
Graph Analysis and
Applications in Clustering and
Content-based Image Retrieval

HONGLEI ZHANG

Tampere University Dissertations 101

Tampere University Dissertations 101

HONGLEI ZHANG

Graph Analysis and
Applications in Clustering and

Content-based Image Retrieval

ACADEMIC DISSERTATION
To be presented, with the permission of

the Faculty of Information Technology and Communication Sciences
of Tampere University,

for public discussion in the Auditorium S3
of the Sähkötalo building, Korkeakoulunkatu 3, Tampere,

on 9 August 2019, at 12 o’clock.

ACADEMIC DISSERTATION
Tampere University, Faculty of Information Technology and Communication Sciences
Finland

Responsible
supervisor
or/and Custos

Prof. Dr. Moncef Gabbouj
Tampere University
Finland

Supervisor Prof. Dr. Serkan Kiranyaz
Qatar University
Qatar

Pre-examiners Prof. Dr. Hichem Frigui
University of Louisville
USA

Prof. Dr. Amel Benazza-Benyahia
University of Carthage
Tunisia

Opponents Prof. Dr. Mikko Kivelä
Aalto University
Finland

The originality of this thesis has been checked using the Turnitin OriginalityCheck
service.

Copyright ©2019 author

Cover design: Roihu Inc.

ISBN 978-952-03-1183-4 (print)
ISBN 978-952-03-1184-1 (pdf)
ISSN 2489-9860 (print)
ISSN 2490-0028 (pdf)
http://urn.fi/URN:ISBN:978-952-03-1184-1

PunaMusta Oy – Yliopistopaino
Tampere 2019

i

ABSTRACT

About 300 years ago, when studying Seven Bridges of Königsberg
problem - a famous problem concerning paths on graphs - the great
mathematician Leonhard Euler said, “This question is very banal, but
seems to me worthy of attention”. Since then, graph theory and graph
analysis have not only become one of the most important branches
of mathematics, but have also found an enormous range of important
applications in many other areas. A graph is a mathematical model
that abstracts entities and the relationships between them as nodes
and edges. Many types of interactions between the entities can be
modeled by graphs, for example, social interactions between people,
the communications between the entities in computer networks and
relations between biological species. Although not appearing to be a
graph, many other types of data can be converted into graphs by cer-
tain operations, for example, the k-nearest neighborhood graph built
from pixels in an image.

Cluster structure is a common phenomenon in many real-world graphs,
for example, social networks. Finding the clusters in a large graph
is important to understand the underlying relationships between the
nodes. Graph clustering is a technique that partitions nodes into clus-
ters such that connections among nodes in a cluster are dense and
connections between nodes in different clusters are sparse. Various
approaches have been proposed to solve graph clustering problems. A
common approach is to optimize a predefined clustering metric using
different optimization methods. However, most of these optimization
problems are NP-hard due to the discrete set-up of the hard-clustering.
These optimization problems can be relaxed, and a sub-optimal solu-
tion can be found. A different approach is to apply data clustering
algorithms in solving graph clustering problems. With this approach,

ii

one must first find appropriate features for each node that represent
the local structure of the graph. Limited Random Walk algorithm
uses the random walk procedure to explore the graph and extracts ef-
ficient features for the nodes. It incorporates the embarrassing parallel
paradigm, thus, it can process large graph data efficiently using mod-
ern high-performance computing facilities. This thesis gives the details
of this algorithm and analyzes the stability issues of the algorithm.

Based on the study of the cluster structures in a graph, we define
the authenticity score of an edge as the difference between the actual
and the expected number of edges that connect the two groups of the
neighboring nodes of the two end nodes. Authenticity score can be
used in many important applications, such as graph clustering, outlier
detection, and graph data preprocessing. In particular, a data clus-
tering algorithm that uses the authenticity scores on mutual k-nearest
neighborhood graph achieves more reliable and superior performance
comparing to other popular algorithms. This thesis also theoretically
proves that this algorithm can asymptotically find the complete re-
covery of the ground truth of the graphs that were generated by a
stochastic r-block model.

Content-based image retrieval (CBIR) is an important application in
computer vision, media information retrieval, and data mining. Given
a query image, a CBIR system ranks the images in a large image
database by their “similarities” to the query image. However, because
of the ambiguities of the definition of the “similarity”, it is very diffi-
cult for a CBIR system to select the optimal feature set and ranking
algorithm to satisfy the purpose of the query. Graph technologies
have been used to improve the performance of CBIR systems in var-
ious ways. In this thesis, a novel method is proposed to construct a
visual-semantic graph—a graph where nodes represent semantic con-
cepts and edges represent visual associations between concepts. The

iii

constructed visual-semantic graph not only helps the user to locate
the target images quickly but also helps answer the questions related
to the query image. Experiments show that the efforts of locating
the target image are reduced by 25% with the help of visual-semantic
graphs.

Graph analysis will continue to play an important role in future data
analysis. In particular, the visual-semantic graph that captures impor-
tant and interesting visual associations between the concepts is worthy
of further attention.

iv

v

PREFACE

Firstly, I would like to express my deep gratitude to my supervisor
Prof. Dr. Moncef Gabbouj for his continuous support, his patience,
encouragement, and guidance along the years of my study. Prof. Gab-
bouj is not only a great supervisor but also a great person from whom
I have learned so much. I have enjoyed every single moment work-
ing with him. I would also like to thank Prof. Dr. Serkan Kiranyaz
for his valuable guidance, encouragement and inspiration during my
Ph.D. study.

My sincere thanks also give to the pre-examiners Prof. Dr. Amel
Benazza-Benyahia and Prof. Dr. Hichem Frigui for their careful re-
view of the draft of this thesis, the valuable comments, and insightful
suggestions.

I would especially like to thank my dear colleagues Dr. Stefan Uhlmann,
Dr. Jenni Raitoharju, Dr. Guanqun Cao, Dr. Kaveh Samiee, Dr.
Iftikhar Mohamed, Mr. Waris Adeel Mohamad, Dr. Ezgi Ozan, Mr.
Morteza Zabihi, Mr. Anton Murvev, Dr. Alexandros Iosifidis, Mr.
Dat Tranthanh, Ms. Lei Xu, and Mr. Mohammad Fathi Al-Sa’d for
great working atmosphere, generous help and excellent teamwork. I
would always remember the moment we spend together and the cher-
ished friendship you have given me. I would also like to thank other
colleagues who are working or had been working in the MUVIS team
for their great support and kind help.

I would also like to thank my beloved wife Dr. Jinghuan Wang and my
son Yuhao Zhang for their support and incent towards my goal. I’d
like to give special thanks to my father Shudong Zhang, my mother
Xiulan Dong, my brother Hongsheng Zhang and my sister Hongbo

vi

Zhang. They have helped me through my life and answered my re-
quests whenever I needed them.

Last but not least I would like to thank D2I and CVDI projects for giv-
ing financial support, CSC and TCSC for providing computing service
to complete my research work.

Tampere, July 2019

Honglei Zhang

vii

CONTENTS

Abstract . i

Preface . v

List of Symbols . ix

List of Abbreviations . xi

List of Publications . xiii

Author’s Contribution . xv

1. Introduction . 1

1.1 Brief history of graph theory 1

1.2 Introduction of graph analysis in machine learning . . 3

1.3 Objectives and thesis overview 7

2. Graph Theory . 11

2.1 Basic concepts and graph representations 11

2.2 Graph attributes and definitions 12

2.3 Metrics . 14

2.4 Random graph generation models 17

3. Graph Clustering and Graph-based Data Clustering 21

3.1 Graph clustering . 21

3.2 Evaluation of graph clustering algorithms 22

3.3 Graph clustering methods 29

viii

3.4 Random walk-based graph clustering 35

3.5 Graph-based data clustering 45

3.6 Summary . 59

4. Content-based Image Retrieval with Graph Techniques . . 63

4.1 Introduction to content-based image retrieval 63

4.2 Visual-semantic graph 70

4.3 Using visual-semantic graph in CBIR systems 81

4.4 Summary . 89

5. Conclusions . 93

Bibliography . 96

Publications . 123

ix

LIST OF SYMBOLS

|S| cardinality of set S

|x| absolute value of variable x

‖·‖1 L1 norm
∩ intersection of two sets
∪ union of two sets(
n
k

)
the number of k-combinations of a set of n elements

A adjacency matrix
A\B relative complement of set A in B

A (eij) authenticity score of edge eij

ab edge that connects nodes a and b

a, b, c, · · · nodes in a graph
D degree matrix
Dout out-degree matrix
di the degree of node ni

E the set of edges in a graph
E+ the set of edges that two ends nodes are in the same cluster
E− the complementary set of E+

E (·) the expected value of a random variable
eij edge that connects nodes i and j

G(V,E) graph G with the set of node V and the set of edge E

H (X) entropy of random variable X

H (X|Y) conditional entropy of random variable X given random variable
Y

H (X,Y) joint entropy of random variables X and Y

I(X,Y) mutual information of two random variables X and Y

Kc complement of set K

ka the degree of node a

L Laplacian matrix
Lsym normalized Laplacian matrix

x

ni node i

Na the neighboring nodes of node a

O (·) Big O notation indicates that a function is as the order of
another function

P transition matrix of a Markov process
V the set of nodes in a graph
x(t) a vector of variables at time t

x(∗) a fixed-point of variable x

π equilibrium state of a Markov process
∅ empty set

xi

LIST OF ABBREVIATIONS

APL Average Path Length
ARI Adjusted Rand Index
BRkNN Binary Relevance k-NN
CBIR Content-based Image Retrieval
CNN Convolutional Neural Network
DBSCAN Density-based Spatial Clustering of Applications with Noise
EBGM Elastic Bunch Graph Matching
gCBIR Graph-enhanced CBIR
GDL Graph Degree Linkage
GN Girvan Newman Algorithm
HPC High-performance Computing
ID Identification
IRD Inverse Relative Density
KNN k-Nearest Neighbor
LDA Linear Discriminant Analysis
LLE Local Linear Embedding
LRW Limited Random Walk
MCL Markov Cluster Algorithm
MCVS Microsoft Clickture-lite Visual Semantic
MIR Mean Inverse Rank
MIT Massachusetts Institute of Technology
MKNN Mutual k-Nearest Neighbor
MLkNN Multilabel k-NN
N-Cut Normalized Cut
NMI Normalized Mutual Information
PA Preference Attachment
PCA Principle Component Analysis
RI Rand Index

xii

RRW Repeated Random Walk

xiii

LIST OF PUBLICATIONS

[P1] Honglei Zhang, Jenni Raitoharju, Serkan Kiranyaz, and Moncef
Gabbouj. Limited random walk algorithm for big graph data
clustering. Journal of Big Data, 3(1):26, 2016.

[P2] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. Outlier
edge detection using random graph generation models and appli-
cations. Journal of Big Data, 4(1):11, April 2017.

[P3] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. A k-
nearest neighbor multilabel ranking algorithm with application
to content-based image retrieval. In 2017 IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP
2017 - Proceedings, pages 2587–2591. IEEE, 2017.

[P4] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. Data
Clustering Based on Community Structure in Mutual k-Nearest
Neighbor Graph. International Conference on Telecommunica-
tions and Signal Processing (TSP), 2018.

[P5] Honglei Zhang and Moncef Gabbouj. Feature Dimensionality
Reduction with Graph Embedding and Generalized Hamming
Distance. IEEE International Conference on Image Processing
(ICIP), 2018.

xiv OWN PUBLICATIONS

xv

AUTHOR’S CONTRIBUTION

Publication [P1] presents the Limited Random Walk (LRW) graph
clustering algorithm that achieves the state-of-the-art accuracy and
can be implemented in an embarrassing parallel paradigm. Honglei
Zhang conceived the idea, performed the implementation and compu-
tation, and wrote the first draft of the manuscript.

Publication [P2] studies the authenticity of the edges in a graph and
gives the definition of the authenticity score. It also shows various
applications that benefit from the analysis of the authenticity scores.
Honglei Zhang conceived the idea, developed the theorem and perform
the experiments. Honglei Zhang wrote the manuscript in consultation
with the co-authors.

Publication [P3] presents a multilabel ranking algorithm and its ap-
plication in content-based image retrieval. The proposed algorithm is
evaluated using a big image dataset and shows significant improve-
ment compared to the other instance-based multilabel ranking algo-
rithms. Honglei Zhang conceived the idea, perform the experiments
and drafted the manuscript.

Publication [P4] extends the idea of data clustering using authenticity
scores and presents a method to determine the number of clusters.
Honglei Zhang conceived the idea, performed the experiments and
drafted the manuscript.

Publication [P5] presents a dimensionality reduction method using
graph embedding and generalized Hamming distance. The method
uses information embedded in multilabel data and gives better per-
formance compared to other competing methods. Honglei Zhang con-
ceived the idea, perform the experiments and drafted the manuscript.

xvi

1

1. INTRODUCTION

1.1 Brief history of graph theory

The study of graph theory dated back to Leonhard Euler in the six-
teenth century when he studied the problem of the Seven Bridges of
Königsberg—finding a route by which one can visit every part of the
city and cross each of the seven bridges once and only once [1, 2].
Euler said [3]:

“This question is so banal, but seemed to me worthy of attention in
that [neither] geometry, nor algebra, nor even the art of counting was
sufficient to solve it.”

In the past hundreds of years, with the help of the great efforts by
mathematicians and scientists in many fields, graph theory has not
only become an important branch of mathematics but also a funda-
mental tool in areas such as physics, biology, social science, and infor-
mation technology [4, 5, 6, 7]. Besides the “Seven Bridges” problem,
many other famous problems and conjectures, including the four color
theorem [8] and traveling salesman problem [9], have greatly aroused
the interests of scientists in graph theories and made graph theory one
of the most active topics in mathematics [4, 5, 7]. One of the recent
and important advances in graph theory is the random graph model,
which is a combination of graph theory and probability theory [10].

A graph is a mathematical model that abstracts entities as vertices

2 1. Introduction

Figure 1.1 A sketch of the Seven Bridges of Königsberg by Euler (E53 of
MAA Eurler Archive [2])

(nodes) and their relations as edges (links). Graphs can be catego-
rized in many different ways, such as directed and undirected graph,
weighted and unweighted graph, finite and infinite graph [7]. Tree and
forest can also be considered as special types of graphs.

Because of the huge volumes of data in various applications that can
be modeled in a graph structure, graph analysis has become more and
more important in fields other than mathematics. For example, in
social science, the relationships between people form social networks
where each vertex represents a person and each edge indicates the
relationship between the two connected people [11, 12, 13]. Similarly,
a transport system can be modeled as a graph where the vertices are
the cities and the edges are the roads [14]. Even though the data
being analyzed are not explicitly organized as graphs, very often they
can be transformed, and the graph techniques can be used to analyze
the data. For example, a metabolic system is a very complex system
that is comprised of organs, hormones, and enzymes. This system can
be represented by a directed bipartite graph where the vertices are
reactions and the chemicals produced and/or consumed by reactions,
and the directed edges indicate whether a metabolite is a substrate

1.2. Introduction of graph analysis in machine learning 3

(input) or a product (output) of a reaction [7]. The Reactome pathway
knowledge base is a collection of relations between human proteins and
reactions. The relations have been modeled as graphs for the public to
discover information in gene expression pattern or somatic mutation
from tumor cells [15].

1.2 Introduction of graph analysis in machine learning

The combination of graph analysis and machine learning is essential
and beneficial since they both study the relations between given en-
tities. For many applications, especially when the data is in a graph
structure, it is sometimes difficult to separate the two methodologies.
For example, graph clustering in graph analysis and data clustering
in machine learning have a similar target. Techniques from one field
were thus used to solve problems in the other field. In many real-world
graphs, especially in social networks, the vertices form communities—
the links among the vertices inside a community are much denser than
the links connecting vertices in different communities [16]. Finding
these communities is important to understand the underlying rela-
tions among the vertices [P1, 17, 18, 19, 20, 21]. Graph clustering is
a technique to find communities in big networks. Fig. 1.2 shows
the graph of Zachary’s karate club, which was used in the earliest re-
searches in this subject [22]. Each vertex represents a member of the
club and the links indicate the members have interactions outside of
the club. The club split into two groups due to the conflicts between
the two administrators. The color of the vertices shows how the club
was split at that time. Many graph clustering algorithms have been
used to interpret and predict this split [P1, 18, 23]. Graph partition,
which is closely related to graph clustering, aims to partition a big
graph into smaller components of roughly equal sizes such that the
links between any two partitions are minimized. Graph partition is
crucial for processing and analyzing big graph data in a distributed

4 1. Introduction

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33
34

Figure 1.2 Graph of Zachary’s karate club [22]

system [24, 25, 26].

Data clustering is an important task use in many fields, such as ma-
chine learning, pattern recognition, information retrieval [27]. Various
methods that use graph clustering techniques have been proposed to
solve the problem [28, 29, 30, 31]. Given the data samples, these al-
gorithms first construct a k-nearest neighbor graph (KNN) or mutual
k-nearest neighbor graph (MKNN). Then graph clustering techniques
can be applied to find the clusters in the constructed graph. In [P2],
Zhang et al. proposed an approach to split the graph into compo-
nents by iteratively removing the edges according to their authenticity
scores. The number of clusters can be determined by analyzing the
sizes or the properties of the components that are formed during the
collapsing process.

Graph analysis has also found further use in an important machine
learning problem, namely the embedding method for dimensionality
reduction. Yan et al. unified different dimensionality reduction meth-
ods, including Principle Component Analysis (PCA), Linear Discrim-

1.2. Introduction of graph analysis in machine learning 5

inant Analysis (LDA), Local Linear Embedding (LLE) and IsoMap,
within a common framework called graph embedding [32]. An intrin-
sic graph and a penalty graph are constructed from the data samples.
The objective of the algorithms is to find lower dimension represen-
tations of the data samples that preserve the relationships of the ver-
tices in the intrinsic graph and the penalty graph. This framework
has inspired many researchers to develop new dimensionality reduc-
tion algorithms [33, 34, 35]. For example, Zhang et al. constructed an
intrinsic graph using generalized Hamming distance as the weights to
model the similarity of the labels in multi-label data analysis [P5].

Social networks are important graph structure because of their broad
and important applications [36, 37, 38]. One of the most important
applications is to find the strategy that maximizes the influence of
an idea through social networks [39, 40]. Since a decision made by
an individual is frequently affected by people connected to him/her,
the effectiveness of propagating an idea through the social network is
greatly affected by the strategy of selecting the target individuals. In-
creasing the acceptance of those influential people may lead to faster
and broader acceptance through the whole society. A related topic is
to slow down or stop the propagation of a virus through a network,
for example, an infectious disease among social networks or computer
virus through computer networks [41, 42]. Node centrality [7] and
other measurements [39, 40] have been used to evaluate the influential
power of each individual. PageRank is a measurement that evaluates
the importance of a web page according to its relations to other web
pages in the web graph—a graph whose nodes are web pages and edges
are the hyperlinks between the pages [43]. Ranking entities according
to certain criteria is what learning to rank, another important ap-
plication in machine learning [44], deals with. PageRank and other
graph-based features have proved to be effective for this application
[45].

6 1. Introduction

Graph techniques have also been extensively used in computer vision
tasks [46]. Wiskott et al. developed an elastic bunch graph match-
ing (EBGM) algorithm to recognize human faces [47]. First, feature
vectors of fiducial points (eyes, mouth, etc) are extracted using Gabor
filters. Then the bunch graph is constructed from these fiducial points
and a face is recognized using a similarity function that combines the
similarity of the fiducial points and the distortion of the image grid
in the graph. Dealing with the image segmentation problem, Boykov
et al. used graph cuts to minimize the energy function defined for a
segmentation, where the graph is constructed from the pixel lattice of
an image with the addition of two terminal nodes [48]. To estimate
human pose in an image that contains multiple people, Cao et. al. ap-
plied graph matching technique for part association [49]. Zhang and
Shah modeled the human parts by a relational graph and a hypothe-
sis graph and used a tree-based optimization method to estimate the
human pose from a sequence of the frames in a video [50].

Content-based image retrieval (CBIR) system helps users to efficiently
retrieve information from a large image dataset based on the content of
query images [51, 52]. It is another important application in machine
learning and computer vision [53]. Graph techniques have also shown
great importance in CBIR systems. Cai et. al. constructed image
graph based on the hyperlinks between the web pages on the Internet
and proposed to represent an image by its visual feature, textual fea-
ture and graph-based feature [54]. Using these three representations,
images retrieved from a search engine can be clustered into semantic
clusters and presented to the users for better clarity, simplicity, and
consistency. Graph-ranking model, for example, the aforementioned
PageRank, decides the importance of a vertex according to the graph
structure [55]. Xu developed a graph-based ranking model called Effi-
cient Manifold Ranking that can efficiently construct the image graph
and compute the ranking scores for a CBIR system [56].

1.2. Introduction of graph analysis in machine learning 7

Deep neural networks have undoubtedly gained the most attention in
the area of machine learning for the last couple of years [57, 58]. An
artificial neural network can be modeled by a directed graph where
each node represent an artificial neuron and each edge indicates the
connection from the output of a neuron to the input of another neu-
ron [59]. Graph-based methods are used to study linearly separable
Boolean functions, which an important problem in the research of neu-
ral networks [60, 61]. Another important combination of graph theory
and neural networks is to apply neural networks, in particular, con-
volutional neural networks, on the data that are represented in graph
structures. Kipf and Welling proposed a graph-based semi-supervised
classification method to classify the node in a graph where only a small
subset of nodes are annotated [62]. To execute convolution operations
on a graph, Niepert et. al. construct a node sequence via a graph la-
beling procedure and a graph normalization that imposes an order of
the neighborhood graph [63]. The proposed method can be used in the
graph classification problem where each graph structure is assigned to
a label. Zhang et. al. applied an evolutionary method to find efficient
graph structures of deep convolutional networks for image classifica-
tion problems. The top-performing graph structures found during the
evolution show some properties of the graph structure that greatly
affect the performance of a deep convolutional neural network (CNN)
[64].

The combination of graph-based techniques and machine learning is
far beyond what has been discussed above. Graph theory has gained
great attention from the researchers in machine learning and becomes
a fundamental mathematical tool in this field.

8 1. Introduction

1.3 Objectives and thesis overview

During the last decades, with the rapid development of the Internet
and computer technologies, the size of data to be processed has in-
creased dramatically. For example, a visual-semantic graph build for
a CBIR application may contain millions of nodes and tens of millions
of edges. New algorithms are required to tackle the difficulties caused
by the large graph data to efficiently use graph techniques in different
applications.

The objectives of this thesis are to develop a novel mathematical for-
mulation for graph clustering, graph analytics, and graph-based data
clustering for large graph data and use these formulations to improve
graph-based CBIR system’s efficiency compared to traditional CBIR
approaches. The main research questions the thesis aims to answer
are: what new insights graph-based approaches can provide us when
dealing with large-scale datasets when the latter are represented by
graphs? how can graph analytics solve image content-based indexing
and retrieval in large-scale databases?

The 5 publications included in this thesis answer these research ques-
tions from different directions. Publication [P1] answers the research
questions by presenting an efficient graph clustering algorithm, named
the Limited Random Walk algorithm, for large graph data that achieves
the state-of-the-art accuracy and can be implemented in an embarrass-
ing parallel manner. Publication [P2] studies the authenticity of edges
in a graph and shows various applications that benefit from this anal-
ysis, in particular when dealing with large-scale graphs. Publication
[P4] extends the idea of [P2] and presents a method to cluster data
using graph techniques. Publication [P3] and [P5] answer the research
question by presenting a multilabel ranking algorithm and a dimen-
sionality reduction method that are based on graph techniques and
serve as critical enablers for content-based image retrieval in large-

1.3. Objectives and thesis overview 9

scale databases.

The rest of the thesis is organized as follows:

Chapter 2 gives a brief introduction of some basic concepts and defini-
tions used in graph theory. Some attributes and properties for nodes
and edges are also described in this chapter. Metrics that evaluate
density, centrality, and authenticity are discussed. The last section
of this chapter describes some important random graph generation
models that are used in the remaining chapters.

Chapter 3 describes some important algorithms for graph clustering
and graph-based data clustering problems. It first explains differ-
ent types of graph clustering problems and some metrics to evaluate,
either externally or internally, the performance of graph clustering
algorithms. Then an overview of spectral graph clustering, fitness
function optimization, data-based, and model-based clustering tech-
niques are given. This chapter gives a detailed explanation of random
walk-based clustering algorithms. The stability and complexity of the
limited random walk algorithm are discussed. Next, the data cluster-
ing algorithms that use graph analysis techniques are described. This
chapter also gives a detailed discussion about the data clustering algo-
rithm that is based on the authenticity scores of the edges in a mutual
k-nearest neighbor graph. The sufficient condition that guarantees the
complete recovery of the ground truth is proved.

Chapter 4 discusses the benefits of using graph techniques in the area
of CBIR. It first describes some challenges that a general CBIR system
faces, for example, the difficulty of annotating a large dataset, and the
ambiguity of the intention of a query. Then the system architecture of
a CBIR system is briefly described. To capture the visual relations of
semantic concepts, this chapter shows a method to construct a visual-
semantic graph from a large database of clickture data. Later, a graph-

10 1. Introduction

enhanced CBIR (gCBIR) system is described and the performance is
compared to the tradition CBIR systems.

Finally, the conclusion of the thesis and the expected directions of
future research about graph and data clustering, as well as gCBIR
systems are discussed in Chapter 5.

11

2. GRAPH THEORY

2.1 Basic concepts and graph representations

A graph is a data structure that represents the relationship between
objects. Let G(V,E) be a graph, where V is the set of nodes and E

is the set of edges. Let ni ∈ V be the a node and eij ∈ E be the edge
that connects nodes ni and nj , where i, j = 1, 2, · · · , N . For simplicity,
we also use italic letters to denote nodes and an overline above two
italic letters to denote the edge that connects the two end nodes. For
example, a represents node a and ab is the edge that connects nodes
a and b. Note that parallel edges—edges that have the same end
nodes—are not allowed in our definition.

Depending on the data, graphs can be categorized in different ways. If
each edge is associated with a weight, the graph is a weighted graph.
The weights can be either integer or real numbers. If each edge is
associated with a direction, the graph is a directed graph. A bipar-
tite graph is a graph that contains two disconnected sets of nodes. For
example, the relationship between customers and products can be rep-
resented by a bipartite graph that contains the nodes of customers and
the nodes of products. An edge links a customer node and a product
node if the customer purchased the product. Trees and forests can also
be considered a type of graph—a graph without cycles. A hypergraph
is a generalization of the graph, where an edge may link two sets of
nodes. Unless otherwise stated, a graph refers to an undirected and

12 2. Graph Theory

unweighted graph in this thesis.

A graph is normally represented by its adjacency matrix. The columns
and the rows represent the nodes in a graph. The elements in the
adjacency matrix indicate whether the two nodes are connected by an
edge. For a weighted graph, the value of the elements indicate the
weights of the edges. Other than the adjacency matrix, edge list (or
adjacency list) is also used to represent a graph. Each row in an edge
list is a pair of nodes that are connected by an edge. For a weighted
graph, the weights of the edges are shown in the third column. Fig.
2.1 shows a graph, the adjacency matrix representation, and the edge
list representation. The adjacency matrix is used in graph analysis
because of the mathematical advances in matrix analysis. While the
edge list is more suitable for storage for its compact form.

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 1 0
1 0 1 0 0 0
1 1 0 1 0 1
0 0 1 0 0 1
1 0 0 0 0 1
0 0 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

1 2
1 3
1 5
2 3
3 4
3 6
4 6
5 6

(a) (b) (c)

Figure 2.1 A unidrected graph (a), its adjacency matrix (b) and edge list
(c) representations

2.2 Graph attributes and definitions

In this section, some basic definitions and attributes that are used in
this thesis are explained.

The degree of a node is defined as the number of edges that are con-
nected to the node. Given the adjacency matrix A, the degree of node

2.2. Graph attributes and definitions 13

ni can be calculated by

di =

N∑
j=1

Aij . (2.1)

For a directed graph, in-degree and out-degree are defined as the num-
ber of edges that point to the node or leave from the node. Eq. 2.1 can
be generalized to define the weighted degree of a node in a weighted
graph. Weighted in-degree and weighted out-degree can be defined in
a similar way.

Walk, trial and path are useful terms when studying the movement of
an agent or the distance between the nodes in a graph. A walk is a
sequence of nodes where the adjacent nodes in the sequence must be
connected by an edge. A walk can be considered as the record of the
visited nodes and edges when an agent travels on the graph. A trial
is a walk without duplicate edges. A path is a trial without duplicate
nodes. The length of a path is the number of edges in a path. The
distance of two nodes is defined as the length of the shortest path that
connects the two nodes.

A connected graph is a graph that any pair of nodes in the graph is
connected by at least one path. A subgraph of graph G (V,E) is a
graph in which the set of nodes and the set of edges are subsets of
V and E respectively. An induced graph of G (V,E) is a subgraph
of G (V,E) that contain all the edges in E that link the nodes in the
induced graph. A component of graph G (V,E) is a connected induced
graph of G (V,E), and there is no edge in E that connects a node in
the component to a node that is not in the component. The concept
of the component is mainly used to analyze a disconnected graph since
a connected graph has one component, which is the graph itself.

Ego-graph of a node is the induced graph that contains the node and

14 2. Graph Theory

its neighboring nodes. Edge-ego-graph is the induced graph of the two
end nodes of an edge and all the neighboring nodes of these two end
nodes.

The Laplacian matrix of graph G is defined as

L = D −A, (2.2)

where D is the degree matrix which is a diagonal matrix and the
diagonal elements of this matrix are the degrees of the nodes as defined
in Eq. 2.1, and A is the adjacency matrix. Laplacian matrix is a
representation of a graph that has been extensively used in graph
analysis, especially spectral graph theory and graph clustering [65].

2.3 Metrics

A number of attributes and metrics have been defined to describe or
evaluate the properties of a graph.

The density of a graph is defined as

density (G) =
|E|

|V | (|V | − 1)
. (2.3)

The diameter of a graph is the longest distance of any pair of nodes
in a graph. Note that the diameter of a disconnected graph can be
undefined or defined as infinite.

The connectivity of a graph determines the efficiency of information
diffusion on a graph. The algebraic connectivity of a graph is defined as
the second smallest eigenvalue of its Laplacian matrix, whose smallest
eigenvalue being zero [66]. The larger the algebraic connectivity is,
the better a graph is connected. If the graph is not connected, the

2.3. Metrics 15

value of its algebraic connectivity is zero.

Clustering or community structure is a very common phenomenon
in social networks [16, 67, 68]. As often seen in daily life, a group
of closely related people is likely to be mutual friends. Similarly, for
many types of graphs, the connections among the nodes in a cluster are
much denser than the connections between nodes in different clusters.

When the role of a node is studied, its centrality is an important prop-
erty [69]. A node with a larger centrality value plays a more important
role when information flows on the graph. A simple measurement of
the node centrality is to use its degree. However, a node with a large
degree value is not necessarily a critical node. For example, node 7

in graph (a) in Fig. 2.2 has a low degree, but all information flows
between the left and right side of the graph has to pass through it. For
this reason, other centrality metrics have been introduced. Closeness
centrality is defined as the average shortest path length of a node to
other nodes in the graph. Betweenness centrality of a node is defined
as the number of times that the shortest path of any pair of nodes
passes through the node. Another important measurement is PageR-
ank centrality. PageRank centrality of a node in a directed graph is
defined as

xi = α
∑

j∈N in(i)

Aij
xj
koutj

+
1− α

N
, (2.4)

where xi and xj are the PageRank value of nodes i and j, respectively,N in(i)

is the set of nodes that connect to node i by a outgoing edge, koutj is
the out-degree of node j, N is the number of nodes, and α is a damp-
ing factor that controls the scope of neighboring nodes that contribute
to the PageRank value. Eq. 2.4 has the analytical solution as follows:

x = Dout
(
Dout − αA

)−1 · 1, (2.5)

16 2. Graph Theory

where x = [x1, x2, · · · , xN]T is the vector of PageRank values of each
node, Dout is a diagonal matrix of out-degrees. If the graph is an
undirected graph and the damping factor α is set to 1, the PageRank
measurement is simply the degree centrality [7].

Fig. 2.2 shows a graph and the centrality measurement of some nodes.
Notice that the PageRank centrality is roughly proportional of the
degree centrality on an undirected graph [70].

(a)

node 1 3 7 11
degree 4 4 2 1

closeness 0.0435 0.0526 0.0500 0.0312
betweenness 0.273 0.491 0.418 0.000
PageRank 10.7 10.4 5.61 3.40

(b)

Figure 2.2 A graph and the centrality measurements of some nodes. The
PageRank values are calculated with a damping factor α = 0.85.

The centrality of the nodes is another important property that has
been extensively studied. However, there have been very limited stud-
ies on the centrality or other measurements for edges [71]. Some cen-
trality measurements for nodes can be applied to edges. For example,
the betweenness centrality of an edge is defined in the same way as
the betweenness centrality of nodes. Meo et. al. [72] defined k-path

2.4. Random graph generation models 17

centrality for node as

Ck(ni) =
∑
s∈V

σk
s (ni)

σk
s

, (2.6)

where σk
s (ni) is the number of k-paths (a path of length k) originating

from node s and passing through node ni, and σk
s is the total number

of k-paths originating from node s. k-path centrality of an edge is
defined by replacing the node with an edge in the previous definition.
Corresponding to the degree centrality of a node, the degree product
of an edge—the product of the degrees of the two end nodes of the
edge—is used as a centrality measurement for edges.

