml-knn-ht. First, the test instances are indexed and repartitioned

using the top tree (metric tree). Then, each partition finds its nearest neighbors using their

local subtree (spill tree)

The advantage of this algorithm is the speedup of the nearest neighbors searches using

multiple index structures. First, by using the top tree to find the corresponding partition

for each instance, and second by using the subtrees to find the nearest neighbors within each

partition. Moreover, it only executes one shuffle operation to find the partition where each

instance belongs.

However, these advantages come at the cost of building the indexes of training data.

This cost is reflected both in computational time (find the splits) and memory (store the

pivots). Moreover, to maximize the use of these structures it avoids using backtracking for

both trees: in the top tree it might send duplicate test instances to several nodes instead, and

in the subtrees, it uses an overlap buffer to consider instances near the decision boundary.

112

Additionally, the number of partitions used in this algorithm is the same as leaf nodes

on the top tree. Therefore, the size of the partitions is decided by the splits on the tree,

leading to unbalanced workloads. The only way to minimize this impact is to have more

partitions that nodes since this ensures at least the full utilization of the cluster.

4.3.3 Locally Sensitive Hashing Multi-label k Nearest Neighbors
(ML-KNN-LSH)

This method focuses on the application of locally sensitive hashing (LSH) functions that

preserve the similarity of the original feature space. These functions map, with high probability,

similar instances to the same hash entries. This method uses several hash tables to increase

the probability of collision for similar instances.

The most popular LSH functions are: MinHash which finds the similarity between two

sets defined by the ratio of the number of elements of their intersection and the number

of elements of their union. Bucketed Random Projection that projects the feature vectors

onto a random unit vector and portions the projected result into buckets. Sign Random

Projection which creates a bit vector with the signs of the projection of the feature vector

onto multiple random unit vectors.

In the nearest neighbors search problem, the data should be normalized to assign equal

weight to all the features regardless of the scale. Our data is normalized in the range [0, 1],

consequently MinHash and Bucketed Random Projection cannot be applied here. For this

reason, Sign Random Projection was the function selected.

The official machine learning library for Spark [122] (v.2.1.0) only offers an implementation

of MinHash and Bucketed Random Projection. Therefore, the Sign Random Projection

function was implemented by following the structure of the other functions. Furthermore,

the original LSH method required to use a combination of join and group by operations

to find the nearest neighbors of each instance, however, we found out that this produced

performance issues that could be minimized by using the co-group operation instead.

113

Fig. 4.7.: Train phase for Ml-knn-lsh. A set of random vectors is created and broadcasted.

Then, the training instances will compute their sign projection using those vectors to find

their keys for each of the hash tables

Figure 4.7 shows the train phase. First, for every hash table, it creates as many

unit random vectors as the predefined signature length. Then, the random vectors are

broadcasted to all the nodes where the training instances will compute their sign projection

signature. Additionally, the hashed training instances are persisted in-memory since they

can be consulted multiple times.

Figure 4.8 presents the test phase, where each test instance finds the approximate nearest

neighbors. First, the test instances repeat the same steps of the train phase to find their

hash values. Next, the training and test instances use a explode operation, which “flattens”

the instances by the number of hash tables. Then, the instances are co-grouped by the tuple

(table position, signature), combining the test and training instances with the same entries

of the hash tables. Finally, a reduce by key operation finds the top k nearest neighbors

among the instances that were grouped together.

114

Fig. 4.8.: Test phase for Ml-knn-lsh. Each test instance computes their key using the sign

projection over the random vector. Then, the data is “flattened” and co-grouped by keys.

Finally, the nearest neighbors are searched among the instances in the same group

The main advantage of this method is the dimensionality reduction, the hashes should

have a lower dimension than the features. Additionally, no data needs to be exchanged with

the driver. However, this method has a high memory consumption since it will need to

compare all the partitions to match the hash entry and signature, thus triggering a cartesian

product.

4.4 Experimental setup

This section describes the experimental setup. Section 4.4.1 summarizes the characteristics

of the benchmark datasets. Section 4.4.2 discusses the selection of the parameters. Finally,

Section 4.4.3 specifies the hardware and software resources used in the experiments.

4.4.1 Datasets

Table 4.1 summarizes the characteristics of the 22 datasets for multi-label classification used

in the experiments, along with the number of instances, number of features, number of labels,

cardinality [49], and density [49].

115

Table 4.1.: Summary description of the datasets

Dataset Instances Features Labels Cardinality Density

Flags 194 19 7 3.3918 0.4845
CAL500 502 68 174 26.0438 0.1497
CHD 555 49 6 2.5802 0.4300
Emotions 593 72 6 1.8685 0.3114
Birds 645 260 19 1.0140 0.0534
Medical 978 1,449 45 1.2454 0.0277
Plant 978 440 12 1.0787 0.0899
Water quality 1,060 16 14 5.0726 0.3623
Langlog 1,460 1,004 75 1.1801 0.0157
Enron 1,702 1,001 53 3.3784 0.0637
Scene 2,407 294 6 1.0740 0.1790
Yeast 2,417 103 14 4.2371 0.3026
Human 3,106 440 14 1.1851 0.0847
Slashdot 3,782 1,079 22 1.1809 0.0537
Corel5k 5,000 499 374 3.5220 0.0094
Bibtex 7,395 1,836 159 2.4019 0.0151
Yelp 10,806 671 5 1.6383 0.3277
20NG 19,300 1,006 20 1.0289 0.0514
TMC2007 28,596 500 22 2.2196 0.1009
Mediamill 43,907 120 101 4.3756 0.0433
Bookmarks 87,856 2150 208 2.0281 0.0097
IMDB 120,919 1001 28 1.9996 0.0714

Experiments were performed using 10-fold cross-validation to objectively evaluate the

models’ performances. The folds are built using a stratified division [174], where each unique

subset of labels present in the data is considered as a fictitious label, and then the desired

percentage of instances is extracted from each of those labels. This ensures that each of the

folds has the same data distribution as the original file.

All our experiments are carried on using classifiers that rely on a metric distance, thus we

decided to normalize (re-scale from 0 to 1) the datasets. Normalizing the data ensures that

all the features have the same weight when computing the distances and that the distances

for numeric and binary features are equal. The numeric features will produce a numeric

distance, and the binary features will have distance 1 whenever the value is the same or 0

otherwise.

116

4.4.2 Methods and parameters

The methods to cover are the ones presented in Section 4.2, however, some of those methods

depend on a series of parameters. The most relevant parameter for all the methods that

attempt to use the nearest neighbors for classification is the number of neighbors to consider,

in this case, we use k = 3. It is important to consider that although the final predictions

would vary with the number of neighbors, we do not want to find the optimal number

of neighbors, but to set the parameters in a way that all the methods are compared in

equal conditions. The following parameters were used to facilitate the reproducibility of the

experiments, and to provide further insight into the obtained results.

- Ml-knn-it depends on the number of iterations used to broadcast all the test instances

and compute the pair-wise distances. This parameter should not be set manually, since

the larger the data the more instance would need to be sent per iteration. Instead, we

set the size to the buffer to send 1, 000 instance at a time from the driver to the rest

of the Nodes.

- Ml-knn-ht requires a sample of train instances to build the top tree in the driver, to

avoid collecting all the training instances. The sample size is 1, 000 training instances,

to guarantee that the workload would be the same than in Ml-knn-it.

Another critical parameter is the overlap buffer width for the spill trees. The details of

this parameter estimation can be found in [173]. In short, assuming that the instances

are uniformly distributed in the feature space, the width can be approximated to the

average distance between instances. Specifically, the number of instances within a

certain radius of a given point is proportional to the density of instances raised to the

effective number of features (dimensions), of which manifold data exist on:

Rs =
c

N
(1/d)
s

(4.1)

117

where Rs is the radius, Ns is the number of instances, d is the effective number of

dimensions, and c is a constant. To estimate Rs for the entire data, we can take

samples of different size Ns to compute Rs. We can estimate c and d using linear

regression. Finally, we can calculate Rs using total number of instances.

- Ml-knn-lsh needs to set the number of hash tables and the signature length in each

entry. The number of hash tables will have a considerable impact on memory since

the instances will be duplicated by this value. On the other hand, the signature length

will affect the number of training and test instances that are grouped together. We

decided to study a wide range of values to evaluate their impact on the quality of the

metrics and the execution times, the selected values are {1, 2, 4, 8, 16, 32} for number

of tables and {1, 2, 4, 8, 16, 32, 64} for the signature length.

4.4.3 Hardware and software environment

All the experiments were executed on a local cluster composed of 2 Intel Xeon CPU E5-

2690v4 with 28 cores (56 threads) in total and 128 GB of memory. Out of all the resources,

6 cores and 25 GB were reserved for the driver and the rest was assigned to the nodes. The

experiments were executed using Spark 2.2.0 and Scala 2.11.

4.5 Experimental study

This section presents and discusses the experimental results. Section 4.5.1 compares the

quality of the predictions based on the evaluation metrics presented in Section 2.1.3 and

includes the study of any parameter that would have a significant impact on the predictions.

Section 4.5.2 studies the execution times and considers whenever the performance gain

introduced by the index methods surpasses the initial overhead. Section 4.5.3 evaluates

whenever the methods scale-out correctly with respect to the increasing number of instances,

features, and labels.

118

4.5.1 Prediction comparison: approximate versus exact

This experiment compares the quality of the predictions produced by the three approaches.

The predictions of Ml-knn-it are not affected by any of its parameters, and it is considered

an exact method. Ml-knn-ht can be affected by the overlap buffer width, however, the

estimation of this value was explained in Section 4.4.2. On the other hand, Ml-knn-lsh

is expected to be deeply affected by both the number of tables and the signature length of

its hash entries. First, we are going to study the parameter configurations of Ml-knn-lsh,

and then the overall best setting will be used in the final comparison to compare the three

methods in equal conditions.

Figure 4.9 illustrates the evolution of the predictions, and the impact on the execution

time, produced by Ml-knn-lsh using up to 64 hash tables and signatures up to size 32. Since

it would not be possible to show the results over all the datasets, the most representative

datasets have been selected. These datasets cover a wide range of the number of instances,

features, and labels. These datasets obtained a considerably high subset accuracy on the

exact search, thus the metric which would be affected the most by the loss of performance.

The plots on the left side present the subset accuracy, and on the right side show the execution

times in minutes and on a logarithmic scale.

The most accurate predictions are obtained when more tables are used together with

smaller signatures since the number of tables reflects the number of groups that will be

created in the matching process and the signature length define inversely the size of those

groups. Therefore, the more tables and smaller signatures, the more instances are compared

to find neighbors. However, the trade-off is that the more instances are compared, the more

distances need to be computed, and the method becomes slower. The results indicate that

the execution times grow exponentially with the number of tables and scales logarithmically

with the signature size. Therefore, the best compromise between prediction and execution

performance is produced by using two tables and signature of size eight.

119

2
4

8
16

32
2 4 8 1632

64

0.2

0.4

0.6

signature length num
. ta

bles

S
u
b
se
t
A
cc
u
ra
cy

2
4

8
16

32
2 4 8 16 32

64

1

10

100

signature length num
. ta

bles

T
im

e
(m

in
)

(a) Medical dataset

2
4

8
16

32
2 4 8 16 32

64

0.2
0.4
0.6
0.8

signature length num
. ta

bles

S
u
b
se
t
A
cc
u
ra
cy

2
4

8
16

32
2 4 8 16 32

64

1

10

100

signature length num
. ta

bles
T
im

e
(m

in
)

(b) Scene dataset

2
4

8
16

32
2 4 8 16 32

64

0.2

0.4

signature length num
. ta

bles

S
u
b
se
t
A
cc
u
ra
cy

2
4

8
16

32
2 4 8 16 32

64

0.1

1

signature length num
. ta

bles

T
im

e
(m

in
)

(c) Emotions dataset

2
4

8
16

32
2 4 8 16 32

64

0.45

0.55

signature length num
. ta

bles

S
u
b
se
t
A
cc
u
ra
cy

2
4

8
16

32
2 4 8 16 32

64

0.1

1

10

signature length num
. ta

bles

T
im

e
(m

in
)

(d) Birds dataset

Fig. 4.9.: Ml-knn-lsh subset accuracy on Medical, Scene, Emotions, and Birds datasets

120

Table 4.2.: Hamming loss and subset accuracy results obtained by the three methods

Hamming loss ↓ Subset accuracy ↑
Dataset

Ml-knn-it Ml-knn-ht Ml-knn-lsh Ml-knn-it Ml-knn-ht Ml-knn-lsh

Flags 0.2411 0.2440 0.2827 0.1667 0.1458 0.1042
CAL500 0.1360 0.1357 0.1370 0.0000 0.0000 0.0000
CHD 0.3031 0.3031 0.3007 0.1159 0.1159 0.1522
Emotions 0.2072 0.2050 0.2140 0.2703 0.2770 0.2568
Birds 0.0487 0.0497 0.0494 0.5031 0.5155 0.5031
Medical 0.0159 0.0156 0.0165 0.4751 0.5339 0.4932
Plant 0.0879 0.0890 0.0893 0.0422 0.0844 0.0042
Water quality 0.3080 0.3096 0.3248 0.0152 0.0152 0.0190
Langlog 0.0155 0.0158 0.0156 0.1399 0.1433 0.1365
Enron 0.0498 0.0498 0.0542 0.0669 0.1297 0.0209
Scene 0.0984 0.0929 0.1082 0.6456 0.6007 0.5973
Yeast 0.2046 0.2058 0.2060 0.1493 0.1493 0.1493
Human 0.0831 0.0831 0.0829 0.0026 0.0026 0.0000
Slashdot 0.0520 0.0517 0.0535 0.0538 0.0802 0.0033
Corel5k 0.0094 0.0094 0.0094 0.0024 0.0016 0.0000
Bibtex 0.0088 0.0088 0.0098 0.1075 0.1110 0.0043
Yelp 0.1916 0.1890 0.2096 0.4056 0.4100 0.3733
20NG 0.0394 0.0399 0.0507 0.2832 0.2830 0.0220
TMC2007 0.0636 0.0639 0.0714 0.2683 0.2555 0.2001
Mediamill 0.0278 0.0278 0.0313 0.1656 0.1655 0.0919
Bookmarks 0.0055 0.0055 − 0.2313 0.2337 −
IMDB 0.0714 0.0714 − 0.0009 0.0009 −
− Experiment could not execute due to computational/memory limitations.

Table 4.2 evaluates the performance of the methods using the selected parameters for the

subset accuracy and Hamming loss metrics. Ml-knn-it produces the best results in most

cases since it is an exact method, it is surpassed by Ml-knn-ht on some occasions by the

fact that the overlap buffer might not consider all the real neighbors, and this approximation

conveniently considers more appropriate neighbors. Overall, the Ml-knn-it and Ml-knn-

ht performance can be considered equivalent. On the other hand, Ml-knn-lsh tends to

have lower values of subset accuracy, however, there are some exceptions where the difference

is small due to data distributions. Nevertheless, it is considered that Ml-knn-lsh is the

most inaccurate of the three methods.

121

Table 4.3.: Micro-average F1 and macro-average F1 results obtained by the three methods

Micro-average F1 ↑ Macro-average F1 ↑
Dataset

Ml-knn-it Ml-knn-ht Ml-knn-lsh Ml-knn-it Ml-knn-ht Ml-knn-lsh

Flags 0.7362 0.7338 0.6844 0.5670 0.5649 0.4870
CAL500 0.3171 0.3315 0.3305 0.0805 0.0822 0.0832
CHD 0.6144 0.6121 0.6289 0.3154 0.3095 0.3410
Emotions 0.6406 0.6459 0.6154 0.6205 0.6286 0.5876
Birds 0.3318 0.2475 0.1065 0.1985 0.1624 0.0546
Medical 0.6520 0.6652 0.6435 0.6374 0.6553 0.6326
Plant 0.0741 0.1365 0.0078 0.0272 0.0413 0.0038
Water quality 0.5271 0.5238 0.4468 0.4307 0.4281 0.3357
Langlog 0.0058 0.0114 0.0000 0.2963 0.2982 0.2933
Enron 0.4130 0.4499 0.3875 0.2385 0.2432 0.2070
Scene 0.7126 0.7089 0.6840 0.7236 0.7125 0.6932
Yeast 0.6246 0.6228 0.6246 0.3459 0.3448 0.3472
Human 0.0045 0.0045 0.0000 0.0029 0.0029 0.0000
Slashdot 0.1017 0.1592 0.0056 0.1907 0.2089 0.1401
Corel5k 0.0210 0.0095 0.0023 0.1690 0.1677 0.1642
Bibtex 0.2949 0.3008 0.0807 0.0911 0.1010 0.0289
Yelp 0.6556 0.6607 0.6423 0.5604 0.5605 0.5357
20NG 0.4315 0.4287 0.0464 0.4218 0.4162 0.0451
TMC2007 0.6362 0.6573 0.5782 0.4073 0.4105 0.3002
Mediamill 0.6039 0.6036 0.5282 0.2125 0.2123 0.0653
Bookmarks 0.3551 0.3591 − 0.1134 0.1153 −
IMDB 0.0017 0.0016 − 0.0118 0.0117 −
− Experiment could not execute due to computational/memory limitations.

Table 4.3 compares the predictions using two metrics which are more representative of

the real quality of the predictions, micro-average F1 and macro-average F1. Ml-knn-it

and Ml-knn-ht obtained equivalent results, just like for the previous metrics. On the other

hand, Ml-knn-lsh performed considerably worse than the other methods. This difference

can be attributed to the underlying data distribution, not having a uniform data distribution

may lead to a poor approximation in LSH due to the random vectors not partitioning the

space properly.

122

Table 4.4.: Execution times for the train and test phases in minutes for the three methods

Train time Test time
Dataset

Ml-knn-it Ml-knn-ht Ml-knn-lsh Ml-knn-it Ml-knn-ht Ml-knn-lsh

Flags 0.0470 0.0475 0.0413 0.0225 0.0143 0.0176
CAL500 0.0630 0.1524 1.5737 0.0323 0.0361 1.0140
CHD 0.0501 0.0597 0.0847 0.0243 0.0214 0.0651
Emotions 0.0517 0.0640 0.2412 0.0250 0.0214 0.3415
Birds 0.0640 0.0834 0.1530 0.0306 0.0245 0.2276
Medical 0.1910 0.2365 1.0820 0.0787 0.0715 2.3176
Plant 0.0938 0.1204 0.2549 0.0457 0.0433 0.4977
Water quality 0.0575 0.0880 0.4765 0.0244 0.0316 0.3426
Langlog 0.1919 0.3333 0.6817 0.0891 0.1058 0.5617
Enron 0.2560 0.3892 0.5233 0.0718 0.1027 0.2781
Scene 0.1397 0.1861 0.5484 0.0552 0.0689 1.9123
Yeast 0.1256 0.1776 1.3601 0.0438 0.0753 0.7848
Human 0.2609 0.2730 0.6156 0.0978 0.1231 1.3664
Slashdot 0.3831 0.3632 0.7124 0.1286 0.1335 1.0321
Corel5k 0.8753 3.6945 18.4798 0.2816 1.5695 4.7568
Bibtex 3.5429 2.8774 8.2819 0.6209 0.7865 6.8489
Yelp 3.1812 0.3867 0.4578 0.8685 0.1460 4.1907
20NG 14.4004 1.0986 3.7498 4.4056 0.3758 23.4893
TMC2007 44.9470 1.2671 9.1497 14.6589 0.6059 41.5393
Mediamill 168.2233 3.8833 691.1088 60.3439 2.0957 241.1892
Bookmarks 2170.5851 27.9763 − 543.7354 8.6002 −
IMDB 4844.1880 17.6109 − 1559.7201 6.3888 −
− Experiment could not execute due to computational/memory limitations.

4.5.2 Performance comparison: execution times for train and test phases

This experiment evaluates the execution times for the studied methods. The Ml-knn

algorithm is affected by the number of instances, features, and labels. Consequently, we

consider multiple datasets that represent a wide range of characteristics and analyze the

impact of those factors. Table 4.4 shows the execution time, in minutes, for each dataset

sorted by the number of instances. The left side of the table presents the results for the train

phase, and the right side presents the results for the test phase.

Ml-knn-it has the best execution times for the small datasets, followed very closely

by Ml-knn-ht. However, the performance declines with the number of instances since the

complexity of the algorithm is tightly bounded by the number of instances.

123

Ml-knn-ht quickly surpasses Ml-knn-it once the dataset is big enough to require an

execution time where the construction of an index represents a small fraction of the total

time. The difference of performance is even greater for the test phase since the index has

already been constructed and it only needs to query the structures.

Ml-knn-lsh has the longest execution times for most of the datasets. The gap in

performance is especially big for the test phase since the co-group operation is less efficient

between two different sets of instances. Despite computing pair-wise distances only within

the same group, instead of all the instances like Ml-knn-it, the performance gain is dragged

down by the duplication of instances and the computation of the hash entries for all the hash

tables. This could lead to memory issues, as it can be appreciated for the largest datasets

where it was not possible to finish the executions due to hardware limitations.

4.5.3 Scalability analysis on the number of instances, features, and labels

Another important aspect is to consider the evolution of the execution times with regards

to the size of the data. The size can increase by multiple factors: number of instances, the

number of features, and the number of labels. This experiment studies the scalability of

the three methods by observing the total execution times (train and test phases together)

over different samplings of the 20NG dataset. Since this experiment only studies the

computational performance, it is irrelevant which instances, features or labels are selected.

Figure 4.10 presents the execution times on a range of 1,000 up to 16,000 instances, with

a fixed number of features and labels. The execution times of Ml-knn-it and Ml-knn-lsh

increase exponentially with the number of instances. Ml-knn-it needs to execute a pair-

wise comparison between instances, hence this exponential growth is expected. Ml-knn-

lsh executes a pair-wise comparison only within grouped instances, however, the explode

operation duplicates the instances by the number of tables. This leads to an extra overload

of memory and computational time that eventually drags down the performance of the

method. Finally, Ml-knn-ht presents the best scalability, with considerably reduced and

linear execution times.

124

2 4 6 8 10 12 14 16

·103

0

5

10

15

20

25

Number of instances

T
ot
al

ex
ec
u
ti
o
n
ti
m
e
(m

in
)

Ml-knn-is
Ml-knn-ht
Ml-knn-lsh

Fig. 4.10.: Execution times according to the number of instances

1 2 3 4 5 6 7 8 9 10

·103

0

20

40

60

80

100

Number of features

T
ot
a
l
ex
ec
u
ti
o
n
ti
m
e
(m

in
)

Ml-knn-is
Ml-knn-ht
Ml-knn-lsh

Fig. 4.11.: Execution times according to the number of features

125

1 2 3 4 5 6 7 8 9 10

·102

0

10

20

30

40

Number of labels

T
ot
al

ex
ec
u
ti
o
n
ti
m
e
(m

in
)

Ml-knn-is
Ml-knn-ht
Ml-knn-lsh

Fig. 4.12.: Execution times according to the number of labels

Figure 4.11 shows the performance of the methods on a range of features from 1,000

up to 10,000, with a fixed number of instances and labels. Ml-knn-it and Ml-knn-ht

scale linearly with the number of features, where Ml-knn-ht has executions times orders

of magnitude smaller since a reduced number of instances will compute their distances. On

the other hand, Ml-knn-lsh increases exponentially with the number of features. This is

produced by the computation of the entries in the hash tables since they depend directly on

the number of features. Moreover, this method depends on exchanging a lot of information

between nodes, hence the high-dimensionality increases the network traffic.

Figure 4.12 illustrates the execution times varying the number of labels from 100 up to

1,000, with a fixed number of instances and features. The three methods present a constant

execution times despite the number of labels used. This indicates that the execution times

of Ml-knn are not deeply affected by the number of labels, becoming a good alternative for

datasets with high-dimensional label spaces. Despite not having a significant impact on the

performance, the number of labels could eventually lead to memory problems, especially for

those methods that duplicate the instances.

126

4.6 Conclusions

In this chapter, we have presented and evaluated three strategies to distribute Ml-knn over

Spark. Each of the three approaches incorporates a different strategy for the distributed

nearest neighbors search: brute force, tree-based index, and locally sensitive hashing. The

impact of these strategies in Ml-knn has been studied into detail considering multiple

metrics, regarding the quality of the predictions, execution times, and scalability factor.

The experimental study carried out has shown that Ml-knn can handle large datasets

over the Spark framework, obtaining competitive results, both in prediction and computational

performance. Considering each of the three methods, Ml-knn-it obtained the baseline

accuracy, since it is an exact method and the lowest execution times for the smaller datasets.

However, the experiments show that it scales poorly, especially with the number of instances.

Ml-knn-ht produced an accuracy equivalent to an exact method, besides having the fastest

execution times for most of the datasets. Additionally, it scaled-out more efficiently than

the other methods, being able to handle even the largest datasets. Ml-knn-lsh produced

the most inconsistent results, while it produced larger differences over the strictest metrics,

it is considered that final accuracy was acceptable for an approximate method. However, it

scaled-out poorly and it had problems to execute the largest datasets.

These results indicate that by incorporating the right strategy for nearest neighbors

searches, Spark enables Ml-knn to execute over large datasets that would not be feasible

to consider in a single machine. As future work, Ml-knn-it could possibly be improved

by exchanging the information using cross-joins with a specific test partition, that way we

would avoid using the driver as an intermediary to exchange information. On the other

hand, the algorithm with the largest capacity for improvement is the Ml-knn-lsh. At

the moment, the available implementation relies on flattening rows and co-grouping them

which has a high computational cost. We could use a hash table on the driver to indicate the

partitions that store specific buckets of the hash tables. Eventually, a proper implementation

of Ml-knn-lsh could even surpass the Ml-knn-ht performance for high-dimensional data.

127

CHAPTER 5

DISTRIBUTED FEATURE SELECTION
OF MULTI-LABEL DATA

Multi-label learning is characterized by the added difficulty of handling multiple labels using

data which is distinctive by their large dimensionality. The multi-label classification models

tend to suffer from the curse of dimensionality since the predictions produced by a model

are deeply influenced by the quality of the input features. It has been shown that discarding

redundant and irrelevant features leads to increased accuracy of the model. There are

two main approaches that modify the input space: feature transformations (e.g. principal

component analysis, polynomial kernel, etc) and feature selection (e.g. mutual information

maximization, χ2 test, etc). The former modifies the original input space, thus, making it

impossible to extract useful information, while the latter preserves the original data.

Feature selection algorithms are divided into three main categories [175], according to

how they assess the importance of candidate feature subsets. Namely, these are wrappers,

embedded methods, and filters. Wrappers select a subset of features that maximize the

performance of a classification algorithm [176]. They are expected to achieve good results at a

high computational cost. Embedded methods [177] perform simultaneously feature selection

and prediction using the specific structure of the classifier being used, e.g. bounds on the

leave-one-out error of SVMs [178]. Filters find the subset of features that maximizes some

criteria. They are particularly effective in computation time and robust to over-fitting. These

methods are the fastest approach, and unlike the other categories, they are independent of

the learning algorithm. In the literature, several criteria have been proposed to evaluate

128

the quality of the subset of features. The most frequently employed are the correlation

coefficient [179] and the mutual information [180]–[182].

Most of the works in multi-label feature selection agree on the advantages of adopting

a criterion to handle multiple labels, however, there is much debate over how to address this

issue. Here, we present a comprehensive and detailed analysis of multi-label feature selection

strategies, where we discuss the main approaches.

We introduce two algorithm adaptation methods based on mutual information, which

do not require any type of data transformation nor discretization of continuous features.

The first method maximizes the mutual information between the selected subset of features

and the labels. The second method minimizes the redundancy of the selected subset while

maximizing the relevance between the features and labels. These are compared with three

traditional multi-label feature selection methods.

Finally, we propose two methods which take opposite approaches to combine the best

of the previous methods: the redundancy minimization and the constant runtime. These

methods study the best approach to aggregate the MI of multiple labels. The first method

selects the features with the largest L2-norm whereas the second selects the features with

the largest geometric mean. These proposed methods are compared with all five multi-label

feature selection methods using large-scale data with discrete features.

5.1 Multi-label feature selection background

Let F be the feature set such that F = {f1, . . . , fd}, the feature selection task aims to

identify a subset of features S ∈ F such that it has the highest relevance on the label set

Y . Tsoumakas et al. [49] divide the approaches to handle multi-label problems into problem

transformation and algorithm adaptation. This categorization can also be used by feature

selection methods, in order to distinguish between methods that attempt to handle label

correlations directly or by modifying the original data.

129

Table 5.1.: Summary of problem transformation methods for multi-label feature selection

Name Method description

Feature ranking
[183] BR-χ2 BR + χ2

[184] BR-RF BR + ReliefF
[184] BR-IG BR + Information Gain
[39] LP-χ2 LP + χ2

[184] LP-RF LP + ReliefF
[184] LP-IG LP + Information Gain
[185] PPT-χ2 PPT + χ2

[186] PPT-RF PPT + ReliefF
[185] PPT-IG PPT + Information Gain
[78] ELA-χ2 Weighted BR + χ2

[78] ELA-IG Weighted BR + Information Gain
[78] ELA-OCFS Weighted BR + Orthogonal Centroid Feature Selection
Subset search
[187] PPT-MI-SFS PPT + Mutual Information + Sequential Forward Selection

5.1.1 Problem transformation methods

The problem transformation techniques are the most straight forward approaches. The

feature selection methods based on this technique usually perform the following steps:

transform the label space into one or many subsets, rank the feature using a defined score,

combine the results of all the subsets, and finally select the feature which optimizes a given

criterion. Table 5.1 presents the most relevant methods in the literature based on problem

transformation.

The Binary Relevance (BR) decompose the multi-label dataset into q binary datasets,

where the j-th dataset contains the binary representation of label yj (i.e. instances with the

label present will be labeled positively, otherwise they will be zero). This method has been

integrated with χ2 [183], ReliefF [184], and information gain [184]. However, by considering

each label independently it might ignore the possible dependencies and correlations between

the labels.

Label Powerset (LP) transforms the multi-label dataset to a multi-class dataset by

defining a function that maps each unique label subset to a single class. This approach

130

has been used with χ2 [188], ReliefF [184], and information gain [184]. Additionally, it

has been used in combination with mutual information and forward feature selection, in

order to minimize the redundancy and maximize the relevance [187]. LP has been shown

to outperform BR in the cases where the labels are highly correlated. However, LP might

transform the data to a large number of classes, specifically min(n, 2|Y|) where n is the

number of instances. It also suffers from an extreme class imbalance, since the number of

instances belonging to a unique label subset is expected to be small.

Pruned Problem Transformation (PPT) [64] modifies the previous method by removing

the instances belonging to a label subset whose frequency is below a certain threshold. This

method defines a way to reinsert this information into the original data by splitting the label

subset into subsets with a higher frequency. After this step, it applies the LP method which

is expected to have a reduced number of classes. This method has been used with χ2 [185],

ReliefF [186], and information gain [185], [187].

Entropy-based Label Assignment (ELA) extracts the labels present in each instance and

assigns them a weight equivalent to the inverse of the original number of labels. Therefore,

the instances annotated with a large number of labels will be associated with a lower weight

than with fewer labels. This method assumes that the information originated from smaller

label subsets is more focused. This method has been integrated with χ2 and with the

Orthogonal Centroid Feature Selection (OCFS) [78].

5.1.2 Algorithm adaptation methods

The algorithm adaptation methods modify the traditional feature selection methods to

use multi-label data. These approaches can be categorized into: ranking methods and

optimization methods. The former ranks the features by using a multivariate version of

a score metric, or any other adaptation that allows handling multiple labels. The latter

defines the multi-label feature selection process as an optimization problem which considers

in various ways the relevance and redundancy of the features and then determines globally the

best subset. Table 5.2 presents the most relevant methods based on algorithm adaptation.

131

Table 5.2.: Summary of algorithm adaptation methods for multi-label feature selection

Name Method description

Feature ranking
[186] ReliefF-ML ReliefF
[184] RF-ML ReliefF
[189] RReliefF-ML Regression RliefF
Subset search
[190] mRMR One-by-one + Mutual Information + Sequential Forward Selection
[191] MDMR One-by-one + Mutual Information + Sequential Forward Selection
[192] SCLS One-by-one + Mutual Information (improved) + Sequential

Forward Selection
[193] MFNMI Local Mutual Information + Sequential Forward Selection
[194] GFS-ML Label Granulation + One-by-one + Mutual Information +

Sequential Forward Selection
[195] FIMF Label Combination + Mutual Information (limited interaction) +

Sequential Forward Selection
[185] PMU Label Combination of Second-Order + Mutual Information +

Sequential Forward Selection
[196] MAMFS Label Combination of High-Order + Mutual Information +

Sequential Forward Selection
Optimization
[197] QPFS-ML Quad. Programming Feature Selection
[198] MIFS Alternating Optimization
[199] QPFS-ML-NYSTROM Quad. Programming Feature Selection with Nystrom
[200] R-QPFS-ML-FWM PPT-Regularized Quad + Programming Feature Selection

Frank-Wolfe
[201] MMI-PSO Particle Swarm Optimization

Relief feature scoring is based on the identification of feature value differences between

nearest neighbor instance pairs. If a feature value difference is observed in a neighboring

instance pair with the same class (a hit), the feature score decreases. Alternatively, if a

feature value difference is observed in a neighboring instance pair with different class values

(a miss), the feature score increases. There are various adaptations of Relief for multi-label

classification. A multi-label ReliefF built via modifying prior probability estimation was

proposed in [186], [189]. Another modification, that considers nearest instances belonging

to a different set of labels have different feature values, was presented in [189]. This method

was modified to use a dissimilarity function based on Hamming distance in [184].

132

Mutual information is the metric that has been adapted more frequently. There are two

strategies to measure the information provided by a feature and multiple labels: One-by-

one (OBO) and Label Combination (CM). OBO considers each label sequentially, therefore

it sums the individual scores between the feature and each label. OBO has been applied

in multiple occasions in combination with sequential forward selection in [190]–[192]. CM

considers all the labels simultaneously by handling each label combination, therefore the score

will consider all the labels interactions (or alternatively a limited number). This approach

has been combined with sequential forward selection in [185], [191], [195].

Optimization methods aim to formulate the multi-label feature selection task as a

constrained optimization problem. These methods usually aim to balance the trade-off

between redundancy and relevance of the selected feature subset. The advantage is that they

do not require to specify the number of required features in the selection process, whereas

the other filter methods need to specify the size of the subset manually. However, they

usually consider complex algorithms with high computational complexities. The reference

algorithm for traditional classification is the Quadratic Programming Feature Selection

(QPFS) [202]. This method has been adapted to multi-label classification by considering

each label independently in [197]. The optimization procedure has been improved by using

the Nystrom low-rank approximation in [199]. A modification to this method which uses

a regularizer to achieve sub-linear converge rate was also proposed in [200]. Additionally,

other methods have tried to explore different approaches such as an alternating optimization

algorithm [198] or using a particle swarm optimization method [203].