Authenticity measures whether an edge follows the clustering proper-
ties in a graph or not. Zhang et. al. [P2] defined the authenticity
score as

aeij = meij − eeij , (2.7)

where meij is the actual number of edges that connect the two groups
of the neighboring nodes of the two end nodes of edge eij , and eeij
is the expected number of edges between these two groups of nodes.
Edge authenticity can be used for graph clustering, outlier detection,
and graph data preprocessing [P2, P4].

2.4 Random graph generation models

Random graph generation model has been an important research topic
for the last several decades [73]. Numerous models have been proposed
to generate graphs by stochastic processes to simulate or mimic real-
world graphs. The most important aspect of a good random graph
generation model is that the generated graphs show similar properties
as those real-world graphs. This section will not give a thorough review
of these models. Instead, we will only discuss some graph generation

18 2. Graph Theory

models that have a huge impact on the research in this field and the
models that are used in other sections of this thesis.

Erdős–Rényi model is the first random graph generation model and
the most well-studied one [10]. A commonly used Erdős–Rényi model
is G(n, p) model where a graph of n nodes is generated by randomly
connecting two nodes by an edge with probability p. Many impor-
tant properties have been found about the graphs generated by the
Erdős–Rényi model. For example, ln(n)

n is the sharp threshold of the
connectedness of graph G(n, p). If p > ln(n)

n , G(n, p) is almost sure
to be connected. Otherwise, it is almost surely to be disconnected.
However, random graphs generated by the Erdős–Rényi model lack
many important properties that a real-world graph has. One signifi-
cant shortcoming is that the generated graphs do not show clustering
structure. Another important defect is that the degree distribution of
the nodes is binomial, whereas the degree distribution of real-world
graphs often follows the power law [74]. To overcome these short-
comings, many other random graph generation models have been pro-
posed.

Preferential attachment, also named as “the rich get richer” or “cumu-
lative advantage”, is a principle that an entity gets more of a certain
asset if it has already possessed more of this asset. Barabási and Al-
bert applied this principle to the random graph growth process in their
model [75, 76]. The generation process starts from a single node and
the nodes are added one by one. Every time a node is added, the
probability that the new node is connected to node ni is proportional
to the degree of node ni. The degree distribution of the graph gener-
ated by the Barabási–Albert model follows the power law in the form
of p(k) = k−3. The Barabási–Albert model is a very simple process
that whenever a node is added to the graph, edges can only be added
to connect the newly added node. Also, whenever an edge is added,

2.4. Random graph generation models 19

it can not be removed from the graph anymore. This is obviously
not the case in many real-world graphs such as social network or web
page graphs. Many extensions have been proposed to address these
limitations [77, 78].

Small-world is another interesting property that many real-world graphs
have [38, 79]. Small-world means that the average distance between
any pair of nodes in a graph is limited by a small number. It is also
known as “six degrees of separation” for social networks. A small-world
graph is a graph where the average path length (APL) of any pair of
nodes is proportional to log(N). APL of a graph generated by the
Erdős–Rényi model follows APLER ∝ log(N)

log(k) , where k is the average
number degree. APL of a graph generated by the Barabási–Albert
model follows APLBA ∝ log(N)

log log(N) [79, 80, 81]. Watts and Strogatz
proposed a model that generate graphs with not only the small-world
property but also a constant clustering coefficient. With the Watts-
Strogatz model, a ring type of lattice graph is first constructed. Then
a process, similar to the Erdős–Rényi model, is applied to randomly
rewire the edges with a certain probability.

Stochastic block model aims at generating graphs with another im-
portant property of real-world graphs: clustering. With this model,
nodes are first divided into r groups. Then a r× r probability matrix
P is defined such that the element Pij defines the probability of an
edge is generated to connect nodes between group i and j. This model
can be viewed as a generalization of the Erdős–Rényi model where all
elements in matrix P are identical.

Fig. 2.3 shows the samples of random graphs generated by different
random graph generation models.

20 2. Graph Theory

(a) Erdős–Rényi model (b) Barabási–Albert model

(c) Watts-Strogatz model (d) Stochastic block model

Figure 2.3 Random graphs generated by different generation models

21

3. GRAPH CLUSTERING AND
GRAPH-BASED DATA CLUSTERING

3.1 Graph clustering

Most graph data, especially graphs of social networks, are heterogeneous—
the graph contains communities such that the density of edges in a
community is much higher than the overall density of the whole graph
[12, 18, 82, 83, 84]. Finding these communities is not only important to
understand the underlying relationship between nodes, but also ben-
eficial to computation and storage. Graph clustering is a technique
to organize nodes into clusters such that the densely connected nodes
are assigned to the same cluster and the connections between different
clusters are sparse.

Graph clustering is a general term for many related techniques. Graph
partition is a technique that divides nodes into a number of compo-
nents such that the components are balanced—each component con-
tains roughly the same number of nodes [24, 85, 86]. Graph partition
becomes important in a distributed system when the graph data is too
big to fit into the resource of a single computing unit. In this situa-
tion, the big graph data will be partitioned into a certain number of
components and each component is processed separately by a single
unit. To minimize the communication cost between different units,
the links between the components must be minimized [87, 88].

22 3. Graph Clustering and Graph-based Data Clustering

If each node belongs to only one cluster, this type of clustering is
called hard clustering. There are also situations when one node may
belong to more than one cluster, this clustering technique is called soft
clustering (also referred to as fuzzy clustering) [89]. Graph partition
is normally hard clustering. Sometimes, some nodes may not belong
to any cluster, this technique is called graph clustering with outlier
detection. The nodes that are not associated with any cluster are
recognized as outliers. Within the scope of this thesis, we only discuss
the techniques related to hard clustering.

In many applications, it is not necessary to cluster the whole graph, or
it is impractical to cluster the whole graph due to its size. Instead, we
may be only interested in finding the cluster that contains a certain
node. This technique is called local graph clustering (or community
detection in some literature) [90, 91, 92, 93, 94].

The next section will discuss how to evaluate the performance of graph
clustering algorithms and later show how the techniques are used in
graph clustering.

3.2 Evaluation of graph clustering algorithms

It is a challenging task to evaluate the performance of different graph
clustering algorithms [95, 96, 97]. The definition of the cluster struc-
ture in a graph is heuristic and many different mathematical models
have been developed and applied. Depending on the actual appli-
cation, one has to choose suitable models that match the expected
cluster structure. We can use two types of methods to evaluate graph
clustering algorithms depending on whether or not the ground truth
data is available: external evaluation and internal evaluation.

3.2. Evaluation of graph clustering algorithms 23

3.2.1 External evaluation

For some applications, clusters in the graph may be known from other
sources [98]. For example, the graph structure of a synthetic graph is
known if the graph is generated by a predefined clustering generation
model, such as a stochastic block model (see Section 2.4) or caveman
graph model [99]. For a real-world graph, the graph structure may
be annotated by human experts or the structure is revealed by other
hints. For example, it is well known that the clustering structure
of Zachary’s karate club graph (as described in Section 1.2) is the
same as how the club was split. The social network service website
Facebook encourages its users to organize their friends into “circles”.
Ego-Facebook is the graph data that were collected from the circles
of 10 Facebook end users. The 10 clusters as the data were collected
are used as the ground truth of this graph data. Fig 3.1 shows the
ground truth of ego-Facebook graph.

When the ground truth data is available, clustering results can be
evaluated using external evaluation methods. The external evaluation
compares the partition of the nodes given by the clustering algorithms
to the partition in the ground truth. Let X = {X1, X2, · · · , Xr} be
the partition of the nodes given by a clustering algorithm, where Xi is
the set of the nodes in cluster i, and r is the number of clusters. Each
node ni ∈ G(V,E) belongs to one of the partitions in X. Similarly,
let Y = {Y1, Y2, · · · , Ys} be the partition of the nodes in the ground
truth and s is the number of clusters. The performance of a graph
clustering algorithm can be evaluated by the following metrics.

• Rand index

Rand index uses pairs of nodes to evaluate partition X and
the ground truth Y [100]. For every pair of nodes in V , if

24 3. Graph Clustering and Graph-based Data Clustering

1

2

3

4

5

6

7

8
910

11 12

13

14

15

1617

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32 33

34

35

36

37

38
39

40

41

42

43

44

45

46

47

48

49

50

51 52
53

54

55

56

57

58

59

60

61
62

63

64

65

6667

68

69

70

71
72

73

74

75

76 77

78

79

80

81

8283
848586

87

88

89

90

91

92

93

94

95

96

97

98
99

100

101

102

103

104
105

106
107

108

109

110
111

112

113

114

115

116117

118
119

120 121
122

123

124
125

126

127

128

129 130

131

132

133

134
135

136

137

138

139

140

141

142
143

144

145 146

147

148

149

150

151

152

153
154

155 156

157

158

159

160

161162

163

164

165

166

167

168169170
171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200 201
202

203

204

205

206
207

208209

210

211

212

213

214
215

216
217

218

219

220

221

222

223

224 225

226

227

228

229
230

231
232

233

234

235

236237

238239

240

241

242

243

244

245 246

247

248

249

250

251

252

253
254

255

256

257

258

259
260

261

262

263

264

265

266

267

268
269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293
294

295

296

297

298

299

300

301

302

303

304
305

306

307

308
309

310

311

312

313

314

315

316

317

318

319
320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340 341

342343

344

345

346

347

348

349350

351

352

353

354

355 356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420
421

422

423

424

425

426

427

428
429

430

431

432

433434

435

436

437

438

439

440

441

442

443

444

445446

447

448

449
450

451

452

453

454

455

456

457

458

459

460

461 462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480
481

482

483

484

485

486

487

488

489

490

491
492

493

494

495

496

497
498

499

500

501

502

503

504

505

506

507508
509

510

511

512

513

514
515516

517
518519

520

521
522

523

524

525

526

527

528

529

530

531

532

533

534
535

536

537
538

539

540

541

542

543

544

545
546

547

548

549

550

551

552

553

554

555

556

557

558
559

560561 562

563

564

565

566

567568

569

570

571

572

573

574

575

576

577

578
579

580

581

582

583584

585

586

587
588

589
590

591

592

593

594

595

596

597

598599

600601

602

603

604

605

606

607

608

609

610

611

612
613

614

615

616

617

618
619

620

621
622

623

624

625

626

627
628

629

630

631

632

633
634

635

636

637

638

639

640

641

642

643

644
645

646
647

648

649

650

651

652

653

654
655

656

657

658

659
660

661

662663

664

665

666
667

668669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695
696

697

698

699

700

701

702

703

704

705

706707

708

709

710711

712

713

714

715

716

717

718

719
720

721

722

723 724

725

726

727

728
729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755 756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790
791792

793

794795
796

797

798

799

800
801

802

803

804

805

806

807

808

809

810
811

812

813

814

815816

817

818

819

820

821

822

823

824

825

826

827

828

829
830 831

832

833
834

835

836

837

838 839

840

841

842

843

844

845
846

847

848

849

850

851
852

853

854

855

856

857

858

859

860

861

862

863

864865

866

867

868

869

870

871

872
873874875

876

877

878

879

880

881

882

883

884

885

886

887

888

889
890

891

892

893

894

895
896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965 966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983 984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

10111012
1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052
1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125
1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

11891190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

12181219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264 1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282 1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315 1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

13521353

1354

1355
1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442
1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

14731474

1475

1476

1477
1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490
1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539
1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571 1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

16531654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

16951696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873 1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897
1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934
1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

19581959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

19731974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012
2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056
2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

21262127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140
2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168
2169

2170

2171

2172

2173

2174
2175

2176
2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

22472248
2249

2250

2251
2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308
2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

23212322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333 2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365
2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403
2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416
2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480
2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513
2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

25512552

2553
2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

25762577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588 2589

2590

2591

2592

2593

2594

2595

25962597

2598

2599

2600

2601

2602
2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

26482649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772
2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784
2785

2786

2787

2788

2789

2790

2791
2792

2793

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825
2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841 2842

2843

2844

28452846

2847

2848

2849
2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867
2868

2869

2870

2871

2872

2873

2874
2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895
2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

29062907

2908

2909

2910
2911

2912

2913

2914

2915

2916

2917

2918

2919

29202921

2922

2923

2924

2925

2926

2927

2928
2929

2930

2931

2932

2933

2934

2935

2936

2937

2938 2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

29502951

2952

2953

2954

2955
2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

29942995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016
3017

3018

3019
3020

3021

3022

3023
3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

30353036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101
3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177
3178

3179

3180

31813182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210 3211

3212

3213

3214

3215

3216 3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264
3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292
3293

3294 3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307
3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322 3323
3324

3325

3326

3327

3328

3329

3330
3331

3332

3333

3334

3335

3336

33373338

3339

3340

3341

3342
3343

3344

3345 3346

3347

3348

3349

33503351
3352

33533354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369
3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381
3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

3431

3432

3433

3434

3435

3436 3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

34493450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494
3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507
3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574
3575

3576

35773578 3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

36473648
3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

36763677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

36933694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

37093710

3711

3712

3713

3714

3715

3716

3717

3718

3719
3720

3721

3722

3723

3724

3725

3726

3727

3728

3729

3730

3731
3732

3733

3734

3735

3736

3737

3738

3739

3740

3741

3742

3743

3744

3745

3746

3747

3748

3749

3750

3751

3752

3753

3754

3755

3756

3757

3758
37593760

3761

3762

3763

3764

3765

3766

3767

3768
3769

3770

3771

3772

3773

3774

3775

3776

3777

3778

3779

3780

3781

3782

3783

3784

3785

3786

3787

3788

3789

3790

3791

3792

3793

3794

3795

3796

3797

3798

3799

3800

3801

3802

3803

3804

3805

3806

3807

3808

3809

3810

3811

3812

3813

3814

3815

3816

3817

3818

3819

3820

3821

3822

3823

3824

3825

3826

3827

3828

3829

3830

3831
3832

3833

3834

3835

3836

3837
3838

3839

3840

3841

38423843

3844

3845

3846

3847

3848

3849

3850

3851

3852

3853

3854

3855

3856
3857

3858

3859

3860

3861

3862

3863

3864

3865

3866

3867

3868

3869

3870

3871

3872

3873

3874

3875

3876

3877

3878

3879
3880

3881

3882

3883

3884

3885

3886

3887

3888

3889

3890

3891

3892

3893

3894

3895

3896

3897

3898

3899

3900

3901

3902

3903

3904

3905

3906

3907

3908

3909

3910
3911

3912

3913

3914

3915
3916

3917

3918

3919

3920

3921

3922

3923

3924

3925

3926

3927

3928

3929

3930

3931

3932

3933

3934

3935

3936

3937
3938

3939

3940

3941

3942

3943

3944

3945

3946

3947

3948

3949

3950

3951

3952
3953

3954

3955

3956

3957

3958

3959

3960

3961

3962

3963

3964

3965

3966

3967

3968

3969

3970

3971

3972

3973

3974

3975

3976

3977

3978

3979

3980

3981
3982

3983

3984

3985

39863987

3988

39893990

3991

3992
3993

3994 39953996

3997

3998
3999

4000

4001

4002

4003 4004

4005

40064007

4008

4009

4010

4011

4012

4013

4014 4015

4016
4017

4018
40194020

4021 4022

4023

4024

4025

4026

4027

4028

4029

4030

40314032

4033

40344035
4036

4037

4038

4039

Figure 3.1 Ground truth of the ego-facebook graph data

3.2. Evaluation of graph clustering algorithms 25

the assignment of the two nodes agrees in X and Y (for ex-
ample they are both in the same cluster in X and Y , or they
are separated in different clusters both in Xand Y) , the pair
is marked as a correct assignment. If the assignment does not
agree (for example, they are in the same cluster in X, but sep-
arated in Y), the pair is marked an incorrect assignment. Rand
index is defined as the percentage of correctly assigned pairs.
Let C(X) = {(ni, nj) |ni ∈ Xk, nj ∈ Xk k ≤ r} be the set of
node pairs that are assigned in the same cluster of partition
X. Let D(X) {(ni, nj) |ni ∈ Xk, nj ∈ Xl, k 	= l, k ≤ r, l ≤ r}
be the set of node pairs that the two nodes are assigned in dif-
ferent clusters in partition X. Rand index is defined as

RI =
|C(X) ∩ C(Y)|+ |D(X) ∩D(Y)|(

N
2

) , (3.1)

where N is the number of nodes.

• Adjusted Rand index

One drawback of the Rand index is that a randomly partitioned
result may yield a high Rand index score because of the large
value of the disagreed pairs [100, 101]. To avoid this problem,
the adjusted Rand index is normally used. Adjusted Rand index
is defined as

ARI =
RI − E(RI)

max(RI)− E(RI)
, (3.2)

where E(RI) is the expected Rand index value of a random par-
tition and max(RI) is the maximum Rand Index value. Adjusted
Rand index has a value close to zero for random partitions.

• Normalized mutual information

Mutual information [102] is a concept that is used in probability
theory to measure the dependency of two random variables. By

26 3. Graph Clustering and Graph-based Data Clustering

the definition of mutual information, it can be written as

I(X,Y) = H(X)−H(X|Y)

= H(Y)−H(Y |X)

= H(X) +H(Y)−H(X,Y)

, (3.3)

where I(X,Y) is the mutual information of random variables
X and Y , H(·) is the marginal entropy of a random variable,
H(X|Y) is the conditional entropy of random variable X given
random variable Y , and H(X,Y) is the joint entropy of the
two random variables X and Y . Mutual information gives a
value of how much extra information is required to encode a
random variable by knowing another random variable. The value
of mutual information is between zero and H(X) or H(Y).

The normalized mutual information (NMI) is defined as

R =
I(X,Y)

H(X) +H(Y)
. (3.4)

NMI is commonly used as a measure for the performance of data
clustering [103, 104] and graph clustering algorithms [P1, P2, 68,
105].

To evaluate a graph clustering algorithm, given the confusion
matrix, NMI can be calculated by

NMI =
−2

∑CA
i=1

∑CG
j=1Nij log (NijN/Ni−N−j)∑CA

i=1Ni− log (Ni−/N) +
∑CG

j=1N−j log (N−j/N)
,

(3.5)
where CA is the number of clusters that the graph clustering
algorithm determines, CG is the number of clusters in the ground
truth, Nij is the element in row i and column j in the confusion
matrix, Ni− is the sum of the i-th row, Nj− is the sum of the
j-th column and N is the total number of nodes in the graph.

3.2. Evaluation of graph clustering algorithms 27

3.2.2 Internal evaluation

Very often the ground truth of the clustering structure is not available
for real-world data [82, 83]. To evaluate the performance of graph
clustering algorithms without the ground truth, internal evaluation
metric can be used. Internal evaluation is based on the general defini-
tion of the clustering structure in a graph such that the clusters found
by an algorithm shall be compact and the link between the clusters
shall be sparse. Obviously, the choice of an internal evaluation metric
depends on the actual application and the graph data. It shall be
noted that many graph clustering algorithms find clusters by optimiz-
ing a predefined internal evaluation metric using various optimization
methods. Thus comparing different graph clustering algorithms using
internal evaluation metrics is often inappropriate. Furthermore, com-
paring the clustering algorithms that use the same fitness function is
actually comparing the underlying optimization methods incorporate
in the algorithms.

• Density-based metrics

Given a measurement of the density of a cluster in a graph, the
performance of a graph clustering algorithm can be evaluated by
the average density of the clusters that the algorithm finds. One
typical definition of a cluster density, similar to graph density,
is defined as

d(C) =
2 |E(C)|

|C| · (|C| − 1)
, (3.6)

where C ⊂ V is the set of nodes in a cluster, E(C) ∈ E is the
set of edges of the induced subgraph of the nodes in cluster C,
and |·| is the cardinality of a set.

One major limitation of this metric is that the score is greatly im-
pacted by the size of the cluster [68]. In particular, small cliques,

28 3. Graph Clustering and Graph-based Data Clustering

which have a density of 1— the largest value of this metric, may
greatly hinder the evaluation. Thus, an algorithm may simply
improve the average density score by separating small cliques
from a cluster.

• Cut-based metrics

Because of the limitations of the density-based metrics, cut-
based metrics often give more reliable evaluations. Let K ⊂ V

be the set of nodes of a cluster. Let Kc = V \K be the comple-
ment set of K. The total degrees (or weight for weighted graphs)
of cluster K can be calculated by

a(K) =
∑
i∈K

∑
j∈V

Aij . (3.7)

The degrees (or weight for weighted graphs) of cut (K,Kc) is
defined as

c(K) =
∑
i∈K

∑
j∈Kc

Aij . (3.8)

The conductance of cut (K,Kc) is defined as

ϕ(K,Kc) =
c(K)

min (a (K) , a (Kc))
. (3.9)

Besides conductance, other measurements of a cut are also com-
monly used. For example, normalized cut [65] is defined as

ncut(K,Kc) =
c(K)

a(K)
+

c(K)

a(Kc)
. (3.10)

A lower conductance value or normalized cut value indicates a
better cut of the graph.

3.3. Graph clustering methods 29

Inverse relative density (IRD) [P1] is defined as

ird(K,Kc) =
|E| − a(K) + c(K)

a(K)− c(K)
. (3.11)

Both the density-based metrics and the cut-based metrics are defined
to evaluate a single cluster. These metrics can also be used to evaluate
the performance of local graph clustering algorithms. For global graph
clustering problems, the value of each cluster is first calculated, then
the overall performance is evaluated by the statistics of all clusters,
for example, the mean or the extreme value of all clusters.

3.3 Graph clustering methods

Various methods have been proposed for graph clustering problems.
In this section, we briefly review some of the commonly used methods.
In the next section, we will give details of random walk-based methods,
which is not reviewed in this section. Note that even methods that fall
into different categories, they are still closely linked with each other.

3.3.1 Spectral graph clustering

Spectral clustering is one of the most popular graph clustering algo-
rithms [65, 106, 107]. It can be easily implemented and often gives
satisfactory results. To derive the spectral graph clustering method,
we start from the normalized cut measurement defined by Eq. 3.10 as
the fitness function. We further define an assignment vector x, such
that

xi =

⎧⎨
⎩

1
|K| if i ∈ K

1
|Kc| if i ∈ Kc

. (3.12)

30 3. Graph Clustering and Graph-based Data Clustering

It can be derived from Eq. 3.10 that

ncut(K,Kc) =
xTLx

xTDx
, (3.13)

where L is the Laplacian matrix as defined in Eq. 2.2 and D is the
degree matrix of the graph. Minimizing Eq. 3.13 with regard to x

in the discrete manner is NP-hard [65]. However, we can relax the
problem by letting x to be a real valued vector with the constraint
that xTD1 = 0, where 1 is the vector where all elements are 1s.
This problem can be solved as the generalized eigenvector problem
Lx = λDx. Let y = D1/2x. It can be seen that y is the second
eigenvector of the normalized Laplacian

Lsym = D−1/2LD−1/2. (3.14)

After the eigenvector is calculated, we can cluster the nodes according
to their corresponding values in the eigenvector. This principle can
easily be extended to k clusters. Instead of using only one eigenvector,
multiple eigenvectors can also be used [106]. Algorithm 1 shows the
details of the spectral graph clustering algorithm.

Normally, k-means clustering is used to cluster the nodes after the
feature vectors are calculated. However, any data clustering algorithm
can be used in this step [108, 109].

It should be noted that if the target is to minimize the ratio cut
measurement, which is defined as

rcut(K,Kc) =
c(K)

|K| +
c(Kc)

|Kc| . (3.15)

Applying the same procedure as normalized cut, one ends up finding
the eigenvector corresponding to the second smallest eigenvalue of the
Laplacian matrix L of graph G(V,E) [110].

3.3. Graph clustering methods 31

given adjacency matrix A of graph G(V,E) and the number of
clusters k

• Compute normalized Laplacian matrix Lsym by Eq. 3.14

• Compute the first k eigenvectors v1, v2, · · · , vk of Lsym

• Let V be the matrix with the columns v1, v2, · · · , vk

• Normalize the rows of V to have norm of 1

• Using the rows of V as features and cluster the data points into
k clusters

• Assign the nodes to the corresponding cluster given by the
data clustering algorithm

Algorithm 1: Spectral graph clustering using multiple eigenvec-
tors

3.3.2 Fitness function optimization

A large number of graph clustering algorithms choose to optimize
a predefined fitness function using different optimization strategies.
Newman et al. [83, 111] studied the modularity of social networks and
defined the modularity as

Q =
∑
i

(
eii − a2i

)
, (3.16)

where i is the index of a community, eii is the fraction of the edges
that connect the nodes in community i, and ai =

∑
j eij is the fraction

of the expected number of edges that connect the nodes in community
i. Spielman and Teng opted to take the conductance (Eq. 3.9) as the
fitness function [94]. Starting from the similarity and dissimilarity of
two nodes, Veldt et al. studied the disagreement of the clusters and

32 3. Graph Clustering and Graph-based Data Clustering

defined the fitness function as

∑
i,j∈E+

(1− λ)xij +
∑

i,j∈E−
λ(1− xij), (3.17)

where λ is a predefined weight, xij ∈ {0, 1} is the indicator of whether
nodes i and j are in the same cluster, E+ is the set of edges that
the two end nodes are in the same cluster, and E− = E\E+ is the
complementary set of E+ [112]. In [113], Görke et al. evaluated graph
clustering algorithms that use different density measurements as their
fitness function using two greedy heuristics: vertex moving and cluster
merging. They show that the vertex moving approach produces more
reliable results than the cluster merging approach. They also show the
limitations of using different density based measurement as the fitness
function.

As a matter of fact, finding the optimal value of the fitness function
defined earlier is NP-hard. However, different optimization strategies
have been applied to find a locally optimal solution.

• Greedy Agglomeration [82, 83, 113, 114]

This method starts off with the state that each node is in its
own cluster. At each iteration, the algorithm evaluates the im-
provement of the fitness function by merging each pair of the
clusters and merges the pair with the largest improvement. This
procedure is repeated until no improvement can be achieved by
merging any pair of clusters. This method adopts the greedy op-
timization strategy and has a complexity of O((m+n)n), where
m is the number of edges and n is the number of nodes. Obvi-
ously, this approach does not guarantee global optimization. A
clear limitation of this approach is that once a node is assigned
to a cluster, it will not be moved to another one. To address
this limitation, in [115], Blondel et al. alternatively apply two

3.3. Graph clustering methods 33

phases. In the first phase, nodes are moved between commu-
nities to optimize the modularity. In the second phase, a new
graph is constructed by merging the communities in order to
improve the fitness function.

• Relaxation

Optimizing the fitness functions such as those defined in Eqs.
3.9 3.10 3.15 3.16, in a discrete manner is a NP-hard problem
[116]. However, these problems can be relaxed by converting
hard assignment into fuzzy assignment, similar to the strategy
used in spectral clustering algorithms [65, 106, 107]. In [112],
the authors studied the correlation clustering problem, whose
objective is to minimize Eq. 3.17. This optimization problem is
an integer linear programming problem and it can be relaxed to
a linear programming problem and the solution can be found in
polynomial time [117].

• Other optimization techniques

Given a fitness function, an optimization technique can be ap-
plied to find the optimal or a suboptimal solution. In [118, 119],
simulated annealing is used to optimize Eq. 3.16. Duch and
Arenas adopted extremal optimization approach in optimizing
the modularity fitness function [120]. In their approach, nodes
are first ranked according to their contribution to the fitness
function before moving to other clusters. Then nodes are moved
based on the probability P (q) ∼ qτ , where q is the rank of the
node and τ is the extremal optimization constant. In [121], mean
field annealing is used to optimize Eq. 3.16.

3.3.3 Data clustering-based methods

Data clustering is an important topic in machine learning and has been
comprehensively studied for many decades. Many graph clustering

34 3. Graph Clustering and Graph-based Data Clustering

algorithms take advantage of the results achieved in data clustering.
These algorithms first extract features for the nodes in the graph, and
then apply a suitable data clustering method, such as k-means, to find
clusters of nodes. The most critical part of these methods is to find
suitable feature representations. Zhang et al. generate feature vectors
for the nodes using the concept of limited random walks [P1]. In [122],
Tian et al. learn node representations using a sparse deep autoencoder
and take the activations of the last hidden layer as the features.

3.3.4 Model-based methods

Model-based methods assume that the graph is generated from a math-
ematical model and find clusters by optimizing a fitness function de-
rived from the model. Chen et.al model a graph using a stochastic
block model by which a random graph is generated with a higher
probability to link in-cluster nodes than between-cluster nodes [123].
With the relaxation of the cluster matrix—a matrix that indicates
whether the two nodes are assigned to the same cluster, the graph
clustering problem is converted to a convex optimization problem and
can be solved effectively. The Potts model [124] studies interacting
spins positioned on a lattice structure. Each spin can be in one of the
q states, where q is a predefined integer. Note that the Potts model is
a generalized Ising model [125], in which spin can be in one of the two
states. An energy function (Hamiltonian) is defined for the system.
In [126, 127], q-state The Potts model is used to detect communities
in a graph by minimizing the Hamiltonian function.

3.4 Random walk-based graph clustering

A random walk is a stochastic process in which one or multiple imagi-
nary agents travel randomly on the nodes of a graph [20]. At each step,

3.4. Random walk-based graph clustering 35

an agent randomly selects a neighboring node with a certain proba-
bility and moves to it. The structure of the graph can be revealed by
analyzing the probability distribution of the agent on each node or by
studying the route that the agents traveled.

3.4.1 Random walk and Markov Chain

A random walk is normally modeled as a discrete-time Markov chain,
where each node is considered as a state. Let t = 0, 1, 2, · · ·T be the
time stamp and x(t) ∈ RN be the vector where the element indicates
the probability of the agent at each node at time t. The Markov chain
can be written as

x(t+1) = Px(t), (3.18)

where P is the transition matrix whose element Pij is the probability
that the agent moves from node i to j. Given the probability vector
x at time 0, Eq. 3.18 can be written as

x(t) = P tx(0). (3.19)

Note that the Markov chain defined by Eqs. 3.18 or 3.19 is time-
homogeneous—the transition matrix P is the same during the whole
process.

There are multiple ways to define the transition matrix for a random
walk on a graph. For an unweighted graph, the most common way is
to assign equal probability to the neighboring nodes [20, 128]. In this
approach, the transition matrix is written as

Pij =
Aij∑n

k=1Akj
(3.20)

or
P = AD−1, (3.21)

36 3. Graph Clustering and Graph-based Data Clustering

where A is the adjacency matrix of the graph and D is the degree
matrix. In [P1], Zhang et al. assign the equal probability to the
current node such that the agent has the same probability to move
to a neighboring node or stay in the current node. This is equivalent
to adding a self-loop edge to each node of the graph. The transition
matrix becomes

P = (I +A) (I +D)−1 . (3.22)

This idea can be easily extended by assigning a different probability
to stay at the current node and to move to a neighboring node. In
this case,

P = (αI +A) (αI +D)−1 , (3.23)

where α can be considered as the weight of the self-loop edge. This
transition matrix fixes the aperiodic problem that a graph may have
[P1]. A random walk defined by Eq. 3.23 is also called lazy random
walk when α = 1

2 .

In [129], the authors assume that an agent travels to a neighboring
node with a higher probability if the two nodes share more common
neighbors. They define the transition matrix as

Pij =
1

Ki
Aij (cij + 1)γ , (3.24)

where cij is the number of common neighbors of nodes i and j, Ki =∑
k Aik (cik + 1)γ is a normalization term, and γ controls the bias

towards the nodes with more common neighbors. If γ = 0, Eq. 3.24
is equivalent to Eq. 3.21.

Note that these transition matrices defined for unweighted graphs can
be easily extended to weighted graphs [130].

3.4. Random walk-based graph clustering 37

3.4.2 Equilibrium state

We first introduce two important definitions for Markov processes.
A Markov process is irreducible if for any two states i, j, there ex-
ists an integer t such that P t

ij > 0. This means that it is possible
to reach any state from another state. For the random walks on
an undirected graph, this means that the graph is connected. Let
T (x) =

{
t ≥ 1|P t(x, x) > 0

}
be the set of times that the Markov pro-

cess return to its starting state x. The period of state x is defined to
be the greatest common divisor of elements in T (x), which is denoted
by gcd (T (x)). A Markov process is called aperiodic if the period of
all states are 1.

Proposition 3.1 ([131]). If P is irreducible, gcd(T (x)) = gcd(T (y))

for all state x and y.

Since the random walk on a connected graph is irreducible, it is easy
to derive the next proposition.

Proposition 3.2. A random walk on a connected graph that contains
a self-loop is aperiodic.

Theorem 3.1 ([131]). If P is irreducible, there exists a unique distri-
bution π that satisfies π = Pπ.

Theorem 3.2 ([131, 132]). If P is irreducible and aperiodic, with sta-
tionary distribution π, the distribution vector x of the Markov process
converges to π, regardless of the initial distribution x(0).

The distribution π is called the equilibrium distribution of the Markov
process.

Proposition 3.3. For an undirected, unweighted and aperiodic graph
with transition matrix P = AD−1, the equilibrium distribution is π =

38 3. Graph Clustering and Graph-based Data Clustering

d
2m , where d is the degree vector of the graph and m is the number of
total edges.

This proposition can be easily verified by the definition of equilibrium
distribution.