5.2 Preliminaries

This section introduces the theoretical background and reviews the definitions related to

feature selection. Section 5.2.1 introduces the entropy and mutual information (MI) concepts.

133

5.2.1 Basic definitions

The Shannon entropy is a measure of the uncertainty of a random variable. The level of

uncertainty is related to the probability of the elements composing the variable. The concept

of uncertainty can be seen as the measure of how much information is needed to describe

the item. Intuitively, a high entropy indicates that the elements in the variable have about

the same probability of occurrence, while a low entropy means larger differences in the

probabilities of occurrences. Thus, entropy is related to the probabilities of the variable

rather than the actual values.

Let A be a discrete random variable, entropy is defined as:

H(A) = −
∑
a∈A

p(a) log2 p(a) (5.1)

Let A and B be two random discrete variables, the joint entropy is the sum of the

uncertainty contained by the two variables. Formally, joint entropy is defined as follows:

H(A,B) = −
∑
a∈A

∑
b∈B

p(a, b) log2 p(a, b) (5.2)

The maximum value on joint entropy happens whenA andB are completely independent,

hence, the minimum value occurs when A and B are completely dependent. Closely related

is the conditional entropy, which measures the remaining uncertainty of B when A is known.

The conditional entropy is defined as:

H(B|A) = −
∑
a∈A

p(a)
∑
b∈B

p(b|a) log2 p(b|a)

= −
∑
a∈A

∑
b∈B

p(a, b) log2 p(b|a)

(5.3)

Entropy can be used to measure the information that one variable contains about

another by measuring the decrease in the uncertainty of one variable due to the knowledge of

another. This term stands for mutual information (MI), and formally is defined as follows:

134

MI(A,B) =
∑
a∈A

∑
b∈B

p(a, b) log2

p(a, b)

p(a)p(b)

=
∑
a∈A

∑
b∈B

p(a, b) log2

p(b|a)

p(b)

= −
∑
a∈A

∑
b∈B

p(a, b) log2 p(b) +
∑
a∈A

∑
b∈B

p(a, b) log2 p(b|a)

= −
∑
b∈B

p(b) log2 p(b)−
(
−
∑
a∈A

∑
b∈B

p(a, b) log2 p(b|a)
)

= H(B)−H(B|A)

(5.4)

MI is a symmetrical measure, the amount of information gained about B after observing

A is equal to the amount of information gained about A after observing B:

MI(A,B) = H(B)−H(B|A)

= H(A)−H(A|B)

= H(A) +H(B)−H(A,B)

(5.5)

Figure 5.1 presents the relationships between these information measures associated

with two correlated variables A and B. The area contained by both circles is the join

entropy H(A,B) (Eq. 5.2). The perimeter of each circle is the individual entropy H(A) and

H(B) (Eq. 5.1), being the filled area the conditional entropy H(A|B) and H(B|A) (Eq. 5.3),

which does not consider the intersected area. Finally, the intersected area represents the MI

(Eq. 5.5).

Both, entropy and MI rely on discrete variables. However, they can be extended to

continuous spaces in terms of probability density functions by turning the previous sums

into integrals, therefore the differential entropy is defined as:

H(A) = −
∫
A

µ(a) log2 µ(a) (5.6)

135

H(A|B) MI(A,B) H(B|A)

H(A) H(B)

H(A,B)

Fig. 5.1.: Venn diagram showing the relationships for entropy and MI associated with two

correlated variables A and B

The MI for a continuous variable can be expressed as:

MI(A,B) =

∫
A

∫
B

µ(a, b) log2

µ(a, b)

µ(a)µ(b)
(5.7)

In practice, none of the probability density functions µ are known in a real-world

problem, therefore it is necessary to use an estimation from the data.

5.2.2 Estimators

The most simple and widespread estimation approach consists in partitioning the space

into bins of finite size, hence approximating
∫
i
µa(a)da = pa(i),

∫
j
µb(b)db = pb(j), and∫

i

∫
j
µ(a, b)dadb = p(i, j) where

∫
i

denotes the integral over bin i. If na(i) and nb(j) are

the number of instances falling into the i-th bin for A and B respectively, and n(i, j) is

the number of instances in their intersection, then we can approximate pa(i) ≈ na(i)/N ,

pb(j) ≈ nb(j)/N , and p(i, j) ≈ n(i, j)/N , where N is the number of instances. By applying

such an approximation to the differential entropy in Eq. 5.6 we can obtain Eq. 5.1. Similarly,

by applying it to the differential MI in Eq. 5.7 we can obtain Eq. 5.4.

136

However, such estimators incur into systematic errors from approximating the (logarithms

of) probabilities by (logarithms of) frequency ratios. This error is reduced when N → inf

and Binsize → 0, however, there is not such a case in a real-world problem. It has been

shown that this error can be minimized by using estimators with different techniques such as

adaptive bin sizes which are geared to have the same number of n(i, j) for all pairs (i, j) [204].

Another approach is to estimate the continuous distributions evaluated at given data

examples. This method, originally developed by Kozachenko and Leonenko [205], uses the

nearest neighbors technique to estimate the entropy by considering the density function µ

constant throughout the neighborhood of an instance. This technique has been extensively

studied for estimating differential entropies [187], [206]–[208].

This estimator uses the concept that Eq. 5.6 can be approximated (up to the minus

sign) as the average of log µ(a).

Ĥ(A) = −N−1
N∑
i=1

̂logµ(ai) (5.8)

Thus, if we had an unbiased estimator of ̂logµ(ai), we could estimate the entropy at

each given instance. The estimator can be obtained using ε-balls centered at ai whose radius

is the distance from ai to its k-th neighbor. By assuming that µ(a) is constant in the entire

ε-ball, we obtain:

̂logµ(ai) ≈ ψ(k)− ψ(N)− log(Vd)− dE(log(ε)) (5.9)

where ψ stands for the digamma function, k is the number of neighbors, and Vd is the volume

of the d-dimensional unit ball. Therefore, using Eq. 5.8 and Eq. 5.9 one obtains:

Ĥ(A) = −ψ(k) + ψ(N) + log(Vd) +
d

N

N∑
i=1

log(εi) (5.10)

where εi is twice the distance from ai to its k-th neighbor.

137

5.2.2.1 Mutual information estimator between continuous features

A MI estimator based on Kozachenko-Leonenko entropy estimator is presented in [209].

In order to obtain MI(A,B), we have to subtract H(A,B) from estimates for H(A) and

H(B), as stated in Eq. 5.5. The estimator for the marginal entropies has been shown

previously, thus, we only need to estimate the joint entropy. In this case they consider the

joint random variable J = (A,B), where the radius of the ε-ball would be the distance from

i-th to its k-th neighbor in the J space. By replacing in Eq. 5.10, d with dj = da + db, and

Vd with Vj = Vda ∗ Vdb , the joint entropy estimator is:

Ĥ(A,B) = −ψ(k) + ψ(N) + log(Vj) +
dj
N

N∑
i=1

log(εi) (5.11)

By combining Eq. 5.10 and Eq. 5.11, using the same k number of neighbors, we could

calculate MI(A,B). However, this would mean that there are different distance scales for

the estimators. The distances will be larger in the join space than the distances in the

marginal spaces. Since the bias in Eq. 5.10 depends on the distances, the biases for H(A),

H(B) and H(A,B) would not cancel.

However, since Eq. 5.10 holds for any value of k, there is no need to use a fixed k when

estimating the marginal entropies. Thus, using the ε-ball equal to the distance from the i-th

instance to its k-th neighbor in the J space, in H(A), H(B) and H(A,B); produces a good

approximation. Now, k can be replaced by na which is the number of neighbors within each

ε-ball at every i-th instance plus one (the instance itself). Therefore, it leads to:

Ĥ(A) = − 1

N

N∑
i=1

ψ(na + 1) + ψ(N) + log(Vda) +
da
N

N∑
i=1

log(εi) (5.12)

Replacing A by B in the right hand leads to H(B). Then, the MI estimator can be

found by subtracting the joint entropy to the marginal entropies:

M̂I(A,B) = ψ(k)− 〈ψ(na + 1) + ψ(nb + 1)〉+ ψ(N) (5.13)

138

5.2.2.2 Mutual information estimator between continuous and discrete features

An estimator specific to classification problems was derived on [210] based on the

estimator between continuous variables previously presented. They derive the entropy

formula considering a continuous variable C and a discrete variableB, by using the continuous

densities as µ(·) and the discrete probability function as p(·): therefore, p(B) =
∫
µ(c, b)dx

and µ(c) =
∑

b µ(c, b).

MI(C,B) = H(C) +H(B)−H(C,B)

= −
∫
µ(c) log(µ(c)) dc−

∑
b

p(b) log(p(b))

+
∑
b

∫
µ(c, b) log(µ(c, b)) dc

= −
∫
µ(c) log µ(c) dc+

∑
b

∫
µ(c, b) log(µ(c|b) dc

= −〈log µ(c)〉+ 〈log µ(c|b)〉

(5.14)

The logarithms of continuous distributions can be approximated by using the Kozachenko-

Leonenko method in Eq. 5.9. For each data example, we employ the estimator twice: once

to estimate µ(c) by finding the neighbors from the full set of examples, and once to estimate

µ(c|b) by finding the neighbors in the subset of data examples with the same value for the

discrete variable B. The result is:

M̂I(C,B) = ψ(N)− ψ(m) + log(Vm;c) + dE(log(ε))

− ψ(Nb) + ψ(k)− log(Vk;c|b)− dE(log(ε))

(5.15)

where N is the number of instances, Nb is the number of instances with the same class and

k is the number of neighbors. We define di as the distance between the i-th instance and

the k-th neighbor of the instances belonging to the same class of instance xi. Then, mi is

the number of neighbors from the full set of instances that lie within distance di to the i-th

instance (including the k-th neighbor).

139

There is an averaging error that can be minimized by using the same k and m, thus

Vm;c = Vk;c|b for each instance:

M̂I(C,B) = ψ(N)− 〈ψ(Nb)〉+ ψ(k)− 〈ψ(m)〉 (5.16)

The cancellation is only partial, but the averaging error scales with the number of

instance pairs as N−2 whereas the counting error scales as N−1/2. Thus, the averaging error

is insignificant except for very small data.

5.3 Mutual information estimator for multi-label data

There is much discussion regarding the best way to consider the label correlations in multi-

label feature selection. Section 5.1 presented the most relevant works which can be divided

into problem transformation or algorithm adaptation. We decided to discard problem

transformations since they usually modify the data distribution during the transformation

process, in addition to incurring into unnecessary computations. Instead, we focus on

studying how MI has usually been adapted for multi-label data and present a detailed analysis

of the different approaches.

Figure 5.2 illustrates information theoretic measures for three variables (one feature fi

and two labels {yj, yk}). The entropy of each variable H(·) is represented by each circle.

The intersection of any two circles represents the mutual information for the two associated

variables. However, when considering the three variables simultaneously it is necessary to

distinguish between the true MI among three variables MI(fi, yj, yk), and the MI between the

feature and both labels MI(fi, yj)+MI(fi, yk)−MI(fi, yj, yk). True MI is hard to interpret

since it can be positive (redundancy) or negative (synergy). In this case, redundancy would

refer to the case where the information provided by fi about yj also unveils information

about yk. On the other hand, synergy considers the case where fi provides information

about yj and yk, however, there is no shared information between both labels. Thus, the

middle area of the diagram would be empty and it would produce a negative value.

140

H(yj |yk, fi) H(yk|yj , fi)

H(fi|yj , yk)

MI(fi, yj , yk)

MI(yj , yk|fi)

MI(fi, yj |yk) MI(fi, yk|yj)

H(yj) H(yk)

H(fi)

MI(fi, yj) MI(fi, yk)

Fig. 5.2.: Venn diagram showing the relationships for entropy and MI associated with one

feature fi and two labels {yj , yk}.

Although synergy considers there is not shared information among the feature and

the labels, this does not mean the feature does not provide information about the labels. A

feature might reduce the remaining uncertainty of each label despite not offering information

about their shared information. Therefore, we consider the multi-label MI as the information

shared between the feature and the label set, defined as:

MI1(fi,Y) = H(fi) +H(Y)−H(fi,Y)

= H(fi) +H(y1, . . . , yq)−H(fi, y1, . . . , yq)

(5.17)

This formulation is considered the adaptation of MI using the Label Combination

technique since it considers the real MI with a high-order of label correlations. This formulation

141

requires the computation of high-dimensional joint entropies, which can be expanded to:

H(y1, ..., yq) = −
∑
y1

· · ·
∑
yq

P (y1, ..., yq) logP (y1, ..., yq) (5.18)

Methods based on this multi-label MI usually rewrite the high-dimensional joint entropies

terms as the cumulative sum over the entropies of the powerset with Möbius inversion. This

leads to an exponential increase in the computation time with respect to the number of

labels. By using approximations, e.g. only considering sets of a determined cardinality, the

complexity may be reduced. Nevertheless, this method suffers from high complexity, despite

using heuristics, with respect to the dimensionality of the label space.

There is a different strategy which addresses the exponential complexity by approximating

the concept of multi-label MI. This method considers the multi-label MI as the sum of the

independent measures of information between the feature and each label. This approach is

the adaptation of MI using the One-by-one method, defined as:

MI2(fi,Y) =
∑
y∈Y

MI(fi, y) (5.19)

This approximation scales linearly with the number of labels at the cost of overestimating

the MI between the feature and the labels. Following the previous example with a feature

fi and two labels {yj, yk}, this approach would consider the multi-label MI as:

MI2(fi,Y) = MI(fi, yj) +MI(fi, yk)

= MI(fi, yj|yk) +MI(fi, yk|yj) + 2 MI(fi, yj, yk)

(5.20)

Consequently, it gives double weight to the true mutual information MI(fi, yj, yk).

Following the graphical representation of our example in Figure 5.2, this formulation would

consider the area in the middle an additional time. This grants extra weight to the label

correlations; thus, the error directly depends on the amount of information that a feature

has of the correlated labels. Therefore, this approach would assign larger values to features

with information about highly correlated labels.

142

5.4 Proposed methods

We propose to adopt the most efficient MI estimator (Eq. 5.19) for multi-label feature

selection in a distributed environment on Apache Spark. This estimator was adopted despite

the overestimation of the information shared between each feature and the labels since this

amount depends directly on the correlations between the labels. These correlations are

constant across all the features; therefore it is expected to have a similar impact in the

selection of every feature and consequently partially canceled each other out.

Additionally, we decided to use sequential forward selection (SFS), instead of a sequential

backward elimination (SBE), to build the feature subset. Sequential forward selection is a

bottom-up search, which starts with an empty set and adds a feature at a time. Formally,

it adds the candidate feature fi according to some criteria.

There are two straightforward methods that perform SFS using MI: Mutual Information

Maximization (MIM) and minimum Redundancy and Maximum Relevance (mRMR).

MIM selects the subset of features S that has the maximum amount of MI respect to

the label set Y . This subset is built iteratively by adding in each iteration the feature with

the largest value of MI:

S = S ∪ arg max
fi∈F−S

[
MI(fi,Y)

]
(5.21)

mRMR selects the optimal subset of features by maximizing the relevance and minimizing

the redundancy. It defines the relevance as the MI between the selected subset of features S

and the label set Y . Consequently, it defines the redundancy as the MI between the already

selected features S. Therefore, the subset of selected features is built iteratively by adding

the feature that satisfies:

S = S ∪ arg max
fi∈F−S

[
MI(fi,Y)−

∑
fj∈S

MI(fi, fj)
]

(5.22)

143

mRMR is expected to improve the MIM performance by prioritizing features with a

lower MI score that provide new information about the label set. However, this method

has a considerable increased computational complexity with respect to MIM due to the

redundancy minimization which requires to compare each candidate feature with those in S.

The previous methods consider the aggregated MI between each feature and the labels.

Therefore, it is not possible to discern between features with small or big variations of

information with respect to the labels. We address this problem by adopting a vectorized

form of the MI for each feature:

MI3(fi,Y) = {MI(fi, y) | y ∈ Y} (5.23)

where the k-th element represents the MI between the feature and the k-th label.

The algebraic representation of the MI allows considering either features with a small

dispersion of the measures or features with larger dispersion (and possibly larger scale). We

propose two methods based on this estimator which will study the possibility to efficiently

minimize the redundancy: Eucidean Norm Maximization (ENM) and the Geometric Mean

Maximization (GMM). Each method considers the dispersion of the vectorized MI differently

and selects the best features:

ENM selects the features with the largest L2-norm. This norm considers the sum of the

square of the measures, therefore it grants more weight to features with a lot of information

about some labels independently of their possible low values about other labels.

S = S ∪ arg max
fi∈F−S

[
|MI3(fi,Y)|

]
|MI3(fi,Y)| = 2

√
MI(fi, yj) + . . .+MI(fi, yq) | 1 ≤ j ≤ q

(5.24)

GMM selects the features with the largest geometric mean. The geometric mean

considers the product of the measures and then splits them with a root. The conceptual

difference is seeing each measure as a scaling factor, which combines by increasing each

other multiplicatively. This prioritizes the selection of features with the same amount of

144

Table 5.3.: Example of MI between four features and three labels. The bottom presents the

MI of each label depending on which strategy is used to select two features.

y1 y2 y3 Eucl. norm Geo. mean Sum

f1 0.95 0.25 0.05 0.98 0.23 1.25
f2 0.20 0.10 0.95 0.98 0.27 1.25
f3 0.45 0.35 0.45 0.73 0.41 1.25
f4 0.40 0.60 0.25 0.76 0.39 1.25

information about each label independently of the scale of this amount.