According to Theorem 3.2, any random walk, regardless of the start-
ing node, would end up with the equilibrium distribution if the walk
lasts long enough. According to Proposition 3.3, the equilibrium dis-
tribution simply gives the degree centrality measurement. For a graph
clustering task, we are more interested in the local structure of a graph
rather than the global attributes of each node. In particular, when a
walk starts from a seed node, we hope the walk will stay near the seed
node and show the local structure around the seed node. Next, we
show some techniques that can be used to limit the scope of a walk
and use these techniques to study the local structure.

3.4.3 Variants of the Random Walk

After an agent starts its walk from a seed node, it is likely to visit
these nodes in the cluster that the seed node belongs to more often
than the nodes in other clusters because the number of connections
between the clusters is smaller than that within the cluster. However,
as the walk continues, the agent will escape from its own cluster and
the probability distribution will converge to the equilibrium distribu-
tion. The idea of restricting the scope of a random walk is to limit
the distance that an agent can travel. This technique makes it also
suitable for local graph clustering problem—-finding the community
that includes the seed node without exploring the whole graph struc-
ture [68]. Next, we describe some techniques to restrict the range of
the walk.

3.4. Random walk-based graph clustering 39

Walks with a fixed number of steps

A straight-forward approach of restricting the scope of the walk is
to set a fixed number of steps that an agent can travel. In [128],
the authors studied the probability that the agent is at node j when
started from node i after a fixed walking distance T . With the Markov
chain defined by Eq. 3.19, this probability is P T

ji . They define a
distance measurement of two nodes based on the observation that two
nodes should see the other nodes in a “similar way” if the two nodes
are in the same community. Given the distance measurement of the
nodes, they apply a greedy agglomerative method to group nodes into
clusters. Similar techniques are also used in [130]. One major difficulty
of using this technique is to decide the walking distance T . If T is
too small, the local structure is not sufficiently explored. If T is too
large, the agent may escape the current cluster and the probability
distribution will reflect the global structure. If the density of the
clusters varies greatly, it is impossible to find a T that is suitable
for every node in the graph. To overcome this difficulty, in [21], the
authors developed a non-homogeneous random walk where the walking
length is determined stochastically. At each step, the probability of
continuing the walk is determined by a probability function that is
parameterized by the degree of the node.

Walks with teleport

Another interesting approach is to apply a teleport operation during
the walk—the agent can be teleported back to the starting node (or
state) with a predefined probability at each step [133, 134, 135, 136].
This approach is also called PageRank random walk because of the
great similarities to the PageRank algorithm [24]. The Markov chain

40 3. Graph Clustering and Graph-based Data Clustering

with teleporting is defined by

x(t+1) = αx(0) + (1− α)Px(t), (3.25)

where α defines the probability of teleporting to the starting state.

Proposition 3.4 ([133]). For any fixed value of α ∈ (0, 1], the equi-
librium state of a random walk defined by Eq. 3.25 has a unique equi-
librium distribution

π = α
∞∑
t=0

(1− α)t
(
P tx(0)

)
. (3.26)

Many global and local graph clustering algorithms have been devel-
oped based on this approach. In [133], the authors sweep over the
approximate equilibrium distribution vector π to find cuts with nearly
optimal conductance for local clustering task. The Repeated Random
Walk (RRW) algorithm let the walks with teleport start from every
node of the graph and the equilibrium distributions, named as affinity
vectors, are collected [135]. Clusters are formed by associating the
nodes with high affinity values into the same cluster. In [134], the
authors first find initial clusters using walks with teleport and then
merge the clusters if their overlapping coefficient is above a predefined
threshold.

Limited random walks

A novel approach, named Markov Cluster Algorithm (MCL), of using
random walks to find clusters in a graph was introduced in [137].
MCL algorithm lets the agents start walking from every node in the
graph simultaneously. The probability distribution of the agents can

3.4. Random walk-based graph clustering 41

be calculated by
X(t+1) = PX(t), (3.27)

where each column of X is the probability distribution of an agent
at the nodes in the graph. The initial matrix X(0) = I, where I is
an identity matrix. If the process continues as defined in Eq. 3.27,
this is a normal random walk and X(∞) would be a matrix that each
column is the equilibrium distribution of the Markov chain. In MCL,
the random walk is considered a flow over the graph. The node that
absorbs more flows from other nodes is considered as a contractor.
MCL algorithm tries to enhance the local contractor in each cluster
during the random walk process. The walking process will end up in a
state that all nodes in a cluster are attracted by the contractor nodes
after a number of steps. To achieve this, MCL applies an expansion
and an inflation operation at each step. Let X∗,j be the j-th row of
matrix X. The expansion operation is a normal random walk step and
matrix X is updated by Eq. 3.27. The inflation operation is simply an
arithmetic operation on each element of X∗,j that enhances the larger
values and decreases the lower values of this vector. After inflation,
matrix X is normalized such that each column sums to 1. It should
be noted that MCL is not a stationary Markov chain because of the
nonlinear operation involved in the inflation operation.

MCL is an important approach in graph clustering because of its nov-
elty in using random walks. However, there are certain limitations
when using this method to find clusters in a graph. First, at each
step, the system calculates the product of two matrices as specified in
3.27. This calculation is expensive if the number of nodes is large.

Second, the algorithm cannot be efficiently parallelized since the ex-
pansion has to be executed after all agents completed the walking
step. Third, the MCL algorithm tends to over cluster data when there
is more than one contractor in a cluster.

42 3. Graph Clustering and Graph-based Data Clustering

In [P1]], the authors developed a Limited Random Walk algorithm
(LRW) by adopting the inflation and normalization scheme used in
the MCL algorithm. LRW starts random walks from every node in
the graph. After each step, the inflation and normalization procedure
is applied to the probability distribution of each distribution vector.
The walking continues until the equilibrium state is reached. LRW is
a stationary Markov chain where the transition matrix stays the same
during the whole walking process. This makes the walk of each agent
possible to execute independently. Therefore, the implementation of
LRW can be done in an embarrassingly parallel manner and thus the
algorithm can use the computing resources of a high-performance com-
puting (HPC) system efficiently. The walking procedure is called ex-
ploring phase since agents randomly walk on the graph to explore the
local structure.

Let x be the probability distribution vector. The inflation operation is
an element-wise super-linear function — a function grows faster than
a linear function, for example a power function with exponent greater
than 1. Let f(x) be the inflation function defined as

f(x) = [xr1, x
r
2, · · · , xrn]T ,r > 1. (3.28)

The normalization operation normalizes vector x to have a sum of 1,
defined as

g(x) =
x

‖x‖1
, (3.29)

where ‖x‖1 =
∑n

i=1 |xi| is the L1-norm of vector x.

Given the transition matrix P , the walking step of LRW can be written
as

x(t+1) = g
(
f
(
Px(t)

))
(3.30)

Note that the inflation operation defined in Eq. 3.28 is a nonlinear

3.4. Random walk-based graph clustering 43

function. The LRW process defined by Eq. 3.30 is not a canonical
Markov chain. Thus, there does not exist an equilibrium state as seen
in Theorem 3.1. However, the following theorem shows the existence
of the fixed-point.

Theorem 3.3. There exists a fixed-point x∗ such that x∗ = g (f (Px∗)).

The proof of this theorem can be found in [P1].

Since LRW is a non-linear discrete dynamic system, there are no ef-
fective mathematical tools to fully understand the behavior of this
procedure. However, when r = 1, LRW is simply a Markov chain pro-
cess, in which the fixed-point x∗ is the unique equilibrium state π (the
global attractor). When r > 1, a fixed-point can be an unstable state
and LRW may have limit cycles that oscillate around the fixed-point.
Also, the system may contain more than one fixed-points. Fig. 3.2
shows an example of an oscillation occurring between two states in the
extreme case where r → ∞. Notice that the system may oscillate in
different states depending on the initial state.

In practice, we chose r from (1, 2]. This makes LRW behave close to
a linear system and oscillations are extremely rare.

The inflation and normalization operations defined in Eqs. 3.28 and
3.29 limit the scope that an agent explores. When r is large, the local
attractors near the source node get boosted quickly thus the system
will not explore far away from the source node. When r is close to 1,
the agent explores further and get attracted to the attractors far away
from the starting node. r plays a similar role as α in Eq. 3.25.

The LRW algorithm first explores the graph using random walks start-
ing from every node. Let x(∗,i) be the final probability vector for a
random walk initiated from node i. We may treat each x(∗,i) as a fea-

44 3. Graph Clustering and Graph-based Data Clustering

2

4

5

1

3

P =

⎡
⎢⎢⎢⎢⎣

1/3 1/3 0 0 1/3
1/3 1/3 1/3 0 0
0 1/3 1/3 1/3 0
0 0 1/3 1/3 1/3
1/3 0 0 1/3 1/3

⎤
⎥⎥⎥⎥⎦

(a) a circle graph (b) the transition matrix

x(a) =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦ x(b) =

⎡
⎢⎢⎢⎢⎣

1/3
1/3
0
0
1/3

⎤
⎥⎥⎥⎥⎦

(c) oscillating state 1 (d) oscillating state 2

Figure 3.2 An example of oscilation during LRW. The circle graph shown
in (a) has the transition matrix P as shown in (b). When r → ∞, LRW
may oscillate between two states x(a)and x(b) as seen in (c) and (d). It is
easily seen that the system has a fixed-point x∗ = [1/5, 1/5, 1/5, 1/5, 1/5, 1/5]

T
.

3.5. Graph-based data clustering 45

ture vector for node i and apply any data clustering algorithm, such
as k-means, to cluster the nodes. However, since the nodes in a clus-
ter share the common attractors, we can cluster the nodes by simply
comparing the contracting nodes. With this approximation, the nodes
can be clustered with a complexity of O(n) [P1].

3.4.4 Computational complexity comparison

The computational complexity of a graph clustering algorithm is often
dependent on the structure of the graph. If the graph is sparse and
has clear cluster structure, many graph clustering algorithms, such as
MCL and LRW, can find the clusters in an order of O(n), despite the
complexity of O

(
n3

)
in the worst-case scenario. The computational

complexity of data clustering-based algorithms is determined by the
chosen data clustering algorithm. Table 3.1 shows some popular graph
clustering algorithms, their techniques, and complexities.

3.5 Graph-based data clustering

Data clustering is an important topic that is extensively used in ma-
chine learning and pattern recognition [27]. Both data clustering and
graph clustering can be categorized as unsupervised learning and the
two subjects are highly related. As discussed in Section 3.3.3, data
clustering techniques have been extensively used to solve graph clus-
tering problems. Meanwhile, graph-based techniques are also often
used for data clustering problems [P2, P4, 29, 30, 31, 130]. This sec-
tion will present some data clustering algorithms that are based on
graph techniques.

46 3. Graph Clustering and Graph-based Data Clustering

Table 3.1 Comparison of the computational complexity of some popular
graph clustering algorithms

algorithm reference technique complexity
GN [83] fitness optimization O

(
nm2

)
Clauset [82] fitness optimization O

(
n log2 n

)
Louvain [115] fitness optimization O (m)
Guimera [118] fitness optimization parameter dependent
Reichardt [127] model-based parameter dependent

SAE [122] data clustering-based O (nki)∗

N-Cut [65] spectral O (ni)∗∗

MCL [137] random walk O
(
nk2

)∗∗∗
LRW [P1] random walk O (nk)∗∗∗∗

∗ Complexity is determined by k-means algorithm, where k is the
number of clusters and i is the number of iterations
∗∗ i is the number of iteration used in matrix-free method to calculate
the second eigenvector [138].
∗∗∗ k is graph dependent. The worst-case complexity is O

(
n3

)
.

∗∗∗∗ k is graph depended. The worst-case complexity is O
(
n3

)
.

3.5. Graph-based data clustering 47

3.5.1 Overview

To apply graph techniques for data clustering problems, the first step
is to construct a graph from the input data. Normally the k-nearest
neighbor (KNN) graph or the mutual k-nearest neighbor (MKNN)
graph is used. We first take each data point as a node. For a KNN
graph, two nodes are connected if one is in the set of k-nearest neigh-
bors of the other. And for an MKNN graph, two nodes are connected
only if both nodes are in the set of the k-nearest neighbors of the
other node. Note that for a KNN graph, every node has a degree of k;
and for an MKNN graph, the maximal value of the degree is k. KNN
graph is always connected, while MKNN may be disconnected.

After the graph is constructed, any graph clustering algorithm can
be applied to partition the nodes into clusters. In [30] and [139], the
authors utilize the “max flow-min cut” theorem and find clusters in
a graph by finding the minimal cut that separated the communities
in the graph. The method is plausible because the “max flow” prob-
lem can be solved in polynomial time [140]. The pseudo-code of this
method is shown in Algorithm 2.

given a KNN or MKNN graph G(V,E) and parameter α

• Add a sink node t to graph G and let t connect to all the nodes
in G with weight α. Let G′ be this expanded graph.

• Computer min-cut tree T ∗ using Gomory-Hu algorithm [140]

• Remove t from T ∗

• The components left in T ∗ are the clusters found in G

Algorithm 2: Max-flow(min-cut) data clustering algorithm

In [31], Zhang et al. studied the affinity of a node to a cluster and
proposed the Graph Degree Linkage (GDL) algorithm. They define the

48 3. Graph Clustering and Graph-based Data Clustering

affinity measurement between a node and a cluster to be the product
of the in-degree and out-degree of the node. The affinity measurement
between two clusters is the sum of the affinity values of the nodes from
one cluster to the other. A greedy optimization strategy is applied to
find the partitions of the graph by minimizing the affinity between the
clusters.

In [141], Zhang et al. propose to use path integral as the affinity
measurement of a cluster. The path integral, which is a concept used in
quantum mechanics [142], can be calculated as the sum of the weights
of all paths in a cluster normalized by the square of the size of the
cluster. The proposed method adopts the agglomerative approach
and maximizes the overall path integral using a greedy search.

One of the advantages of using graph clustering techniques in data
clustering problems is that many of these algorithms are able to handle
noisy data—find clusters and detect outliers at the same time [P2, P4,
31, 141].

3.5.2 Data clustering using authentic score

Zhang et al. studied the authenticity of the edges in social networks
[P2] and proposed a novel approach for data clustering problems. The
idea was inspired by a common phenomenon in social networks that
if the link between two people is authentic, the friends of these two
people are likely to be connected as well. Now, consider edge ab in the
two graphs in Fig. 3.3. The edge ab in graph (b) is more authentic
than the one in graph (a), because the neighboring nodes of nodes a

and b are more closely related in graph (b).

Next, two definitions that are used to study the neighboring nodes of
an edge are given.

3.5. Graph-based data clustering 49

a b a b

(a) (b)

Figure 3.3 The edge ab in graph (b) is more authentic than the one in
graph (a), since the neighboring nodes of nodes a and b are more closed
related.

Definition 3.4. An edge-ego-network is the induced subgraph that
contains the two end nodes of the edge, the neighboring nodes of these
two end nodes, and the edges that link these nodes.

Sa\b = Na ∪ {a}\{b} be the set of nodes that includes node a and its
neighboring nodes except node b. Similarly, Sb\a = Nb ∪ {b}\{a}.

Definition 3.5. A supporting edge of edge ab is an edge that connects
a node in set Sa\b and a node in set Sb\a.

Using the random graph generation model, the authenticity of an edge
is defined as

aab = mab − eab, (3.31)

where mab is the number supporting edges in the graph and eab is the
expected number of supporting edges if the graph is generated by a
stochastic model. A high authenticity score indicates that the edge is
likely to be authentic; meanwhile, a low score indicates that the edge
is more likely to be an outlier.

To resemble the true structure of a social network, we use Preference

50 3. Graph Clustering and Graph-based Data Clustering

Attachment (PA) model to calculate eab. Using the PA model, we get

eab =
1

2m

∑
c∈Sa,d∈Sb

kckd (3.32)

where m is the number of edges and kc and kd are the degree of nodes
c and d respectively [P2].

Since a graph generated by a PA model may contain self-loops and
duplicate edges, Eq. 3.31 is inaccurate, especially when eab is large.
To compensate for this bias, Eq. 3.31 can be modified as

aab = mγ

ab
− eab, (3.33)

where γ is a real number greater than 1. In practice, we normally
choose γ to be 2.

If a graph has a cluster structure, edges that link nodes in a cluster
have a higher authenticity score than edges that link nodes in different
clusters. In [P2], Zhang et al. developed a splitting approach to
find clusters in a graph by gradually removing the edges from the
graph according to their authenticity scores in ascending order. When
a sufficient number of edges are removed, the graph will break into
smaller components and these components can be used to identify
clusters. A large number of edges have to be removed to break a real
cluster into smaller components. Thus the number of clusters can
be decided by analyzing the sizes of the components or the number of
edges that have been removed. Fig. 3.4 shows this collapsing process of
an MKNN graph generated from a toy data with cluster structure. The
clusters in the data can be identified by the big components detected
during the collapsing process. This example also shows that one can
break the links between the clusters by only removing a small number
of edges.

3.5. Graph-based data clustering 51

(a) 1 / 0% (b) 2 / 2.6% (c) 3 / 2.7%

(d) 4 / 2.8% (e) 5 / 3.5% (f) 6 / 6.0%

(g) 7 / 33%

Figure 3.4 The collapsing process of an MKNN graph when the edges
are removed by the ascending order of their authenticity scores. For clarity,
the edges are not shown in the graph. Big components identified during this
collapsing process are shown with different colors. The numbers below the
figure show the number of big components in the graph and the percentage of
edges that have been removed

52 3. Graph Clustering and Graph-based Data Clustering

Zhang et al. proposed to use two methods to determine the clusters
from this collapsing process [P2]. One method simply uses the sizes of
the big components. When a cluster is broken during the collapsing
process, it generates many small components and isolated nodes. If
the number of clusters is known, we can find the optimal partition by
maximizing the minimal component size. However, if the number of
clusters is unknown, we can use the maximal conductance to determine
the best partitions. The pseudo-code of these two methods is presented
in Algorithm 3.

given MKNN graph G(V,E)

• calculate authenticity scores of the edges in G by Eqs. 3.31
and 3.32

• collapse graph G by gradually removing the edges according
to their authenticity scores

• find the big components from the collapsed graphs

• assign the isolated nodes and small components to the big
components according to their authenticity scores

• determine the best partition by the size of the big
components or the conductance values of the detected clusters

Algorithm 3: Data clustering by collapsing the MKNN graph
using the edge authenticity scores

Experiments show that this algorithm is able to find clusters of com-
plex shape. More important, it is robust to the density variations of
clusters and outliers in the input data [P2, P4].

Next, we show that Algorithm 3 can reveal the true clustering struc-
ture in a graph generated by a stochastic block model (as described
in Section 2.4), if certain conditions are met.

Definition 3.6. Stochastic r-block model is a stochastic block model

3.5. Graph-based data clustering 53

that generates a random graph with r equal-sized clusters with between-
cluster edge probability pb and within-cluster edge probability pc.

A random graph generated by a stochastic r-block model is called a
r-block random graph. Note that 2-block random graph is also called
bisection random graph in the literature [143]. We use G (nc, r, pc, pb)

to represent a random graph generated by a stochastic r-block model,
where each cluster contains nc nodes, pc and pb are in the range of
[0, 1]. Obviously, this graph contains nc · r nodes.

It should be noted that the subgraph of each cluster is generated by
a Erdos-Renyi model G(nc, pc). If pc > pb, the generated graph will
show a clear cluster structure.

Definition 3.7. If a partition of the graph matches the block structure
of how the graph was generated, the partition is an exact recovery of
the ground truth.

Definition 3.8. If a partition of the graph satisfies the condition that
any two nodes in a partition belong to the same cluster in the ground
truth, the partition is an incomplete recovery of the ground truth.

Next, we first study some theoretical results of the authenticity scores
on graphs generated by a stochastic r-block model. Later, we will
show a sufficient condition that the authenticity scores can be used to
completely recover the ground truth of a r-block random graph.

Let subscript c denote an edge within a cluster and subscript b denote
an edge between clusters. According to Eq. 3.31, the authenticity
score for an edge within a cluster is ac = mc − ec. Similarly, the
authenticity score for an edge between clusters is ab = mb − eb.

Proposition 3.5. For a random graph G (nc, r, pc, pb) generated by
a stochastic r-block model, E (mc) > E (mb) if nc > r, nc > 3, and

54 3. Graph Clustering and Graph-based Data Clustering

pc >
(nc−1)2

(nc−2)(nc−3)pb,where E (·) is the expected value.

Proof. We first list all cases that a supporting edge is generated by the
stochastic r-block mode. Let edge ab be the edge to be investigated.
A supporting edge is created in one of the following two cases:

Case 1: nodes c and d are randomly selected and edges ac, cd and db

are created according to the corresponding probabilities. Edge cd is a
supporting edge for edge ab.

Case 2: node c is randomly selected and edges ac and cb are created
according to the corresponding probabilities. Edges ac and bc are both
supporting edges for edge ab.

From these two cases, we can list all scenarios that a supporting edge
for edge ab is generated. For a within-cluster edge, where nodes a and
b are in the same cluster, we have the following scenarios for case 1:

• Scenario w1: nodes c and d are in the same cluster as nodes a

and b.

• Scenario w2a: node c is in the same cluster as nodes a and b;
node d is in a different cluster

• Scenario w2b: node d is in the same cluster as nodes a and b;
node c is in a different cluster

• Scenario w3: nodes c and d are in a cluster other than the cluster
that contains nodes a and b

• Scenario w4: nodes c and d are in different clusters, and none of
them are in the same cluster as nodes a and b

And the following scenarios are for Case 2:

3.5. Graph-based data clustering 55

• Scenario w5: node c is in the same cluster as nodes a and b

• Scenario w6: node c is in a different cluster than nodes a and b

Similarly, for a between-cluster edge, where nodes a and b are in dif-
ferent clusters, we have the following scenarios for Case 1:

• Scenario b1: node c is in the same cluster of node a; node d is
in the same cluster as node b

• Scenario b2a: node c is in the same cluster as node a; node d is
in a cluster that is different from nodes a and b

• Scenario b2b: node d is in the same cluster as node b; node c is
in a cluster that is different from nodes a and b

• Scenario b3: nodes a, b, c, and d are all in a different cluster

• Scenario b4: nodes c and d are in the same cluster, that is dif-
ferent from the clusters containing node a or b

And the following scenarios are for Case 2:

• Scenario b5a: node c is in the same cluster as node a

• Scenario b5b: node c is in the same cluster as node b

• Scenario b6: node c is in a cluster other than the one containing
nodes a or b

Next, we calculate the expected number of edges for each scenario.
Since Ec

(
mab

)
can be calculated in a similar manner for each scenario,

we only provide the procedure for Scenario w1 in this thesis.

56 3. Graph Clustering and Graph-based Data Clustering

• Scenario w1: We randomly select nodes c and d from the cluster
containing nodes a and b. The probability of generating edges
ac, bd, or cd is pc. Note that edge cd is also a supporting edge
if edges ad, bc and cd are all generated. So the probability that
edge cd is created as a supporting edge is 2p3c . The number of
ways of selecting nodes c and d is calculated by combinations(
nc−2
2

)
. Thus the expected number of supporting edges in this

scenario is Ec

(
mab

)
= 2

(
nc−2
2

)
p3c .

Table 3.2 shows all scenarios that a supporting edge is created and the
expected value of the number of supporting edges for that scenario. To
simplify the notation, we use bracket [·] to indicate the association of
the nodes: nodes in the same bracket mean that they are in the same
cluster, and nodes in different brackets are in different clusters. For
example [a, b] , [c, d] mean that nodes a and b are in the same cluster
and nodes c and d are in another cluster. Notice that the corresponding
scenarios for within-cluster edge and between-cluster edges are aligned
in the same row. We will see that this alignment helps us to compare
the expected values of the supporting edges in each row.

Given nc > r and pc > (nc−1)2

(nc−2)(nc−3)pb, we can easily verify that
Ec

(
mab

)
> Eb

(
mab

)
in each row. By the way of how the suport-

ing edges are created, the expected value of the number of supporting
edges for edge ab is the sum of E

(
mab

)
of each scenario in Table

3.2. Thus given nc > r, nc > 3, and pc > (nc−1)2

(nc−2)(nc−3)pb, we have
E (mc) > E (mb) .

Proposition 3.6. E (ec) = E (eb) for an r-block random graph.

Proof. According to Eq. 3.32, eab is a polynomial of ki, where ki is the
degree of a node in the edge-ego-network of eab. Since E (ki) is same
for all nodes in a r-block random graph, we have E (ec) = E (eb) .

3.5. Graph-based data clustering 57

T
ab

le
3.

2
T

he
sc

en
ar

io
s

th
at

su
pp

or
ti
ng

ed
ge

s
ar

e
cr

ea
te

d
an

d
th

e
ex

pe
ct

ed
va

lu
e

of
th

e
nu

m
be

r
of

su
pp

or
ti
ng

ed
ge

s
in

th
is

sc
en

ar
io

.
E
ac

h
ro

w
re

pr
es

en
ts

on
e

sc
en

ar
io

fo
r

a
w
it
hi

n-
cl

us
te

r
ed

ge
an

d
a

be
tw

ee
n-

cl
us

te
r

ed
ge

.
T

he
se

co
nd

co
lu

m
n

is
th

e
de

sc
ri

pt
io

n
of

th
e

sc
en

ar
io

fo
r

a
w
it
hi

n-
cl

us
te

r
ed

ge
.

T
he

th
ir
d

co
lu

m
n

is
th

e
ex

pe
ct

ed
va

lu
e

of
th

e
nu

m
be

r
of

su
pp

or
ti
ng

ed
ge

s
fo

r
th

is
sc

en
ar

io
.

T
he

fif
th

co
lu

m
n

is
th

e
de

sc
ri

pt
io

n
of

th
e

sc
en

ar
io

fo
r

a
be

tw
ee

n-
cl

us
te

r
ed

ge
.

A
nd

th
e

la
st

co
lu

m
n

is
th

e
ex

pe
ct

ed
va

lu
e

of
th

e
nu

m
be

r
of

su
pp

or
ti
ng

ed
ge

s
fo

r
th

is
sc

en
ar

io
.

sc
en

ar
io

w
it

hi
n-

cl
us

te
r

ed
ge

E
c
(m

a
b
)

sc
en

ar
io

be
tw

ee
n-

cl
us

te
r

ed
ge

E
b
(m

a
b
)

w
1

[a
,b
,c
,d
]

2
(n c−

2
2

) p
3 c

b1
[a
,c
],
[b
,d
]

(n
c
−
1)

2
p
2 c
p
b

w
2

[a
,b
,c
],
[d
]
or

[a
,b
,d
],
[c
]

2
(n

c
−
2)

(n
−
n
c
)
p
c
p
2 b

b2
[a
,c
],
[b
],
[d
]
or

[a
],
[c
],
[b
,d
]

2
(n

c
−
1)

(n
−
2n

c
)
p
c
p
2 b

w
3

[a
,b
],
[c
],
[d
]

2
(r−1 2

) n
2 c
p
3 b

b3
[a
],
[b
],
[c
],
[d
]

2
(r−2 2

) n
2 c
p
3 b

w
4

[a
,b
],
[c
,d
]

2
(r

−
1)

(n c 2

) p
c
p
2 b

b4
[a
],
[b
],
[c
,d
]

2
(r

−
2)

(n c 2

) p
c
p
2 b

w
5

[a
,b
,c
]

2
(n

c
−
2)

p
c
p
b

b5
[a
,c
],
[b
],

or
[a
],
[b
,c
]

2
(n

c
−
1)

p
c
p
b

w
6

[a
,b
],
[c
]

2
(n

−
n
c
)
p
2 b

b6
[a
],
[b
],
[c
]

2
(n

−
2n

c
)
p
2 b

58 3. Graph Clustering and Graph-based Data Clustering

Proposition 3.7. E (ac) > E (ab) for an r-block random graph if
nc > r, nc > 3 and pc >

(nc−1)2

(nc−2)(nc−3)pb,.

Proof. This statement is obvious given Propositions 3.5, 3.6 and the
definition of authenticity score in Eq. 3.31.

Theorem 3.9. Authenticity scores can asymptotically find the com-
plete recovery of a r-block random graph if pc > pb.

Proof. Since r is a constant and nc = n/r, nc > r when n > r2. It is
also obvious that

lim
n→∞

(nc − 1)2

(nc − 2) (nc − 3)
= 1.

According to Proposition 3.5, we have E (mc) > E (mb) if nc > r,
nc > 3 and pc >

(nc−1)2

(nc−2)(nc−3)pb. By the law of large numbers [144], we
can find a value T in the range of (E (mc) , E (mb)), such that

lim
n→∞Pr (mc > T) = 1, (3.34)

and
lim
n→∞Pr (mb > T) = 0. (3.35)

Considering Proposition 3.6, we have

lim
n→∞Pr (ac > T) = 1, (3.36)

and
lim
n→∞Pr (ab > T) = 0. (3.37)

From Eqs. 3.36 and 3.37, if n is sufficiently large, by removing all the

3.5. Graph-based data clustering 59

edges whose authenticity scores are below T , we can split the graph
into r components such that each component corresponds to a cluster
in the ground truth. By this partition, we find the complete recovery
of the ground truth.

Theorem 3.9 indicates that using the authenticity score one can find
the complete recovery of a r-block random graph if n is sufficiently
large. Note that Proposition 3.7 shows that the expected value of the
authenticity scores of within-cluster edges is higher than that of the
between-cluster edges. By removing the edges according to their au-
thenticity scores, we are able to break the links between the clusters
first. The large components of the collapsed graph are subsets of the
nodes in one cluster. Another technique to improve the performance
is to re-calculate the authenticity scores as edges are removed. How-
ever, our experiments show that a straightforward implementation is
sufficient to find good clusters of the input data [P4].

3.5.3 Computational complexity analysis

The first step in using graph techniques for data clustering is to con-
struct a KNN or MKNN graph from the input data. Let k be the
number of neighbors when constructing a KNN or MKNN graph. The
computational complexity of using a brute-force method is in the or-
der of O(n2). Callahan et al. showed that, theoretically, a KNN graph
construction takes O(n log n+nk) [145]. Fast methods to approximate
a MKNN graph are also available [146]. For example, Connor et al.
claimed a method with a complexity of O (nk log k) [147].

Table 3.3 shows the computational complexities of some data cluster-
ing algorithms using graph techniques.

60 3. Graph Clustering and Graph-based Data Clustering

Table 3.3 Computational complexity comparison of some data clustering
algorithms that are based on graph techniques

Algorithm Complexity
GDL [31] O

(
n2

)
k-means [148, 149, 150] O (ni) ∗

a-link [148, 150] O
(
n2 log n

)
N-Cut [65] O (ni) ∗∗

DBSCAN [151, 150] O (n log n)

authenticity score [P2, P4] O
(
k3n+ n log n

) ∗∗∗
∗ i is the number of iterations. In practice, i is difficult to estimate
and in the worst case it is super-polynomial [152].
∗∗ i is the number of iterations. Shi and Malik claimed that i is
typically less than O

(
n1/2

)
[65].

∗∗∗ k is the number of neighbors when constructing the KNN or MKNN
graph.

3.6 Summary

Graph clustering is an important task in graph analysis and data min-
ing. Given a clustering metric, one can apply different optimization
techniques to find a good partition of the graph [83, 94, 111, 112].
Spectral clustering algorithms relax this discrete optimization prob-
lem by using continuous values and show that the spectral compo-
nents (eigenvectors) of the Laplacian can be used to find clusters of
the graph [65]. However, graph spectral clustering algorithms expe-
rience difficulties in computation when the size of the graph is large.
Most of the existing algorithms are based on sequential optimization
techniques. Thus they cannot efficiently use the resources of high-
performance computing facilities. In [P1], Zhang et al. proposed a
random walk-based graph clustering algorithm that can easily be im-
plemented in an embarrassing parallel paradigm.

The focus of this thesis is on static graph clustering. However, in real-

3.6. Summary 61

world applications, a graph data may change over time: new nodes and
edges are added to the graph; existing nodes and edges are removed
from the graph; the properties of nodes and edges are changed [153].
Graph clustering for dynamic graph data is an important research
topic with broad applications. The proposed LRW graph clustering
algorithm [P1] focuses on the association of nodes that are close to each
other. A change in a graph only affects the exploration results of the
neighboring nodes and the merging phase can be executed efficiently.
Thus the algorithm is also suitable for dynamic graph clustering. The
study of graph clustering on dynamic graphs will be one of the focus
in the future.

Graph clustering and data clustering are similar tasks for data anal-
ysis and pattern recognition. The two techniques are closely related.
When using data clustering techniques for graph related problems, fea-
tures for each node are extracted based on the structure of the graph.
Random walk or graph structure embedding are normally used for this
purpose [P1, 122]. After the features are extracted, any data cluster-
ing technique can be used to cluster the nodes. When applying graph
techniques in data clustering, we first construct a KNN or an MKNN
graph out of the input data. Then, any graph clustering algorithm can
be used to find the clusters in the KNN or MKNN graph. In [P2, P4],
the authors showed a simple splitting method based on the authen-
ticity of the edges. In this section, we proved that algorithms using
the authenticity scores can asymptotically find the complete recovery
of the clustering structure of the graph generated by a stochastic r-
block model. Experiments show that this method gives consistently
satisfactory results regardless of the density of the cluster, the size of
the cluster and the presence of noise.

62 3. Graph Clustering and Graph-based Data Clustering

63

4. CONTENT-BASED IMAGE RETRIEVAL
WITH GRAPH TECHNIQUES

4.1 Introduction to content-based image retrieval

Retrieving useful information from a large dataset is an important
task in this era of data explosion. Using web search engines, users
have got accustomed to retrieving useful web pages and documents by
text-based queries. However, retrieving multimedia content, such as
image, audio, and video, is a more challenging task. To retrieve in-
formation from a large multimedia database using a text-based search
engine, users have to enter queries in text format (keywords, sentences
of a natural language, or statements of a certain query language) to
describe the content he/she is interested in. This approach heavily
relies on the text-based retrieval techniques. However, it is difficult
to precisely and completely describe the content of multimedia items
using any language. Another difficulty is that this approach also re-
quires detailed descriptions of the items in the multimedia database.
However, for a large multimedia database, there is always inadequate
text descriptions. Earlier attempts of annotating large multimedia
databases have shown that the annotations are ambiguous, erroneous
and deficient [154, 155, 156].

Because of the difficulties faced by text-based search technologies,
content-based image retrieval (CBIR) has become a critical topic in
computer vision and multimedia content retrieval. With a CBIR sys-

64 4. Content-based Image Retrieval with Graph Techniques

tem, a user provides one or multiple query images and the system
returns similar images according to the content of the query image
[52, 56]. The retrieval results are normally presented to the user in
the order of their relevance to the query image(s).

CBIR systems can be categorized into two types. One is designed to
serve for a specific use case, for example, a CBIR system that retrieves
pictures of furniture that matches the style of the furniture in a given
query image, or a system that retrieves pictures of animals of the same
breed as the one in a query image. Another type of CBIR system serves
for general use cases, similar to search engines on the Internet. For
better user experience, a general CBIR system needs to understand the
purpose of the query—the intention of the user and the expectation of
the retrieved result. Unlike text-based system, where the intention can
be elaborated by providing more description to the query, for example,
“running Labrador dog“ and “layered birthday cake”, a CBIR system
has to determine the intention using clues from the query images and
knowledge gained from previous records.

4.1.1 Purpose of a query

The purposes of a query can be summarized into two broad categories
depending on whether the user knows what they are looking for.

• Finding “similar” images or a specific group of images from the
dataset

In this category, the user has a clear definition of “similarity”
when he/she triggers the search. The results returned from the
CBIR system must match the definition of “similarity” and the
CBIR system has to be able to rank images according to this
definition. The majority of researches on CBIR systems fall into

4.1. Introduction to content-based image retrieval 65

this category [52, 157, 158, 159]. The target of the search can
be a concrete concept or an abstract concept.

– The target can be a concrete concept, such as “the specific
dog breed in this picture”, “this type of vehicle” or “more
pictures of this person”. When the target is clearly defined
and understood, the retrieval problem becomes a classifica-
tion problem and the CBIR system will return the pictures
of the same class as the query images. With the fast devel-
opment of pattern recognition, especially recent advances in
deep learning technologies, systems that understand 1000
classes can perform in a level close to or even better than
human beings [160, 161]. Automatic face recognition was
also reported to outperform human accuracy [162, 163]. A
deep learning based CBIR system normally performs well
in this case, as long as the concept is precisely known.

– It is also possible that the target concept is abstract and
cannot be matched to a concrete class, for example, “pic-
tures of the same artistic style of the query image”, “pic-
tures as peaceful as this one”, or “pictures arousing similar
sentiment”. Since the definition of “similarity” is abstract,
it is difficult to apply the aforementioned classification ap-
proach. One has to clearly define a measurement of “style”
or “sentiment” and find corresponding features to rank im-
ages. There has been limited related research on this topic
[164, 165] and the performance of CBIR systems are often
unsatisfactory in this case.

• Seeking the answers to a question related to the query image

In this category, the user is looking for images that may help
him/her to answer a question related to the query image. Al-
though this type of use case is common, there has been little

66 4. Content-based Image Retrieval with Graph Techniques

research in this area from CBIR perspective [166, 167]. One of
the difficulties of this type of use case is that there are numerous
questions that can be initiated from an image. Fig. 4.1 shows a
query image and some questions related to the image.

– What is this event?

– Why a military vehicle
is on the street?

– Where is this place?

– Who are the reporters in
the picture?

– What is the model of the
vehicle in this picture?

Figure 4.1 A query image and a number of questions related to the image

With the query image itself, it would be impossible for a system
to figure out which question to answer. The user may elaborate
the query with additional text information, or the system can
present the results in groups and each group answers a specific
question. An ideal system may answer these questions directly
in text form. However, presenting the relevant images is often
more convenient and brings extra information to the user.

The purpose of a query also affects how the results should be presented
to the user. Sometimes, a user may expect to retrieve either a certain
group of images or one specific image, for example, when querying
“this breed of dog” or “this specific dog”. In another situation, the
user may want to extend the scope of the query image and expect to
see more diverse results, for example, “show me different people with

4.1. Introduction to content-based image retrieval 67

this type of hairstyle”. In the latter case, the diversity of the retrieved
images must be kept so that the results are not “too similar” to the
query image.

4.1.2 Gaps in CBIR systems

Researchers have realized certain gaps that a CBIR system suffers from
to fulfill the requirement of users [168]. The most important one is the
semantic gap that describes the disparity between a user and a CBIR
system when interpreting an image [159, 169]. With different purposes
of a query, the interpretations of the images may be totally different
and the definition of similarity is also different. For example, given the
query image in Fig. 4.1, a user may interpret the image as a serious
public security event, whereas the CBIR system interprets the image
as a vehicle. As discussed in the previous section, it is difficult for a
CBIR system to reduce this gap without understanding the purpose
of the query.

Feature gap (as known as sensor gap [170]) refers to the situation that
a CBIR system does not have effective features to evaluate similari-
ties between images, even when the concept of “similarity” is clearly
defined. This may be due to the limitation of the technology in image
understanding, such as inferior performance in image classification un-
der certain conditions [171]. More often, the functionality of a CBIR
system cannot cover all possible use cases. A system that is designed
to recognize different breed of dogs may not be able to distinguish
different types of vehicles.

In [168], the authors also defined the performance gap and the usability
gap. These two gaps address the same question of how a user can easily
and quickly find and locate images that he/she is interested in from
the results provided by a CBIR system.

68 4. Content-based Image Retrieval with Graph Techniques

4.1.3 Architecture of a CBIR system

A typical CBIR system consists of the following key components [159].

• Feature extraction

This component is responsible for extracting relevant features
for the images in the dataset and the query images. The fea-
tures can be low-level features (such as color features, texture
features, and shape features[159]), middle-level features (such as
SIFT and HOG features [172]) or high-level features (such as
class-specific representations of an image given by a deep neural
network [57]). Feature extraction is normally executed offline
and the features are quantized and stored in a database for fast
access [173]. Feature extraction for query images is executed
online.

• Similarity measurement

To measure the similarity between a query image and images in
the dataset, a metric needs to be defined. The most common
measurement is the Minkowski metric, that is defined as

d(x, y) =

(
d∑

i=1

|xi − yi|r
)1/r

, (4.1)

where x and y are features of two images, d is the dimension of
the feature, r is a constant, and r ≥ 1. In particular, Eq. 4.1 is
the Euclidean distance when r = 2 and the Manhattan distance
when r = 1. When multiple features are used, the similarity
measurements can be assembled using a statistical method to
generate an overall similarity score. Retrieved images are or-
dered according to their similarities to the query image. In a
large-scale CBIR system, involving datasets with millions or bil-
lions of images. The CBIR system may just return the k nearest

4.1. Introduction to content-based image retrieval 69

images for fast retrieval instead of ranking all images. To fur-
ther speed up the process, an approximation of the k-nearest
neighbor search is often used [174].

• Presentation of retrieval results

After the k nearest images are retrieved from the dataset, a
CBIR system normally displays the results as a list of images
ordered by their similarities. To reduce the semantic gap and
improve the user experience, some CBIR systems incorporate
relevance feedback—a technique that refines the results with the
help of users’ feedback [175]. Some other systems allow a user
to either select features that are used for similarity comparison
or refine retrieval results from the keywords that the user give to
a query image [176, 177]. In [178], the CBIR system organizes
images in the dataset into a tree structure using a clustering
algorithm and allows users to browse the retrieval results in a
hierarchical view. This approach combines the visual content
and the semantics, thus making it easier for users to locate the
target images.

A good CBIR system shall use not only the visual content of the
images but also all available information, such as tags, annotation,
date, location and surrounding texts. A key requirement for a general
CBIR system is the ability to handle large and continuously evolving
dataset. All operations, including feature extraction and similarity
measurement, must be fast and efficient to provide real-time response.
The retrieved results shall be presented with good user experience and
a method shall be available for users to refine the query and locate
the target images quickly. The next subsection will show how graph
techniques can help improve the user experience of CBIR systems.

70 4. Content-based Image Retrieval with Graph Techniques

4.2 Visual-semantic graph

Graph-based techniques have been extensively used in CBIR systems.
In [179], the authors built a visual similarity graph where the nodes
are the images and the weight of an edge is the similarity score of the
two images. Taking the relevance feedback input to the system, they
rank an image based on the probability of a random walker hitting
a relevant image before hitting a non-relevant image, given that the
walk started from that image. In [180], the authors used multi-graph
learning to incorporate user feedback and generated the re-ranked re-
sults. Given the initial retrieval result and the relevant feedback, the
system first constructs multiple visual similarity graphs—each using
a different feature. Then multi-graph learning with inter-graph and
intra-graph constraints is applied to generate a fused graph and the
retrieval results are reordered. Sometimes, an image dataset may con-
tain annotations or tags. In [181] the authors constructed two types of
similarity graphs: a visual similarity graph where nodes are the images
and the weights of the edges are the similarity values calculated from
the image descriptors (features); a semantic similarity graph where
nodes are the term-sets (or tags) and the weights of the edges are the
association level of the term-sets. Then the two graphs are unioned
together and the system allows the user to browse the dataset using a
paradigm of a random walk with teleport as described in 3.4.3.

These approaches attempt to tackle the disadvantage of low-level fea-
tures by either embedding various features, incorporating user feed-
backs, or exploiting semantic information. However, they have not
been able to address the challenges of capturing the semantic rela-
tions among a large number of concepts, for example, general topics
at the Internet level. Nor are they able to provide good service to
users when the intention of the query is unknown.

To address the ambiguity of the purpose of a query, in [182], the

4.2. Visual-semantic graph 71

authors proposed the “mental image search” method, where a user
can locate target images by a series of relative feedback or a visual
composition of the mental image. Instead of presenting the query
result as a ranked list, the “mental image search” approach applies an
interactive method to present the images in the database. A major
limitation of this approach is that the system does not take advantage
of the visual and conceptual relations of the images in the database.
Furthermore, users have difficulty to navigate the presented images
because they are lack of clear logic.

The next subsection will show a technique that can capture visual-
focused relations among a large number of veracious concepts at the
Internet level. When used in a CBIR system, this graph can greatly
reduce the users’ efforts in finding the target images when the intention
of the query is unspecified.

4.2.1 Click-through data

Annotating or tagging images of a large image dataset has always been
a bottleneck for a general CBIR system. The tremendous amount of
work and the inadequate quality of annotation prevent the industry
from building a good general CBIR system for a big image dataset.
However, search engines that provide image search services on the
Internet based on the title or surrounding text have collected a huge
amount of data that can be used as annotations and help improve the
quality of a general CBIR system. Text-based image search engines let
users enter a query text and then rank images in the dataset according
to the title, image file name or surrounding text of the web page that
the image is embedded. Thumbnails of the images are presented to
the user ordered by their relevance. The user then clicks on the image
that he/she is interested in to view the full-size image or get extra
information about the image. When the user clicks an image in the

72 4. Content-based Image Retrieval with Graph Techniques

Table 4.1 Summary of the training dataset of the Microsoft Clickture-lite
Dataset

images triads query texts avg. query
texts per

image

avg. images
per query

text

avg. clicks
per image

1M 23M 11,7M 23.1 2.0 82.3

result list, he/she gives his consensus on the association of the query
text and the image. The number of clicks received for each image and
query text pair is recorded by the system. This type of data is named
as click-through data [183]. Each item in the click-through data is a
triad that contains the query text, the image, and the number of clicks.
The click-through data used in this thesis is the Microsoft Clickture-
lite Dataset [184, 185]. Table 4.1 shows the summary of the training
dataset of this dataset.

Fig. 4.2 shows some examples of the click-through data. Note that an
image may be associated with multiple query texts and vice versa.

The click-through data have the following properties:

• The majority of click-through triads are correct associations and
the query texts with a high number of clicks describe the most
important aspect of the image. However, there are also cases
that the associations between the image and the query text are
incorrect.

• The raw query texts contain different forms of the text for the
same concept, such as plural forms of nouns, different order of
words, and synonyms. Many query texts also contain typos,
which dramatically increase the number of query texts associated
with an image.

4.2. Visual-semantic graph 73

bike (239)
picture of bikes (19)
pictures of bicycles (8)
bike riding (9)
kids on bike (1)
animated kids bicycles (1)
2 children (1)

great barrier reef (312)
the great barrier reef (73)
great barrier reef animals (18)
tropical fish (8)
galapagos fish (2)
underwater pictures (1)

mexican revolution (5)
mexico in 1900s (2)
mexican cartel (2)
guns of mexican revolution (1)
mexican military cap (1)

paul ryan bow (10)
paul ryan bowhunting (10)
paul ryan with bow (2)
paul ryan bow and arrow (2)
paul ryan archery (1)

(a) (b)

Figure 4.2 Examples of click-through data. (a) the image; (b) the associ-
ated query text and number of clicks (shown in brackets).

74 4. Content-based Image Retrieval with Graph Techniques

• One image can be described by multiple valid query texts. For
example, the first image in Fig. 4.2 contains both children and
bikes. Thus, the query texts related to “children”, “bike”, and
the combination of the two are all valid descriptions.

• Some query texts contain general words that do not describe the
content of an image, for example, irrelevant nouns such as “pic-
ture” and “photo”, prepositions, conjunction, and determiners.

4.2.2 Query text cleaning

Since the raw click-through data, in particular, the query texts, are
noisy, we first apply text processing to clean up the input data. Text
processing first converts each query text into a unique semantic ID–a
set of word stems–in order to merge different forms of the same query
into one entry. This procedure includes the following steps:

1. Remove the triads in which the query texts contain non-ASCII
characters.

2. Split each query text into words and perform part-of-speech tag-
ging [186]. After tagging, nouns, verbs, adjectives, and adverbs
are kept. All other word types are discarded.

3. Lemmatize words using WordNet engine [187] so that a word is
represented only by its stem.

4. Remove words that do not describe the content of an image. Our
blacklist includes “image”, “picture”, “free”, “photo”, etc.

After the query text cleaning, the number of semantic IDs is signifi-
cantly reduced compared to the number of query texts. For example,
query texts such as “picture of bikes”, “the free pictures of bike”, “bike

4.2. Visual-semantic graph 75

picture”, and “image with bikes” are all converted into the same se-
mantic ID “bike”. However, typos are not corrected during the text
processing, because many contemporary words used on the Internet
are deliberately misspelled to achieve a sense of humor or for obfusca-
tion. For example “doge” and “cate” shall not be considered as typos
for “dog” and “cat”.

4.2.3 Build the visual-semantic graph

After the query texts are converted into semantic IDs, the triads with
the same image and the same semantic ID are merged. The number of
clicks of the new triad is the sum of clicks of the merged triads. The
merged triads can be represented as a bipartite graph (called image-
semantic bipartite graph) where one type of node represents images,
the other type of node represents semantic ID, and the weight of an
edge that links an image node and a semantic ID node is the number
of clicks. This image-semantic bipartite graph is similar to the one
used in [181]. An induced subgraph of this graph is shown in Fig 4.3.
Note that the graph contains duplicate concepts, such as “bike” and
“bicycle”, and typos, such as “bicicle” and “bicycel”.

Because of the diversity of query texts, semantic IDs are still redundant
in the image-semantic bipartite graph. For example, the semantic ID
“obama”, “barrack obama”, “president barrack obama”, and typos of
these IDs all refer to the same concept although with different IDs.
We note that semantic IDs are associated with the same group of
images if the meanings of the semantic IDs are identical. Meanwhile,
images that are associated with the same group of semantic IDs are
also conceptually close to each other. With this observation, we can
construct a visual-semantic graph that contains nodes with explicit
concepts to further reduce the redundancy in this bipartite graph.

76 4. Content-based Image Retrieval with Graph Techniques

623

38

23

12

1302

723

11

122

68

38

28

24

12

Bike

Bicycle

Child

Child Bike

People

3

Bicicle

Figure 4.3 A bipartite graph that shows images, semantic IDs, and the
number of clicks associated with the two elements.

4.2. Visual-semantic graph 77

A visual-semantic graph is a graph where each node is the collection
of the images and the semantic IDs that are conceptually identical.
For example, the semantic node “bike” contains the images of bikes
and the semantic IDs such as “bike” and “bicycle”. Let P be the set of
images and Q be the set of semantic IDs in an image-bipartite graph.
Let p ∈ P be an image, q ∈ Q be a semantic ID, and cpq be the
number of clicks that is associated with p and q. Let si =(Pi, Qi, ci)

be a node in the visual-semantic graph where Pi is the set of images
belonging to si, Qi is the set of semantic IDs belonging to si and ci is
the total number of clicks that are associated with items in Pi and Qi.
We can merge image x to node si if image x is more associated with
Si than any other node. For example, merge x to si if

∑
q∈Qi

cxq >

τ
∑

q∈Q cxq, where τ ∈ (0, 1) is the threshold that controls the level
of association. If τ is too small, we may merge loosely related items
into one concept. For example, the images of Obama’s family may
be merged into the node of Obama. If τ is too big, images with the
same concepts may end up with different nodes. In practice, we simply
select τ = 0.5, which guarantees the majority rule if the assignment is
considered as a voting event. Similarly semantic ID y is merged to Si if∑

p∈Pi
cpy > τ

∑
p∈P cpy. A pivot-based algorithm is used to construct

the nodes in the visual-semantic graph from the triads that the image-
semantic graph represents. The algorithm first selects the triad with
the largest number of clicks as the pivot node, and then merges images
and semantic IDs to the pivot node alternatively. Algorithm 4 shows
the details of this method.

After the nodes are constructed, we can build the visual-semantic
graph by linking the two nodes with an edge whose weight represents
the level of association of the two concepts. Let si = (Pi, Qi, ci) and
sj= (Pj , Qj , cj) be two nodes in the visual-semantic graph. The weight

78 4. Content-based Image Retrieval with Graph Techniques

given input triad set T with elements (pt, qt, ct), where
t = 1, 2, · · · , |T |, pt ∈ P and qt ∈ Q

initiate node set S = ∅ and completed traid set U = ∅
while T\U is not empty

select t∗ = argmaxt (ct) from set T\U
let si = (Pi, Qi, ci) where Pi = {pt∗}, Qi = {qt∗} and ci = ct∗

remove pt∗ from P and remove qt∗ from Q
repeat until Pi and Qi does not change anymore

for x ∈ P
if
∑

q∈Qi
cxq > τ

∑
q∈Q cxq

add x to Pi

remove x from P
add the triads in T that contain (x, q) to U for

all q ∈ Qi

for y ∈ Q
if
∑

p∈Pi
cpy > τ

∑
p∈P cpy

add y to Qi

remove y from Q
add the triads in T that contain (p, y) to U for

all p ∈ Pi

add si to S
return S

Algorithm 4: Construct nodes in a visual-simantic graph from
input triads

4.2. Visual-semantic graph 79

Table 4.2 Statistics of the visual-semantic graph generated from Microsoft
Clickture dataset

nodes edges density average degree diameter clustering
coefficient

729K 5.32M 2.0E-5 14.6 14∗ 0.273∗∗

* estimated using 100 randomly selected nodes
** estimated using 10k randomly selected nodes

of the edge that links node si and sj is defined as

wij =
∑
p∈Pi

∑
q∈Qj

cpq +
∑
p∈Pj

∑
q∈Qi

cpq. (4.2)

If wij = 0, no edge is added.

Note that there is a weight associated with each node in the visual-
semantic graph. The weight of the node indicates the popularity of
the concept. For example, the weight of node “dog” is much larger
than the weight of node “1989 ford engine” since the first concept is
more popular in the search history.

4.2.4 Properties of the visual-semantic graph

In this section, we study some properties of the visual-semantic graph
built from Microsoft Clickture-lite dataset using Algorithm 4. The
generated graph is called Microsoft Clickture-lite Visual-Semantic (MCVS)
graph. Table 4.2 shows some statistics of the MCVS graph.

The MCVS graph contains 729k nodes that are generated from 11.7M
query texts. Each node represents a semantically exclusive concept
and is associated with the images of that concept. The concepts are
similar to the labels used in an image dataset for machine learning
tasks. However, unlike most of the image datasets where the labels

80 4. Content-based Image Retrieval with Graph Techniques

are objects [188], labels in the MCVS graph show great variation, since
they contain:

• general objects such as “dog”, “table”, and “car”.

• names of people and group of people such as “Albert Einstein”,
“Justin Bieber”, and “One Direction”.

• names of places or entities such as “White House”, “Florida”, and
“MIT”.

• names of events such as “911”, “the Vietnam war” and “American
civil war”.

• a specific part of an object or a specific style of some object such
as “Ford engine”, “Bob hairstyle”, “rose tattoo” and “dinosaur
color page”.

• feelings or descriptions such as “funny”, “peaceful”, and “fast”.

• actions or subjects in action such as “running”, “horse riding”,
and “man riding a bike”.

Because of the great variety of the labels, it is impossible to categorize
the type of links between the labels as normally used in a semantic
graph. However, since the visual-semantic graph is generated from an
image dataset, links between the nodes are determined by the visual
content of the nodes. For example, a strong link between “cat” and
“dog” is due to the fact that they are often shown together in a picture.
Similarly, a link between “fish” and “water” does not indicate “fish lives
in the water”, but fish and water often appear together in a picture.
Next, we can examine some subgraphs of the MCVS graph and see
the relations between the nodes.

4.3. Using visual-semantic graph in CBIR systems 81

Figures 4.4, 4.5 and 4.6 shows three subgraphs of the MCVS graph.
Each subgraph contains a seed node, 10 neighboring nodes of the seed
node and 30 second-level neighboring nodes. The neighboring nodes
are selected according to the weight of the edge that connects them
to the seed node. The size of a node indicates the weight of the node.
For clarity, edges with small weight are not shown in the graph.

4.3 Using visual-semantic graph in CBIR systems

4.3.1 Graph-enhanced CBIR system

As discussed in Section 4.1, the biggest challenge that a CBIR system
faces is the difficulty to understand the intention of a query. Even if
the system provides users options to choose the most relevant features
for that query [176], it is challenging for users to match their intention
to the most efficient feature set. In particular, if users are looking
for the answer to a question related to the query image, showing visu-
ally similar images rarely provides information to answer the question.
This section presents a graph-enhanced CBIR system (gCBIR system)
that addresses these difficulties with the help of graph techniques using
the visual-semantic graph.

A visual-semantic graph organizes a large variety of concepts into a
graph structure and the links between nodes capture the visual affinity
of different concepts. Since images are more convenient in describing
complex concepts and are easier for users to understand, users are
able to find their target images faster by navigating through visual
relations. Given a query image, the proposed gCBIR system first ranks
the nodes in the visual-semantic graph using a multi-label ranking
algorithm. The ranked nodes are presented to the user as a list. When
a user clicks the name of a node, the neighboring nodes of the selected
one are shown to the user ordered by their relevance to the query

82 4. Content-based Image Retrieval with Graph Techniques

funny

christmas

flower

fall

butterfly

beach

spring

desktop
cool

nature

summer

computer
fun

landscape

art

art_clip_summer

screensavers

beach_sunset

desktop_spring

desktop_summer

flower_summer

clipart_summer

desktop_nature

fun_summer

beautiful_nature

desktop_screensaver
beach_desktop

downloads

natural

screensavers_summer

natural

high_quality

hd_summer

butterfly_desktop

computer_summer

butterfly_summer

garden_summer

art_clip_kid_summer

landscape_summer

summer_vacation

computer_desktop_summer

Figure 4.4 The subgraph of seed node “summer”. In the subgraph, there are
nodes that are naturally related to “summer” such as “beach”, “flower”, and
“butterfly”. “spring” and “fall” are also in the subgraph. Note that “winter”
is also linked with “summer” but the edge between the two nodes is not shown
because its weight is too low. It is surprising to see that “Christmas” is in
the graph. “Christmas” and “Summer” are linked through the node “funny”
because of the humor effect (know as surreal humor) created by the illogical
combination of “summer” and “Christmas”.

4.3. Using visual-semantic graph in CBIR systems 83

cycle_water

fun

motorcycle

bicycle

cave_man

motorcycle_rex_t

bike_bmx

bike_riding

fortune_wheel

art_bicycle_clip
motorcycle_three_wheel

motorcycle_wheel

art_clip_motorcycle

bike_mountain

car_motorcycle

bicycle_coloring_page
bike_draw

bike_sport

art_bike_clip_helmet

art_clip_tricycle

art_bike_clip_riding

clipart_motorcycle

drawing_motorcycle

bike_kid_riding

action

car_wheel

art_brother_clip

3_car_wheel

bicycle_clipart

animated_bike

art_cartoon_clip_motorcycle

first_wheel

chopper_mini

chopper_davidson_harley
chopper_motorcycle

bicycle_chopper

bike_boy_riding

bicycle_black_white

clipart_tire

ycle_electric_full_suspension

bicycle_diagram

Figure 4.5 The subgraph of seed node “bicycle”. This subgraph contains
many clearly related items such as “motorcycle”, “bike_riding” and “moun-
tain_bike”. The subgraph also shows that “bicycle” and “motorcycle” are
related to “fun”. It is also interesting to see that the node “cave_man” in
the graph. “cave_man” and “bicycle” are linked with node “first_wheel”. In
common sense, “cave_man” invented the first wheel that is naturally related
to bicycle.

84 4. Content-based Image Retrieval with Graph Techniques

love_poem
forest

rain
dance

purple
rainforest

kiss

cloud_type

precipitation

flower_pur

purple_ros

cloud_rain

forest_rain

art_wordart_clip_rain
cartoon_cloud droplet_water

drop_rain

dancing_rain

raindrop

inspirational_quote_saying

cle_transpiration_water

forest_rain_tropical

gif_rain

rain_rainforest

art_black_clip_rain_whiteclipart_rain

art_clip_day_rainy

animated_rain

art_clip_drop_rain

rain_symbol

raindrop_template

kissing_rain

purple_rain

kiss_rain

coloring_page_raindrop

flower_twitter

falling_rain

ation_evaporation_precipitation

rain_shower

cartoon_raindrop

Figure 4.6 The subgraph of seed node “rain”. In the subgraph, there are
nodes that are naturally related to “rain” such as “cloud”, “rain_drop”, “for-
est”, and “precipitation”. “dance” is linked to “rain” mainly because of the
famous scene in the American movie “Singin’ in the rain” [189]. Similarly,
node “purple” appears in the graph because of the famous album and film
“purple rain” [190, 191]. It is also interesting to see that “kiss_rain” links
node “rain” and “love_poem” together.

4.3. Using visual-semantic graph in CBIR systems 85

image. Users can also choose to view all the images in the node. Fig.
4.7 shows the screenshots of a typical use case.

After a query image is received, the gCBIR system first ranks the
nodes in the visual-semantic graph according to their similarities to
the query image. This is a typical multilabel ranking problem that has
been studied for decades [P3, P5, 192, 193]. Different approaches have
been proposed to solve this problem. Tsoumakas et al. categorized the
algorithms into three groups: problem transformation methods, algo-
rithm adaptation methods and ensemble methods [193]. The problem
transformation methods take the binary classification methods as the
basis and use either a one-against-all or one-against-one strategy to get
the multilabel classification results. The algorithm adaptation meth-
ods modify the existing algorithms for binary classification problems
to handle multiple labels. The ensemble algorithms apply a set of
basic classifiers to the subsets of the samples and the labels. The re-
sults are aggregated using sum, voting or other appropriate rules [194].
However, when the number of labels is large, previous algorithms are
either infeasible or perform poorly.

To effectively tackle the problem with a large number of labels, Zhang
et al. proposed a multilabel ranking algorithm that is based on the k-
nearest neighbor paradigm [P3]. The proposed algorithm treats labels
as the properties of the samples and models the probability of having
a certain property as an exponential function of the distance. Taking
all the positive samples around a query sample into consideration,
the probability of not having the property can be calculated using
the product rule. The proposed method shows superior performance
on the multilabel datasets generated from the Microsoft Clickture-lite
Dataset compared to other instance-based algorithms such as MLkNN
[195], BRkNN and BRkNN-w [196].

86 4. Content-based Image Retrieval with Graph Techniques

(a)

(b)

(c)

Figure 4.7 A typical use case of the proposed gCBIR system using the
visual-semantic graph. (a) Given a query image (shown in the top-left cor-
ner), the proposed gCBIR system shows the list of nodes ordered by their
relevance to the query image. (b) After the user selected “aquarium”, the
gCBIR system shows the neighboring nodes of node “aquarium” in the or-
dered of their relevances to the query image. The user can continue browsing
the graph by selecting a next neighboring node. (c) The user selects “color-
ful_fish” and the proposed gCBIR system shows images associated with node
“colorful_fish”.

4.3. Using visual-semantic graph in CBIR systems 87

After the nodes are ordered according to their affinity to the query
image, the query result is presented to the user as described in Fig.
4.7. The gCBIR system only sorts the nodes once when the system
receives the query image. To further improve the user experience,
nodes that have already been presented in the previous screens will not
be shown again when the user navigates through the visual-semantic
graph.

4.3.2 Experimental results of the gCBIR system

Next, we evaluate the effectiveness of the gCBIR system using the
MCVS graph by comparing its performance to traditional CBIR sys-
tems. We suppose a user tries to find the images of a certain concept
by providing a query image. The gCBIR system ranks the nodes in the
visual-semantic graph according to their relevance to the query image
and shows the result to the user as a graph. The system performance
can be evaluated by the effort (for example, the number of checked
items) used to find the correct node. When the results are presented
as a list, we can assume that the user takes the same amount of effort
to check each item in the list. With this assumption, the mean in-
verse rank (MIR), also known as the mean reciprocal rank in statistics
[197], can be used to evaluate the performance of a ranking algorithm
[P3]. However, when the results are presented as a graph, it requires
extra effort to navigate to the neighboring nodes of a node. Thus
extra penalties should be applied when the user navigates the graph
further. Suppose that the target node for the query image i is found
with the navigation of the sequence of nodes n1, n2, · · · , nKi and the
rank of each node is r1, r2, · · · , rKi in the list of neighboring nodes of
the previous node. Let c be the penalty of navigating to a neighboring
node. Let n be the number of query images in the test set. The MIR
of navigating through a graph is defined as

88 4. Content-based Image Retrieval with Graph Techniques

MIR =
1

n

n∑
i=1

1∑Ki
j=1 rj + (Ki − 1) c

. (4.3)

The larger MIR score is, the less effort a user needs to find the correct
node, thus the better a CBIR system performs.

As described in Section 4.2.1, the training dataset of the Microsoft
Clickture-lite Dataset contains 1M images and 11M query texts. The
development set contains 21893 pairs of image and query text. The
MCVS graph generated using Algorithm 4 contains 729k nodes. We
map each query text to a node in the MCVS graph and generate
21893 image and node pairs from the development set. A traditional
CBIR system, where the query results are presented as a list, is used
as the baseline to compare with the proposed gCBIR system. Let k

be the maximum number of items in a list that can be checked. For
the baseline system, if the correct node does not appear in the first
k items, we mark the query as a failed item and the MIR score for
this item is set to 0. For the gCBIR system, we assume that the user
will only navigate to the neighboring nodes once (Ki = 2 in Eq 4.3).
Thus for the gCBIR system, the maximum number of items that can
be checked is k2. If the correct node does not appear in the k2 items,
the query is marked as failed and the MIR score is set to 0. The MIR
score for the baseline system is calculated with k = 100. The proposed
gCBIR system was evaluated using both k = 100 and k = 10. Note
that when k = 10, the total number of nodes that can be checked
is the same as the baseline. Table 4.3 shows the MIR scores and
the number of failed queries of the baseline system and the proposed
gCBIR system using different parameters.

Table 4.3 shows that the proposed gCBIR system clearly outperforms
the baseline with regard to the MIR score. Note that when k = 10,
the gCBIR system presents the same amount of items to the user as

4.4. Summary 89

Table 4.3 Experimental results of the proposed gCBIR system

baseline
(k=100)

gCBIR
(k=100,

c=1)

gCBIR
(k=10,c=1)

gCBIR
(k=10,
c=10)

MIR 0.081 0.102 0.094 0.082
failed queries 14719 9149 15895 15895

the baseline. The larger MIR score seen in this setup indicates that a
user is able to find the target node more easily than the baseline. It is
also noticed that the number of failed queries of the gCBIR system is
larger than the baseline when k = 10. This is expected since when the
user navigates to the neighboring nodes, the nodes are further from
the query image. Actually, this behavior is advantageous if the user
is looking for answers to a question related to the query image. Since
he/she is able to quickly find more related items in a broader range.