S = S ∪ arg max
fi∈F−S

[
G(MI3(fi,Y))

]
G(MI3(fi,Y)) =

{ q∏
j=1

MI(fi, yj)

} 1
q

|MI(fi, yj) > 0, 1 ≤ j ≤ q

(5.25)

Table 5.3 presents an example with four features and their mutual information scores

with three labels. The right side of the table indicates the Euclidean norm, the geometric

mean, and the sum of the measures respectively. Notice that the features have the same

total amount of mutual information, therefore the traditional MIM method would consider

them equally. Assuming the algorithm would require to select the best two features, ENM

would give preference to the first and second feature, while GMM would select the third and

fourth feature.

It can be seen that ENM gives priority to features with large measures while risking to

have underrepresented labels. In our example, the selected subset from ENM would have a

considerably smaller amount of information about the label y2 than it would have about the

other labels. GMM selects the features with smaller dispersion on the measures. Therefore,

the selected subset would have a balanced amount of information among the labels but at

the cost of having less information about y1 and y3.

Figure 5.3 illustrates the possible values of MI between a given feature f and three

labels {y1, y2, y3} with a total sum of 1.0. The features whose MI values are located near the

axis are preferred by ENM since they represent the cases where there are more differences

145

0.2 0.4 0.6 0.8 1

0.5
1

0.2

0.4

0.6

0.8

1

MI(f, y1)

MI(f
, y2

)

M
I
(f
,y

3
)

Fig. 5.3.: The surface represents the combinations of MI between a given feature and three

labels with a total sum of 1.0. ENM and GMM would select the features with MI values in the

purple and yellow areas respectively.

between the independent measures. While the features located towards the middle of the

surface are selected by GMM and constitute features with smaller differences between their

independent measures.

5.4.1 Distributed implementation for continuous features on Apache Spark

The computation of the MI is a computationally expensive operation, especially for the

continuous variables. Both the MI between continuous variables, as well as the MI between

a continuous and a discrete variable, rely on multiple searches of nearest neighbors as it was

detailed in 5.2.2. First, to find the maximum distances among all the instances, and then to

use that distance as the maximum range to find the neighbors under certain conditions.

The computation of nearest neighbor searches is an expensive and complex operation,

especially in a distributed environment. Therefore we propose a distributed approach to

compute the differential mutual information measures using Apache Spark. This measure

relies on the computation of uni-dimensional (forMI(f,Y)) and bi-dimensional (forMI(f, fj))

searches. We consider that these searches can be performed locally, thus speeding up the

computation while minimizing the network computation.

146

Map

Repartition

Map

Collect

Node 1Node 1 Node 1

Executor
Cache

Train1

Executor
Cache

MI(, λ)fi Train1

Executor
Cache

fi Train1λ

Node 2Node 2 Node 2

Cache

Train2

Cache

MI(, λ)fi+1 Train2

Cache

fi+1 Train2λ

Driver

MI(, λ)fi

MI(, λ)fi+1

Executor Executor Executor

Fig. 5.4.: Distributed MI between a two features {fi, fi+1} and a variable λ which would either

be a label in MI(f,Y) or a previously selected feature in MI(f, fj).

Figure 5.4 presents a schematic view of how the MI between two features {fi, fi+1} and a

variable λ is performed. This schema reflect the MI(f,Y) if λ represents the set of labels Y ,

while it would represent the MI(f, fj) whenever λ represents the previously selected feature.

The figure shows how the values of each of the features are extracted from the local partitions

and are being sent to different executors. Once all the information is present locally, each

executor can perform the corresponding nearest neighbor searches with all the information

avoiding any exchange of information over the network. Once each executor computes their

local MI, the results will be sent over to the Driver which then will decide how to combine

them.

5.4.2 Distributed implementation for discrete features on Apache Spark

The computation of MI, or any other score metric, using discrete features is less challenging

than for continuous features, but still a complex operation, especially for a large number of

features. Therefore, we proposed a distributed computation of any score for discrete features

on Apache Spark in order to handle large-scale datasets.

147

GroupBy Map

Map

GroupBy &
Count

Map

Node 1

Executor
Cache

Train1

Driver

Node 1

Executor
Cache

Train1
col feature label/s

col feature label/s count

Driver

col freq.
matrix

Driver

col score

Node 2

Executor
Cache

Train2

Node 2

Executor
Cache

Train2
col feature label/s

Fig. 5.5.: Distributed MI between a two features {fi, fi+1} and a variable λ which would either

be a label in MI(f,Y) or a previously selected feature in MI(f, fj).

Figure 5.5 presents a schematic view of how the score between two discrete features

{fi, fi+1} and their corresponding output space is performed. This schema only uses two

features in two nodes for simplicity, nevertheless, this approach is scalable to as many features

and nodes as needed.

This approach starts with a series of instances partitioned over multiple executors, and

possibly over multiple nodes as well. Each of those instances is then expanded to create

triplets of (column, feature, label/s), therefore it will create as many triplets as feature

values. Then, all the triplets with the same values are grouped and counted. The results are

then collected locally in the Driver, therefore all the consecutive operations are performed

locally. The aggregated groups and their counts can then be additionally grouped by column,

and then all the information available about the column can be used to create a frequency

matrix where the columns represent the labels and the rows the different feature values. This

frequency matrix is unique per column and it can be used to compute the corresponding score

measure (MI or χ2) for the feature.

148

5.5 Experimental setup

This section presents the experimental environment, datasets, and methods used. Experiments

were executed on a cluster composed by 8 Intel Xeon CPU E7-8894v4 with 24 cores and 6

TB of memory. Experiments were run using Spark 2.4.0 on CentOS 7.4.

5.5.1 Datasets

Table 5.4 shows the multi-label datasets evaluated along with the number of instances,

features, labels, cardinality, and density [49]. These datasets have been collected from

the Knowledge Discovery and Intelligent Systems (KDIS) dataset repository1, although

originally, they could be found on the MULAN and MEKA repositories.

Table 5.4.: Summary description of the benchmark datasets.

Type Dataset Instances Features Labels Cardinality Density

Continuous

Emotions 593 72 6 1.8685 0.3114
Birds 645 260 19 1.0140 0.0534
Scene 2,407 294 6 1.0740 0.1790
Yeast 2,417 103 14 4.2371 0.3026
Human 3,106 440 14 1.1851 0.0847
Eukaryote 7,766 440 22 1.1456 0.0520
Mediamill 43,907 120 101 4.3756 0.0433
Nus-wide 269,648 129 81 1.8685 0.0230

Discrete

Medical 978 1,449 45 1.2454 0.0277
Slashdot 3,782 1,079 22 1.1809 0.0537
Bibtex 7,395 1,836 159 2.4019 0.0151
Yelp 10,806 671 5 1.6383 0.3277
Corel16k 13,766 500 153 2.8587 0.0187
Delicious 16,105 500 983 19.0200 0.0193
20NG 19,300 1,006 20 1.0289 0.0514
TMC2007 28,596 500 22 2.2196 0.1009
Bookmarks 87,856 2,150 208 2.0281 0.0098
IMDB 120,919 1,001 28 1.9997 0.0714

Synthetic
Hyperspheres 500,000 50 20 3.6665 0.1833
Hypercubes 500,000 50 20 2.8760 0.1437

1KDIS: http://www.uco.es/kdis/mllresources

149

http://www.uco.es/kdis/mllresources

The Hyperspheres and Hypercubes datasets have been generated using a multi-label data

generator [211]2. Both datasets have been generated using 25 relevant features, 15 irrelevant

features, and 10 redundant features, with a noise level of 0.05 and 0.2 for Hyperspheres

and Hypercubes, respectively. The Hyperspheres generator randomly creates hyperspheres of

a minimum and maximum radius of 0.05 and 0.2 respectively, while Hypercubes randomly

generates hypercubes with a half-edge between 0.15 and 0.8 respectively (default parameters).

To appreciate the benefits of the proposed methods, there is a wide variety of datasets

that cover the range of different characteristics in real scenarios. The continuous benchmark

datasets have been normalized while the discrete benchmark datasets consist of binary

features. The synthetic datasets consist of continuous features which have either been

discretized or normalized, depending on the type of experiment performed.

The train and test splits are built using 3 equally size folds, where two the folds are

used to train the algorithm and one fold is left out to test the model. The folds are built

using a stratified division [174], where each unique subset of labels present in the instances

is considered as a fictitious label, and then the desired percentage of instances is extracted

from each of those labels. This ensures that each of the folds has the same data distribution

as the full dataset.

5.5.2 Methods and parameters

We compare our methods to the state-of-the-art multi-label feature selection methods [185],

[187], [195], [196], [200]: Entropy-based Label Assignment using χ2 (ELA) [78], Label

Powerset using χ2 (LP) [188], Pruned Problem Transformation using χ2 (PPT) [185], Maximum

Mutual Information (MIM), and minimum Redundancy and Maximum Relevance (mRMR).

The performance of the feature subset selected by each method was evaluated using the

distributed Multi-label k Nearest Neighbors (Ml-knn) [87], [212] classifier with k = 5.

2MLdatagen: http://sites.labic.icmc.usp.br/mldatagen/

150

http://sites.labic.icmc.usp.br/mldatagen/

The discretization of the continuous features required by reference methods greatly

affects the results of the selection process [213]. There is a wide range of discretization

methods used in previous studies mentioned on Section 5.2. However, we decided to discard

discretization methods that aim to maximize the accuracy in the discretized space since

they would be adapting and biasing the distribution of the bins making unfair a subsequent

feature selection comparison.

We decided to faithfully represent the prime continuous data distribution in a discrete

space. For that purpose, we chose the Freedman-Diaconis rule [48], which is used to construct

histograms using continuous data. The Freedman–Diaconis rule is designed to minimize the

difference between the area under the empirical probability distribution and the area under

the theoretical probability distribution.

5.5.3 Evaluation metrics

The evaluation metrics for multi-label learning differ from those in traditional classification.

The evaluation metrics employed to compare the multi-label learning methods were introduced

in Section 2.1.3. However, due to the limited space in the manuscript, we show performance

plots for the most restrictive metric in multi-label (subset accuracy).

Summarized results and statistical analysis for 12 multi-label metrics are provided at

the end of Sections 5.6.2 and 5.7.2, and detailed results on all datasets are available in 3 and

4 to facilitate the reproducibility and future comparisons.

5.6 Experimental results for continuous features

This section presents and discusses the experimental results produced by the methods which

can be considered by two factors: domain of the data and label correlations. ELA, LP, and

PPT require discrete features, while MIM and mRMR use the original continuous data.

3Detailed results for continuous features: http://people.vcu.edu/~acano/MI/
4Detailed results for discrete features: http://people.vcu.edu/~acano/MI-ENM-GMM/

151

http://people.vcu.edu/~acano/MI/
http://people.vcu.edu/~acano/MI-ENM-GMM/

Moreover, LP and PPT consider label correlations, while ELA, MIM, mRMR, ENM, and

GMM handle the labels independently.

None the methods in the comparison offer the optimal size for a feature subset, therefore

we tested the predictive power by varying the size of the feature subsets in the range 2 to 50.

Figures 5.6 and 5.8 present the evolution of the subset accuracy over the increasing number

of selected features. The bold dashed grid line represents the subset accuracy of the Ml-knn

classifier as a reference baseline using all the features.

5.6.1 Synthetic datasets comparison

This experiment focuses on evaluating the subset accuracy of the synthetic datasets over

the increasing number of features selected. This experiment allows us to determine whether

there is a priority of the selection of relevant features over irrelevant or redundant.

Figure 5.6 presents the variations on the subset accuracy over the Hyperspheres and

Hypercubes datasets.

The subset accuracy obtained in Hyperspheres by all the methods, except PPT, is

similar. However, it is important to notice which methods rise their accuracy earlier and

drop it later, meaning that they correctly select the first features while delaying the insertion

of irrelevant features. We can observe that mRMR and MIM are the first methods to improve

their base accuracy, however, MIM fails to maintain it and its replaced by ENM and GMM.

Regarding the insertion of irrelevant information, we can observe that ELA is the best

method followed by ENM.

On the other hand, the subset accuracy obtained in Hypercubes by the different methods

varies more. Here, the best performing algorithms are MIM and GMM which successfully

maintain their performance above the other methods.

152

ELA LP PPT MIM mRMR ENM GMM

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(a) Hyperspheres dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(b) Hypercubes dataset

Fig. 5.6.: Subset accuracy obtained selecting up to 50 features on synthetic datasets.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Feature selected

In
d
ex

o
f
fe
at
u
re

(a) Hyperspheres dataset

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Feature selected

In
d
ex

o
f
fe
at
u
re

(b) Hypercubes dataset

Fig. 5.7.: Scatter plot that shows the order of feature selection. The indices [0, 24], [25, 39],

and [40, 49] indicate relevant, redundant, and irrelevant features, respectively.

Figure 5.7 indicates the order in which each feature has been selected for the Hyperspheres

and Hypercubes datasets. The x-axis indicates the number of the last feature selected, while

the y-axis indicates the index of the feature that was selected. The features whose indices

range from 0 to 24 are relevant, from 24 to 39 are irrelevant, and from 40 to 49 are redundant.

LP and PPT are the worst performing methods since they insert irrelevant features

earlier in the selection process. On both datasets, by the time of the selection of feature 25,

there is already a considerable amount of irrelevant features selected. On the other hand,

ELA succeeds in delaying the selection of irrelevant features towards the end of the process.

153

Table 5.5.: Subset accuracy comparison by dataset averaged across all feature subset sizes.

Dataset ELA LP PPT MIM mRMR ENM GMM

Emotions 0.1857 0.1629 0.1640 0.1451 0.1659 0.1073 0.1504
Birds 0.4857 0.4857 0.4888 0.4956 0.4812 0.4900 0.4897
Scene 0.0370 0.0373 0.0343 0.2284 0.2778 0.1794 0.1229
Yeast 0.0878 0.0844 0.1082 0.1192 0.0994 0.1085 0.1219
Human 0.0366 0.0070 0.0115 0.0572 0.0589 0.0010 0.0542
Eukaryote 0.0235 0.0121 0.0207 0.0402 0.0395 0.0012 0.0472
Mediamill 0.0833 0.0827 0.0831 0.0938 0.0925 0.0800 0.0859
Nus-wide 0.2182 0.2165 0.2158 0.2140 0.2144 0.2171 0.2163
Hyperspheres 0.0020 0.0000 0.0000 0.0017 0.0017 0.0020 0.0019
Hypercubes 0.0044 0.0025 0.0043 0.0045 0.0037 0.0043 0.0046

Average 0.1164 0.1091 0.1131 0.1400 0.1434 0.1191 0.1295

All the mutual information based methods manage to delay the selection of irrelevant

features towards the end of the selection process. However, they differ in the order in which

they introduce redundant features. Attending at each feature individually, by looking at the

same value in the y-axis, we can see that in many cases ENM and GMM delay the insertion

of a redundant feature already selected by MIM and mRMR.

5.6.2 Subset accuracy comparison

This experiment illustrates the overall behavior and the quality of the predictions of each

method over benchmark datasets that represent a wide range of multi-label scenarios.

Figure 5.8 presents the evolution of subset accuracy over the number of selected features,

where the bold black dashed line indicates the subset accuracy of the Ml-knn classifier as

a reference baseline using all the features. Table 5.5 presents the detailed subset accuracy

results for each dataset averaged across all feature subset sizes.

Emotions and Birds datasets present inconclusive results. Nevertheless, we can highlight

the overall good performance of ELA, and the competitive results obtained by mRMR

especially for middle sizes of subsets on Emotions.

154

ELA LP PPT MIM mRMR ENM GMM

5 10 15 20 25 30 35 40 45 50

0.05

0.10

0.15

0.20

0.25

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(a) Emotions dataset

5 10 15 20 25 30 35 40 45 50

0.46

0.48

0.50

0.52

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(b) Birds dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.10

0.20

0.30

0.40

0.50

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(c) Scene dataset

5 10 15 20 25 30 35 40 45 50
0.00

0.05

0.10

0.15

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(d) Yeast dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.05

0.10

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(e) Human dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.02

0.04

0.06

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(f) Eukaryote dataset

5 10 15 20 25 30 35 40 45 50

0.06

0.08

0.10

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(g) Mediamill dataset

5 10 15 20 25 30 35 40 45 50
0.21

0.21

0.22

0.22

0.23

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(h) Nus-wide dataset

Fig. 5.8.: Subset accuracy obtained selecting up to 50 continuous features on the datasets.

155

Yeast and Mediamill show similar trends for predictions of all the methods. Despite the

small differences, we can observe a better performance of GMM on Yeast and of both, MIM

and mRMR, on Mediamill.

Nus-wide presents a clear advantage to ELA, however, its performance declines after

40 features obtaining lower subset accuracy than the other methods in the comparisons.

GMM presents the best results on average due to the quick improvement of its accuracy

after selecting 12 features.

Scene, Human and Eukaryote highlight the superior performance of the methods based

on mutual information. mRMR produced better predictions with a trend on its performance

similar to MIM and GMM, even being surpassed by GMM on datasets such as Eukaryote.

We conclude that MIM, mRMR, and GMM achieve competitive results on subset

accuracy, while also producing the most consistent results. This fact is surprising since they

consider the labels independently, in a similar manner than ELA which achieves considerably

worst performance. This difference validates our proposed mutual information score for

multi-label problems and highlights the possibilities of considering the mutual information

measure of each label individually.