4.4 Summary

Content-based image retrieval is an important application of computer
vision and data mining. As the proverb goes “a picture is worth a
thousand words”. People are capable of capturing a great amount
of information and details in a short time from an image than the
description in text format. Retrieving valuable information from a
large image or multimedia dataset using a query image is intuitive and
efficient. However, because of the enormous variety of the intentions
of a query, it is difficult for a CBIR system to select the most efficient
feature set and ranking method to provide a satisfying retrieval result.
This difficulty is coined as “semantic gap” and it has been one of the
most critical research topics regarding the CBIR systems [52].

With the fast growth of the Internet and the advances in electronic
devices, a large volume of multimedia content such as images, videos,

90 4. Content-based Image Retrieval with Graph Techniques

and audio clips are generated. Retrieving important information from
these data is crucial and challenging. Previous efforts of annotating big
image datasets using tags have been proved to be costly and unreliable
since they often generate noisy annotations. More important, the
content and the focus on the Internet is continuously changing and it
is impossible to apply human resources to provide timely annotations.

People have been relying on search engines, mostly text-based, to re-
trieve information—including multimedia content—from the Internet.
When a user uses a text-based image search engine, images are ranked
according to the title or surrounding texts and shown as thumbnail
images. From the given thumbnail images, the user can click on the
image he/she is interested in to get either the full-size image or further
information about that image. The number of clicks that an image
receives with regard to the query text gives a reliable evaluation of the
association between the two items. Microsoft Clickture-lite dataset is
this type of dataset that contains a large number of triads of query
text, image and the number of clicks that have been collected from a
text-based image search engine [183]. From this kind of datasets, we
can construct visual-semantic graphs that capture the visual relations
between different semantic concepts. The weight of the link indicates
the strength of the association from the visual perspective.

With the help of the visual-semantic graph, we can effectively address
the difficulties that a CBIR system deals with. Instead of showing the
retrieval results as a list of ranked images, we can show the graph of
the ranked semantic concepts. The user is able to navigate the visual-
semantic graph to quickly locate the target images. Furthermore, with
the visual-semantic graph, the user can explore related information
quickly and thus find answers to questions that are related to the
query image. The experimental results show that the proposed gCBIR
system can find the target concept in a large dataset more efficiently

4.4. Summary 91

compared to traditional CBIR systems.

The proposed gCBIR system can be applied to any large multimedia
database that contains the conceptual and visual relations between
the entities. However, the industry has not made such kind of large
databases publically available other than the Microsoft Clickture-lite
database. The proposed algorithm will be verified on other databases
when they become available. In a real-world system, images and con-
cepts are changing continuously. Constructing the visual-semantic
graph and using it in a gCBIR system for a large dynamic multimedia
database is an interesting topic for future research.

Unlike links in a semantic graph that indicate the semantic relations
between concepts, links in a visual-semantic graph are closely related
to the visual content of the concepts. They show more diversity than
the relations in a semantic graph. By examining the visual-semantic
graph, we notice some interesting links among the concepts. The use
of visual-semantic graph shall not be limited to CBIR systems. It
embeds important and interesting information about the relations of
a large variety of concepts and is worthy of further attention.

92 4. Content-based Image Retrieval with Graph Techniques

93

5. CONCLUSIONS

Over the past hundreds of years, graph theory has attracted great
attention from not only mathematicians but also researchers and en-
gineers in many other fields. Any data that represent relations among
identities can be modeled in a graph structure by nodes and edges.
From the “Seven Bridges of Königsberg” problem [2] and the “Four-
color theorem” [8] to recent advances in random graph models [10] and
big graph analysis [7], graph theory has become an important branch
in mathematics and a fundamental tool in computer science, which
helps solve numerous scientific and engineering problems. Despite nu-
merous topics in graph analysis, this thesis discussed a few topics that
the author studied over the years when working on social networks
and multimedia data.

Nodes and edges are the constructional elements of a graph. Various
attributes have been defined to evaluate the importance of nodes or
edges, or to determine the roles that nodes or edges play in a graph.
Comparing to the study of attributes for nodes, there has been little
research on attributes or properties of edges in a graph. In [P2, P4],
we studied the clustering structure of social networks and proposed
an authenticity score to measure the truthfulness of an edge. Edges
with low authenticity scores are likely to be either outliers in a graph
or links that connect nodes in different clusters in a graph. Numerous
applications can benefit from the study of edge authenticity, such as
outlier detection, graph clustering, data clustering, and graph data

94 5. Conclusions

preprocessing.

Cluster structure is a common phenomenon in social networks. Find-
ing clusters in a big graph helps to understand the relations among
nodes and extract useful information from the structure of a network.
In [P1], we developed the Limited Random Walk (LRW) algorithm in
which the scope of the walking agents is limited using inflation and
normalization operators. Using the LRW procedure, we can extract
features for each node in a big graph using an embarrassingly par-
allel implementation. After features are obtained, any suitable data
clustering algorithm can be applied to find clusters in the graph.

The LRW algorithm and the research of edge authenticity score pro-
vide us new insights into a graph data structure and answer our first
research question raised in Chapter 1.

This thesis also showed how graph techniques can be used to improve
the user experience of content-based image retrieval (CBIR) systems.
Given a query image, a CBIR system ranks images in a large im-
age dataset according to their similarity to the query image and the
retrieved images are presented to the user by this order. However, be-
cause of the ambiguity of the intention of a query and the limitation
of the computer vision technologies, a CBIR system has to deal with
the challenges, coined as “semantic gap”, that the retrieved images do
not meet users’ expectations. The definition of “similarity” may be
different with respect to the intentions of the query and it is always
difficult to choose the most suitable feature set that is optimal to a
specific definition of “similarity”. This thesis proposed a method to
construct a visual-semantic graph—a graph where each node repre-
sents an independent semantic concept and each link represents the
visual association between two concepts—from clickture datasets that
contain triads of query text, image, and the number of clicks. Different

95

from normal semantic graphs where links represent the logical relations
of different concepts, links in a visual-semantic graph captures the vi-
sual relations of different objects and concepts. The graph-enhanced
CBIR system (gCBIR) presented in this thesis significantly improves
the efficiency of retrieving target images from large image datasets and
provides answers to the second research question raised in Chapter 1.

The studies about the visual semantic graph and the gCBIR system
are far from complete. For future work, new algorithms should be
developed to construct the visual-semantic graphs with a better ab-
straction of semantic concepts. More importantly, since the content on
the Internet is continuously changing, fast algorithms are required to
update the visual-semantic graph continuously. When new concepts
appear, their links to the existing concepts shall be predicted. Fur-
thermore, combining natural language processing and voice processing
techniques with the gCBIR system can provide a solution with better
efficiency. This is also an important direction for future research work.

96 5. Conclusions

97

BIBLIOGRAPHY

[P1] Honglei Zhang, Jenni Raitoharju, Serkan Kiranyaz, and Mon-
cef Gabbouj. Limited random walk algorithm for big graph data
clustering. Journal of Big Data, 3(1):26, 2016.

[P2] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. Outlier
edge detection using random graph generation models and appli-
cations. Journal of Big Data, 4(1):11, April 2017.

[P3] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. A k-
nearest neighbor multilabel ranking algorithm with application to
content-based image retrieval. In 2017 IEEE International Con-
ference on Acoustics, Speech, and Signal Processing, ICASSP 2017
- Proceedings, pages 2587–2591. IEEE, 2017.

[P4] Honglei Zhang, Serkan Kiranyaz, and M. Gabbouj. Data Cluster-
ing Based on Community Structure in Mutual k-Nearest Neighbor
Graph. International Conference on Telecommunications and Sig-
nal Processing (TSP), 2018.

[P5] Honglei Zhang and Moncef Gabbouj. Feature Dimensional-
ity Reduction with Graph Embedding and Generalized Hamming
Distance. IEEE International Conference on Image Processing
(ICIP), 2018.

[1] David S. Richeson. Euler’s Gem: The Polyhedron Formula and the
Birth of Topology. Princeton University Press, 2008.

[2] The Euler Archive. Available at http://eulerarchive.maa.org/.

[3] Brian Hopkins and Robin J. Wilson. The truth about Königsberg.
The College Mathematics Journal, 35(3):198–207, 2004.

98 BIBLIOGRAPHY

[4] P. Erdős. Graph theory and probability. II. CANAD. J. MATH,
1960.

[5] John Harris, Jeffry L. Hirst, and Michael Mossinghoff. Combina-
torics and Graph Theory. Undergraduate Texts in Mathematics.
Springer-Verlag, New York, 2 edition, 2008.

[6] David Easley and Jon Kleinberg. Networks, Crowds, and Markets:
Reasoning about a Highly Connected World. Cambridge University
Press, 1 edition edition.

[7] Mark Newman. Networks: An Introduction. Oxford University
Press, Oxford ; New York, 1 edition edition, May 2010.

[8] Professor Cayley. On the Colouring of Maps. Proceedings of
the Royal Geographical Society and Monthly Record of Geography,
1(4):259–261, 1879.

[9] E.L. Lawler. The Travelling Salesman Problem: A Guided Tour of
Combinatorial Optimization. Wiley-Interscience series in discrete
mathematics and optimization. John Wiley & sons, 1985.

[10] Paul Erdős and Alfréd Rényi. On Random Graphs I. Publica-
tiones Mathematicae (Debrecen), 6:290–297, 1959.

[11] Jérôme Kunegis. KONECT – The Koblenz Network Collection.
In Proc. Int. Conf. on World Wide Web Companion, pages 1343–
1350, 2013.

[12] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali,
and Ploutarchos Spyridonos. Community detection in Social Me-
dia. Data Mining and Knowledge Discovery, 24(3):515–554, June
2011.

[13] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P.
Gummadi. On the evolution of user interaction in facebook. In

BIBLIOGRAPHY 99

Proceedings of the 2nd ACM workshop on Online social networks,
pages 37–42. ACM, 2009.

[14] Vito Latora and Massimo Marchiori. Is the Boston subway a
small-world network? Physica A: Statistical Mechanics and its
Applications, 314(1):109 – 113, 2002.

[15] David Croft, Antonio Fabregat Mundo, Robin Haw, Marija Mi-
lacic, Joel Weiser, Guanming Wu, Michael Caudy, Phani Garap-
ati, Marc Gillespie, Maulik R. Kamdar, Bijay Jassal, Steven Jupe,
Lisa Matthews, Bruce May, Stanislav Palatnik, Karen Rothfels,
Veronica Shamovsky, Heeyeon Song, Mark Williams, Ewan Bir-
ney, Henning Hermjakob, Lincoln Stein, and Peter D’Eustachio.
The Reactome pathway knowledgebase. Nucleic Acids Research,
page gkt1102, November 2013.

[16] Mark EJ Newman. Modularity and community structure in
networks. Proceedings of the National Academy of Sciences,
103(23):8577–8582, June 2006. arXiv: physics/0602124.

[17] Austin R. Benson, David F. Gleich, and Jure Leskovec. Higher-
order organization of complex networks. Science, 353(6295):163–
166, July 2016.

[18] Michelle Girvan and Mark EJ Newman. Community structure
in social and biological networks. Proceedings of the National
Academy of Sciences, 99(12):7821–7826, June 2002.

[19] David Hallac, Jure Leskovec, and Stephen Boyd. Network Lasso:
Clustering and Optimization in Large Graphs. In Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’15, pages 387–396, New York,
NY, USA, 2015. ACM.

[20] R. Lambiotte, J. C. Delvenne, and M. Barahona. Random Walks,
Markov Processes and the Multiscale Modular Organization of

100 BIBLIOGRAPHY

Complex Networks. IEEE Transactions on Network Science and
Engineering, 1(2):76–90, July 2014.

[21] Yu Xin, Zhi-Qiang Xie, and Jing Yang. The adaptive dynamic
community detection algorithm based on the non-homogeneous
random walking. Physica A: Statistical Mechanics and its Ap-
plications, 450:241–252, 2016.

[22] Wayne W. Zachary. An information flow model for conflict and
fission in small groups. Journal of anthropological research, pages
452–473, 1977.

[23] Mason A. Porter, Jukka-Pekka Onnela, and Peter J. Mucha. Com-
munities in networks. Notices of the AMS, 56(9):1082–1097, 2009.

[24] R. Andersen, Fan Chung, and K. Lang. Local Graph Partitioning
using PageRank Vectors. In 47th Annual IEEE Symposium on
Foundations of Computer Science, 2006. FOCS ’06, pages 475–
486, October 2006.

[25] Aydin Buluç, Henning Meyerhenke, Ilya Safro, Peter Sanders, and
Christian Schulz. Recent Advances in Graph Partitioning. CoRR,
abs/1311.3144, 2013.

[26] Huaijun Qiu and Edwin R. Hancock. Graph matching and clus-
tering using spectral partitions. Pattern Recognition, 39(1):22–34,
2006.

[27] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern
Recognition Letters, 31(8):651–666, June 2010.

[28] Zhen Hu and Raj Bhatnagar. Clustering algorithm based on
mutual K-nearest neighbor relationships. Statistical Analysis and
Data Mining, 5(2):100–113, April 2012.

BIBLIOGRAPHY 101

[29] Kohei Ozaki, Masashi Shimbo, Mamoru Komachi, and Yuji Mat-
sumoto. Using the Mutual K-nearest Neighbor Graphs for Semi-
supervised Classification of Natural Language Data. In Proceedings
of the Fifteenth Conference on Computational Natural Language
Learning, CoNLL ’11, pages 154–162, Stroudsburg, PA, USA, 2011.
Association for Computational Linguistics.

[30] Z. Wu and R. Leahy. An optimal graph theoretic approach to
data clustering: theory and its application to image segmentation.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
15(11):1101–1113, November 1993.

[31] Wei Zhang, Xiaogang Wang, Deli Zhao, and Xiaoou Tang. Graph
Degree Linkage: Agglomerative Clustering on a Directed Graph.
In Andrew Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi
Sato, and Cordelia Schmid, editors, Computer Vision – ECCV
2012, number 7572 in Lecture Notes in Computer Science, pages
428–441. Springer Berlin Heidelberg, 2012.

[32] Shuicheng Yan, Dong Xu, Benyu Zhang, and Hong-Jiang Zhang.
Graph embedding: a general framework for dimensionality reduc-
tion. In 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), volume 2, pages 830–
837 vol. 2, June 2005.

[33] Bin Cheng, Jianchao Yang, Shuicheng Yan, Yun Fu, and
Thomas S. Huang. Learning with l1-graph for image analysis.
Trans. Img. Proc., 19(4):858–866, April 2010.

[34] Haiping Lu, Konstantinos N. Plataniotis, and Anastasios N.
Venetsanopoulos. A survey of multilinear subspace learning for
tensor data. Pattern Recognition, 44(7):1540 – 1551, 2011.

[35] A. Sharma, A. Kumar, H. Daume, and D. W. Jacobs. Generalized
Multiview Analysis: A discriminative latent space. In 2012 IEEE

102 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition, pages
2160–2167, June 2012.

[36] Jure Leskovec and Julian J. Mcauley. Learning to Discover Social
Circles in Ego Networks. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 539–547. Curran Associates, Inc.,
2012.

[37] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford Large
Network Dataset Collection. June 2014.

[38] Stanley Milgram. The small world problem. Psychology today,
2(1):60–67, 1967.

[39] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive
Influence Maximization in Social Networks. In Xiaotie Deng and
Fan Chung Graham, editors, Internet and Network Economics,
pages 306–311, Berlin, Heidelberg, 2007. Springer Berlin Heidel-
berg.

[40] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the
Spread of Influence Through a Social Network. In Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’03, pages 137–146, New York,
NY, USA, 2003. ACM.

[41] J. O. Kephart and S. R. White. Directed-graph epidemiological
models of computer viruses. In Proceedings. 1991 IEEE Computer
Society Symposium on Research in Security and Privacy, pages
343–359, May 1991.

[42] B. Aditya Prakash, Hanghang Tong, Nicholas Valler, Michalis
Faloutsos, and Christos Faloutsos. Virus Propagation on Time-
Varying Networks: Theory and Immunization Algorithms.

BIBLIOGRAPHY 103

[43] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The PageRank Citation Ranking: Bringing Order to the
Web. Technical Report 1999-66, Stanford InfoLab, November 1999.

[44] Tie-Yan Liu. Learning to Rank for Information Retrieval. Foun-
dations and Trends R© in Information Retrieval, 3(3):225–331,
2009.

[45] Matthew Richardson, Amit Prakash, and Eric Brill. Beyond
PageRank: machine learning for static ranking. In Proceedings
of the 15th international conference on World Wide Web, pages
707–715. ACM, 2006.

[46] Abraham Kandel, Horst Bunke, and Mark Last, editors. Applied
Graph Theory in Computer Vision and Pattern Recognition. Stud-
ies in Computational Intelligence. Springer-Verlag, Berlin Heidel-
berg, 2007.

[47] L. Wiskott, N. Krüger, N. Kuiger, and C. von der Malsburg. Face
recognition by elastic bunch graph matching. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 19(7):775–779, July
1997.

[48] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate
Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal.
Mach. Intell., 23(11):1222–1239, November 2001.

[49] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime
Multi-Person 2d Pose Estimation using Part Affinity Fields. CoRR,
abs/1611.08050, 2016.

[50] Dong Zhang and Mubarak Shah. A Framework for Human Pose
Estimation in Videos. CoRR, abs/1604.07788, 2016.

[51] S. Kiranyaz, K. Caglar, E. Guldogan, O. Guldogan, and M. Gab-
bouj. MUVIS: a content-based multimedia indexing and retrieval

104 BIBLIOGRAPHY

framework. In Seventh International Symposium on Signal Pro-
cessing and Its Applications, 2003. Proceedings., volume 1, pages
1–8 vol.1, July 2003.

[52] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain. Content-based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, December 2000.

[53] Michael S. Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain.
Content-based Multimedia Information Retrieval: State of the
Art and Challenges. ACM Trans. Multimedia Comput. Commun.
Appl., 2(1):1–19, February 2006.

[54] Deng Cai, Xiaofei He, Zhiwei Li, Wei-Ying Ma, and Ji-Rong Wen.
Hierarchical Clustering of WWW Image Search Results Using Vi-
sual, Textual and Link Information. In Proceedings of the 12th
Annual ACM International Conference on Multimedia, MULTI-
MEDIA ’04, pages 952–959, New York, NY, USA, 2004. ACM.

[55] Rada Mihalcea. Graph-based Ranking Algorithms for Sentence
Extraction, Applied to Text Summarization. In Proceedings of
the ACL 2004 on Interactive Poster and Demonstration Sessions,
ACLdemo ’04, Stroudsburg, PA, USA, 2004. Association for Com-
putational Linguistics.

[56] B. Xu, J. Bu, C. Chen, C. Wang, D. Cai, and X. He. EMR:
A Scalable Graph-Based Ranking Model for Content-Based Image
Retrieval. IEEE Transactions on Knowledge and Data Engineer-
ing, 27(1):102–114, January 2015.

[57] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
Learning. MIT Press, 2016.

[58] Jörgen Schmidhuber. Deep learning in neural networks: An
overview. Neural Networks, 61:85 – 117, 2015.

BIBLIOGRAPHY 105

[59] Christopher M. Bishop. Neural Networks for Pattern Recognition.
Advanced Texts in Econometrics. Clarendon Press, 1995.

[60] S. Muroga, I. Toda, and M. Kondo. Majority Decision Functions
of up to Six Variables. Mathematics of Computation, 16(80):459–
472, 1962.

[61] Y. Rao and X. Zhang. Characterization of Linearly Separable
Boolean Functions: A Graph-Theoretic Perspective. IEEE Trans-
actions on Neural Networks and Learning Systems, 28(7):1542–
1549, July 2017.

[62] Thomas N. Kipf and Max Welling. Semi-Supervised Classifica-
tion with Graph Convolutional Networks. CoRR, abs/1609.02907,
2016.

[63] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov.
Learning Convolutional Neural Networks for Graphs. CoRR,
abs/1605.05273, 2016.

[64] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj. Find-
ing Better Topologies for Deep Convolutional Neural Networks by
Evolution. ArXiv e-prints, September 2018.

[65] Jianbo Shi and Jitendra Malik. Normalized cuts and image
segmentation. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):888–905, 2000.

[66] Mark Newman. Networks: An Introduction. Oxford University
Press, Oxford ; New York, 1 edition edition, May 2010.

[67] Ulrik Brandes, Marco Gaertler, and Dorothea Wagner. Experi-
ments on Graph Clustering Algorithms. In Giuseppe Di Battista
and Uri Zwick, editors, Algorithms - ESA 2003, number 2832 in
Lecture Notes in Computer Science, pages 568–579. Springer Berlin
Heidelberg, January 2003.

106 BIBLIOGRAPHY

[68] Satu Elisa Schaeffer. Graph clustering. Computer Science Review,
1(1):27–64, 2007.

[69] L. da F. Costa, F. A. Rodrigues, G. Travieso, and P. R. Villas
Boas. Characterization of complex networks: A survey of measure-
ments. Advances in Physics, 56(1):167–242, 2007.

[70] N. Perra and S. Fortunato. Spectral centrality measures in com-
plex networks. \pre, 78(3):036107, September 2008.

[71] Yuhua Qian, Yebin Li, Min Zhang, Guoshuai Ma, and Furong Lu.
Quantifying edge significance on maintaining global connectivity.
Scientific Reports, 7:45380 EP –, 2017.

[72] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and An-
gela Ricciardello. A Novel Measure of Edge Centrality in Social
Networks. CoRR, abs/1303.1747, 2013.

[73] Béla Bollobás. Random Graphs. Cambridge University Press,
Cambridge ; New York, 2 edition edition, October 2001.

[74] Mark EJ Newman. Power laws, Pareto distributions and Zipf’s
law. Contemporary physics, 46(5):323–351, 2005.

[75] R. Albert and A.-L. Barabási. Statistical mechanics of complex
networks. Reviews of Modern Physics, 74:47–97, January 2002.

[76] Albert-László Barabási, Réka Albert, and Hawoong Jeong. Scale-
free characteristics of random networks: the topology of the world-
wide web. Physica A: Statistical Mechanics and its Applications,
281(1):69–77, 2000.

[77] Réka Albert and Albert-László Barabási. Topology of Evolv-
ing Networks: Local Events and Universality. Phys. Rev. Lett.,
85(24):5234–5237, December 2000.

BIBLIOGRAPHY 107

[78] P. L. Krapivsky, G. J. Rodgers, and S. Redner. Degree Distribu-
tions of Growing Networks. Physical Review Letters, 86:5401–5404,
June 2001.

[79] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-
world’ networks. \nat, 393:440–442, June 1998.

[80] Albert-László Barabási and Réka Albert. Emergence of Scaling
in Random Networks. Science, 286(5439):509, October 1999.

[81] A. Fronczak, P. Fronczak, and J. A. Holyst. Average path length
in random networks. eprint arXiv:cond-mat/0212230, December
2002.

[82] Aaron Clauset, Mark EJ Newman, and Cristopher Moore. Find-
ing community structure in very large networks. Physical review
E, 70(6):066111, 2004.

[83] Mark EJ Newman and Michelle Girvan. Finding and evaluating
community structure in networks. Physical review E, 69(2):026113,
2004.

[84] Mark EJ Newman. Random graphs with clustering. Physical
Review Letters, 103(5), July 2009. arXiv: 0903.4009.

[85] Hongyuan Zha, Xiaofeng He, Chris Ding, Horst Simon, and Ming
Gu. Bipartite graph partitioning and data clustering. In Pro-
ceedings of the tenth international conference on Information and
knowledge management, pages 25–32. ACM, 2001.

[86] J. Y. Zien, M. D. F. Schlag, and P. K. Chan. Multilevel spectral
hypergraph partitioning with arbitrary vertex sizes. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 18(9):1389–1399, September 1999.

108 BIBLIOGRAPHY

[87] Konstantin Andreev and Harald Räcke. Balanced Graph Parti-
tioning. In Proceedings of the Sixteenth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA ’04, pages
120–124, New York, NY, USA, 2004. ACM.

[88] H. Meyerhenke, P. Sanders, and C. Schulz. Parallel Graph Par-
titioning for Complex Networks. IEEE Transactions on Parallel
and Distributed Systems, 28(9):2625–2638, September 2017.

[89] Kai Yu, Shipeng Yu, and Volker Tresp. Soft Clustering on Graphs.
In Proceedings of the 18th International Conference on Neural In-
formation Processing Systems, NIPS’05, pages 1553–1560, Cam-
bridge, MA, USA, 2005. MIT Press.

[90] Fan Chung and Mark Kempton. A Local Clustering Algorithm
for Connection Graphs. In Algorithms and Models for the Web
Graph, pages 26–43. Springer, 2013.

[91] Peter Macko, Daniel Margo, and Margo Seltzer. Local cluster-
ing in provenance graphs. In Proceedings of the 22nd ACM in-
ternational conference on Conference on information & knowledge
management, pages 835–840. ACM, 2013.

[92] Satu Elisa Schaeffer. Stochastic Local Clustering for Massive
Graphs. In Tu Bao Ho, David Cheung, and Huan Liu, editors,
Advances in Knowledge Discovery and Data Mining, number 3518
in Lecture Notes in Computer Science, pages 354–360. Springer
Berlin Heidelberg, January 2005.

[93] Julian Shun, Farbod Roosta-Khorasani, Kimon Fountoulakis, and
Michael W. Mahoney. Parallel Local Graph Clustering. Proc.
VLDB Endow., 9(12):1041–1052, August 2016.

[94] Daniel A. Spielman and Shang-Hua Teng. A local clustering algo-
rithm for massive graphs and its application to nearly-linear time
graph partitioning. arXiv preprint arXiv:0809.3232, 2008.

BIBLIOGRAPHY 109

[95] Z. Yang, J. I. Perotti, and C. J. Tessone. Hierarchical benchmark
graphs for testing community detection algorithms. ArXiv e-prints,
August 2017.

[96] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi.
Benchmark graphs for testing community detection algorithms.
Physical Review E, 78(4), October 2008. arXiv: 0805.4770.

[97] Sylvain Brohée and Jacques van Helden. Evaluation of clustering
algorithms for protein-protein interaction networks. BMC Bioin-
formatics, 7(1):488, November 2006.

[98] Jaewon Yang and Jure Leskovec. Defining and Evaluating
Network Communities based on Ground-truth. arXiv:1205.6233
[physics], May 2012. arXiv: 1205.6233.

[99] Peter Kareiva. Small Worlds: The Dynamics of Networks between
Order and Randomness. Duncan J. Watts. The Quarterly Review
of Biology, 76(1):65–65, March 2001.

[100] Lawrence Hubert and Phipps Arabie. Comparing partitions.
Journal of Classification, 2(1):193–218, December 1985.

[101] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information
Theoretic Measures for Clusterings Comparison: Variants, Prop-
erties, Normalization and Correction for Chance. J. Mach. Learn.
Res., 11:2837–2854, December 2010.

[102] Thomas M. Cover and Joy A. Thomas. Elements of information
theory. John Wiley & Sons, 2012.

[103] L.N.F. Ana and A.K. Jain. Robust data clustering. In 2003
IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2003. Proceedings, volume 2, pages II–128–II–133
vol.2, June 2003.

110 BIBLIOGRAPHY

[104] Anil K. Jain and Richard C. Dubes. Algorithms for clustering
data. Prentice-Hall, Inc., 1988.

[105] Santo Fortunato. Community detection in graphs. Physics Re-
ports, 486(3–5):75–174, February 2010.

[106] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On Spectral
Clustering: Analysis and an Algorithm. In Proceedings of the 14th
International Conference on Neural Information Processing Sys-
tems: Natural and Synthetic, NIPS’01, pages 849–856, Cambridge,
MA, USA, 2001. MIT Press.

[107] A. Pothen, H. Simon, and K. Liou. Partitioning Sparse Matrices
with Eigenvectors of Graphs. SIAM Journal on Matrix Analysis
and Applications, 11(3):430–452, July 1990.

[108] Kevin Lang. Fixing two weaknesses of the Spectral Method.
In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in
Neural Information Processing Systems 18, pages 715–722. MIT
Press, 2006.

[109] Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioan-
nis G. Kevrekidis. Diffusion Maps, Spectral Clustering and Eigen-
functions of Fokker-Planck Operators. In Proceedings of the 18th
International Conference on Neural Information Processing Sys-
tems, NIPS’05, pages 955–962, Cambridge, MA, USA, 2005. MIT
Press.

[110] L. Hagen and A. B. Kahng. New spectral methods for ratio
cut partitioning and clustering. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 11(9):1074–1085,
September 1992.

[111] Mark EJ Newman. Fast algorithm for detecting community
structure in networks. Physical review E, 69(6):066133, 2004.

BIBLIOGRAPHY 111

[112] Nate Veldt, David F. Gleich, and Anthony Wirth. A Correlation
Clustering Framework for Community Detection. In Proceedings of
the 2018 World Wide Web Conference, WWW ’18, pages 439–448,
Republic and Canton of Geneva, Switzerland, 2018. International
World Wide Web Conferences Steering Committee.

[113] Robert Görke, Andrea Kappes, and Dorothea Wagner. Exper-
iments on Density-Constrained Graph Clustering. J. Exp. Algo-
rithmics, 19:3.3:1.1–3.3:1.31, January 2015.

[114] L. Waltman and N. J. Eck. A smart local moving algorithm for
large-scale modularity-based community detection. Eur Phys J B,
86, 2013.

[115] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. Fast unfolding of communities in large net-
works. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, 2008.

[116] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. Correlation
Clustering. Machine Learning, 56(1-3):89–113, July 2004.

[117] Shuchi Chawla, Konstantin Makarychev, Tselil Schramm, and
Grigory Yaroslavtsev. Near Optimal LP Rounding Algorithm
for Correlation Clustering on Complete and Complete k-partite
Graphs. arXiv:1412.0681 [cs], December 2014. arXiv: 1412.0681.

[118] R. Guimera, M. Sales-Pardo, and L. A. N. Amaral. Module
identification in bipartite and directed networks. Physical Review
E, 76(3), September 2007. arXiv: physics/0701151.

[119] Claire P. Massen and Jonathan P. K. Doye. Identifying "commu-
nities" within energy landscapes. Physical Review E, 71(4), April
2005. arXiv: cond-mat/0412469.

112 BIBLIOGRAPHY

[120] Jordi Duch and Alex Arenas. Community detection in com-
plex networks using extremal optimization. Physical review E,
72(2):027104, 2005.

[121] Sune Lehmann and Lars Kai Hansen. Deterministic Modular-
ity Optimization. The European Physical Journal B, 60(1):83–88,
November 2007. arXiv: physics/0701348.

[122] Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan
Liu. Learning Deep Representations for Graph Clustering. In
Proceedings of the Twenty-Eighth AAAI Conference on Artifi-
cial Intelligence, AAAI’14, pages 1293–1299, Québec City,
Québec, Canada, 2014. AAAI Press.

[123] Y. Chen, S. Sanghavi, and H. Xu. Improved Graph Clustering.
IEEE Transactions on Information Theory, 60(10):6440–6455, Oc-
tober 2014.

[124] F. Y. Wu. The Potts model. Reviews of Modern Physics,
54(1):235–268, January 1982.

[125] Sacha Friedli and Yvan Velenik. Statistical Mechanics of Lat-
tice Systems: A Concrete Mathematical Introduction. Cambridge
University Press, 1 edition, November 2017.

[126] I. Ispolatov, I. Mazo, and A. Yuryev. Finding mesoscopic com-
munities in sparse networks. Journal of Statistical Mechanics (On-
line), 9:p09014, September 2006.

[127] Jörg Reichardt and Stefan Bornholdt. Detecting Fuzzy Commu-
nity Structures in Complex Networks with a Potts Model. Physical
Review Letters, 93(21):218701, November 2004.

[128] P. Pons and M. Latapy. Computing communities in large net-
works using random walks (long version). ArXiv Physics e-prints,
December 2005.

BIBLIOGRAPHY 113

[129] Haijun Zhou and Reinhard Lipowsky. Network Brownian Mo-
tion: A New Method to Measure Vertex-Vertex Proximity and
to Identify Communities and Subcommunities. In Marian Bubak,
Geert Dick van Albada, Peter M. A. Sloot, and Jack Dongarra, edi-
tors, Computational Science - ICCS 2004, pages 1062–1069, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[130] David Harel and Yehuda Koren. On Clustering Using Random
Walks. In Ramesh Hariharan, V. Vinay, and Madhavan Mukund,
editors, FST TCS 2001: Foundations of Software Technology and
Theoretical Computer Science, number 2245 in Lecture Notes in
Computer Science, pages 18–41. Springer Berlin Heidelberg, 2001.

[131] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov
Chains and Mixing Times. American Mathematical Society, Prov-
idence, R.I, 1 edition edition, December 2008.

[132] J.R. Norris. Markov Chains | Applied probability and stochastic
networks, 1998.

[133] Reid Andersen, Fan Chung, and Kevin Lang. Using pagerank to
locally partition a graph. Internet Mathematics, 4(1):35–64, 2007.

[134] B. Cai, H. Wang, H. Zheng, and H. Wang. An improved random
walk based clustering algorithm for community detection in com-
plex networks. In 2011 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 2162–2167, October 2011.

[135] Kathy Macropol, Tolga Can, and Ambuj K. Singh. RRW: re-
peated random walks on genome-scale protein networks for local
cluster discovery. BMC bioinformatics, 10(1):283, 2009.

[136] Zeyuan A. Zhu, Silvio Lattanzi, and Vahab Mirrokni. A local
algorithm for finding well-connected clusters. In Proceedings of the
30th International Conference on Machine Learning (ICML-13),
pages 396–404, 2013.