Statistical analyses allow us to provide a more detailed comparison of the relative

performance of the algorithms. Table 5.6 presents the results of the Bonferroni-Dunn test

(multiple comparison statistical test) for each multi-label metric, as well as the rank of each

metric (the lower the better), and the overall meta-rank (ranks of the ranks). This test

assumes that two methods are significantly different if their ranks differ by at least some

critical distance. In this case, the critical distance is 0.3640 for a statistical significance level

of α of 0.05. The table includes the figures that highlight the critical distance (gray area)

among algorithms in order to be considered statistically different. The methods that fall out

of this area are claimed to perform statistically worse than the control method. The test

indicates that MIM and GMM cannot be claimed as significantly different for all the quality

metrics, while the others are statistically worse for all of some of the quality metrics.

156

Table 5.6.: Algorithm ranks for each of the multi-label performance metrics across all datasets

and feature sizes.

Metric ELA LP PPT MIM mRMR ENM GMM Bonferroni-Dunn test

Hamming Loss 4.37 4.93 4.57 2.97 2.84 5.02 3.31
2 3 4 5 6

ELA LP

PPTMIM

mRMR ENMGMM

Subset accuracy 4.04 5.17 4.50 3.01 3.59 4.62 3.08
2 3 4 5 6

ELA LP

PPTMIM

mRMR ENMGMM

Ex.-based accuracy 4.48 5.16 4.43 2.85 3.48 4.75 2.86
2 3 4 5 6

ELA

LPPPTMIM

mRMR ENMGMM

Ex.-based precision 4.51 4.87 4.61 2.86 3.27 4.78 3.10
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Ex.-based recall 4.44 5.14 4.41 2.91 3.51 4.67 2.93
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Ex.-based F1 4.49 5.17 4.44 2.85 3.45 4.70 2.88
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Macro precision 4.59 5.01 4.50 2.80 3.23 4.71 3.16
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Macro recall 4.52 5.14 4.51 2.75 3.30 4.75 3.03
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Macro F1 4.53 5.11 4.61 2.70 3.25 4.80 2.99
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Micro precision 3.86 4.43 4.55 3.38 3.38 4.71 3.69
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Micro recall 4.45 5.15 4.44 2.89 3.38 4.71 2.97
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Micro F1 4.48 5.16 4.47 2.81 3.35 4.75 2.98
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Meta-rank 4.40 5.04 4.50 2.90 3.34 4.75 3.08
2 3 4 5 6ELA LP

PPT

MIM

mRMR ENMGMM

Table 5.7.: Wilcoxon statistical test analysis for subset accuracy. MIM, mRMR, ENM and

GMM vs reference methods (p-values < 0.01 indicate statistically significant differences).

Algorithm vs MIM mRMR ENM GMM

ELA 5.33E-17 2.45E-10 8.85E-03 6.69E-16
LP 2.00E-35 3.14E-30 8.40E-02 1.21E-34
PPT 2.20E-27 6.12E-14 5.62E-03 5.61E-27
MIM 0 6.10E-04 2.58E-32 1.53E-02
mRMR 6.10E-04 0 5.35E-22 3.41E-01
ENM 2.58E-32 5.35E-22 0 4.51E-19
GMM 1.53E-02 3.41E-01 4.51E-19 0

157

ELA LP PPT MIM mRMR ENM GMM

10 20 30 40 50

0.1

1

10

100

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(a) Emotions

10 20 30 40 50

0.1

1

10

100

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(b) Birds

10 20 30 40 50

0.1

1

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(c) Scene

10 20 30 40 50

0.1

1

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(d) Yeast

10 20 30 40 50

0.1

1

10

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(e) Human

10 20 30 40 50

0.1

1

10

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(f) Eukaryote

10 20 30 40 50

1

10

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(g) Mediamill

10 20 30 40 50

1

10

100

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(h) Nus-wide

10 20 30 40 50

1

10

100

1 000

10 000

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(i) Hyperspheres

10 20 30 40 50

1

10

100

1 000

10 000

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(j) Hypercubes

Fig. 5.9.: Runtime obtained selecting up to 50 features on all the datasets.

Similarly, Table 5.7 presents the results (p-values) of the Wilcoxon rank sum test for

subset accuracy, which allows us to identify whether there are significant differences in

a pairwise comparison between two algorithms. A p-values < 0.01 indicates significant

differences between the two methods compared. According to this test, there are significant

differences between all the methods except for GMM respect to MIM and mRMR.

5.6.3 Runtime comparison

This experiment evaluates the runtime required to select a specific number of features. The

reported times for ELA, LP, and PPT methods include both the discretization and the

selection phases. On the other hand, MIM, mRMR, GMM, and ENM only report the time

to select the features since they do not require of a discretization step. Figure 5.9 presents

the runtime in minutes and on a logarithmic scale, required by the methods to select the

respective number of features.

158

ELA, LP, and PPT exhibit a constant runtime with respect to the number of features.

The difference in performance between the methods is produced by the subset cardinality of

the dataset. ELA usually has lower selection times since it considers the labels independently,

followed by LP which considers each subset as a unique class, and followed by PPT which

redistributes the information of the most infrequent subsets and then executes an LP.

However, in some of the small datasets without a large number of labels PPT can outperform

the other methods.

mRMR, MIM, GMM, and ENM show opposite results in terms of runtime. The methods

do not rely on discretized data but they directly use the original continuous features. MIM

achieves the fastest performance, not only compared to mRMR but also with respect to

all the reference methods. MIM has a constant selection time which is followed closely by

ENM and GMM, respectively. This small difference is due to the different processing of

individual mutual information measures. Nevertheless, the three methods outpace mRMR

by thousands of times specially selecting a large number of features in the biggest datasets.

These results validate our proposed differential method as the best approach for continuous

features. On the other hand, mRMR exhibits an extremely big difference compared to the

rest of the methods. This is produced by the minimization of the redundancy, which is done

by comparing each feature candidate to the previously selected feature. Overall, the mutual

information methods showed to significantly improve the predictive power of multi-label

feature selection in continuous attributes compared to reference methods.

5.7 Experimental results for discrete features

This section presents and discusses the experimental results produced by the methods

over datasets with discrete features attending to multiple factors: the inclusion of label

correlations, the preference of relevant features over irrelevant/redundant, and the runtime

to select a determined feature subset.

159

None of the methods in the comparison offer the optimal size for a feature subset,

therefore we tested their predictive power by varying the size of the selected subsets in the

range 2 to 50. Figures 5.10 and 5.12 present the evolution of the subset accuracy over the

increasing number of selected features. The bold dashed grid line represents the subset

accuracy of the Ml-knn classifier as a reference baseline using all the features.

5.7.1 Synthetic datasets comparison

This experiment focuses on evaluating the subset accuracy of the synthetic datasets over

the increasing number of features selected. This experiment allows us to determine whether

there is a priority of the selection of relevant features over irrelevant or redundant.

Figure 5.10 presents the variations on the subset accuracy over the Hyperspheres and

Hypercubes datasets. The subset accuracy obtained by the mutual information based methods

is similar for both datasets, with perhaps the exception of mRMR for Hyperspheres. However,

it is remarkable the low accuracy reported by LP and PPT for Hyperspheres and LP for

Hypercubes. This is expected to be the result of selecting a series of irrelevant features,

especially in the early process.

Figure 5.11 indicates the order in which each feature has been selected for the Hyperspheres

and Hypercubes datasets. The x-axis indicates the number of the last feature selected, while

the y-axis indicates the index of the feature that was selected. The features whose indices

range from 0 to 24 are relevant, from 24 to 39 are irrelevant, and from 40 to 49 are redundant.

We can observe that LP and PPT are the first methods to select irrelevant features.

The amount of irrelevant features is especially high for the Hyperspheres dataset, by the time

of the selection of feature 25 there is already a considerable amount of irrelevant features

selected. On the other hand, ELA succeeds in delaying the selection of the irrelevant features

towards the end of the process, however, is the first method to incur into the selection of

redundant features.

160

ELA LP PPT MIM mRMR ENM GMM

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(a) Hyperspheres dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(b) Hypercubes dataset

Fig. 5.10.: Subset accuracy obtained selecting up to 50 features on synthetic datasets.

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Feature selected

In
d
ex

of
fe
at
u
re

(a) Hyperspheres dataset

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

Feature selected

In
d
ex

of
fe
at
u
re

(b) Hypercubes dataset

Fig. 5.11.: Scatter plot that shows the order of feature selection. The indices [0, 24],

[25, 39], and [40, 49] indicate relevant, redundant, and irrelevant features, respectively.

All the mutual information based methods manage to delay the selection of irrelevant

features towards the end of the selection process. However, they differ in the order in which

they introduce redundant features. Attending at each feature individually, by looking at

the same value in the y-axis, we can see that for Hyperspheres mRMR inserts redundant

features earlier than the other methods, while for Hypercubes mRMR successfully delays the

insertion of redundant features followed very closely by ENM.

161

Table 5.8.: Subset accuracy comparison by dataset averaged across all feature subset sizes.

Dataset ELA LP PPT MIM mRMR ENM GMM

Medical 0.2211 0.0442 0.2161 0.5247 0.5247 0.5832 0.4396
Slashdot 0.0733 0.0262 0.0531 0.2035 0.2035 0.2256 0.2091
Bibtex 0.0251 0.0299 0.0145 0.0777 0.0777 0.1178 0.0596
Yelp 0.2866 0.2218 0.2218 0.3212 0.3212 0.3168 0.3302
Corel16k 0.0022 0.0000 0.0006 0.0006 0.0006 0.0014 0.0003
Delicious 0.0560 0.0226 0.0000 0.0631 0.0408 0.0557 0.0764
20NG 0.0161 0.0172 0.0180 0.2182 0.2182 0.2515 0.1580
TMC2007 0.0956 0.0963 0.0956 0.1710 0.1710 0.1698 0.1623
Bookmarks 0.0606 0.0606 0.0000 0.1553 0.1553 0.1496 0.1607
IMDB 0.0004 0.0001 0.0004 0.0025 0.0025 0.0020 0.0012
Hyperspheres 0.0020 0.0000 0.0000 0.0023 0.0018 0.0023 0.0023
Hypercubes 0.0044 0.0025 0.0043 0.0047 0.0045 0.0048 0.0046

Average 0.1164 0.0892 0.1019 0.1403 0.1385 0.1507 0.1286

5.7.2 Subset accuracy comparison

This experiment illustrates the overall behavior and the quality of the predictions of each

method over 10 benchmark datasets that represent a wide range of multi-label scenarios.

Figure 5.12 presents the evolution of subset accuracy over the number of selected

features, where the bold black dashed line indicates the subset accuracy of the Ml-knn

classifier as a reference baseline using all the features. Table 5.8 presents the detailed subset

accuracy results for each dataset averaged across all feature subset sizes.

The methods based on the χ2 score report considerably worst results in comparison

to those using mutual information. We can observe that ELA is the best χ2 based method

outperforming the other methods on Corel16k and presenting a rapid increment in the subset

accuracy in other datasets such as Medical.

ENM presents the overall best results of all the methods. We can observe that ENM

clearly outperforms the other methods on Medical, Bibtex, and 20NG. While on other

datasets it follows the trend of the other mutual information based methods such as Slashdot,

Yelp, and TMC2007. Nevertheless, even on the datasets where ENM performs similarly, we

can still observe a small improvement over them.

GMM obtains a lower performance than the other mutual information based methods

162

ELA LP PPT MIM mRMR ENM GMM

5 10 15 20 25 30 35 40 45 50

0.00

0.20

0.40

0.60

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(a) Medical dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.10

0.20

0.30

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(b) Slashdot dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.05

0.10

0.15

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(c) Bibtex dataset

5 10 15 20 25 30 35 40 45 50

0.10

0.20

0.30

0.40

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(d) Yelp dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(e) Corel16k dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.05

0.10

0.15

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(f) Delicious dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.10

0.20

0.30

0.40

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(g) 20NG dataset

5 10 15 20 25 30 35 40 45 50
0.05

0.10

0.15

0.20

0.25

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(h) TMC2007 dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.05

0.10

0.15

0.20

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(i) Bookmarks dataset

5 10 15 20 25 30 35 40 45 50

0.00

0.00

0.00

0.01

Number of features selected

S
u
b
se
t
A
cc
u
ra
cy

(j) IMDB dataset

Fig. 5.12.: Subset accuracy obtained selecting up to 50 discrete features on the datasets.

163

for most of the datasets, with two exceptions:Delicious and Bookmarks. GMM presents a

competitive subset accuracy, especially for the larger subset features. These datasets have the

largest number of labels, 983 and 208 for Delicious and Bookmarks, respectively. Therefore

the advantage over the other methods can be founded by the fact that this method focuses on

having a balanced amount of information about all the labels, which might end up selecting

redundant features, but also ensures that all the labels are represented.

We conclude that ENM presents the most competitive results, especially for a smaller

number of labels. This is expected since this method might select feature subsets that under-

represent some labels. On the other hand, GMM only outperforms ENM for the datasets

with the largest number of labels. This is due to the binary nature of the features which

make most of the individual mutual information measures in each feature to tend to zero.

Statistical analyses allow us to provide a more detailed comparison of the relative

performance of the algorithms. Table 5.9 presents the results of the Bonferroni-Dunn test

for each multi-label metric, as well as the rank of each metric, and the overall meta-rank.

This test assumes that two methods are significantly different if their ranks differ by at least

some critical distance. In this case, the critical distance is 0.3077 for a statistical significance

level of α of 0.05. The results of the test indicate that ENM is the best performing algorithm

since it ranks first for all the quality metrics. ENM is statistically different for the most strict

metrics, such as subset accuracy, but it cannot be assured the same for the less restrictive

metrics.

Similarly, Table 5.10 presents the results (p-values) of the Wilcoxon rank sum test

for subset accuracy, which allows us to identify whether there are significant differences

in a pairwise comparison between two algorithms. A p-values < 0.01 indicates significant

differences between the two methods compared. According to this test both ENM and GMM

show to have significant differences compared to reference methods, as well as with the other

mutual information based methods

164

Table 5.9.: Algorithm ranks for each of the multi-label performance metrics across all datasets

and feature sizes.

Metric ELA LP PPT MIM mRMR ENM GMM Bonferroni-Dunn test

Hamming Loss 4.63 5.26 3.94 3.39 3.68 3.38 3.73
2 3 4 5 6

ELA LP

PPTMIM

mRMR
ENM

GMM

Subset accuracy 4.44 5.70 5.30 3.05 3.26 2.64 3.61
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM GMM

Ex.-based accuracy 4.47 5.72 5.46 2.96 3.06 2.81 3.52
2 3 4 5 6

ELA LP

PPTMIM mRMR

ENM GMM

Ex.-based precision 4.67 5.76 5.40 3.02 2.90 2.87 3.38
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Ex.-based recall 4.44 5.69 5.48 2.96 3.08 2.80 3.55
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Ex.-based F1 4.46 5.69 5.48 2.95 3.07 2.84 3.51
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Macro precision 4.35 5.65 4.98 3.22 3.32 3.19 3.29
2 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Macro recall 4.53 5.68 5.53 2.88 3.06 2.78 3.54
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Macro F1 4.60 5.74 5.39 2.88 3.08 2.82 3.48
2 3 4 5 6

ELA LP

PPTMIM

mRMRENM

GMM

Micro precision 4.16 5.20 4.64 3.48 3.57 3.14 3.81
2 3 5 6

ELA LPPPT

MIM

mRMRENM

GMM

Micro recall 4.39 5.65 5.42 3.06 3.01 2.97 3.50
2 3 4 5 6

ELA LPPPT

MIM

mRMRENM

GMM

Micro F1 4.50 5.69 5.32 2.98 3.11 2.92 3.48
2 3 4 5 6ELA

LPPPT

MIM

mRMRENM

GMM

Meta-rank 4.47 5.62 5.19 3.07 3.18 2.93 3.53
2 3 4 5 6ELA

LPPPT

MIM

mRMRENM

GMM

Table 5.10.: Wilcoxon statistical test analysis for subset accuracy. MIM, mRMR, ENM and

GMM vs reference methods (p-values < 0.01 indicate statistically significant differences).

Algorithm vs MIM mRMR ENM GMM

ELA 1.11E-32 2.08E-26 8.95E-37 3.14E-31
LP 1.95E-50 2.84E-50 3.00E-55 3.46E-49
PPT 2.57E-47 8.20E-47 1.53E-52 8.15E-47
MIM 0 2.95E-03 9.62E-14 2.81E-18
mRMR 2.95E-03 0 4.86E-19 5.99E-12
ENM 9.62E-14 4.86E-19 0 6.15E-23
GMM 2.81E-18 5.99E-12 6.15E-23 0

165

ELA LP PPT MIM mRMR ENM GMM

10 20 30 40 50

0.1

1

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(a) Medical

10 20 30 40 50

0.1

1

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(b) Slashdot

10 20 30 40 50

1

10

100

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(c) Bibtex

10 20 30 40 50

0.1

1

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(d) Yelp

10 20 30 40 50

0.159

0.251

0.398

0.631

1

1.58

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(e) Corel16k

10 20 30 40 50

0.631

1

1.58

2.51

3.98

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(f) Delicious

10 20 30 40 50
0.159

0.251

0.398

0.631

1

1.58

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(g) 20NG

10 20 30 40 50

0.159

0.251

0.398

0.631

1

1.58

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(h) TMC2007

10 20 30 40 50

1

10

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(i) Bookmarks

10 20 30 40 50

0.398

0.631

1

1.58

2.51

3.98

6.31

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(j) IMDB

10 20 30 40 50

1

10

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(k) Hyperspheres

10 20 30 40 50

0.631

1

1.58

2.51

3.98

6.31

Number of features selected

S
el
ec
ti
on

ti
m
e
(m

in
)

(l) Hypercubes

Fig. 5.13.: Runtime obtained selecting up to 50 features on all the datasets.