114 BIBLIOGRAPHY

[137] Stijn Dongen. Graph clustering by flow simulation. PhD thesis,
Universiteit Utrecht, Utrecht, The Netherlands, May 2000.

[138] A. Knyazev. Toward the Optimal Preconditioned Eigen-
solver: Locally Optimal Block Preconditioned Conjugate Gradient
Method. SIAM Journal on Scientific Computing, 23(2):517–541,
January 2001.

[139] Gary William Flake, Robert E. Tarjan, and Kostas Tsiout-
siouliklis. Graph Clustering and Minimum Cut Trees. Internet
Mathematics, 1(4):385–408, 2003.

[140] R. Gomory and T. Hu. Multi-Terminal Network Flows. Journal
of the Society for Industrial and Applied Mathematics, 9(4):551–
570, December 1961.

[141] Wei Zhang, Deli Zhao, and Xiaogang Wang. Agglomerative clus-
tering via maximum incremental path integral. Pattern Recogni-
tion, 46(11):3056–3065, November 2013.

[142] Hagen Kleinert. Path integrals in quantum mechanics, statistics,
polymer physics, and financial markets. World scientific, 2009.

[143] Elchanan Mossel, Joe Neeman, and Allan Sly. Stochastic Block
Models and Reconstruction. arXiv:1202.1499 [math-ph], February
2012. arXiv: 1202.1499.

[144] William Feller. An Introduction to Probability Theory and Its
Applications, Vol. 1, 3rd Edition. Wiley, 3rd edition edition, 1968.

[145] Paul B. Callahan and S. Rao Kosaraju. A decomposition of mul-
tidimensional point sets with applications to k-nearest-neighbors
and n-body potential fields. Journal of the ACM (JACM),
42(1):67–90, 1995.

BIBLIOGRAPHY 115

[146] Wei Dong, Charikar Moses, and Kai Li. Efficient K-nearest
Neighbor Graph Construction for Generic Similarity Measures. In
Proceedings of the 20th International Conference on World Wide
Web, WWW ’11, pages 577–586, New York, NY, USA, 2011. ACM.

[147] M. Connor and P. Kumar. Fast construction of k-nearest neigh-
bor graphs for point clouds. IEEE Transactions on Visualization
and Computer Graphics, 16(4):599–608, July 2010.

[148] Anil K. Jain, M. Narasimha Murty, and Patrick J. Flynn. Data
clustering: a review. ACM computing surveys (CSUR), 31(3):264–
323, 1999.

[149] Dongkuan Xu and Yingjie Tian. A Comprehensive Survey of
Clustering Algorithms. Annals of Data Science, 2(2):165–193, June
2015.

[150] Rui Xu and D. Wunsch. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16(3):645–678, May 2005.

[151] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu.
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231, 1996.

[152] David Arthur and Sergei Vassilvitskii. How slow is the k-means
method? In Proceedings of the twenty-second annual symposium
on Computational geometry, pages 144–153. ACM, 2006.

[153] Robert Görke, Tanja Hartmann, and Dorothea Wagner. Dy-
namic Graph Clustering Using Minimum-Cut Trees. In Frank
Dehne, Marina Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth,
editors, Algorithms and Data Structures, Lecture Notes in Com-
puter Science, pages 339–350. Springer Berlin Heidelberg, 2009.

116 BIBLIOGRAPHY

[154] Rob Fergus, Yair Weiss, and Antonio Torralba. Semi-supervised
learning in gigantic image collections. In Advances in neural infor-
mation processing systems, pages 522–530, 2009.

[155] Mark J. Huiskes, Bart Thomee, and Michael S. Lew. New trends
and ideas in visual concept detection: the MIR flickr retrieval eval-
uation initiative. In Proceedings of the international conference on
Multimedia information retrieval, pages 527–536. ACM, 2010.

[156] Bryan C. Russell, Antonio Torralba, Kevin P. Murphy, and
William T. Freeman. LabelMe: a database and web-based tool
for image annotation. International journal of computer vision,
77(1-3):157–173, 2008.

[157] N. W. U. D. Chathurani, S. Geva, V. Chandran, and V. Cyn-
thujah. An effective Content Based Image Retrieval system based
on global representation and multi-level searching. In 2015 IEEE
10th International Conference on Industrial and Information Sys-
tems (ICIIS), pages 158–163, December 2015.

[158] John P. Eakins and Margaret E. Graham. Content-based image
retrieval, a report to the JISC Technology Applications programme.
1999.

[159] Ying Liu, Dengsheng Zhang, Guojun Lu, and Wei-Ying Ma. A
survey of content-based image retrieval with high-level semantics.
Pattern Recognition, 40(1):262–282, January 2007.

[160] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Net-
works. arXiv:1605.07146 [cs], May 2016. arXiv: 1605.07146.

[161] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Iden-
tity Mappings in Deep Residual Networks. arXiv:1603.05027 [cs],
March 2016. arXiv: 1603.05027.

BIBLIOGRAPHY 117

[162] A. Blanton, K. C. Allen, T. Miller, N. D. Kalka, and A. K. Jain.
A Comparison of Human and Automated Face Verification Accu-
racy on Unconstrained Image Sets. In 2016 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 229–236, June 2016.

[163] P. Jonathon Phillips, Amy N. Yates, Ying Hu, Carina A. Hahn,
Eilidh Noyes, Kelsey Jackson, Jacqueline G. Cavazos, Géraldine
Jeckeln, Rajeev Ranjan, Swami Sankaranarayanan, Jun-Cheng
Chen, Carlos D. Castillo, Rama Chellappa, David White, and Al-
ice J. O’Toole. Face recognition accuracy of forensic examiners,
superrecognizers, and face recognition algorithms. Proceedings of
the National Academy of Sciences, page 201721355, May 2018.

[164] Xiaohui SHEN, Zhe Lin, Shu Kong, and Radomir Mech. Utiliz-
ing deep learning for rating aesthetics of digital images, October
2017.

[165] Z. Wang, D. Liu, S. Chang, F. Dolcos, D. Beck, and T. Huang.
Image aesthetics assessment using Deep Chatterjee’s machine. In
2017 International Joint Conference on Neural Networks (IJCNN),
pages 941–948, May 2017.

[166] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C. Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 2425–2433, 2015.

[167] Lin Ma, Zhengdong Lu, and Hang Li. Learning to Answer Ques-
tions from Image Using Convolutional Neural Network. In AAAI,
volume 3, page 16, 2016.

[168] Thomas M. Deserno, Sameer Antani, and Rodney Long. Ontol-
ogy of Gaps in Content-Based Image Retrieval. Journal of Digital

118 BIBLIOGRAPHY

Imaging: the official journal of the Society for Computer Applica-
tions in Radiology, 22(2):202–215, April 2009.

[169] Malay Kumar Kundu, Manish Chowdhury, and Samuel
Rota Bulò. A graph-based relevance feedback mechanism in
content-based image retrieval. Knowledge-Based Systems, 73:254–
264, January 2015.

[170] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and
R. Jain. Content-based image retrieval at the end of the early years.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(12):1349–1380, December 2000.

[171] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep
neural networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2574–2582, 2016.

[172] Ehab Salahat and Murad Qasaimeh. Recent advances in fea-
tures extraction and description algorithms: A comprehensive sur-
vey. In Industrial Technology (ICIT), 2017 IEEE International
Conference on, pages 1059–1063. IEEE, 2017.

[173] Artem Babenko and Victor Lempitsky. Additive quantization for
extreme vector compression. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 931–938,
2014.

[174] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high dimensions. In
Foundations of Computer Science, 2006. FOCS’06. 47th Annual
IEEE Symposium on, pages 459–468. IEEE, 2006.

[175] Gerard Salton and Chris Buckley. Improving retrieval perfor-
mance by relevance feedback. Journal of the American Society for
Information Science, 41(4):288–297.

BIBLIOGRAPHY 119

[176] Savvas A. Chatzichristofis, Konstantinos Zagoris, Yiannis S.
Boutalis, and Nikos Papamarkos. Accurate image retrieval based
on compact composite descriptors and relevance feedback informa-
tion. International Journal of Pattern Recognition and Artificial
Intelligence, 24(02):207–244, 2010.

[177] Prof Dr Kai-Uwe Barthel; Jonas Hartmann; Nico Hezel; Mike
Krause; Anja Sonnenberg. akiwi - a keywording tool.

[178] Ilaria Bartolini. Content Meets Semantics: Smarter Exploration
of Image Collections Presentation of Relevant Use Cases. 2012.

[179] Samuel Rota Bulò, Massimo Rabbi, and Marcello Pelillo.
Content-based image retrieval with relevance feedback using ran-
dom walks. Pattern Recognition, 44(9):2109–2122, September
2011.

[180] C. Deng, R. Ji, D. Tao, X. Gao, and X. Li. Weakly Super-
vised Multi-Graph Learning for Robust Image Reranking. IEEE
Transactions on Multimedia, 16(3):785–795, April 2014.

[181] Barbara Poblete, Benjamin Bustos, Marcelo Mendoza, and
Juan Manuel Barrios. Visual-semantic Graphs: Using Queries to
Reduce the Semantic Gap in Web Image Retrieval. In Proceed-
ings of the 19th ACM International Conference on Information
and Knowledge Management, CIKM ’10, pages 1553–1556, New
York, NY, USA, 2010. ACM.

[182] Simon P. Wilson, Julien Fauqueur, and Nozha Boujemaa. Men-
tal Search in Image Databases: Implicit Versus Explicit Content
Query. In Matthieu Cord and Pádraig Cunningham, editors, Ma-
chine Learning Techniques for Multimedia: Case Studies on Or-
ganization and Retrieval, Cognitive Technologies, pages 189–204.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

120 BIBLIOGRAPHY

[183] Yingwei Pan, Ting Yao, Tao Mei, Houqiang Li, Chong-Wah Ngo,
and Yong Rui. Click-through-based Cross-view Learning for Image
Search. 2014.

[184] Clickture. Available at https://www.microsoft.com/en-us/

research/project/clickture/.

[185] Xian-Sheng Hua, Linjun Yang, Jingdong Wang, Jing Wang,
Ming Ye, Kuansan Wang, Yong Rui, and Jin Li. Clickage: To-
wards Bridging Semantic and Intent Gaps via Mining Click Logs
of Search Engines. In Proceedings of the 21st ACM International
Conference on Multimedia, MM ’13, pages 243–252, New York,
NY, USA, 2013. ACM.

[186] Eugene Charniak. Statistical Techniques for Natural Language
Parsing. AI Magazine, 18(4):33–33, December 1997.

[187] George A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38:39–41, 1995.

[188] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Im-
ageNet: A Large-Scale Hierarchical Image Database. In CVPR09,
2009.

[189] AFI|Catalog - Singin’ in the Rain. Available at https://

catalog.afi.com/Catalog/moviedetails/50652.

[190] Albert Magnoli. Purple Rain, August 1984. Available at http:

//www.imdb.com/title/tt0087957/.

[191] Prince And The Revolution - Purple Rain. Available at https://
www.discogs.com/Prince-And-The-Revolution-Purple-Rain/

release/194021.

[192] Eva Gibaja and Sebastián Ventura. A Tutorial on Multilabel
Learning. ACM Comput. Surv., 47(3):52:1–52:38, April 2015.

BIBLIOGRAPHY 121

[193] Grigorios Tsoumakas and Ioannis Katakis. Multi-label classifi-
cation: An overview. Dept. of Informatics, Aristotle University of
Thessaloniki, Greece, 2006.

[194] Jesse Read, Luca Martino, and David Luengo. Efficient monte
carlo methods for multi-dimensional learning with classifier chains.
Pattern Recognition, 47(3):1535–1546, March 2014.

[195] Min-Ling Zhang and Zhi-Hua Zhou. ML-KNN: A lazy learning
approach to multi-label learning. Pattern Recognition, 40(7):2038–
2048, July 2007.

[196] Eleftherios Spyromitros-Xioufis, Symeon Papadopoulos, Ioan-
nis Yiannis Kompatsiaris, Grigorios Tsoumakas, and Ioannis Vla-
havas. A comprehensive study over vlad and product quantization
in large-scale image retrieval. IEEE Transactions on Multimedia,
16(6):1713–1728, 2014.

[197] Dragomir R. Radev, Hong Qi, Harris Wu, and Weiguo Fan. Eval-
uating Web-based Question Answering Systems. In LREC, 2002.

122 BIBLIOGRAPHY

PUBLICATIONS

124

PUBLICATION

I

Limited random walk algorithm for big graph data clustering
H. Zhang, J. Raitoharju, S. Kiranyaz and M. Gabbouj

Journal of Big Data 3.1 (2016), 26
DOI: 10.1186/s40537-016-0060-5

Publication reprinted with the permission of the copyright holders

Limited random walk algorithm for big
graph data clustering
Honglei Zhang1* , Jenni Raitoharju1, Serkan Kiranyaz2 and Moncef Gabbouj1

Background

Graph data are important data types in many scientific areas, such as social network

analysis, bioinformatics, and computer and information network analysis [1]. In recent

years, the size of graph data has grown dramatically. For example, a typical social net-

work graph may contains millions of vertices and hundreds of million of edges. Further

more, these graphs may continuously evolve over time. Processing these dynamic big

graph data is very challenging and time consuming. In general, big graphs are normally

heterogeneous. They have such non-uniform structures that edges between vertices in a

group are much denser than edges connecting vertices in different groups. Graph clus-

tering (also named as “community detection” in the literature) algorithms aim to reveal

the heterogeneity and find the underlying relations between vertices [2]. This technique

is critical for understanding the properties, predicting dynamic behavior and improving

visualization of big graph data.

Graph clustering is a computationally challenging and difficult task, especially for

big graph data. Many algorithms have been proposed over the last decades [2–4]. The

Abstract

Graph clustering is an important technique to understand the relationships between

the vertices in a big graph. In this paper, we propose a novel random-walk-based graph

clustering method. The proposed method restricts the reach of the walking agent

using an inflation function and a normalization function. We analyze the behavior of

the limited random walk procedure and propose a novel algorithm for both global

and local graph clustering problems. Previous random-walk-based algorithms depend

on the chosen fitness function to find the clusters around a seed vertex. The proposed

algorithm tackles the problem in an entirely different manner. We use the limited

random walk procedure to find attractor vertices in a graph and use them as features

to cluster the vertices. According to the experimental results on the simulated graph

data and the real-world big graph data, the proposed method is superior to the state-

of-the-art methods in solving graph clustering problems. Since the proposed method

uses the embarrassingly parallel paradigm, it can be efficiently implemented and

embedded in any parallel computing environment such as a MapReduce framework.

Given enough computing resources, we are capable of clustering graphs with millions

of vertices and hundreds millions of edges in a reasonable time.

Keywords: Graph clustering, Random walk, Big data, Community finding

Open Access

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.

RESEARCH

Zhang et al. J Big Data (2016) 3:26
DOI 10.1186/s40537-016-0060-5

*Correspondence:

honglei.zhang@tut.fi
1 Department of Signal

Processing, Tampere

University of Technology,

Korkeakoulunkatu 1,

33101 Tampere, Finland

Full list of author information

is available at the end of the

article

Page 2 of 22Zhang et al. J Big Data (2016) 3:26

criteria-based approaches try to optimize clustering fitness functions using different

optimization techniques. Newman defined a modularity measurement based on the

probability of the link between any two vertices. He applied a greedy search method to

minimize this modularity fitness function in order to partition a graph into clusters [5].

Blondel et al. used the same fitness function but combined it with other optimization

techniques [6–8]. Spielman and Teng opted the graph conductance measurement as the

fitness function [9]. Other than criteria-based methods, spectral analysis has also been

widely adapted in this area [10, 11]. Random-walk-based methods tackle the problem

from a different angle [12–14]. These methods use the Markov chain model to analyze

the graph. Each vertex represents a state and the edges indicate transitions between the

states. The probability values that are distributed among the states (vertices) reveal the

graph structure.

For big graph data, the problem becomes more challenging or even intractable. Very

often, people are only interested in finding the cluster for a given seed vertex. This prob-

lem is called local clustering problem [9, 15, 16]. For example, from an end user’s per-

spective, finding the closely connected friends around him or her is more important than

revealing the global user clusters of a large social network. It is unnecessary to explore

the whole graph structure for this problem. Recently, random walk methods have gained

great attention on this local graph clustering problem, since a walk started from the seed

vertex is more likely to stay in the cluster where the seed vertex belongs. Comparing to

the criteria-based methods, the random-walk-based methods are capable of extracting

local information from a big graph without the knowledge of the whole graph data. In

[17–19], a random walk is first applied to find important vertices around the seed vertex.

Then a sweep stage is involved to select the vertices that minimize the conductance of

the candidate clusters.

The accuracy of any criteria-based clustering method (or those combined with the

random walk procedures) is greatly affected by the chosen clustering fitness function.

Furthermore, most local clustering algorithms use the criteria that are more suitable for

the global graph clustering problem. These choices greatly degrade the performance of

these algorithms when the graph is big and highly uneven. Also the majority of the graph

clustering algorithms are designed in sequential computing paradigm. Therefore, they

do not take advantage of modern high-performance computing systems.

In this paper, we propose a novel random-walk-based graph clustering algorithm—the

limited random walk (LRW) algorithm. First of all, the LRW algorithm does not rely on

any clustering fitness function. Furthermore, the proposed method can efficiently tackle

the computational complexity using a parallel programming paradigm. Finally, as a

unique property among many graph clustering methods, LRW can be adapted to both

global and local graph clustering in an efficient way.

The rest of the paper is organized as follows: basics of random walk procedure and the

proposed LRW algorithm are explained in "Methodology" section; an extensive set of

experiments on the simulated and real graph data, along with both numerical and visual

evaluations are given in "Experiments" section; finally, the conclusions and future work

are discussed in "Conclusions" section.

Page 3 of 22Zhang et al. J Big Data (2016) 3:26

Methodology

Basic definitions and the random walk procedure

Let G(V, E) denote a graph of n vertices and m edges, where V = {vi|i = 1, . . . n} is the

set of vertices and E = {ei|i = 1, . . .m} is the set of edges. Let A ∈ Rn×n be the adja-

cency matrix of the graph G and Aij are the elements in the matrix A. Let D ∈ Rn×n be

the degree matrix, which is a diagonal matrix whose elements on the diagonal are the

degrees of each vertex. In this paper, we assume the graph is undirected, unweighted and

does not contain self-loops.

Clustering phenomenon is very common in big graph data. A cluster in a graph is a

vertex set where the density of the edges inside the cluster is much higher than the den-

sity of edges that link the inside vertices and the outside vertices.

Random walk on a graph is a simple stochastic procedure. At the initial state, an agent

stays on a chosen vertex (seed vertex). At each step, the agent randomly picks a neigh-

boring vertex and moves to it. The agent repeats this movement and there is certain

probability that the agent lands on a vertex after each movement.

Let x
(t)
i denote the probability that the agent is on vertex vi after step t, where

i = 1, 2, . . . n. x
(0)
i is the probability of the initial state. Let s be the seed vertex. We have

x
(0)
s = 1, and x

(0)
i = 0 for i �= s. Let x(t) =

[
x
(t)
1 , x

(t)
2 , . . . , x

(t)
n

]T
 be the probability vector,

where the superscript T denotes the transpose of a matrix or a vector. By the definition

of the probability, it is easy to see that
∑n

i=1 x
(t)
i = 1 or

∥∥x(t)
∥∥
1

= 1.

The random walk procedure is equivalent to a discrete-time stationary Markov chain

process. Each vertex is corresponding to a state in the Markov chain and each edge indi-

cates a possible transition between the two states. The Markov transition matrix P can

be obtained by normalizing the adjacency matrix to have each column sum up to 1, e.g.

or

Other forms of the transition matrix P can also be used, for example the lazy random

walk uses transition matrix P = 1
2 (I + AD−1), where I is the identity matrix. Given the

transition matrix P, we can calculate x(t+1) from x(t) using the equation:

A closed walk is a walk on a graph where the ending vertex is same as the seed vertex.

The period of a vertex is defined as the greatest common divisor of the lengths of all

closed walks that start from this vertex. We say a graph is aperiodic if all of its vertices

have periods of 1.

For an undirected, connected and aperiodic graph, there exists an equilibrium state π ,

such that π = Pπ. This state is unique and irrelevant to the starting point. By iterating

Eq. 3, x(t) converges to π. More details about the Markov chain process and the equilib-

rium state can be found from [20].

(1)Pij =
Aij∑n
k=1 Akj

(2)P = AD−1.

(3)x(t+1) = Px(t).

Page 4 of 22Zhang et al. J Big Data (2016) 3:26

Limited random walk procedure

Definitions

 We first define the transition matrix P. We assign the same probability to the transition

that the walking agent stays in the current vertex and the transition that it moves to any

neighboring vertex. We add an identity matrix to the adjacency matrix and then normal-

ize the result to have each column sum to 1. The transition matrix can be written as

Comparing to the transition matrix in Eq. 2, this is similar to adding self-loops to the

graph, but increasing the degree of each vertex by 1 instead of 2. This modification fixes

the periodicity problem that the graph may have [20]. It greatly improves the stability

and accuracy of the algorithm in graph clustering.

At each walking step, the probability vector x(t) is computed using Eq. 3. Note that, in gen-

eral, elements in x(t) that are around the seed vertex are non-zeros and the rest are zeros. So

we do not need the full transition matrix to calculate the probability vector for the next step.

Starting from the seed vertex, a normal random walk procedure will eventually explore

the whole graph. To reveal a local graph structure, different techniques can be used to limit

the scope of the walks. Harel and Koren fix the number of walking steps by a predefined

constant [21]. Xin et al. use a stochastic method to determine if a walk should be contin-

ued and set the maximum number of walking steps to be 6 according to the principle of

“six degrees of separation” [14]. In [13, 17, 22], the random walk function is defined as

where α is called the teleport probability. The idea is that there is a certain probability that

the walking agent will teleport back to the seed vertex and continue walking.

Inspired by the Markov clustering algorithm (MCL) algorithm [12], we adapt the infla-

tion and normalization operation after each step of the transition. The inflation opera-

tion is an element-wise super-linear function—a function that grows faster than a linear

function. Here we use the power function

where the exponent r > 1. Since x indicates the probability that the agent hits each ver-

tex, x must be normalized to have a sum of 1 after the inflation operation. The normali-

zation function is defined as

where ‖x‖1 =
∑n

i=1 |xi| is the L1 norm of the vector x. Since xi ≥ 0 and
∑n

i=1 xi = 1,

Eq. 7 can also be written in a vector form as

where 1 = [1, 1, . . . 1]T . The inflation and normalization operation enhance large values

and depress small values in the vector x.

(4)P = (I + A)(I + D)−1.

(5)x(t+1) = αx(0) + (1 − α)Px(t),

(6)f (x) =
[
xr1, x

r
2, . . . , x

r
n

]T
,

(7)g(x) =
x

‖x‖1
,

(8)g(x) =
x

xT · 1
,

Page 5 of 22Zhang et al. J Big Data (2016) 3:26

We call the aforementioned procedure the limited random walk (LRW) procedure.

Comparing to the normal random walk procedure defined in "Basic definitions and the

random walk procedure" section, LRW involves inflation and normalization operations

in each walking step. These nonlinear operations limit the agent to walk around the

neighborhood of the seed vertex, especially if there is a clear graph cluster boundary.

The MCL algorithm simulates flow within a graph. It uses the inflation and normalization

operation to enhance the flow within a cluster and reduce the flow between clusters. The

MCL procedure is a time-inhomogeneous Markov Chain in which the transition matrix var-

ies over time. The MCL algorithm starts the random walk from all vertices simultaneously—

there are n agents walking on the graph at the same time. The walking can only continue after

all agents have completed a walking step and the result probability matrix has been inflated

and normalized. Unlike in the MCL algorithm, the LRW procedure is a time-homogeneous

Markov Chain. We initiate random walk from a single seed vertex, and do the inflation on

the probability values of this walking agent. This design has many advantages. First, it avoids

unnecessary walks since the graph structure around the seed vertex may be exposed by a sin-

gle walk. Second, the procedure is suitable for the local clustering problems because it does

not require the whole graph data. Third, if multiple walks are required, each walk procedure

can be executed independently. Thus the algorithm is fully parallelizable.

The LRW procedure involves a nonlinear operation, thus it is difficult to analyze

its properties on a general graph model. Next we study the equilibrium of the LRW

procedure.

Equilibrium of the LRW procedure

We first prove the existence of equilibrium of the LRW procedure. Let X be the set of

values of the probability vector x. We have

The LRW procedure defined by Eqs. 3, 6 and 7 is a function that maps X to itself. Let

L : X → X, such that

Theorem 1 There exists a fixed-point x∗ such that L(x∗) = x∗.

Proof We use the Brouwer fixed-point theorem to prove this statement.

Given 0 ≤ x1, x2, · · · , xn ≤ 1, the set X is clearly bounded and closed. Thus X is a com-

pact set.

Let u, v ∈ X and w = �u + (1 − �)v, where � ∈ R and 0 ≤ � ≤ 1. So

wi = �ui + (1 − �)vi for i = 1, 2, · · · n. Obviously 0 ≤ wi ≤ 1.

Further,

(9)X = {(x1, x2, . . . , xn) | 0 ≤ x1, x2, . . . , xn ≤ 1 and x1 + x2 + · · · xn = 1}.

(10)L(x) = g(f (Px)).

n∑
i=1

wi =

n∑
i=1

(�ui + (1 − �)vi)

= �

n∑
i=1

ui + (1 − �)

n∑
i=1

vi

= 1

Page 6 of 22Zhang et al. J Big Data (2016) 3:26

Thus w ∈ X. This indicates that the set X is convex.

Since function f(x) is continuous over the set X and function g(x) is continuous over

the codomain of function f(x), function L is continuous over the set X.

Given L is a continuous function that maps a convex set to itself, according to the

Brouwer fixed-point theorem, there is a point x∗ such that L(x∗) = x∗. �

Theorem 1 shows the existence of fixed-point of the LRW procedure, i.e., the LRW

procedure will not escape from a fixed-point whenever the point is reached. Since the

LRW procedure is a non-linear discrete dynamic system, it is difficult to analytically

investigate the system behavior. However, when r = 1, the LRW procedure is simply

a Markov chain process, in which the fixed-point x∗ is the unique equilibrium state π

and the global attractor. In another extreme case when r → ∞, a fixed-point can be an

unstable equilibrium and the LRW procedure may have limit cycles that oscillate around

a star structure in the graph. In one state of the oscillation, the probability value of the

center of a star structure is close to one. In practice, we chose r from (1, 2]. This makes

the LRW procedure close to a linear system and oscillations are extremely rare. In this

case, the fixed-points of the LRW procedure are stable equilibriums.

Limited random walk on general graphs

Without any prior knowledge of the cluster formation, we normally start the LRW procedure

from an initial state where xs = 1, xi = 0 for i �= s and s is the seed vertex. During the LRW

procedure, there are two simultaneous processes—the spreading process and the contracting

process. When the two processes can balance each other, a stationary state is reached.

During the spreading process, the probability values spread as the walking agent visits

new vertices. The number of visited vertices increases exponentially at first. The growth

rate depends on the average degree of the graph. The newly visited vertices will always

receive the smallest probability values. If the graph has an average degree of d, it is not

difficult to see that the expected probability value of a newly visited vertex at step t is

(1/d)t. As the walking continues, the probability values tend to be distributed more

evenly among all visited vertices.

The other ongoing process during the LRW procedure is the contracting process.

During this process, the probability values of the visited vertices contract to some ver-

tices. Since the graph is usually heterogeneous, some vertices (and groups of vertices)

will receive higher probability values as the procedure continues. The inflation opera-

tion further enhances this contracting effect. The degrees of a vertex and its surrounding

vertices determine whether the probability values concentrate to or diffuse from these

vertices. Some vertices, normally the center of a star structure, receive larger probability

values than others. We call these vertices attractor vertices and they can be used to rep-

resent the structure of a graph.

Because the density of edges inside a cluster is higher than that of linking the vertices

inside and outside the cluster, the probability that a walking agent visits vertices outside

the cluster is small. Thus, the LRW procedure will find attractor vertices that the seed

vertex is associated. We can use these vertices as features to cluster the vertices.

The larger the inflation exponent r is, the faster the algorithm converges to the attractor

vertices. The LRW procedure tries to find the attractor vertices that are near the seed ver-

tex. However, if r is too large, the probability values concentrate to the nearest attractor

Page 7 of 22Zhang et al. J Big Data (2016) 3:26

vertex (or the seed vertex itself) before the graph is sufficiently explored. If r is too small,

the probability values will concentrate to the attractor vertices that may belong to other

clusters. The performance of the LRW algorithm depends on choosing a proper inflation

exponent r. From this aspect, it is similar to the MCL algorithm. In practice, r is normally

chosen between 1 and 2 and the value 2 was found to be suitable for most graphs.

LRW for global graph clustering problems

In this section, we propose how to LRW in global graph clustering problems. Our algo-

rithm is divided into two phases—graph exploring phase and cluster merging phase. To

improve the performance on big graph data, we also propose a multi-stage strategy.

Graph exploring phase

In the graph exploring phase, the LRW procedure is started from several seed vertices.

At each iteration, the agent moves one step as defined in Eq. 3. Then the probability vec-

tor x is inflated by Eq. 6 and normalized by Eq. 7. The iteration stops when the probabil-

ity vector x converges or the predefined maximum number of iterations is reached. Let

x(∗,i) denote the final probability vector of a random walk that was started from the seed

vertex vi. As described in the previous section, the LRW procedure explores the vertices

that are close to the seed vertex. Thus, the vector x(∗,i) has non-zero elements only on

these neighboring vertices.

Algorithm 1 illustrates the graph exploring from a seed vertex set Q. Note that for

small graph data, we can set the seed vertex set Q = V (i.e. the whole graph). In such

case, the LRW procedure is executed on every vertex of the graph and the multi-stage

strategy is not used.

Note that the threshold ε limits the number of nonzero elements in the probability

vector x. It is easy to prove that the number of nonzero elements in x(t,i) is less than

1/ε. A larger ε eliminates very small values in x(t,i) and prevent unnecessary computing

efforts. However, ε does not impose a limit on the largest cluster we can find. Further, the

choice of ε has little impact on the final clustering results because either the LRW pro-

cedure finds the most dominant attractor vertices in a cluster or the small clusters are

merged in the cluster merging phase.

Page 8 of 22Zhang et al. J Big Data (2016) 3:26

Cluster merging phase

After the graph has been explored, we will find the clusters in the cluster merging phase.

We treat each x(∗,i) as the attractor vector for the vertex vi. Vertices belonging to the

same cluster have attractor vectors that are close to each other. Any unsupervised clus-

tering algorithm, such as k-means or single linkage clustering method, can be applied

to find the desired number of (k) clusters. Because of the computational complexity of

these clustering algorithms, we design a fast merging algorithm that can efficiently clus-

ter vertices according to their attractor vectors.

Each element x
(∗,i)
j in x(∗,i) is the probability value of the stationary state that the walk-

ing agent hits the vertex vj when the seed vertex is vi. The attractor vector x(∗,i) is deter-

mined by the graph structure of the cluster that the initial vertex vi has. Thus, vertices in

the same cluster should have very similar attractor vectors. We first find the vertex that

has the largest value in the vector x(∗,i). Suppose m = arg maxj

(
x
(∗,i)
j

)
, we call vm the

attractor vertex of vertex vi. Grouping vertices by their attractor vertex can be done in a

fast way (complexity of O(1)) using a dictionary data structure. After the grouping, each

vertex is assigned to a cluster that is identified by the attractor vertex. However, it is pos-

sible that some vertices in one cluster do not have the same attractor vertex. This may

happen when the cluster is large and the edge density in the cluster is low. We then apply

the following cluster merging algorithm to handle this overclustering problem.

The vertices that have large values, which are determined by a threshold relative to

x
(∗,i)
m , in x(∗,i) are called significant vertices for vertex vi. If two vertices have large enough

overlaps of their significant vertices, they should be grouped into the same cluster. From

this observation, we first collect significant vertices for the found clusters. Then we

merge clusters if their significant vertices overlap more than a half. Note that the attrac-

tor vertex and the significant vertices are always in the same cluster as the seed vertex.

This is very useful when we use the multi-stage graph strategy.

Algorithm 2 shows the details of the merging phase of the LRW algorithm. Note that,

for small graph data, we set the seed vertex set Q = V and the initial clustering diction-

ary D to be empty.

Page 9 of 22Zhang et al. J Big Data (2016) 3:26

Multi-stage strategy

For small graph data, we can do the LRW procedure on every vertex of the graph. So

the seed vertex set Q = V . The graph clustering is completed after a graph exploring

phase and a cluster merging phase. However, when the graph data is large, it is time-

consuming to perform the LRW procedure from every vertex of the graph. A multi-stage

strategy can be used to greatly reduce the number of required walkings. First, we start

the LRW procedure from a randomly selected vertex set. After the first round of the

graph exploring, some clusters can be found after the cluster merging phase. Next we

generate a new seed vertex set by randomly selecting vertices from those vertices that

have not been clustered. Then we do the graph exploration from the new seed vertex set.

We repeat this procedure until all vertices are clustered.

Algorithm 3 shows the global graph clustering algorithm using the multi-stage

strategy.

LRW for local graph clustering problems

For the local graph clustering problems, the LRW procedure can efficiently find the clus-

ter from a given seed vertex. To achieve this, we first perform graph exploring from the

seed vertex in the same way as described in "Graph exploring phase" section. Let x(∗) be

the probability vector after the graph exploration. If a probability value in x(∗) is large

enough, the corresponding vertex is assigned to the local cluster without further compu-

tation. Similar to the global graph clustering algorithm, we use a relative threshold η that

is related to the maximum value in x(∗). Vertices whose probability values are greater

than η · max
(
x
(∗)
j

)
 are called significant vertices. The significant vertices are assigned

to the local cluster directly. A small value of η will reduce the computational complexity,

but may decrease the accuracy of the algorithm. Suitable values of η were experimentally

found to be between 0.3 and 0.5.

The vertices with low probability values can either be outside the cluster or inside the

cluster but with relatively low significance. Unlike [9, 15, 16], which involve a sweep

operation and a cluster fitness function, we do another round of graph exploring from

these insignificant vertices. After the second graph exploring is completed, we apply the

cluster merging algorithm described in "Cluster merging phase" section.

Algorithm 4 presents the LRW local clustering algorithm.

Page 10 of 22Zhang et al. J Big Data (2016) 3:26

Computational complexity

We first analyze the computational complexity of the LRW algorithm for the global

graph clustering problem. We assume the graph G(V, E) has clusters. Let n̄c be the aver-

age cluster size—the number of vertices in the cluster, and C is the number of clusters.

We have n̄c · C = n. Note C � n. The most time-consuming part of the algorithm is the

graph exploring phase. For each vertex, every iteration involves a multiplication of the

transition matrix P and the probability vector x. The LRW procedure visits not only the

vertices in the cluster but also a certain amount of vertices close to the cluster. Let γ

be the coefficient that indicates how far the LRW procedure explores the graph before

it converges. Notice the maximum number of nonzero elements in a probability vector

is 1/ε. Let J denote the number of vertices that the LRW procedure visits in each itera-

tion, thus J = min (γ n̄c, 1/ε). Thus the transition step at each iteration has complexity of

O(J n̄c). The inflation and normalization steps, which operate on the probability vector x,

have the complexity of O(J). Let K be the number of iterations for the LRW procedure

to converge. So, the computational complexity for a complete LRW procedure on each

vertex is O(KJn̄c). For a global clustering problem when performing the LRW procedure

on every vertex, the graph exploration phase has a complexity of O(KJn̄cn). In the worst

case, the algorithm has a complexity of O
(
n3

)
. This is an extremely rare case and it only

happens when the graph is small; does not have a cluster structure; and the edge density

is high. This worst case scenario is identical to the MCL algorithm [12]. Notice that the

variables J and K have upper bounds and n̄c is determined by the graph structure, the

algorithm has a complexity of O(n) for big graph data.

The computational complexity of the cluster merging phase involves merging clusters

that were found using the attractor vertices. This merging requires
(C
2

)
 times of set com-

parison operations, where C is the number of clusters found by the attractor vertices.

The complexity of this phase is roughly O(C2). This does not impose a significant impact

to the overall complexity of the algorithm, since C � n. The time spent in this phase is

often negligible. Experiments show that the clusters found using the attractor vertices

are close to the final results. For applications where speed is more important than accu-

racy, the cluster merging phase can be left out.

When the LRW algorithm is used in local graph clustering problems, the first graph

exploration (started from the seed vertex) has a complexity of O(KJn̄c). After the first

graph exploration, there are LJ vertices to be further explored, where L is related to the

Page 11 of 22Zhang et al. J Big Data (2016) 3:26

threshold η and L < 1. The overall complexity of the LRW local clustering algorithm is

thus O(LKJ2n̄c).

The LRW algorithm is a typical example of embarrassingly parallel paradigm. In the

graph exploring phase, each random walk can be executed independently. Therefore it

can be entirely implemented in a parallel computing environment such as a high-perfor-

mance computing system. The time spent for graph exploring phase decreases roughly

linearly with respect to the number of available computing resources. The two-phase

design also fits the MapReduce programming model and can easily be adapted into any

MapReduce framework [23].

Experiments

The LRW algorithm uses the following parameters: inflation exponent r, maximum

number of iterations Tmax, small value ε, merging threshold τ and local clustering thresh-

old η. In practice, except the inflation exponent r, the values of the other parameters have

little impact to the final results. The inflation power r should be chosen according to the

density of the graph. A sparse graph should use a smaller value of r, though r = 2 is suit-

able for most real world graphs. In our experiments, we chose r = 2 unless otherwise

specified. The other parameters have been set as: Tmax = 100, ε = 10−5 and τ = η = 0.3 .

We will show the impact of some parameters in "The sensitivity analysis of the param-

eters" section.

Simulated data for global graph clustering problem

We first show the performance of the LRW algorithm using simulated graph data. The

simulated graph is generated using the Erdos-Renyi model [24] with some modifications

to generate clusters. Using the ground truth of the cluster structure, we can evaluate the

performance of graph clustering algorithms. This kind of simulated data are widely used

in the literature [5, 25–27].

The graphs are generated by the model G(n, p, c, q) where c is the number of clusters,

n is the number of vertices, p is the probability of the link between two vertices, and

q = din/dout is the parameter that indicates the strength of the cluster structure, where

din is the expected number of edges linking one vertex to other vertices inside the same

cluster, and dout is the expected number of edges linking a given vertex to other vertices

in other clusters. Larger q indicates stronger cluster structure. When q = 1, each vertex

has equal probability that it links to vertices that are inside and outside the cluster—the

graph has a very weak cluster structure. Let d be the expected of degree of a vertex. So,

d = din + dout = p(n − 1). We use this model to generate graphs that consist of c clus-

ters and each cluster has the same number of vertices. For each pair of vertices, we link

them with the probability
qpc(n−1)

(q+1)(n−c) if they belong to the same cluster, and the probabil-

ity of
pc(n−1)

n(q+1)(c−1) if they belong to different clusters.

We use the normalized mutual information (NMI) to evaluate the clustering result

against the ground truth [28, 29]. We first calculate the confusion matrix where each

row is a cluster found by the clustering algorithm and each column is a cluster in the

ground truth. The entries in the confusion matrix are the cardinality of the intersect set

of the row cluster and the column cluster. Let Nij be the values at the i-th row and the

j-th column, Ni− the sum of the values at the i-th row, N−j the sum of the values at the

Page 12 of 22Zhang et al. J Big Data (2016) 3:26

j-th column, N the total number of vertices, CA the number of clusters that the clustering

algorithm found (number of rows), and CG the number of clusters in the ground truth

(number of columns). The NMI is calculated as follows:

where 0 ≤ NMI ≤ 1. If the clustering algorithm returns the exact same cluster structure

as the ground truth, NMI = 1. Notice, NMI is not a symmetric evaluation metric. If an

algorithm assigns all vertices into one cluster (CA = 1), then NMI value is 0. On the other

hand, if an algorithm assigns each vertex to its own cluster (CA = N), then NMI > 0.

We generated graphs by choosing n = 128 and d = 16. The number of the generated

clusters is 4 and each cluster contains 32 vertices. We varied the ratio q and evaluated

the performance of the LRW algorithm against Girvan-Newman (GN) [27], Louvain

[6], Infomap [30] and MCL [12] algorithms. GN clusters a graph by iteratively remov-

ing edges according to their “betweenness” measures. Louvain optimizes the modularity

measure of a graph using a greedy search paradigm. Infomap is another modularity-

based algorithm. It starts with each vertex in its own cluster and iteratively merges the

clusters, moves vertices between clusters or splitting a cluster until no better modularity

measure can be found. MCL is a random walk based algorithm that also involves infla-

tion operation. The differences between the MCL algorithm and the proposed one are

explained in "Definitions" section.

Two simulated graphs are shown in Fig. 1, where the clusters are colored differently

and the graphs are visualized by force-directed algorithms.

The comparative results are given in Table 1, where the number of clusters found by

the algorithms is placed between parentheses.

From the results, Louvain is the best performing algorithm and the LRW algorithm

comes as the second. It can be seen that the LRW algorithm can find the correct struc-

ture if the graph has a strong cluster structure. When the cluster structure diminishes as

q decreases, the walking agents quickly spread to the whole graph before the contraction

dominates. Thus, the LRW algorithm returns the whole graph as one cluster. This behav-

ior is beneficial when we need to find the true clusters in a big graph. The GN and Lou-

vain algorithms are more like graph partition algorithms. They optimize certain cluster

fitness functions using the whole graph data. They tend to partition the graph into clus-

ters even though the cluster structure is weak. That explains their better NMI scores in

Table 1 when q is small.

We use real graph data to evaluate the performance of the LRW global clustering algo-

rithm on heterogeneous graphs. Details of the experiments and the results are given in

"Real world data" section.

Simulated data for local graph clustering problems

In this section, we compare the LRW algorithm with other local clustering algorithms.

The test graphs are generated using the protocol defined in [26]. To simulate the data

that are close to real world graphs, the vertex degree and the cluster size are chosen to

follow the power law. Each test graph contains 2048 vertices. The vertex degree has the

(11)NMI =
−2

∑CA
i=1

∑CG
j=1Nij log

(
NijN/Ni−N−j

)
∑CA

i=1Ni− log (Ni−/N) +
∑CG

j=1N−j log
(
N−j/N

) ,

Page 13 of 22Zhang et al. J Big Data (2016) 3:26

minimum value of 16 and the maximum value of 128. The minimum and maximum

cluster sizes are 16 and 256, respectively. Similar to the previous section, the inbound-

outbound ratio q defines the strength of the cluster structure.

The competing algorithms are criteria-based algorithms that optimize a fitness func-

tion using either the greedy search or the simulated annealing optimization method. Let

vertex set K be the cluster that contains the seed vertex. Kc = V \K is the complement

vertex set of K. Let function a(·) be the total degree of a vertex set, that is

where Aij are the entries of the adjacency matrix. The cut of the cluster K is defined as

The following are the definitions of the fitness functions.

Cheeger constant (conductance):

(12)
a(S) =

∑
i∈S,j∈V

Aij ,

(13)
c(K) =

∑
i∈K ,j∈Kc

Aij .

(14)f (K) =
c(K)

min (a(K), a(Kc))

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37 3839

40

41

42

43
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63
64

65

66

67

68

69

70

7172

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103
104

105

106

107

108

109

110

111

112

113
114

115

116
117

118

119120

121

122

123

124

125

126

127

128

1

2

3

4 5 6 7

8

9
10

11

12
13

14

15
16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38
39

40

41

42

4344

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

6869

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107
108

109

110

111

112

113

114

115

116

117

118

119
120

121

122

123

124

125

126

127

128

ba
Fig. 1 Simulated graphs. a q = 4, b q = 1.22. The clusters are colored differently and the graphs are visualized

by a force-directed method

Table 1 The NMI values and the numbers of clusters of the clustering results on simulated

graph data

q GN Louvain Infomap MCL LRW

4.0 0.975 (4) 1.0 (4) 1 (4) 1 (4) 1.0 (4)

3.0 1 (4) 1.0 (4) 1 (4) 1 (4) 1.0 (4)

2.33 0.950 (4) 1.0 (4) 1 (4) 0.860 (7) 1.0 (4)

1.86 0.900 (4) 1.0 (4) 1 (4) 0.478 (95) 1.0 (4)

1.5 0.890 (4) 1.0 (4) 0 (1) 0.453 (119) 0.975 (4)

1.22 0.593 (4) 0.771 (5) 0 (1) 0.444 (128) 0 (1)

1 0.232 (4) 0.304 (7) 0 (1) 0.444 (128) 0 (1)

Page 14 of 22Zhang et al. J Big Data (2016) 3:26

Normalized cut:

Inverse relative density:

Different local clustering algorithms are used to find the cluster that contains the seed

vertex. The Jaccard index is used to evaluate the performance of each algorithm. Let K

be the set of vertices that an algorithm finds and T be the ground truth cluster that con-

tains the seed vertex. The Jaccard index is defined as

We generated 10 test graphs for each inbound-outbound ratio q. From each generated

graph, we randomly picked 20 vertices as seeds. For each algorithm and each inbound-

outbound ratio q, we computed the Jaccard index for each seed and took the average

of the 200 Jaccard indices. The results are shown in Table 2, where “Che” stands for the

Cheeger constant (conductance) fitness function; “NCut” stands for the normalized

cut fitness function; “IRD” stands for the inverse relative density; the ending letter “G”

stands for the greedy search method; and the ending letter “S” stands for the simulated

annealing method.

From the results, it is obvious that the LRW algorithm clearly outperforms other

methods when the graph has a clear cluster structure. For the same reason explained in

"Simulated data for global graph clustering problem" section, it does not give good result

if the cluster structure is weak. This is the main difference between the LRW algorithm

and graph partition algorithms.

Real world data

In this section, we evaluate the performance of the LRW algorithm on some real world

graph data.

Zachary’s karate club

We first do clustering analysis on the Zachary’s karate club graph data [31]. This graph

is a social network of friendship in a karate club in 1970. Each vertex represents a club

member and each edge represents the social interaction between the two members.

During the study, the club split into two smaller ones due to the conflicts between the

administrator and the coach. The graph data have been regularly used to evaluate the

performance of the graph clustering algorithms [27, 30, 32]. The graph contains 34 verti-

ces and 78 edges. We applied the LRW algorithm on this graph and the result shows two

clusters that are naturally formed. Figure 2 shows the clustering result, where clusters

are illustrated using different colors.

(15)f (K) =
c(K)

a(K)
+

c(K)

a(Kc)

(16)f (K) =
|E| − a(K) + c(K)

a(K) − c(K)

(17)J =
|K ∩ T |

|K ∪ T |

Page 15 of 22Zhang et al. J Big Data (2016) 3:26

As the figure shows, the LRW algorithm finds the two clusters of the Zachary’s karate

club. Actually the two clusters perfectly match the ground truth—how the club was split

in 1970.

Clustering results of the GN, Louvain, Infomap and MCL algorithms are given in

Additional file 1.

Ego-Facebook graph data

The second data we used is the ego-Facebook graph data [33]. The social network web-

site Facebook allows users to organize their friends into “circles” or “friend lists” (for

example, friends who share common interests). This data was collected from volunteer

Facebook users for researchers to develop automatic circle finding algorithms. Ego-net-

work is the network of an end user’s friends. The ego-Facebook graph is a combination

of ego-networks from 10 volunteer Facebook users. There are 4039 vertices and 88234

edges in the graph.

We applied the LRW, GN [27], Louvain [6], Infomap [30] and MCL [12] graph cluster-

ing algorithms to this data. To compare the results, we generated the ground truth clus-

tering by combining the vertices in the “circles” of each volunteer user. So, the ground

truth contains 10 clusters. If a vertex appears in the circles of more than one volunteer,

we assign the vertex to all of these ground truth clusters. We evaluated the number of

clusters and the NMI values of the results that each competing algorithm generated.

We also calculated the mean conductance (MC) value of the clustering results. The

conductance value of a cluster is calculated using Eq. 14. We then took the mean of all

the conductance values of the clusters that an algorithm finds. Smaller MC values indi-

cate better clustering results. Note that MC tends to favor smaller numbers of clusters in

general. If the numbers of clusters are roughly the same, MC values give good evaluation

of the clustering results. It is also worth noting that MC value is capable of evaluating

clustering algorithms without the ground truth. We shall use this metric in later experi-

ments where the ground truth is not available.

The MC scores, NMI scores and the number of clusters found by each algorithm

are reported in Table 3. A italic font indicates the best score among all competing

algorithms.

The results show that the random-walk-based algorithms—LRW and MCL—are able

to find the correct cluster structure of the data. Other criteria-based algorithms are sen-

sitive to trivial disparities of the graph structure and are likely to overcluster the data.

The clustering result of the LRW algorithms is shown in Fig. 3.

Table 2 Jaccard index of local graph clustering results on the simulated graphs

q CheG CheS NCutG NCutS IRDG IRDS LRW

4.0 0.753 0.840 0.752 0.820 0.753 0.830 0.945

3.0 0.671 0.812 0.671 0.801 0.671 0.798 0.927

2.33 0.668 0.774 0.668 0.758 0.668 0.776 0.880

1.86 0.593 0.650 0.593 0.681 0.593 0.684 0.823

1.5 0.492 0.630 0.493 0.629 0.492 0.609 0.660

1.22 0.444 0.544 0.437 0.549 0.444 0.529 0.504

1 0.298 0.410 0.296 0.452 0.298 0.424 0.295

Page 16 of 22Zhang et al. J Big Data (2016) 3:26

Clustering results of other algorithms are shown in the Additional file 1.

Heterogeneous graph data

To evaluate the performance of the LRW algorithm on real heterogeneous graph data,

we selected 5 graph data from the collection of the KONECT project [34]. The graph

data are selected from different categories and the size of the graph data varies from

small to medium. The properties and the references of the test graphs are shown in

Table 4.

Since there is no ground truth available for these test data, we evaluated each cluster-

ing algorithm by the mean conductance (MC) values. The results are in Table 5. The

best MC scores are shown in a italic font. The numbers of clusters found by each algo-

rithm are placed between parentheses. We also plot the clustered graphs in which the

vertices are located using a force-directed algorithm and colored according to their asso-

ciated clusters. These clustered graphs are given in the Additional file 1 for subjective

evaluation.

The reactome and the infectious graphs have low density. We chose the inflation expo-

nent r = 1.2 to prevent overclustering the data. For other graph data, the default value

r = 2 is used.

Based on the MC scores and the visualized clustering results, the LRW algorithm

achieves a superior clustering performance in most of the cases. Note that the reactome

data has a weak cluster structure, thus the LRW algorithm has difficulty to find a good

partition for it.

1

2

3

4 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32

33
34

Fig. 2 Clustering result of the karate club graph data. The two clusters found by the LRW algorithm match

the ground truth—how the club was split in 1970

Table 3 Global graph clustering results on the ego-Facebook graph

GN Louvain Infomap MCL LRW

Mean conductance 0.156 0.133 0.397 0.0882 0.0770

NMI 0.778 0.796 0.723 0.908 0.910

Number of clusters 16 19 76 10 10

Page 17 of 22Zhang et al. J Big Data (2016) 3:26

The sensitivity analysis of the parameters

The proposed LRW algorithm depends on a number of parameters to perform global

and local graph clustering. In this section, we perform the sensitivity analysis on the

parameters.

We use both simulated and real-world graphs in our experiments. Test graph G1, G2

and G3 are similar to those used in "Simulated data for global graph clustering prob-

lem" section except that we vary the density of each graph. The expected degree d, which

is a measure of the graph density, of graph G1, G2 and G3 are 12, 16 and 20 respec-

tively and q is set to be 1.86 for all test graphs. Test graph G4 is generated in the same

way as described in "Simulated data for local graph clustering problems" section. The

Fig. 3 Clustering result on the ego-Facebook graph data. Different colors indicate the clusters found by the

LRW algorithm and the graph is visualized by a force-directed method

Page 18 of 22Zhang et al. J Big Data (2016) 3:26

ego-Facebook graph data in "Ego-Facebook graph data" section is used as an example of

real-world graphs. We performed global graph clustering on these test graphs using the

LRW algorithm with different parameters. the NMI scores are used to evaluate the per-

formance of the algorithm. The experiments using simulated graph data were repeated

10 times and the average NMI scores and the average number of clusters are reported.

As described in "Limited random walk on general graphs" section, the most important

parameter of the LRW algorithm is the inflation exponent r. We first set Tmax = 100,

ε = 10−5, τ = 0.3 and vary the inflation exponent r. Table 6 shows the NMI scores and

the number of clusters reported by the LRW algorithm with different values of r.

The test results show the relationship among the inflation exponent r, the density of

the test graphs and the performance the LRW algorithm. A large inflation exponent

r may overcluster the data as the results on graph G1 and G2 shows. It can be easily

noticed that the LRW algorithm is not sensitive to the choice of r for test graph G4 and

the ego-Facebook graph. These graphs, and almost all real-world graphs, are more het-

erogeneous than the simulated graphs G1, G2 and G3. The LRW algorithm performs

better on this type of graph since the attractor vertices and significant vertices are more

stable on these graphs.

The parameter Tmax sets a limit on the number of iterations for the LRW procedure to

converge. According to our experiments, value 100 is large enough to ensure the con-

vergence of almost all cases. For example, only 3 out of 88,234 LRW procedures do not

converge within 100 iterations on the ego-Facebook graph. A few exceptional cases has

no impact on the final clustering results. The parameter ε is used to remove small values

in the probability vector thus decrease the computational complexity. It has no impact

on the final clustering result as long as the value is small enough, for example ε < 10−4.

We also conducted the experiments by varying the threshold value τ from 0.1 to 0.5.

The NMI scores and the number of clusters found by the LRW algorithm with different τ

values are almost identical to the values in the corresponding cells in Table 6. This indi-

cates that the choice of τ has very little impact on the clustering performance.

Table 4 Properties of the heterogeneous graphs used for testing

Vertices Edges Category Reference

Dolphins 62 156 Animal [35]

Arenes-jazz 198 2742 Human social [36]

Infectious 410 2765 Human contact [37]

Polblogs 1490 19,090 Hyperlink [38]

Reactome 6229 146,160 Metabolic [39]

Table 5 Global graph clustering results on the real heterogeneous graph data

GN Louvain Infomap MCL LRW

Dolphins 0.425 (4) 0.440 (5) 0.487 (6) 0.675 (12) 0.347 (4)

Arenes-jazz 0.485 (4) 0.455 (4) 0.577 (7) 0.529 (5) 0.364 (4)

Infectious 0.162 (5) 0.214 (6) 0.465 (17) 0.673 (40) 0.175 (5)

Polblogs 0.524 (12) 0.501 (11) 0.727 (36) 0.777 (45) 0.427 (11)

Reactome 0.108 (110) 0.099 (114) 0.315 (248) 0.478 (352) 0.221 (191)

Page 19 of 22Zhang et al. J Big Data (2016) 3:26

According to these results, one only needs to choose a proper inflation exponent r to

use the LRW algorithms. Other parameters can be chosen freely from a wide range of

reasonable values. r = 2 is suitable for most of graphs and is preferable because of the

computational advantage.

Big graph data

In this section, we apply the LRW algorithm on real-world big graph data and show the

computational advantage of its parallel implementation. The test graphs were received

from the SNAP graph data collection [40, 41]. These graphs are from major social net-

work services and E-commerce companies. We use the high quality communities that

either created by users or the system as ground truth clusters. The details of the high

quality communities are described in [41]. The Rand index is used to evaluate the results

of the proposed clustering algorithm. To generate positive samples, we randomly picked

1000 pairs of vertices, where the vertices in each pair come from the same cluster in the

ground truth. Negative samples consist of 1000 pairs of vertices, where the vertices from

each pair come from different clusters in the ground truth. The Rand index is defined as

where TP is the number of true positive samples, TN is the number of true negative

samples, and N is the total number of samples.

Since none of the competing algorithms used in previous sections can complete this

task due to the large size of the data, we only report the results from the LRW algo-

rithm. Table 7 shows the size of the test graphs, the time spent on the graph exploration

phase, the number of CPU cores and the amount of memory used for graph explora-

tion, the time spent on cluster merging phase, the number of clusters that the LRW algo-

rithm finds and the Rand index of the clustering results. In this experiment, multiple

CPU cores were used for graph exploration and one CPU core was used for clustering

merging.

Table 7 shows that the LRW algorithm is able to find clusters from large graph data

with a reasonable computing time and memory usage. The Rand index values indicate

that the clusters returned by the LRW algorithm match well the ground truth. The time

spent on the graph exploration phase is inversely proportional to the number of CPU

(18)RI =
TP + TN

N
,

Table 6 The NMI scores and the number of clusters by the different inflation exponent val-

ues

r G1 G2 G3 G4 Facebook

1.2 0 (1) 0 (1) 0 (1) 0.155 (5) 0.902 (10)

1.4 0 (1) 0 (1) 0 (1) 0.927 (22.7) 0.906 (10)

1.6 0 (1) 0 (1) 0 (1) 1.0 (23) 0.908 (11)

1.8 1 (4) 1 (4) 1 (4) 1.0 (20.8) 0.910 (10)

2 0.971 (4.6) 1 (4) 1 (4) 1.0 (25) 0.910 (10)

2.4 0.868 (7.0) 0.990 (4.2) 1 (4) 1.0 (21.8) 0.910 (10)

3 0.822 (6.3) 0.962 (4.8) 0.988 (4.2) 1.0 (24.3) 0.910 (10)

Page 20 of 22Zhang et al. J Big Data (2016) 3:26

cores. Computational time can be further reduced if more computing resources are

available. The proposed algorithm can efficiently handle graphs with millions of vertices

and hundreds of millions of edges. For even larger graphs that exceed the memory limit

for each computing process, a mechanism that retrieves part of the graph from a central

storage can be used. Since the LRW procedure is capable of exploring a limited number

of vertices that are near a seed vertex, the algorithm can cluster much larger graphs if

such a mechanism is implemented.

Conclusions

In this paper, we proposed a novel random-walk-based graph clustering algorithm, the

so-called LRW. We studied the behavior of the LRW procedure and developed the LRW

algorithms for both global and local graph clustering problems. The proposed algorithm

is fundamentally different from previous random-walk-based algorithms. We use the

LRW procedure to find attracting vertices and use them as features to cluster vertices in

a graph. The performance of the LRW algorithm was evaluated using simulated graphs

and real-world big graph data. According to the results, the proposed algorithm is supe-

rior to other well-known methods.

The LRW algorithm can be efficiently used in both global and local graph clustering

problems. It finds clusters from a big graph data by only locally exploring the graph. This

is important for extreme large data that may not even fit in a single computer memory.

The algorithm contains two phases—the graph exploring phase and the cluster merging

phase. The graph exploring phase is the most critical part and also the most time-con-

suming part of the algorithm. This phase can be implemented in embarrassingly parallel

paradigm. The algorithm can easily be adapted to any MapReduce framework.

From our experiments, we also noticed the limitations of the LRW algorithm. First,

when used as a global clustering algorithm, the computational complexity can be high,

especially when the graph cluster structure is weak. This is due to the fact that the graph

may be analyzed multiple times during the graph exploration phase, if we perform the

LRW procedure from every vertex of the graph. However, using the multi-stage strategy

can dramatically reduce the computation time. Second, if the cluster structure is weak,

the LRW algorithm may return the whole graph as one cluster—though this behavior is

desired in many cases.

The experiments show that the performance of the proposed LRW graph clustering

algorithm is not sensitive to any parameter except the inflation exponent r, especially

Table 7 Clustering performance of real-world big graph data

com-Amazon com-Youtube com-LiveJournal com-Orkut

Vertices 334,863 1,134,890 3,997,962 3,072,441

Edges 925,872 2,987,624 34,681,189 117,185,083

CPU cores (graph exploration) 12 96 96 96

Memory per CPU core 4G 4G 8G 8G

Graph exploration (in hours) 0.83 3.08 17.4 24.0

Cluster merging (in hours) 0.20 1.34 9.44 2.53

Clusters 37,473 170,569 381,246 165,624

Rand index 0.908 0.755 0.951 0.751

Page 21 of 22Zhang et al. J Big Data (2016) 3:26

when the graph is not heterogeneous. For future research, we will further improve the

LRW algorithm so that it can optimally select the inflation function that best suits the

problem at hand.

Abbreviations

GN: Girvan-Newman; LRW: limited random walk; MCL: Markov clustering algorithm; MC: mean conductance; NMI:

normalized mutual information.

Authors’ contributions

HZ carried out the conception and design of the study, participated in the analysis and interpretation of data, and was

involved in drafting and revising the manuscript. JR, SK and MG made substantial contributions to the design of the

study, the analysis and interpretation of the data, and were involved in critically reviewing the manuscript. All authors

read and approved the final manuscript.

Author details
1 Department of Signal Processing, Tampere University of Technology, Korkeakoulunkatu 1, 33101 Tampere, Finland.
2 Electrical Engineering Department, College of Engineering, Qatar University, 2713, Al Hala St, Doha, Qatar.

Competing interests

The authors declare that they have no competing interests.

Received: 23 September 2016 Accepted: 15 November 2016

References

 1. Benson AR, Gleich DF, Leskovec J. Higher-order organization of complex networks. Science. 2016;353(6295):163–6.

 2. Schaeffer SE. Graph clustering. Comput Sci Rev. 2007;1(1):27–64.

 3. Lambiotte R, Delvenne JC, Barahona M. Random walks, Markov processes and the multiscale modular organization

of complex networks. IEEE Trans Netw Sci Eng. 2014;1(2):76–90.

 4. He P, Xu X, Hu K, Chen L. Semi-supervised clustering via multi-level random walk. Pattern Recognit.

2014;47(2):820–32.

 5. Newman ME. Fast algorithm for detecting community structure in networks. Phys Rev E. 2004;69(6):066133.

 6. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech

Theory Exp. 2008;2008(10):10008.

 7. Clauset A, Newman ME, Moore C. Finding community structure in very large networks. Phys Rev E.

2004;70(6):066111.

 8. Waltman L, van Eck NJ. A smart local moving algorithm for large-scale modularity-based community detection. Eur

Phys J B. 2013;86(11):1–14.

 9. Spielman DA, Teng SH. A local clustering algorithm for massive graphs and its application to nearly-linear time

graph partitioning. arXiv:0809.3232; 2008.

 10. Qiu H, Hancock ER. Graph matching and clustering using spectral partitions. Pattern Recognit. 2006;39(1):22–34.

 11. Spielman D, Teng S. Spectral sparsification of graphs. SIAM J Comput. 2011;40(4):981–1025.

 12. Dongen S. Graph clustering by flow simulation. PhD thesis, Universiteit Utrecht, Utrecht, The Netherlands; 2000.

 13. Macropol K, Can T, Singh AK. RRW: repeated random walks on genome-scale protein networks for local cluster

discovery. BMC Bioinform. 2009;10(1):283.

 14. Xin Y, Xie Z-Q, Yang J. The adaptive dynamic community detection algorithm based on the non-homogeneous

random walking. Phys A Stat Mech Appl. 2016;450:241–52.

 15. Chung F, Kempton M. A local clustering algorithm for connection graphs. In: Algorithms and models for the web

graph; 2013. p. 26–43.

 16. Macko P, Margo D, Seltzer M. Local clustering in provenance graphs. In: Proceedings of the 22nd ACM international

conference on conference on information & knowledge management; 2013. p. 835–840.

 17. Andersen R, Chung F, Lang K. Using pagerank to locally partition a graph. Internet Math. 2007;4(1):35–64.

 18. Buhler T, Rangapuram SS, Setzer S, Hein M. Constrained fractional set programs and their application in local cluster-

ing and community detection. arXiv:1306.3409; 2013.

 19. Zhu ZA, Lattanzi S, Mirrokni V. A local algorithm for finding well-connected clusters. In: Proceedings of the 30th

international conference on machine learning (ICML-13); 2013. p. 396–404.

 20. Norris JR. Markov chains applied probability and stochastic networks; 1998)

 21. Harel D, Koren Y. On clustering using random walks. In: Hariharan R, Vinay V, Mukund M, et al., editors. Theoretical

computer science., Lecture notes in computer scienceBerlin: Springer; 2001. p. 18–41.

Additional file

Additional file 1. Clustering results on graphs used in the experiments of various methods.

Page 22 of 22Zhang et al. J Big Data (2016) 3:26

 22. Cai B, Wang H, Zheng H, Wang H. An improved random walk based clustering algorithm for community detec-

tion in complex networks. In: 2011 IEEE international conference on systems, man, and cybernetics (SMC); 2011. p.

2162–2167.

 23. Dean J, Ghemawat S. MapReduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.

 24. Newman M. Networks: an introduction. 1st ed. New York: Oxford; 2010.

 25. Danon L, Díaz-Guilera A, Arenas A. The effect of size heterogeneity on community identification in complex net-

works. J Stat Mech Theory Exp. 2006;2006(11):11010.

 26. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Phys Rev E.

2008;78(4):046110.

 27. Newman ME, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69(2):026113.

 28. Ana LNF, Jain AK. Robust data clustering. In: Proceedings 2003 IEEE computer society conference on computer

vision and pattern recognition, vol. 2; 2003. p. 128–1332.

 29. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. J Stat Mech Theory Exp.

2005;2005(09):09008.

 30. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad

Sci. 2008;105(4):1118–23.

 31. Zachary WW. An information flow model for conflict and fission in small groups. J Anthropol Res. 1977;1:452–73.

 32. Sahai T, Speranzon A, Banaszuk A. Hearing the clusters of a graph: a distributed algorithm. Automatica.

2012;48(1):15–24.

 33. Leskovec J, Mcauley JJ. Learning to discover social circles in ego networks. In: Pereira F, Burges CJC, Bottou L, Wein-

berger KQ, editors. Advances in neural information processing systems 25; 2012. p. 539–547.

 34. Kunegis J. Konect—the Koblenz network collection. In: Proceedings of international conference on World Wide Web

companion; 2013. p. 1343–1350.

 35. Lusseau D, Schneider K, Boisseau OJ, Haase P, Slooten E, Dawson SM. The bottlenose dolphin community of doubt-

ful sound features a large proportion of long-lasting associations. Behav Ecol Sociobiol. 2003;54(4):396–405.

 36. Gleiser P, Danon L. Community structure in jazz. Adv Complex Syst. 2003;06(04):565–73.

 37. Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JE, van den Broeck W. What’s in a crowd? Analysis of face-to-face behav-

ioral networks. J Theor Biol. 2011;271(1):166–80.