5.7.3 Runtime comparison

This experiment studies the runtime required by each method to select a feature subset

regarding their size. The reported times include the discretization step for the synthetic

datasets. Figure 5.13 presents the runtime in minutes and on a logarithmic scale for

readability.

166

The reported execution times are very similar for all the methods that rank the features

based on their relevance, i.e. excluding the mRMR method. We can observe that generally,

the reported times for ELA are the lowest, especially for the largest datasets. MIM, ENM,

and GMM report similar runtimes, where usually the lowest runtime corresponds to MIM

since it only performs the sum of individual MI measures, followed by ENM which only needs

to calculate the norm of the vector formed by the individual MI measures, and finally by

GMM which performs the geometrical mean for each feature.

PPT is the method with the most variations among the runtime measures. This method

performs the fastest for the smallest datasets with the lowest number of labels. However, its

execution times quickly increase with the number of labels, as we can observer with Bibtex,

to the point where the method was unable to execute for certain datasets such as Delicious

and Bookmarks.

mRMR can be considered the slowest performing method in comparison. This is

produced by the minimization of the redundancy, which is done by comparing each feature

candidate to the previously selected feature. Nevertheless, in some cases, the minimization

of the redundancy does not incur in execution times much higher than the other methods

as the result of using binary features. This is expected to have a much higher impact for

continuous features or nominal features with a large range of values.

5.8 Conclusions

In this chapter, we have evaluated the mutual information estimator that considers each label

individually by using four feature selection methods on multi-label classification problems.

The first method (MIM) selects the features that maximize the sum of the mutual information

measures. The second method (mRMR) selects the features that maximize the sum of the

mutual information measures while minimizing the information with previously selected

features. The third method (ENM) selects the features that maximize the L2-norm of the

individual information measures. Finally, the fourth method (GMM) selects the features that

167

maximize the geometrical mean of the individual measures. The impact of these methods

has been studied in detail by comparing them to three feature selection methods, regarding

the subset accuracy and execution times.

The experimental study has proved that ENM efficiently improves the selection of

discrete features, while GMM and MIM improve the selection of continuous features. Additionally,

GMM also presents a remarkable performance of on discrete features associated with a large

number of labels. These methods present a minimization of the redundancy on par with

mRMR but with the advantage of constant selection time. Therefore, the present competitive

selection times even for the largest datasets.

These results indicate that choosing the right method for feature selection can have a

significant impact on the final results. We have presented two opposing ways to aggregate

the information of individual measures for each label which attempt to balance the relevance

and the redundancy of the selected features. Nevertheless, these methods could be extended

or replaced by more complex methods which could attempt to find the optimal averaging

strategy.

168

CHAPTER 6

CONCLUSIONS

This thesis introduced algorithms and a framework for distributed multi-label learning on

Apache Spark. A series of methods have been implemented, ranging from newly proposed

methods to traditional methods used in the comparisons of the experimental studies. The

proposed methods were three distributed Ml-knn implementations which compared the

different strategies for distributed nearest neighbors and two distributed multi-label feature

selection method based on an adaptation of mutual information.

In order to study how to improve the computational performance of the multi-label

algorithms a series of different strategies were considered: local parallelization using same

memory space, distributed parallelization using independent memory spaces, and distributed

parallelization using shared memory space. We defined five methods which considered each

of those scenarios: the baseline Mulan implementation using a single thread on a single

machine, a multi-threading version of Mulan on a single machine, a distributed version of

Mulan where multiple instances of Mulan are deployed in each machine, a distributed version

of Mulan where each machine has a multi-threading version of Mulan, and a Spark native

implementation of the multi-label learning paradigm. The results highlighted that there were

statistical differences between the predictions produced by the methods based on Mulan and

the Spark native methods. Additionally, it proved that the distribution methods produce

the best results once the data is large enough to overcome the distribution overhead. In

particular, Spark proved to be the most scalable, maximizing the use of the shared resources

in the cluster, executing hundreds of times faster than the Mulan implementations.

169

Ml-knn adapts the traditional knn algorithm to multi-label problems, therefore it

inherits all the advantages and disadvantages from the original method. This method has

been widely used in pre-processing scenarios, where the original data was transformed.

However, it is computationally expensive since the prediction process needs to compute

the distances against the training instances. Therefore, we considered it a good candidate

for distribution due to its computational nature and its usefulness in future work. Three

approaches for distributing the computation of Ml-knn were evaluated: an iterative pair-

wise distance computation (Ml-knn-it), a tree-based method that index the instances across

multiple nodes (Ml-knn-ht), and a local sensitive hashing method that builds multiple

hash tables to index the data (Ml-knn-lsh). The results proved that the predictions of

Ml-knn-ht are considered equivalent to those of an exact method. Additionally, Ml-knn-

ht outperforms the execution times of all the other methods, regardless of the number of

instances, features, and labels.

A comprehensible study of feature selection strategies for multi-label problems was

presented, where we discussed the best adaptation of mutual information for multiple labels.

Two distributed feature selection methods on continuous and discrete features for multi-

label problems were proposed: Euclidean Norm Maximization (ENM), and Geometric Mean

Maximization (GMM). The former selects the features with the largest L2-norm whereas

the latter selects the features with the largest geometric mean. These methods handled the

multi-label features directly, without relying on any type of transformation. The performance

of the feature selection methods was measured by evaluating the predictions of Ml-knn-

ht on the feature subset. GMM showed a similar performance as the maximization of the

mutual information, which sums the information of the individual measures, on continuous

features. ENM showed clearly superior performance for discrete features, improving the

results in most scenarios. These methods produced constant execution times which enables

them to use or large-scale datasets.

170

Multi-label data is usually characterized by a series of factors such as high dimensionality,

a large number of instances, unbalanced data, and dependencies between the labels. This

research aimed to show that these characteristics can be handled by a two-step strategy.

First, by loading the data on the appropriate distributed architecture. This environment

allows handling any size of data and considerably reduces the execution times in comparison

to traditional systems. Second, by processing the original data and selecting the most

relevant information. This processing step transforms the multi-label problem into one or

more simpler problems that smoothed the difficulties of the original data.

171

CHAPTER 7

FUTURE WORK

The contributions introduced in this work highlight the advantages of distributing the multi-

label learning paradigm using Apache Spark. Due to the novelty of this approach, there are

numerous paths to be explored in future work.

- There are very few multi-label methods that have been implemented on the MapReduce

programming model and even less on Apache Spark. This provides us with the

opportunity to develop countless novelty methods, however, it also requires to develop

from scratch many of the well-known algorithms out there in order to present a fair

comparison of the results. We did a remarkable effort into implementing the multi-label

evaluation metrics, loading of multi-label data, and many algorithms. Nevertheless,

there are many methods in Mulan [104] and Meka [106] that could still be implemented.

- Ml-knn is a first-order approach since it considers independently the relevance of each

label. Although this characteristic is not important for the scenarios where we applied

it, such as evaluation of feature selection. It would be interesting to incorporate a

high-order approach such as DML-knn [92]. As a result, that method could be used

to evaluate other scenarios besides the selection of features, such as the selection of

correlated groups of labels.

- The proposed multi-label feature selection methods have shown promising results about

aggregating the information of individual measures in different ways which can affect

the relevance and redundancy of the selected features. Nevertheless, we focused on two

172

opposing approaches leaving open the possibility of including more complex approaches

which would attempt to find the Pareto optimality.

- There is plenty of evidence that using correlated subsets of labels increases the quality

of the predictions [53], [65], [79]. In [214] they proved that partitioning the label space

using the frequency of occurrence of labels could lead to an improvement over the

random selection of subsets. However, in all the studied approaches the same base

classifier is used for every label subset. We believe that first-order approaches should

be used in independent labels, while high-order approaches should be used in correlated

label subsets. Additionally, most of the proposed methods define disjoint label spaces,

while it has been proved that overlapping spaces produce better results [65].

- There has been some efforts into displaying graphically the characteristics of multi-

label data [106], [215]. However, there are no precedents of plotting the multi-label

classifiers on a 2D projection, showing the decision boundaries produced by the model.

This could be achieved by plotting the overlapping contours of each of the labels. The

visualization of multi-label data would be very useful insight into understanding how

apparently simple datasets, with a low number of labels, are so difficult to learn for

the current algorithms.

- Most of the approaches for multi-label learning are based on ensemble methods. This

can be implemented on Apache Spark by building each of the base classifiers sequentially.

However, it has been shown that it is possible to submit many tasks simultaneously [131],

e.g. to construct a random forest by building all the trees in parallel. It is unknown if

this technique could be applied for generic ensembles, or if it is necessary to modify the

implementation of the base classifiers. Nevertheless, it is an area demanding further

research.

173

Bibliography

[1] H. Guo, “Big Earth data: A new frontier in Earth and information sciences”, Big

Earth Data, vol. 1, no. 1-2, pp. 4–20, 2017.

[2] D. Reinsel, J. Gantz, and J. Rydning, “Data age 2025: The evolution of data to

life-critical”, Dont Focus on Big Data, 2017.

[3] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, bigger digital

shadows, and biggest growth in the far east”, IDC International Data Corporation,

vol. 2007, no. 2012, pp. 1–16, 2012.

[4] G. Sammut and M. Sartawi, “Perspective-Taking and the Attribution of Ignorance”,

Journal for the Theory of Social Behaviour, vol. 42, no. 2, pp. 181–200, 2012.

[5] S. Yu, M. Liu, W. Dou, S. Yu, M. Liu, W. Dou, X. Liu, and S. Zhou, Networking for

Big Data: A Survey, 2018.

[6] T. Aho, B. Ženko, S. Džeroski, and T. Elomaa, “Multi-target regression with rule

ensembles”, Journal of Machine Learning Research, vol. 13, no. Aug, pp. 2367–2407,

2012.

[7] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas, “Multi-target

regression via input space expansion: Treating targets as inputs”, Machine Learning,

vol. 104, no. 1, pp. 55–98, 2016.

[8] G. Tsoumakas, E. Spyromitros-Xioufis, A. Vrekou, and I. Vlahavas, “Multi-target

regression via random linear target combinations”, in Joint european conference on

machine learning and knowledge discovery in databases, Springer, 2014, pp. 225–240.

174

[9] O. Reyes, A. Cano, H. Fardoun, and S. Ventura, “A locally weighted learning method

based on a data gravitation model for multi-target regression”, International Journal

of Computational Intelligence Systems, vol. 11, no. 1, pp. 282–295, 2018.

[10] G. Melki, A. Cano, V. Kecman, and S. Ventura, “Multi-target support vector regression

via correlation regressor chains”, Information Sciences, vol. 415-416, pp. 53–69, 2017.

[11] L. Breiman and J. H. Friedman, “Predicting multivariate responses in multiple linear

regression”, Journal of the Royal Statistical Society, vol. 59, no. 1, pp. 3–54, 1997.

[12] P. J. Brown, J. V. Zidek, et al., “Adaptive multivariate ridge regression”, The Annals

of Statistics, vol. 8, no. 1, pp. 64–74, 1980.

[13] Y. Haitovsky, “On multivariate ridge regression”, Biometrika, vol. 74, no. 3, pp. 563–

570, 1987.

[14] C. A. Micchelli and M. Pontil, “On learning vector-valued functions”, Neural computation,

vol. 17, no. 1, pp. 177–204, 2005.

[15] T. Similä and J. Tikka, “Input selection and shrinkage in multiresponse linear regression”,

Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 406–422, 2007.

[16] K. Aas and L. Eikvil, Text categorisation: A survey, 1999.

[17] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label scene

classification”, Pattern Recognition, vol. 37, no. 9, pp. 1757–1771, 2004.

[18] G.-J. Qi, X.-S. Hua, Y. Rui, J. Tang, T. Mei, and H.-J. Zhang, “Correlative multi-

label video annotation”, in International conference on Multimedia, ACM, 2007,

pp. 17–26.

[19] A. Dimou, G. Tsoumakas, V. Mezaris, I. Kompatsiaris, and I. Vlahavas, “An empirical

study of multi-label learning methods for video annotation”, in International Workshop

on Content-Based Multimedia Indexing, IEEE, 2009, pp. 19–24.

175

[20] M. Wang, X. Zhou, and T.-S. Chua, “Automatic image annotation via local multi-

label classification”, in International conference on Content-based image and video

retrieval, 2008.

[21] A. Clare and R. D. King, “Knowledge Discovery in Multi-label Phenotype Data”,

in European Conference on Principles of Data Mining and Knowledge Discovery,

Springer, 2001, pp. 42–53.

[22] A. Elisseeff and J. Weston, “A kernel method for multi-labelled classification”, in

Advances in Neural Information Processing Systems, 2002, pp. 681–687.

[23] M.-L. Zhang and Z.-H. Zhou, “Multilabel Neural Networks with Applications to

Functional Genomics and Text Categorization”, Transactions on Knowledge and

Data Engineering, vol. 18, no. 10, pp. 1338–1351, 2006.

[24] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya, “Hierarchical multi-label

prediction of gene function”, Bioinformatics, vol. 22, no. 7, pp. 830–836, 2006.

[25] L. Schietgat, C. Vens, J. Struyf, H. Blockeel, D. Kocev, and S. Džeroski, “Predicting

gene function using hierarchical multi-label decision tree ensembles”, BMC Bioinformatics,

vol. 11, no. 1, p. 2, 2010.

[26] H. Kazawa, T. Izumitani, H. Taira, and E. Maeda, “Maximal margin labeling for

multi-topic text categorization”, in Advances in Neural Information Processing Systems,

2005, pp. 649–656.

[27] L. Tang, S. Rajan, and V. K. Narayanan, “Large scale multi-label classification via

metalabeler”, in International conference on World wide web, ACM, 2009, pp. 211–

220.

[28] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma, “Multi-label learning with millions

of labels: Recommending advertiser bid phrases for web pages”, in International

conference on World Wide Web, ACM, 2013, pp. 13–24.

176

[29] F. A. Thabtah, P. Cowling, and Y. Peng, “MMAC: A new multi-class, multi-label

associative classification approach”, in International Conference on Data Mining,

IEEE, 2004, pp. 217–224.

[30] A. Veloso, W. Meira, M. Gonçalves, and M. Zaki, “Multi-label lazy associative

classification”, in European Conference on Principles of Data Mining and Knowledge

Discovery, Springer, 2007, pp. 605–612.

[31] A. Veloso and W. Meira, “Multi-label associative classification”, in Demand-Driven

Associative Classification, Springer, 2011, pp. 53–59.

[32] S. Gopal and Y. Yang, “Multilabel classification with meta-level features”, in International

Conference on Research and development in information retrieval, ACM, 2010, pp. 315–

322.

[33] S. Zhu, X. Ji, W. Xu, and Y. Gong, “Multi-labelled classification using maximum

entropy method”, in International Conference on Research and development in information

retrieval, ACM, 2005, pp. 274–281.

[34] I. Katakis, G. Tsoumakas, and I. Vlahavas, “Multi-label text classification for automated

tag suggestion”, ECML PKDD Discovery Challenge, vol. 75, 2008.

[35] Y. Song, L. Zhang, and C. L. Giles, “A sparse gaussian processes classification

framework for fast tag suggestions”, in Conference on Information and knowledge

management, ACM, 2008, pp. 93–102.

[36] S. M. Liu and J.-H. Chen, “A multi-label classification based approach for sentiment

classification”, Expert Systems with Applications, vol. 42, no. 3, pp. 1083–1093, 2015.

[37] A. Wieczorkowska, P. Synak, and Z. W. Raś, “Multi-label classification of emotions

in music”, in Intelligent Information Processing and Web Mining, Springer, 2006,

pp. 307–315.

177

[38] C. Sanden and J. Z. Zhang, “Enhancing multi-label music genre classification through

ensemble techniques”, in Conference on Research and development in Information

Retrieval, ACM, 2011, pp. 705–714.

[39] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. P. Vlahavas, “Multi-label classification

of music into emotions”, in International Conference on Music Information Retrieval,

vol. 8, 2008, pp. 325–330.

[40] G. F. Coulouris, J. Dollimore, and T. Kindberg, Distributed systems: concepts and

design. pearson education, 2005.

[41] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on large clusters”,

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[42] T. White, Hadoop: The definitive guide. O’Reilly Media, Inc., 2012.

[43] K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon, “Parallel data processing

with MapReduce: a survey”, ACM SIGMOD Record, vol. 40, no. 4, pp. 11–20, 2012.

[44] J. Lin, “MapReduce is good enough? if all you have is a hammer, throw away

everything that’s not a nail!”, Big Data, vol. 1, no. 1, pp. 28–37, 2013.

[45] N. Spangenberg, M. Roth, and B. Franczyk, “Evaluating New Approaches of Big

Data Analytics Frameworks”, in International Conference on Business Information

Systems, Springer, 2015, pp. 28–37.

[46] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets”, HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[47] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, and I. Stoica, “Resilient distributed datasets: a fault-tolerant abstraction for

in-memory cluster computing”, USENIX Conference on Networked Systems Design

and Implementation, p. 2, 2012.

178

[48] D. Freedman and P. Diaconis, “On the histogram as a density estimator:L2 theory”,

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 57, no. 4,

pp. 453–476, 1981.

[49] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining Multi-label Data”, in Data

mining and knowledge discovery handbook, Springer, 2009, pp. 667–685.

[50] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F. Li, “Multi-instance multi-label

learning”, Artificial Intelligence, vol. 176, no. 1, pp. 2291–2320, 2012.

[51] C. Vens, J. Struyf, L. Schietgat, S. Džeroski, and H. Blockeel, “Decision trees for

hierarchical multi-label classification”, Machine Learning, vol. 73, no. 2, p. 185, 2008.

[52] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms”, IEEE

transactions on knowledge and data engineering, vol. 26, no. 8, pp. 1819–1837, 2014.

[53] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for multi-label

classification”, Machine Learning, vol. 85, no. 3, p. 333, 2011.

[54] J. Ramón Quevedo, O. Luaces, and A. Bahamonde, “Multilabel classifiers with a

probabilistic thresholding strategy”, Pattern Recognition, vol. 45, no. 2, pp. 876–883,

2012.

[55] M.-L. Zhang and K. Zhang, “Multi-label learning by exploiting label dependency”, in

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

2010, pp. 999–1008.

[56] S.-J. Huang, Z.-H. Zhou, and Z Zhou, “Multi-label learning by exploiting label

correlations locally.”, in AAAI Conference on Artificial Intelligence, 2012, pp. 949–

955.

[57] J. Fürnkranz, E. Hüllermeier, E. Loza Menćıa, and K. Brinker, “Multilabel classification

via calibrated label ranking”, Machine Learning, vol. 73, no. 2, pp. 133–153, 2008.

179

[58] N. Ghamrawi and A. McCallum, “Collective multi-label classification”, in Iinternational

conference on Information and knowledge management, ACM, 2005, pp. 195–200.

[59] N. Ueda and K. Saito, “Parametric mixture models for multi-labeled text”, in Advances

in Neural Information Processing Systems, 2003, pp. 737–744.

[60] W. Cheng and E. Hüllermeier, “Combining instance-based learning and logistic

regression for multi-label classification”, Machine Learning, vol. 76, no. 2, pp. 211–

225, 2009.

[61] S. Godbole and S. Sarawagi, “Discriminative methods for multi-labeled classification”,

in Pacific-Asia conference on knowledge discovery and data mining, Springer, 2004,

pp. 22–30.

[62] S. Ji, L. Tang, S. Yu, and J. Ye, “Extracting shared subspace for multi-label classification”,

in International conference on Knowledge discovery and data mining, ACM, 2008,

pp. 381–389.

[63] R. Yan, J. Tesic, and J. R. Smith, “Model-shared subspace boosting for multi-label

classification”, in International conference on Knowledge discovery and data mining,

ACM, 2007, pp. 834–843.

[64] J. Read, B. Pfahringer, and G. Holmes, “Multi-label classification using ensembles

of pruned sets”, in International Conference on Data Mining, IEEE, 2008, pp. 995–

1000.

[65] G. Tsoumakas and I. Vlahavas, “Random k-Labelsets: An Ensemble Method for

Multilabel Classification”, in European conference on machine learning, Springer,

2007, pp. 406–417.

[66] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Effective and efficient multilabel classification

in domains with large number of labels”, in Workshop on Mining Multidimensional

Data, vol. 21, 2008, pp. 53–59.

180

[67] K. Dembczynski, W. Cheng, and E. Hüllermeier, “Bayes optimal multilabel classification

via probabilistic classifier chains.”, in International Conference on Machine Learning,

vol. 10, 2010, pp. 279–286.

[68] K. Dembszynski, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence

in multilabel classification”, in International Workshop on learning from multi-label

data, Ghent University, KERMIT, Department of Applied Mathematics, Biometrics

and Process Control, 2010.

[69] E. Gibaja and S. Ventura, “Multi-label learning: A review of the state of the art and

ongoing research”, Wiley Interdisciplinary Reviews: Data Mining and Knowledge

Discovery, vol. 4, no. 6, pp. 411–444, 2014.

[70] K. Dembczyński, W. Waegeman, W. Cheng, and E. Hüllermeier, “On label dependence

and loss minimization in multi-label classification”, Machine Learning, vol. 88, no. 1-

2, pp. 5–45, 2012.

[71] D. J. Hsu, S. M. Kakade, J. Langford, and T. Zhang, “Multi-label prediction via

compressed sensing”, in Advances in Neural Information Processing Systems, 2009,

pp. 772–780.

[72] J. Read, A. Bifet, G. Holmes, and B. Pfahringer, “Scalable and efficient multi-label

classification for evolving data streams”, Machine Learning, vol. 88, no. 1-2, pp. 243–

272, 2012.

[73] J. Read, “Scalable multi-label classification”, PhD thesis, University of Waikato,

2010.

[74] S. Godbole, S. Sarawagi, and S. Chakrabarti, “Scaling multi-class support vector

machines using inter-class confusion”, in International conference on Knowledge

discovery and data mining, ACM, 2002.

[75] G. Tsoumakas and I. Katakis, “Multi-Label Classification: An Overview”, International

Journal of Data Warehousing and Mining, vol. 3, no. 3, pp. 1–13, 2007.

181

[76] E. Gibaja and S. Ventura, “A Tutorial on Multilabel Learning”, ACM Computing

Surveys, vol. 47, no. 3, pp. 1–38, 2015.

[77] M. S. Sorower, “A literature survey on algorithms for multi-label learning”, Oregon

State University, Corvallis, vol. 18, 2010.

[78] W. Chen, J. Yan, B. Zhang, Z. Chen, and Q. Yang, “Document transformation for

multi-label feature selection in text categorization”, in IEEE International Conference

on Data Mining, 2007, pp. 451–456.

[79] J. Read, “A pruned problem transformation method for multi-label classification”,

in New Zealand Computer Science Research Student Conference, vol. 143150, 2008.

[80] H. Blockeel and L. De Raedt, “Top-down induction of first-order logical decision

trees”, Artificial Intelligence, vol. 101, no. 1, pp. 285–297, 1998.

[81] A. McCallum, “Multi-label text classification with a mixture model trained by em”,

in AAAI workshop on Text Learning, 1999, pp. 1–7.

[82] J. R. Quinlan, “C4.5: Programming for machine learning”, Morgan Kauffmann, p. 38,

1993.

[83] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “Ensembles of Multi-Objective Decision

Trees”, in European conference on machine learning, 2007, pp. 624–631.

[84] T. Joachims, “Text categorization with Support Vector Machines: Learning with

many relevant features”, in European conference on machine learning, 1998, pp. 137–

142.

[85] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, “Support vector machine

learning for interdependent and structured output spaces”, in International Conference

on Machine learning, ACM, 2004, p. 104.

182

[86] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods

for structured and interdependent output variables”, Journal of machine learning

research, vol. 6, no. Sep, pp. 1453–1484, 2005.

[87] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learning approach to multi-label

learning”, Pattern Recognition, vol. 40, no. 7, pp. 2038–2048, 2007.

[88] F. Charte, A. Rivera, M. del Jesus, and F. Herrera, “MLSMOTE: Approaching

imbalanced multi-label learning through synthetic instance generation”, Knowledge-

Based Systems, vol. 89, pp. 385–397, 2015.

[89] A. Cano, “A survey on graphic processing unit computing for large-scale data mining”,

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 1,

e1232, 2018.

[90] P. Skryjomski, B. Krawczyk, and A. Cano, “Speeding up k-Nearest Neighbors Classifier

for Large-Scale Multi-Label Learning on GPUs”, Neurocomputing, vol. In press, 2018.

[91] M. Roseberry and A. Cano, “Multi-label kNN Classifier with Self Adjusting Memory

for Drifting Data Streams”, in LIDTA@PKDD/ECML, 2018.

[92] Z. Younes, F. Abdallah, T. Denoeux, and H. Snoussi, “A dependent multi-label

classification method derived from the k-nearest neighbor rule”, EURASIP Journal

on Advances in Signal Processing, pp. 1–14, 2011.

[93] E. Spyromitros, G. Tsoumakas, and I. Vlahavas, “An empirical study of lazy multi-

label classification algorithms”, in Hellenic Conference on Artificial Intelligence,

2008, pp. 401–406.

[94] J. Xu, “Multi-label weighted k-nearest neighbor classifier with adaptive weight estimation”,

in International Conference on Neural Information Processing, 2011, pp. 79–88.

[95] H. Zhang, S. Kiranyaz, and M. Gabbouj, “A k-nearest neighbor multilabel ranking

algorithm with application to content-based image retrieval”, in IEEE International

Conference on Acoustics, Speech and Signal Processing, 2017, pp. 2587–2591.

183

[96] E. Cakir, T. Heittola, H. Huttunen, and T. Virtanen, “Polyphonic sound event

detection using multi label deep neural networks”, in International Joint Conference

on Neural Networks, IEEE, 2015, pp. 1–7.

[97] M.-L. Zhang, “ML-RBF: RBF Neural Networks for Multi-Label Learning”, Neural

Processing Letters, vol. 29, no. 2, pp. 61–74, 2009.

[98] M.-L. Zhang, J. M. Peña, and V. Robles, “Feature selection for multi-label naive

bayes classification”, Information Sciences, vol. 179, no. 19, pp. 3218–3229, 2009.

[99] L. Rokach, A. Schclar, and E. Itach, “Ensemble methods for multi-label classification”,

Expert Systems with Applications, vol. 41, no. 16, pp. 7507–7523, 2014.

[100] J. P. Pestian, C. Brew, P. Matykiewicz, D. J. Hovermale, N. Johnson, K. B. Cohen,

and W. Duch, “A shared task involving multi-label classification of clinical free text”,

Association for Computational Linguistics, pp. 97–104, 2007.

[101] F. Charte, A. Rivera, M. J. del Jesus, and F. Herrera, “A first approach to deal with

imbalance in multi-label datasets”, in International Conference on Hybrid Artificial

Intelligence Systems, 2013, pp. 150–160.

[102] F. Charte, A. Rivera, M. del Jesus, and F. Herrera, “Addressing imbalance in multilabel

classification: Measures and random resampling algorithms”, Neurocomputing, vol. 163,

pp. 3–16, 2015.

[103] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCun,

K.-R. MÃžller, F. Pereira, C. E. Rasmussen, et al., “The need for open source

software in machine learning”, Journal of Machine Learning Research, vol. 8, no. Oct,

pp. 2443–2466, 2007.

[104] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and I. Vlahavas, “Mulan: A java

library for multi-label learning”, Journal of Machine Learning Research, vol. 12,

no. Jul, pp. 2411–2414, 2011.

184

[105] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The

WEKA data mining software: an update”, SIGKDD explorations newsletter, vol. 11,

no. 1, pp. 10–18, 2009.

[106] J. Read, P. Reutemann, B. Pfahringer, and G. Holmes, “Meka: a multi-label/multi-

target extension to weka”, The Journal of Machine Learning Research, vol. 17, no. 1,

pp. 667–671, 2016.

[107] P. Szymański and T. Kajdanowicz, “A scikit-based Python environment for performing

multi-label classification”, ArXiv, 2017. arXiv: 1702.01460 [cs.LG].

[108] A. S. Tanenbaum and M. Van Steen, Distributed systems: principles and paradigms.

Prentice-Hall, 2007.

[109] A. S. Tanenbaum and R. Van Renesse, “Distributed operating systems”, ACM Computing

Surveys, vol. 17, no. 4, pp. 419–470, 1985.

[110] P. Baran, “On distributed communications networks”, IEEE transactions on Communications

Systems, vol. 12, no. 1, pp. 1–9, 1964.

[111] M. Singhal and N. G. Shivaratri, Advaced concepts in operating systems. Distributed,

database, and multiprocessor operating systems. McGraw Hill, 1994.

[112] R. Chow and Y.-C. Chow, Distributed operating systems and algorithms. Addison-

Wesley Longman Publishing Co., Inc., 1997.

[113] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services”, ACM SIGACT News, vol. 33, no. 2, pp. 51–

59, 2002.

[114] M. Kleppmann, Designing data-intensive applications: The big ideas behind reliable,

scalable, and maintainable systems. ” O’Reilly Media, Inc.”, 2017.

185

http://arxiv.org/abs/1702.01460

[115] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam,

PVM: Parallel virtual machine: a users’ guide and tutorial for networked parallel

computing. MIT press, 1994.

[116] J. Dongarra, R Hempel, A. Hey, and D. Walker, “MPI: A message-passing interface

standard”, International Journal of Supercomputer Applications, vol. 8, no. 3, p. 4,

1995.

[117] W. Gropp and E. Lusk, “Goals guiding design: PVM and MPI”, in International

Conference on Cluster Computing, IEEE, 2002, pp. 257–265.

[118] D. Guster, A. Al-Hamamah, P. Safonov, and E. Bachman, “Computing and network

Performance of a distributed parallel processing environment using MPI and PVM

communication methods”, Journal of Computing Sciences in Colleges, vol. 18, no. 4,

pp. 246–253, 2003.

[119] A. Cano, C. Garćıa-Mart́ınez, and S. Ventura, “Extremely high-dimensional optimization

with MapReduce: scaling functions and algorithm”, Information Sciences, vol. 415,

pp. 110–127, 2017.

[120] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J.

Rosen, S. Venkataraman, M. J. Franklin, et al., “Apache Spark: a unified engine for

big data processing”, Communications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[121] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al., “Spark SQL: Relational data processing in Spark”,

in ACM SIGMOD International Conference on Management of Data, ACM, 2015,

pp. 1383–1394.

[122] X. Meng, J. Bradley, B Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D

Tsai, M. Amde, S. Owen, et al., “Mllib: Machine learning in apache Spark”, Journal

of Machine Learning Research, vol. 17, no. 34, pp. 1–7, 2016.

186

[123] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized Streams:

Fault-tolerant streaming computation at scale”, in ACM Symposium on Operating

Systems Principles, ACM, 2013, pp. 423–438.

[124] N. Johnsirani Venkatesan, C. Nam, and D. R. Shin, “Deep Learning Frameworks on

Apache Spark: A Review”, IETE Technical Review, pp. 1–14, 2018.

[125] W. P.M.S. M. Dymczyk and A. C. Q. Kou, “Deep Learning with Deep Water”, 2017.

[126] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “SparkNet: Training deep

networks in Spark”, ArXiv, 2015.

[127] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin, “Large-scale logistic regression and

linear support vector machines using Spark”, in IEEE International Conference on

Big Data, IEEE, 2014, pp. 519–528.

[128] S. Daengduang and P. Vateekul, “Applying One-Versus-One SVMs to classify multi-

label data with large labels using Spark”, in International Conference on Knowledge

and Smart Technology, IEEE, 2017, pp. 72–77.

[129] J. Maillo, S. Ramı́rez, I. Triguero, and F. Herrera, “kNN-IS: An Iterative Spark-based

design of the k-Nearest Neighbors classifier for big data”, Knowledge-Based Systems,

vol. 117, pp. 3–15, 2017.

[130] R.-Z. Qi, Z.-J. Wang, and S.-Y. Li, “A parallel genetic algorithm based on Spark

for pairwise test suite generation”, Journal of Computer Science and Technology,

vol. 31, no. 2, pp. 417–427, 2016.

[131] J. Chen, K. Li, Z. Tang, K. Bilal, S. Yu, C. Weng, and K. Li, “A parallel random forest

algorithm for big data in a Spark cloud computing environment”, IEEE Transactions

on Parallel & Distributed Systems, no. 1, pp. 1–1, 2017.

[132] Z. Wang, Y. Zhao, Y. Liu, and C. Lv, “A speculative parallel simulated annealing

algorithm based on Apache Spark”, Concurrency and Computation: Practice and

Experience, vol. 30, no. 14, e4429, 2018.

187

[133] M. Duan, K. Li, X. Liao, and K. Li, “A parallel multiclassification algorithm for big

data using an extreme learning machine”, IEEE Transactions on Neural Networks

and Learning Systems, vol. 29, no. 6, pp. 2337–2351, 2018.

[134] M. A. Tahir, J. Kittler, K. Mikolajczyk, and F. Yan, “Improving multilabel classification

performance by using ensemble of multi-label classifiers”, in International Workshop

on Multiple Classifier Systems, 2010, pp. 11–21.

[135] D. Wegener, M. Mock, D. Adranale, and S. Wrobel, “Toolkit-based high-performance

data mining of large data on MapReduce clusters”, in IEEE International Conference

on Data Mining Workshops, 2009, pp. 296–301.

[136] Q. Wang, S. R. Kulkarni, and S. Verdú, “Divergence estimation for multidimensional

densities via k-nearest-neighbor distances”, IEEE Transactions on Information Theory,

vol. 55, no. 5, pp. 2392–2405, 2009.

[137] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for approximate nearest

neighbor in high dimensions”, in Foundations of Computer Science, 2006, pp. 459–

468.

[138] Y. Song, J. Huang, D. Zhou, H. Zha, and C. L. Giles, “IKNN: Informative K-Nearest

Neighbor Pattern Classification”, in European Conference on Principles of Data

Mining and Knowledge Discovery, 2007, pp. 248–264.

[139] Y. Iano, F. S. da Silva, and A. M. Cruz, “A fast and efficient hybrid fractal-wavelet

image coder”, IEEE Transactions on Image Processing, vol. 15, no. 1, pp. 98–105,

2006.

[140] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for large

margin nearest neighbor classification”, in Advances in Neural Information Processing

Systems, 2006, pp. 1473–1480.

188

[141] Y. Chen, E. K. Garcia, M. R. Gupta, A. Rahimi, and L. Cazzanti, “Similarity-based

classification: Concepts and algorithms”, Journal of Machine Learning Research,

vol. 10, pp. 747–776, 2009.

[142] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding best

matches in logarithmic expected time”, ACM Transactions on Mathematical Software,

vol. 3, no. 3, pp. 209–226, 1977.

[143] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image descriptor matching”,

in IEEE Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[144] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, “An optimal

algorithm for approximate nearest neighbor searching fixed dimensions”, Journal of

the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[145] C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, “Balanced aspect ratio trees

and their use for drawing very large graphs”, in International Symposium on Graph

Drawing, 1998, pp. 111–124.

[146] C. A. Duncan, M. T. Goodrich, and S. Kobourov, “Balanced aspect ratio trees:

Combining the advantages of kd trees and octrees”, Journal of Algorithms, vol. 38,

no. 1, pp. 303–333, 2001.

[147] R. F. Sproull, “Refinements to nearest-neighbor searching ink-dimensional trees”,

Algorithmica, vol. 6, no. 1-6, pp. 579–589, 1991.

[148] S. Dasgupta and Y. Freund, “Random projection trees and low dimensional manifolds”,

in ACM symposium on Theory of computing, 2008, pp. 537–546.

[149] Y. Jia, J. Wang, G. Zeng, H. Zha, and X.-S. Hua, “Optimizing kd-trees for scalable

visual descriptor indexing”, in IEEE Conference on Computer Vision and Pattern

Recognition, 2010, pp. 3392–3399.

189

[150] A. W. Moore, “The anchors hierarchy: Using the triangle inequality to survive high

dimensional data”, in Conference on Uncertainty in Artificial Intelligence, 2000,

pp. 397–405.

[151] T. Liu, A. W. Moore, K. Yang, and A. G. Gray, “An investigation of practical

approximate nearest neighbor algorithms”, in Advances in Neural Information Processing

Systems, 2005, pp. 825–832.

[152] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor

search”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33,

no. 1, pp. 117–128, 2011.

[153] A. Babenko and V. Lempitsky, “The inverted multi-index”, in IEEE Conference on

Computer Vision and Pattern Recognition, 2012, pp. 3069–3076.

[154] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing the

curse of dimensionality”, in ACM Symposium on Theory of Computing, 1998, pp. 604–

613.

[155] M. Covell and S. Baluja, “LSH banding for large-scale retrieval with memory and

recall constraints”, in IEEE International Conference on Acoustics, Speech and Signal

Processing, 2009, pp. 1865–1868.

[156] J. Buhler, “Efficient large-scale sequence comparison by locality-sensitive hashing”,

Bioinformatics, vol. 17, no. 5, pp. 419–428, 2001.

[157] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-probe LSH: efficient

indexing for high-dimensional similarity search”, in International Conference on Very

Large Data Bases, 2007, pp. 950–961.

[158] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes for similarity

search”, in Iinternational Conference on World Wide Web, 2005, pp. 651–660.

190

[159] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with parameter-

sensitive hashing”, in IEEE International Conference on Computer Vision, 2003,

p. 750.

[160] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing”, in Advances in Neural

Information Processing Systems, 2009, pp. 1753–1760.

[161] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned metrics”, in IEEE

Conference on Computer Vision and Pattern Recognition, 2008, pp. 1–8.

[162] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for scalable image

search”, in IEEE Conference on Computer Vision and Pattern Recognition, 2009,

pp. 2130–2137.

[163] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from shift-invariant

kernels”, in Advances in Neural Information Processing Systems, 2009, pp. 1509–

1517.

[164] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for scalable image

retrieval”, in IEEE Conference on Computer Vision and Pattern Recognition, 2010,

pp. 3424–3431.

[165] J. He, W. Liu, and S.-F. Chang, “Scalable similarity search with optimized kernel

hashing”, in ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2010, pp. 1129–1138.

[166] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary hashing for

approximate nearest neighbor search”, in IEEE International Conference on Computer

Vision, 2011, pp. 1631–1638.

[167] T. B. Sebastian and B. B. Kimia, “Metric-based shape retrieval in large databases”,

in International Conference on Pattern Recognition, vol. 3, 2002, pp. 291–296.

191

[168] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang, “Fast approximate nearest-

neighbor search with k-nearest neighbor graph”, in International Joint Conference

on Artificial Intelligence, vol. 22, 2011, p. 1312.

[169] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro, “Practical construction of k-

nearest neighbor graphs in metric spaces”, in Workshop Ecosystem Architectures,

vol. 6, 2006, pp. 85–97.

[170] M. Connor and P. Kumar, “Fast construction of k-nearest neighbor graphs for point

clouds”, IEEE Transactions on Visualization and Computer Graphics, vol. 16, no. 4,

pp. 599–608, 2010.

[171] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph construction for

generic similarity measures”, in ACM International Conference on World Wide Web,

2011, pp. 577–586.

[172] J. Maillo, I. Triguero, and F. Herrera, “A MapReduce-based k-nearest neighbor

approach for big data classification”, in IEEE Trustcom/BigDataSE/ICESS, vol. 2,

2015, pp. 167–172.

[173] T. Liu, C. Rosenberg, and H. A. Rowley, “Clustering billions of images with large

scale nearest neighbor search”, in IEEE Workshop on Applications of Computer

Vision, 2007, pp. 28–28.

[174] K. Sechidis, G. Tsoumakas, and I. Vlahavas, “On the stratification of multi-label

data”, Machine Learning and Knowledge Discovery in Databases, pp. 145–158, 2011.

[175] G. Chandrashekar and F. Sahin, “A survey on feature selection methods”, Computers

& Electrical Engineering, vol. 40, no. 1, pp. 16–28, 2014.

[176] R. Kohavi and G. H. John, “Wrappers for feature subset selection”, Artificial intelligence,

vol. 97, no. 1-2, pp. 273–324, 1997.

192

[177] T. Lal, O Chapelle, J Weston, A Elisseeff, S Gunn, M Nikravesh, L. Zadeh, et

al., “Embedded methods”, in Feature Extraction: Foundations and Applications,

Springer, 2006, pp. 137–165.

[178] J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik, “Feature

selection for SVMs”, in Advances in Neural Information Processing Systems, 2001,

pp. 668–674.

[179] M. A. Hall, “Correlation-based feature selection for discrete and numeric class machine

learning”, in International Conference on Machine Learning, 2000, pp. 359–366.

[180] J. R. Vergara and P. A. Estévez, “A review of feature selection methods based on

mutual information”, Neural computing and applications, vol. 24, no. 1, pp. 175–186,

2014.

[181] A. Mariello and R. Battiti, “Feature selection based on the neighborhood entropy”,

IEEE Transactions on Neural Networks and Learning Systems, pp. 1–10, 2018.

[182] G. Ditzler, R. Polikar, and G. Rosen, “A sequential learning approach for scaling up

filter-based feature subset selection”, IEEE Transactions on Neural Networks and

Learning Systems, vol. 29, no. 6, pp. 2530–2544, 2018.

[183] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “RCV1: A New Benchmark Collection

for Text Categorization Research”, Journal of Machine Learning Research, vol. 5,

pp. 361–397, 2004.

[184] N. SpolaôR, E. A. Cherman, M. C. Monard, and H. D. Lee, “A comparison of

multi-label feature selection methods using the problem transformation approach”,

Electronic Notes in Theoretical Computer Science, vol. 292, pp. 135–151, 2013.

[185] J. Lee and D.-W. Kim, “Feature selection for multi-label classification using multivariate

mutual information”, Pattern Recognition Letters, vol. 34, no. 3, pp. 349–357, 2013.

193

[186] O. Reyes, C. Morell, and S. V. Soto, “ReliefF-ML: An Extension of ReliefF Algorithm

to Multi-label Learning”, in Progress in Pattern Recognition, Image Analysis, Computer

Vision, and Applications, 2013, pp. 528–535.

[187] G. Doquire and M. Verleysen, “Mutual information-based feature selection for multi-

label classification”, Neurocomputing, vol. 122, pp. 148–155, 2013.

[188] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multi-label classification of

music into emotions”, in International Conference on Music Information Retrieval,

vol. 8, 2008, pp. 325–330.

[189] O. Reyes, C. Morell, and S. Ventura, “Scalable extensions of the ReliefF algorithm for

weighting and selecting features on the multi-label learning context”, Neurocomputing,

vol. 161, pp. 168–182, 2015.

[190] J Lee, H Lim, and D.-W. Kim, “Approximating mutual information for multi-label

feature selection”, Electronics letters, vol. 48, no. 15, pp. 929–930, 2012.

[191] Y. Lin, Q. Hu, J. Liu, and J. Duan, “Multi-label feature selection based on max-

dependency and min-redundancy”, Neurocomputing, vol. 168, pp. 92–103, 2015.

[192] J. Lee and D.-W. Kim, “SCLS: Multi-label feature selection based on scalable criterion

for large label set”, Pattern Recognition, vol. 66, pp. 342–352, 2017.

[193] Y. Lin, Q. Hu, J. Liu, J. Chen, and J. Duan, “Multi-label feature selection based on

neighborhood mutual information”, Applied Soft Computing, vol. 38, pp. 244–256,

2016.

[194] F. Li, D. Miao, and W. Pedrycz, “Granular multi-label feature selection based on

mutual information”, Pattern Recognition, vol. 67, pp. 410–423, 2017.

[195] J. Lee and D.-W. Kim, “Mutual Information-based multi-label feature selection using

interaction information”, Expert Systems with Applications, vol. 42, no. 4, pp. 2013–

2025, 2015.

194

[196] ——, “Fast multi-label feature selection based on information-theoretic feature ranking”,

Pattern Recognition, vol. 48, no. 9, pp. 2761–2771, 2015.

[197] H. Lim, J. Lee, and D.-W. Kim, “Multi-Label Learning Using Mathematical Programming”,

IEICE Transactions on Information and Systems, vol. 98, no. 1, pp. 197–200, 2015.

[198] L. Jian, J. Li, K. Shu, and H. Liu, “Multi-label informed feature selection”, in IJCAI,

2016, pp. 1627–1633.

[199] H. Lim, J. Lee, and D.-W. Kim, “Low-rank approximation for multi-label feature

selection”, International Journal of Machine Learning and Computing, vol. 6, no. 1,

p. 42, 2016.

[200] J. Xu and Q. Ma, “Multi-label regularized quadratic programming feature selection

algorithm with Frank–Wolfe method”, Expert Systems with Applications, vol. 95,

pp. 14–31, 2018.

[201] C. Wang, Q. Hu, X. Wang, D. Chen, Y. Qian, and Z. Dong, “Feature selection based

on neighborhood discrimination index”, IEEE Transactions on Neural Networks and

Learning Systems, vol. 29, no. 7, pp. 2986–2999, 2018.

[202] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S. Cruz, “Quadratic programming

feature selection”, Journal of Machine Learning Research, vol. 11, pp. 1491–1516,

2010.

[203] X. Wang, L. Zhao, and J. Xu, “Multi-label feature selection method based on multivariate

mutual information and particle swarm optimization”, in International Conference

on Neural Information Processing, Springer, 2018, pp. 84–95.

[204] G. A. Darbellay and I. Vajda, “Estimation of the information by an adaptive partitioning

of the observation space”, IEEE Transactions on Information Theory, vol. 45, no. 4,

pp. 1315–1321, 1999.

[205] L. Kozachenko and N. N. Leonenko, “Sample estimate of the entropy of a random

vector”, Problemy Peredachi Informatsii, vol. 23, no. 2, pp. 9–16, 1987.

195

[206] J. D. Victor, “Binless strategies for estimation of information from neural data”,

Physical Review E, vol. 66, no. 5, p. 051 903, 2002.

[207] G. A. Darbellay and I. Vajda, “Entropy expressions for multivariate continuous

distributions”, IEEE Transactions on Information Theory, vol. 46, no. 2, pp. 709–

712, 2000.

[208] F. Rossi, A. Lendasse, D. François, V. Wertz, and M. Verleysen, “Mutual information

for the selection of relevant variables in spectrometric nonlinear modelling”, Chemometrics

and intelligent laboratory systems, vol. 80, no. 2, pp. 215–226, 2006.

[209] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual information”,

Physical review E, vol. 69, no. 6, p. 066 138, 2004.

[210] B. C. Ross, “Mutual information between discrete and continuous data sets”, PloS

one, vol. 9, no. 2, e87357, 2014.

[211] J. T. Tomás, N. Spolaôr, E. A. Cherman, and M. C. Monard, “A framework to

generate synthetic multi-label datasets”, Electronic Notes in Theoretical Computer

Science, vol. 302, pp. 155–176, 2014.

[212] J. Gonzalez-Lopez, S. Ventura, and A. Cano, “Distributed Nearest Neighbor Classification

for Large-Scale Multi-label Data on Spark”, Future Generation Computer Systems,

vol. 87, pp. 66–82, 2018.

[213] A. Cano, J. M. Luna, E. L. Gibaja, and S. Ventura, “LAIM discretization for multi-

label data”, Information Sciences, vol. 330, pp. 370–384, 2016.

[214] P. Szymański, T. Kajdanowicz, and K. Kersting, “How is a data-driven approach

better than random choice in label space division for multi-label classification?”,

Entropy, vol. 18, no. 8, p. 282, 2016.

[215] J. M. Moyano, E. L. Gibaja, and S. Ventura, “MLDA: A tool for analyzing multi-label

datasets”, Knowledge-Based Systems, vol. 121, pp. 1–3, 2017.

196

Vita

Jorge Gonzalez Lopez received his BSc. in Computer Science in 2011 and his MSc. in

Computer Science in 2015, both from the Carlos III University of Madrid. As a full-

time graduate student at the Ph.D. program at the Virginia Commonwealth University,

his research is focused on distributed machine learning algorithms for large datasets and

multi-label learning.

Publications:

J. Gonzalez-Lopez, A. Cano and S. Ventura, “Large-Scale Multi-label Ensemble

Learning on Spark”, IEEE Trustcom/BigDataSE/ICESS Sydney, pp. 893–900, 2017.

J. Gonzalez-Lopez, S. Ventura and A. Cano, “Distributed nearest neighbor classification

for large-scale multi-label data on Spark”, Future Generation Computer Systems, vol. 87,

pp. 66–82, 2018.

J. Gonzalez-Lopez, S. Ventura and A. Cano, “ARFF data source library for distributed

single/multiple instance, single/multiple output learning on Apache Spark”, International

Conference on Computational Science, 2019.

J. Gonzalez-Lopez, S. Ventura and A. Cano, “Distributed selection of continuous

features in multi-label classification using mutual information”, IEEE Transactions on Neural

Networks and Learning Systems, under review, 2019.

J. Gonzalez-Lopez, S. Ventura and A. Cano, “Distributed multi-label feature selection

using individual mutual information measures”, IEEE Transactions on Knowledge and Data

Engineering, under review, 2019.

197

	Distributed multi-label learning on Apache Spark
	Downloaded from

	Table of Contents
	List of Tables
	List of Figures
	Abstract (English)
	Abstract (Spanish)
	Resumen
	 Introduction
	Contributions of the Thesis

	 Background
	Multi-label learning
	Formal definition and notation
	Threshold calibration
	Label correlations

	Learning algorithms
	Problem transformation methods
	Algorithm adaptation methods

	Evaluation metrics
	Example-based metrics
	Label-based metrics
	Multi-label data statistics

	Benchmark datasets
	Open source multi-label libraries

	Distributed systems
	Characteristics of distributed systems
	Categories of distributed systems
	Distributed computing
	MapReduce programming model
	Apache Hadoop
	Apache Spark

	 Architectures for parallel and distributed multi-label learning
	Proposed parallel and distributed architectures
	ARFF data source for Apache Spark
	Experimental setup
	Datasets

	Experimental results
	Evaluation of predictions
	Evaluation of computational performance

	Conclusions

	 Distributed multi-label k nearest neighbors
	Nearest Neighbors background
	Tree indexes
	Hashing indexes
	Graph indexes

	Distributed ML-KNN
	Train phase: computing prior and posterior probabilities
	Test phase: prediction of label set

	Distributed Nearest Neighbors methods
	Iterative Multi-label k Nearest Neighbors (ML-KNN-IT)
	Hybrid Tree Multi-label k Nearest Neighbors (ML-KNN-HT)
	Locally Sensitive Hashing Multi-label k Nearest Neighbors (ML-KNN-LSH)

	Experimental setup
	Datasets
	Methods and parameters
	Hardware and software environment

	Experimental study
	Prediction comparison: approximate versus exact
	Performance comparison: execution times for train and test phases
	Scalability analysis on the number of instances, features, and labels

	Conclusions

	 Distributed feature selection of multi-label data
	Multi-label feature selection background
	Problem transformation methods
	Algorithm adaptation methods

	Preliminaries
	Basic definitions
	Estimators
	Mutual information estimator between continuous features
	Mutual information estimator between continuous and discrete features

	Mutual information estimator for multi-label data
	Proposed methods
	Distributed implementation for continuous features on Apache Spark
	Distributed implementation for discrete features on Apache Spark

	Experimental setup
	Datasets
	Methods and parameters
	Evaluation metrics

	Experimental results for continuous features
	Synthetic datasets comparison
	Subset accuracy comparison
	Runtime comparison

	Experimental results for discrete features
	Synthetic datasets comparison
	Subset accuracy comparison
	Runtime comparison

	Conclusions

	 Conclusions
	 Future Work
	Bibliography
	Vita