 38. Adamic LA, Glance N. The political blogosphere and the 2004 US election: divided they blog. Proceedings of the 3rd

international workshop on link discovery., LinkKDD ’05New York: NY, USA; 2005. p. 36–43.

 39. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe

S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L,

D’Eustachio P. The reactome pathway knowledgebase. Nucleic Acids Res. 2013;1102:472–7.

 40. Leskovec J. Stanford large network dataset collection.

 41. Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. arXiv:1205.6233; 2012.

PUBLICATION

II

Outlier edge detection using random graph generation models and
applications

H. Zhang, S. Kiranyaz and M. Gabbouj

Journal of Big Data 4.1 (2017), 11
DOI: 10.1186/s40537-017-0073-8

Publication reprinted with the permission of the copyright holders

Outlier edge detection using random
graph generation models and applications
Honglei Zhang1* , Serkan Kiranyaz2 and Moncef Gabbouj1

Background

Graphs are an important data representation, which have been extensively used in many

scientific fields such as data mining, bioinformatics, multimedia content retrieval and

computer vision. For several hundred years, scientists have been enthusiastic about

graph theory and its applications [1]. Since the revolution of the computer technolo-

gies and the Internet, graph data have become more and more important because many

of the “big” data are naturally formed in a graph structure or can be transformed into

graphs.

Outliers almost always happen in real-world graphs. Outliers in a graph can be out-

lier nodes or outlier edges. For example, outlier nodes in a social network graph may

Abstract

Outliers are samples that are generated by different mechanisms from other normal

data samples. Graphs, in particular social network graphs, may contain nodes and

edges that are made by scammers, malicious programs or mistakenly by normal users.

Detecting outlier nodes and edges is important for data mining and graph analytics.

However, previous research in the field has merely focused on detecting outlier nodes.

In this article, we study the properties of edges and propose effective outlier edge

detection algorithm. The proposed algorithms are inspired by community structures

that are very common in social networks. We found that the graph structure around an

edge holds critical information for determining the authenticity of the edge. We evalu-

ated the proposed algorithms by injecting outlier edges into some real-world graph

data. Experiment results show that the proposed algorithms can effectively detect out-

lier edges. In particular, the algorithm based on the Preferential Attachment Random

Graph Generation model consistently gives good performance regardless of the test

graph data. More important, by analyzing the authenticity of the edges in a graph, we

are able to reveal underlying structure and properties of a graph. Thus, the proposed

algorithms are not limited in the area of outlier edge detection. We demonstrate three

different applications that benefit from the proposed algorithms: (1) a preprocessing

tool that improves the performance of graph clustering algorithms; (2) an outlier node

detection algorithm; and (3) a novel noisy data clustering algorithm. These applica-

tions show the great potential of the proposed outlier edge detection techniques. They

also address the importance of analyzing the edges in graph mining—a topic that has

been mostly neglected by researchers.

Keywords: Outlier detection, Graph mining, Outlier edge

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.

RESEARCH

Zhang et al. J Big Data (2017) 4:11
DOI 10.1186/s40537-017-0073-8

*Correspondence:

honglei.zhang@tut.fi
1 Department of Signal

Processing, Tampere

University of Technology,

Finland, Korkeakoulunkatu 1,

FI-33101 Tampere, Finland

Full list of author information

is available at the end of the

article

Page 2 of 25Zhang et al. J Big Data (2017) 4:11

include: scammers who steal users’ personal information; fake accounts that manipulate

the reputation management system; or spammers who send free and mostly false adver-

tisements [2–4]. Researchers have been working on algorithms to detect these malicious

outlier nodes in graphs [5–8]. Outlier edges are also common in graphs. They can be

edges that are generated by outlier nodes, or unintentional links made by normal users

or the system. Outlier edges are not only harmful but also greatly increase the system

complexity and degrade the performance of graph mining algorithms. In this paper, we

will show that the performance of the community detection algorithms can be greatly

improved when a small amount of outlier edges are removed. Outlier edge detection can

also help evaluate and monitor the behavior of end users and further identify the mali-

cious entities. However, in contrast to the focus on the outlier node detection, there have

been very few studies on outlier edge detection.

In this paper, we first propose an authentic score of an edge using the clustering prop-

erty of social network graphs. The authentic score of an edge is determined by the differ-

ence of the actual and the expected number of edges that link the two groups of nodes

that are around the investigating edge. We use random graph generation models to pre-

dict the number of edges between the two groups of nodes. The edges with low authen-

tic scores, which are also called weak links in this paper, are likely to be outliers. We

evaluated the outlier edge detection algorithm that is based on the authentic score using

injected edges in real-world graph data.

Later, we show the great potentials of the outlier edge detection technique in the areas

of graph mining and pattern recognition. We demonstrate three different applications

that are based on the proposed algorithms: (1) a preprocessing tool for graph cluster-

ing algorithms; (2) an outlier node detection algorithm; (3) a novel noisy data clustering

algorithm.

The rest of the paper is organized as follows: the prior art is reviewed in "Previous

work"; the methodology to determine the authentic scores of edges is in "Methods"; eval-

uation of the proposed outlier edge detection algorithms are given in "Evaluation of the

proposed algorithms"; various applications that use or benefit from outlier edge detec-

tion algorithms are presented in "Applications"; and finally, conclusions and future direc-

tions are included in "Conclusions".

Previous work

Outliers are data instances that are markedly different from the rest of the data [9]. Out-

liers are often located outside (mostly far way) from the normal data points when pre-

sented in an appropriate feature space. It is also commonly assumed that the number of

outliers is much less than the number of normal data points.

Outlier detection in graph data includes outlier node detection and outlier edge detec-

tion. Noble and Cook studied substructures of graphs and used the Minimum Descrip-

tion Length technique to detect unusual patterns in a graph [6]. Xu et al. considered

nodes that marginally connect to a structure (or community) as outliers [10]. They used

a searching strategy to group the nodes that share many common neighbors into com-

munities. The nodes that are not tightly connected to any community are classified as

outliers. Gao et al. also studied the roles of the nodes in communities [11]. Nodes in

a community tend to have similar attributes. Using the Hidden Markov Random Field

Page 3 of 25Zhang et al. J Big Data (2017) 4:11

technique as a generative model, they were able to detect the nodes that are abnormal in

their community. Akoglu et al. detected outlier nodes using the near-cliques and stars,

heavy vicinities and dominant heavy links properties of the ego-network- the induced

network formed by a focal node and its direct neighbors [12]. They observed that some

pairs of the features of normal nodes follow a power law and defined an outlier score

function that measures the deviation of a node from the normal patterns. Dai et al.

detected outlier nodes in bipartite graphs using mutual agreements between nodes [7].

In contrast to proliferative research on outlier node detection, there have been very

few studies on outlier edge detection in graphs. Liu et al. find outlier pairs in a com-

plex network by evaluating the structural and semantic similarity of each pair of the con-

nected nodes [13]. Chakrabarti detected outlier edges by partitioning nodes into groups

using the Minimum Description Length technique [14]. Edges that link the nodes from

different groups are considered as outliers. These edges are also called weak links or

weak ties in literature [15]. Obviously this method has severe limitations. First, one shall

not classify all weak links as outliers since they are part of the normal graph data. Sec-

ond, many outlier edges do not happen between the groups. Finally, many graphs do not

contain easily partitionable groups.

Detection of missing edges (or link prediction) is the opposite technique of outlier

edge detection. These algorithms find missing edges between pairs of nodes in a graph.

They are critical in recommendation systems, especially in e-commerce industry and

social network service industry [16, 17]. Such algorithms evaluate similarities between

each pair of nodes. A pair of nodes with high similarity score is likely to be connected

by an edge. One may use the similarity scores to detect outlier edges. The edges whose

two end nodes have a low similarity score are likely to be the outlier edges. However, in

practice, these similarity scores do not give satisfactory performance if one uses them to

detect outlier edges.

Methods

Notation

Let G (V ,E) denote a graph with a set of nodes V and a set of edges E. In this article, we

consider undirected, unweighted graphs that do not contain self-loops. We use lower

case a, b, c, etc., to represent nodes. Let ab denote the edge that connects nodes a and

b. Because our graph G is undirected, ab and ba represent the same edge. Let Na be the

set of neighboring nodes of node a, such that Na = {x|x ∈ V , xa ∈ E}. Let Sa = Na ∪ {a}

(i.e. Sa contains node a and its neighboring nodes). Let ka be the degree of node a, so

that ka = |Na|. Let A be the adjacency matrix of graph G. Let n = |V | be the number of

nodes and m = |E| be the number of edges of graph G.

Freeman defines the ego-network as the induced subgraph that contains a focal node

and all of its neighboring nodes together with edges that link these nodes [18]. To study

the properties of an edge, we define the edge-ego-network as follows:

Definition 1 An edge-ego-network is the induced subgraph that contains the two end

nodes of an edge, all neighboring nodes of these two end nodes and all edges that link

these nodes.

Page 4 of 25Zhang et al. J Big Data (2017) 4:11

Let Gab = G
(
Vab,Eab

)
 denote the edge-ego-network of edge ab, where Vab = Sa ∪ Sb

and Eab =
{
xy|x ∈ Vab, y ∈ Vab and xy ∈ E

}
.

Motivation

Graphs representing real-world data, in particular social network graphs, often exhibit

the clustering property- nodes tend to form highly dense groups in a graph [19]. For

example, if two people have many friends in common, they are likely to be friends too.

Therefore, it is common for social network services to recommend new connections to a

user using this clustering property [16]. As a consequence, social network graphs display

an even stronger clustering property compared to other graphs. New connections to a

node may be recommended from the set of neighboring nodes with the highest number

of common neighbors to the given node. The common neighbors (CN) score of node a

and node b is defined as

Common neighbors score is the basis of many node similarity scores that have been used

to find missing edges [16]. Some common similarity indices are:

 • Salton index or cosine similarity (Salton)

 • Jaccard index (Jaccard)

 • Hub promoted index (HPI)

 • Hub depressed index (HDI)

Next we shall investigate how to detect outlier edges in a social network using the clus-

tering property. According to this property, if two people are friends, they are likely to

have many common friends or their friends are also friends of each other. If two people

are linked by an edge, but do not share any common friends and neither do their friends

know each other, we have good reason to suspect that the link between them is an out-

lier. So, when node a and node b are connected by edge ab, there should be edges con-

nect the nodes in set Sa and the nodes in set Sb. However, the number of connections

should depend on the number of nodes in these two groups. Let us consider the different

cases as shown in Fig. 1.

In these four cases, edge ab is likely to be a normal edge in case (d) because nodes a

and b share common neighboring nodes c and d, and there are connections between

(1)sCN = |Na ∩ Nb|.

(2)sSalton =
SCN√
kakb

(3)sJaccard =
SCN

|Na ∪ Nb|

(4)sHPI =
SCN

min(ka, kb)

(5)sHDI =
SCN

max(ka, kb)

Page 5 of 25Zhang et al. J Big Data (2017) 4:11

neighboring nodes of a and those of b. In the case of (a), (b) and (c), |Na ∩ Nb| = 0, which

implies that nodes a and b do not share any common neighboring nodes. However edge

ab in case (c) is more likely to be an outlier edge because nodes a and b have each many

neighboring nodes but there is no connection between any two of these neighboring

nodes. In case (a) and (b) we do not have enough information to judge whether edge ab

is an outlier edge or not. If we apply the node similarity scores to detect outlier edges,

we find that SCN = 0 for cases (a), (b) and (c). Thus, the node similarity scores defined

by Eqs. (1), (2), (3), (4) and (5) all equal to 0. For this reason, these node similarity scores

cannot effectively detect outlier edges.

In case (c), edge ab is likely to be an outlier edge because the expected number of

edges between node a together with its neighboring nodes and node b together with its

neighboring nodes is high, whereas the actual number of edges is low. So, according to

the clustering property, we propose the following definition for the authentic score of an

edge:

Definition 2 The authentic score of an edge is defined as the difference between the

number of actual edges and the expected value of the number of edges that link the two

sets of neighboring nodes of the two end nodes of the given edge. That is:

where mab is the actual number of edges that links the two sets of nodes- one set is node

a together with its neighboring nodes and the other set is node b together with its neigh-

boring nodes, and eab is the expected number of edges that link the aforementioned two

sets of nodes.

We can rank the edges by their authentic scores defined in Eq. (6). The edges with low

scores are more likely to be outlier edges in a graph.

Let α(S,T) =

∣
∣
∣ab|a ∈ S, b ∈ T and ab ∈ E

∣
∣
∣ denote the number of edges that links the

nodes in sets S and T. We suppose the graph G is generated by a random graph genera-

tion model. Let ε(S,T) denote the expected value of the number of edges that links the

nodes in sets S and T by the generation model. "Expected number of edges between two

(6)sab = mab − eab,

(a) (b)

(c) (d)
Fig. 1 Different cases of edge-ego-networks. (a) ka = kb = 1, |Na ∩ Nb| = 0 (b) ka = kb = 2, |Na ∩ Nb| = 0 (c)

ka = kb = 6, |Na ∩ Nb| = 0 (d) ka = kb = 6, |Na ∩ Nb| = 2

Page 6 of 25Zhang et al. J Big Data (2017) 4:11

sets of nodes" describes two generation models and the functions of calculating ε(S,T).

Obviously α(S,T) and ε(S,T) are symmetric functions. That is:

Theorem 1 α(S,T) = α(T , S) and ε(S,T) = ε(T , S).

Let Pa,b and Ra,b be the two sets of nodes that are related to end nodes a and b. Node

set Ra,b depends on set Pa,b. The actual number of edges and the expected number of

edges of the sets of nodes related to the two end nodes may vary when we switch the end

nodes a and b. We use the following equations to calculate mab and eab:

Schemes of node neighborhood sets

For a ego-network, Coscia and Rossetti showed the importance of removing the focal

node and all edges that link to it when studying the properties of ego-networks [20]. It

is more complicate to study the properties of an edge-ego-network since there are two

ending nodes and two sets of neighboring nodes involved. Considering the common

nodes of the neighboring nodes and the end nodes of the edge being investigated, we

now define four schemes that capture different configurations of these two sets.

Let Sa\b = Sa\
{
b
}
 be the set of nodes that contains node a and its neighboring nodes

except node b. Let Na\b = Na\
{
b
}
 be the set of nodes that contains the neighboring

nodes of a except node b. Obviously Sa\b = Na\b ∪ {a}. Fig. 2 shows the edge-ego-net-

work Gab and the two sets of nodes Sa\b and Sb\a corresponding to case (d) in Fig. 1.

We first define two sets of nodes that are related to node a and its neighboring

nodes: Na\b and Sa\b. Next, we define two sets of nodes that are related to node b and

its neighboring nodes with regard to the sets of nodes Na\b and Sa\b: Sb\a\Sa\b and

Sb\a. In Fig. 2, Na\b =
{
c, d, e, g , h

}
, Sa\b =

{
a, c, d, e, g , h

}
, Sb\a\Sa\b =

{
b, f , i, j

}
 and

(7)mab =
1

2

(
α
(
Pa,b,Ra,b

)
+ α

(
Pb,a,Rb,a

))
;

(8)eab =
1

2

(
ε
(
Pa,b,Ra,b

)
+ ε

(
Pb,a,Rb,a

))
.

Fig. 2 The sets of the nodes of the edge-ego-network G
ab

 in the case (d) of Fig. 1. Sa\b contains node a and

its neighboring nodes except node b; Sb\a contains node b and its neighboring nodes except node a

Page 7 of 25Zhang et al. J Big Data (2017) 4:11

Sb\a =
{
b, c, d, f , i, j

}
. In the case of a social network graph, Na\b would consist of friends

of user (node) a except b; Sa\b consists of a and friends of a except b; Sb\a\Sa\b con-

sists of b and friends of b except a and those who are friends of a; Sb\a consists of b and

friends of b except a.

Based on the set pairs of nodes a and b, we define the following four schemes and their

meanings in the case of a social network graph. We use superscript (1), (2), (3) and (4) to

indicate the four schemes respectively.

 • Scheme 1 : P(1)

a,b = Na\b and R(1)

a,b = Sb\a\Sa\b

How many of a’s friends know b and his friends outside of the relationship with a?

 • Scheme 2 : P(2)

a,b = Na\b and R(2)

a,b = Sb\a

How many of a’s friends know b and his friends?

 • Scheme 3 : P(3)

a,b = Sa\b and R(3)

a,b = Sb\a\Sa\b

How many of a and his friends know b and his friends outside of the relationship
with a?

 • Scheme 4 : P(4)

a,b = Sa\b and R(4)

a,b = Sb\a

How many of a and his friends know b and his friends?

For the edge-ego-network Gab shown in Fig. 2, scheme 1 examines edges ef , cb and db ;

scheme 2 examines edges ef , ec, cb, cd, dc and db; scheme 3 examines edges ab, ef , cb

and db; scheme 4 examines edges ab, ac, ad, ef , ec, cb, db, dc and cd.

Next we study the symmetric property of these four schemes.

Theorem 2 α

(
P

(2)

a,b ,R
(2)

a,b

)
= α

(
P

(2)

b,a ,R
(2)

b,a

)
 and α

(
P

(4)

a,b ,R
(4)

a,b

)
= α

(
P

(4)

b,a ,R
(4)

b,a

)

The proof of this theorem is given in Appendix. Theorem 2 shows that the number

of edges that link the nodes from the two groups defined in scheme 2 and scheme 4 are

symmetric. That is the values remains the same if the two end nodes are switched. We

can use m
(2)

ab
= α

(
P

(2)

a,b ,R
(2)

a,b

)
 and m

(4)

ab
= α

(
P

(4)

a,b ,R
(4)

a,b

)
 instead of Eq. 7.

Theorem 3 ε

(
P

(4)

a,b ,R
(4)

a,b

)
= ε

(
P

(4)

b,a ,R
(4)

b,a

)

This theorem can be directly derived from P
(4)

a,b = R
(4)

b,a, R
(4)

a,b = P
(4)

b,a and Theorem 1. So

eab = ε

(
P

(4)

a,b ,R
(4)

a,b

)
. Note scheme 4 is symmetric in calculating both of the actual and

expected number of edges of the two groups.

Expected number of edges between two sets of nodes

With the four schemes described above, we get the number of edges that connect nodes

from the two sets using Eq. 7. To calculate the authentic score of an edge by Eq. (6), we

should find the expected number of edges between these two sets of nodes. Next we

will use random graph generation models to determine the expected number of edges

between these two sets of nodes.

Page 8 of 25Zhang et al. J Big Data (2017) 4:11

Erdős- Rényi random graph generation model

The Erd s-Rnyi model, often referred as G(n, m) model, is a basic random graph genera-

tion model [21]. It generates a graph of n nodes and m edges by randomly connecting

two nodes by an edge and repeat this procedure until the graph contains m edges.

Suppose we have n nodes in an urn and predefined two sets of nodes S and T. We

randomly pick two nodes from the urn. Note, the intersection of sets S and T may not

be empty. The probability of picking the first node from set S\T is |S|−|S∩T |
n and the prob-

ability of picking the first node from set S ∩ T is |S∩T |
n . If the first node is from set S, the

probability of picking the second node from set T is |S|−|S∩T |
n

|T |
n−1

+
|S∩T |

n
|T |−1

n−1
. Since the

graph is undirected, we may also pick up a node from set T first and then pick up the

second node from set S. So, the probability that we generate an edge that connects a

node set S and a node from set T by randomly picking is:

We repeat this procedure m times to generate a graph, where m is the number of edges

in graph G. The expected number of edges that connect the nodes in set S and the nodes

in set T is:

Note, here we ignore the duplicate edges during this procedure. This has little impact on

the final results for real-world graphs where m � n(n − 1). In Eq. (10), let

where dG is the density (or fill) of graph G.

Next we will find the expected number of edges under the four schemes defined in

"Schemes of node neighborhood sets". Since edge ab is already fixed, we should repeat

the random procedure m − 1 times. For real-world graphs where m � 1, we can safely

approximate m − 1 by m.

Now we can apply Eq. (10) under the four schemes. Let ka and kb be the degrees of

nodes a and b. Let kab = |Na ∩ Nb| be the number of common neighboring nodes of

nodes a and b. The expected number of edges for each scheme is:

 • Scheme 1:

 • Scheme 2:

 • Scheme 3:

(9)p(S,T) = (|S||T | − |S ∩ T |)
2

n(n − 1)
.

(10)ε(S,T) = (|S||T | − |S ∩ T |)
2m

n(n − 1)
.

(11)dG =
2m

n(n − 1)
,

(12)e
(1)

ab
=

(
kakb −

1

2
(ka + kb)(1 + kab) + kab

)
dG

(13)e
(2)

ab
=

(
kakb −

1

2
(ka + kb) − kab

)
dG

(14)
e
(3)

ab
=

(
kakb −

1

2
(ka + kb)kab

)
dG

Page 9 of 25Zhang et al. J Big Data (2017) 4:11

 • Scheme 4:

Preferential attachment random graph generation model

The Erd s- Rnyi model generates graphs that are lacking some important properties of

real-world data, in particular the power law of the degree distribution [1]. Next we intro-

duce a random graph generation model using a preferential attachment mechanism that

generates a random graph in which degrees of each node are known. Our preferential

attachment random graph generation model (PA model) is closely related to the modu-

larity measurement that evaluates the community structure in a graph. Newman defines

the modularity value as the difference of the actual number of edges and the expected

number of edges of two communities [22]. The way of calculating the expected number

of edges between two communities follows preferential attachment mechanism instead

of using the Erd s- Rényi model. In the Erd s- Rényi model, each node is picked with the

same probability. However, by the preferential attachment mechanism, the nodes with

high degrees are picked with high probabilities. Thus an edge is more likely to link nodes

with a high degree.

We can apply the preferential attachment strategy to generate a random graph with n

nodes, m edges and each node has a predefined degree value. We first break each edge

into two ends and put all the 2m ends into an urn. A node with degree k will have k enti-

ties in the urn. At each round, we randomly pick two ends (one at a time with substitu-

tion) from the urn, link them with an edge and put them back into the urn. We repeat

this procedure m times. We call this procedure Preferential Attachment Random Graph

Generation model, or PA model in short. Note, we may generate duplicate edges or even

self-loops with this procedure. Thus the expected number of edges estimated by this

model is higher than a model that does not generate duplication edges and self-loops.

This defect can be ignored when ka and kb are small. Later we will show a method that

can compensate this bias, especially when ka and kb are large.

If we have two nodes a and b, the probability that an edge is formed in each round is:

Then the expected number of edges that link the nodes a and b after m iterations is:

If we have two sets of nodes S and T, the expected number of edges that link the nodes

in set S and the nodes in set T is:

Applying Eq. (18) to the four schemes defined in "Schemes of node neighborhood sets",

we get the expected number of edges for each scheme is

(15)e
(4)

ab
= (kakb − kab)dG

(16)pab =
kakb

2m2
.

(17)eab =
kakb

2m
.

(18)ε(S,T) =
∑

a∈S

∑

b∈T

eab =
1

2m

∑

a∈S

∑

b∈T

kakb.

Page 10 of 25Zhang et al. J Big Data (2017) 4:11

 • Scheme 1:

 • Scheme 2:

 • Scheme 3:

 • Scheme 4:

Authentic score using the PA model

Authentic score compensation

We may apply Eqs. (19), (20), (21) or (22) to Eq. (6) to calculate the authentic score of

an edge. As mentioned in "Preferential attachment random graph generation model",

the PA model generates graphs with duplicate edges and self-loops. Thus the estimated

expected number of edges that link two sets of nodes are higher than an accurate model.

The gap is even more significant when the number of edges is large. To compensate for

this bias, we refine the authentic score function for the PA model as

where γ > 1. The power function of the first term increases the value, especially when

mab is large. This eventually compensates the bias introduced in the second term. In

practice, we normally choose γ = 2.

Matrix of degree products

To get eab using Eqs. (19), (20), (21) or (22), we should find the sum of kakb for every pair

of nodes in the corresponding edge-ego-network. We can store the values of kakb for

every pair of nodes to prevent unnecessary multiplication operations and thus reduce

the processing time. However, storing this information would require a storage space in

the order of n2, which is not applicable when n is large. We observe that we do not need

(19)e
(1)

ab
=

1

4m

⎛
⎜⎝

∑

i∈P
(1)
a,b

∑

j∈R
(1)
a,b

kikj +
∑

i∈P
(1)
b,a

∑

j∈R
(1)
b,a

kikj

⎞
⎟⎠

(20)e
(2)

ab
=

1

4m

⎛
⎜⎝

∑

i∈P
(2)
a,b

∑

j∈R
(2)
a,b

kikj +
∑

i∈P
(2)
b,a

∑

j∈R
(2)
b,a

kikj

⎞
⎟⎠

(21)e
(3)

ab
=

1

4m

⎛
⎜⎝

∑

i∈P
(3)
a,b

∑

j∈R
(3)
a,b

kikj +
∑

i∈P
(3)
b,a

∑

j∈R
(3)
b,a

kikj

⎞
⎟⎠

(22)e
(4)

ab
=

1

4m

⎛
⎜⎝

∑

i∈P
(4)
a,b

∑

j∈R
(4)
a,b

kikj +
∑

i∈P
(4)
b,a

∑

j∈R
(4)
b,a

kikj

⎞
⎟⎠

(23)sab = m
γ

ab
− eab,

Page 11 of 25Zhang et al. J Big Data (2017) 4:11

to calculate the product of the degrees for every pair of nodes in graph G. What we need

is the pair of nodes that appear together in every edge-ego-network.

The distance of two nodes in a graph is defined as the length of the shortest path

between them. It is easy to see that the maximum distance of two nodes in an edge-ego-

network is 3. Next, we use the property of the adjacency matrix to find the pairs of nodes

that appear together in edge-ego-networks.

Let dij be the distance of node i and node j. Let B(k) = Ak, where A is the adjacency

matrix of graph G and k is a natural number. Let Bij(k) be the element of the matrix

B(k). Then Bij(k) is the number of walks with length k between node i and node j. If

Bij(k) = 0 , there is no walk with length k between nodes i and j.

Proposition 3.1 If dij = k, Bij(k) �= 0

Proof If dij = k, there exists at least one path with length k from node i to node j. Since

a path of a graph is a walk between two nodes without repeating nodes, there exists at

least one walk with length k between the node i and the node j. So Bij(k) �= 0.

Theorem 4 Let K (k) = B(1) + B(2) + · · · + B(k). If dij ≤ k, Kij(k) �= 0

Proof Let dij = l, where l ≤ k. From Proposition 3.1, Bij(l) �= 0. Since B(k) is a nonneg-

ative matrix where Bij(k) ≥ 0, we have Kij(k) = Bij(1) + · · · + Bij(l) + · · · + Bij(k) �= 0.

According to Theorem 4, to find the pairs of nodes with a distance of 3 or less, we need

to find the nonzero elements in matrix K(3). Let I be the indicator matrix whose ele-

ments indicate whether the distance between a pair of nodes is equal to or less than 3.

Such that:

Let matrix D denote the degree matrix whose diagonal elements are the degree of each

node, that is:

Let

where ◦ denotes the Hadamard product of two matrices. The value of the nonzero ele-

ments in matrix E is the expected number of edges between the two nodes under the

PA model. Using matrix E, we can easily calculate the authentic score for each scheme.

For example the authentic score of the edge ab using scheme 1 and the score function

defined by Eq. (6) is:

(24)Iij =

{
1 if Kij(3) �= 0

0 if Kij(3) = 0
.

(25)Dij =

{
ki if i = j
0 otherwise

.

(26)E =
1

2m

(
(DI) ◦ (DI)T

)
,

Page 12 of 25Zhang et al. J Big Data (2017) 4:11

Evaluation of the proposed algorithms

In this section we evaluate the performance of the proposed outlier edge detection algo-

rithms. Due to the availability of the datasets with identified outlier edges, we gener-

ate test data by injecting random edges to real-world graphs. This experimental setup is

effective to evaluate algorithms that detect outliers, since the injected edges are random

thus do not follow the actual principle that generated the real-world graph. We also eval-

uate the proposed outlier detection algorithms by measuring the change of some impor-

tant graph properties when outlier edges are removed. In next section, we will show that

the proposed algorithms are not only effective in simulated data but also powerful in

solving real-world problems in many areas.

We first inject edges to a real-world graph data by randomly picking two nodes from

the graph and linking them with an edge, if they are not linked. The injected edges are

formed randomly, and thus they do not follow any underlying rule that generated the

real-world graph. An outlier edge detection algorithm returns the authentic score of

each edge. Given a threshold value, the edges with lower scores are classified as outliers.

With multiple algorithms, we vary the threshold value and record the true positive

rates and the false positive rates of each algorithm. We use the receiver operating char-

acteristic (ROC) curve—a plot of true positive rates against false positive rates at various

threshold values—to subjectively compare the performance of different algorithms. We

also calculate the area under the ROC curve (AUC) value to quantitatively evaluate the

competing algorithms.

Comparison of different combinations of the proposed algorithm

The proposed algorithm involves two random graph generation models and four

schemes. Two authentic score functions are proposed for the PA Model. With the first

experiment, we study the performance of different combinations using real-world graph

data.

We take the Brightkite graph data as the test graph [23]. Brightkite is a social network

service in which users share their location information with their friends. The Bright-

kite graph contains 58, 228 nodes and 214, 708 edges. The data was received from the

KONECT graph data collection [24].

We injected 1000 random “false” edges to the graph data. If an algorithm yields the

same authentic scores to multiple edges, we randomly order these edges. We compare

the detection results of the algorithms using the Erd s- Rényi (ER) model and the PA

model with the combination of the four schemes explained in "Schemes of node neigh-

borhood sets" and the two score functions defined in Eqs. (6) and (23). Table 1 shows the

AUC values of the ROC curves of all combinations. Italic font indicates the best score

among all of them.

From the experimental results, we see that the performance of the PA model with

score function defined by Eq. (23) is clearly better than that of the score function defined

by Eq. (6). The term mγ in Eq. (23) increases the value even more when m is large. After

(27)s
(1)

ab
=
1

2

⎛
⎜⎝

∑

i∈P
(1)
a,b

∑

j∈R
(1)
a,b

(
Aij − Eij

)
+

∑

i∈P
(1)
b,a

∑

j∈R
(1)
b,a

(
Aij − Eij

)
⎞
⎟⎠.

Page 13 of 25Zhang et al. J Big Data (2017) 4:11

the bias of the PA model is corrected, the performance of the outlier edge detection

algorithm is greatly improved. The choice of the score function defined by Eqs. 6 and 23

has little impact to the ER model based algorithms.

The results also show that the combination of the PA model and the score func-

tion defined by Eq. (23) is superior than other combinations by a significant margin.

Scheme 2 gives better performance than the other schemes, especially for ER Model

based algorithms. In the rest of this paper, we use scheme 2 for the ER Model based algo-

rithm. With the combination of the PA Model and the score function defined by Eq. 23,

the difference between each scheme is insignificant. Because of the symmetric property

of scheme 4, we use it for the PA model with the score function defined by Eq. 23.

Comparison of outlier edge detection algorithms

In this section we perform comparative evaluation of the proposed outlier edge detec-

tion algorithms against other algorithms. All test graphs originate from the KONECT

graph data collection. Table 2 shows some parameters of the test graph data. The density

of a graph is defined in Eq. (11). GCC, which stands for the global clustering coefficient,

is a measure of clustering property of a graph. It is the ratio of the number of closed tri-

angles and the number of connected triplet nodes. The higher GCC value is, the stronger

clustering property a graph has.

We compared the performance of the two proposed algorithms [ER model combined

with scheme 2 and the score function defined by Eq. (6) and PA model combined with

scheme 4 and the score function defined by Eq. (23)] with three other algorithms that

use node similarity scores for missing edge detection. We use the Jaccard Index and

Hub Promoted Index (HPI) as defined in Eqs. (3) and (4). We also use the preferential

Table 1 AUC values of the ROC curves using Brightkite graph Data

Italic indicates the best score of each experiment

ER model PA model

Eq. (6) Eq. (23) Eq. (6) Eq. (23)

Scheme 1 0.885 0.885 0.880 0.904

Scheme 2 0.885 0.885 0.882 0.905

Scheme 3 0.878 0.878 0.873 0.902

Scheme 4 0.879 0.879 0.878 0.903

Table 2 Test graph data for comparing outlier edge detection Algorithms

Nodes Edges Density GCC (%) Reference

Advogato 6.5 k 51 k 1.2 × 10
−3 9.2 [25]

Twitter-icwsm 465 k 835 k 3.9 × 10
−6 0.06 [26]

Brightkite 58 k 214 k 1.3 × 10
−4 11 [23]

Facebook-wosn 63 k 817 k 4.0 × 10
−4 14.8 [27]

Ca-cit-HepPh 28 k 4.6 m 8.0 × 10
−3 28 [28]

Youtube-friend 1.1 m 3.0 m 4.6 × 10
−6 0.6 [29]

Web-Google 875 k 5.1 m 6.7 × 10
−6 5.5 [30]

Page 14 of 25Zhang et al. J Big Data (2017) 4:11

attachment index (PAI) that is another missing edge detection metric that works for out-

lier edge detection. The PAI for edge ab is defined as

Figure 3 shows the ROC curves of different algorithms on the Brightkite graph data. For

reference, the figure also shows an algorithm that randomly orders the edges by giving

random scores to each edge.

As Fig. 3 shows, the ROC curve of the algorithm that gives random scores is roughly a

straight line from the origin to the top right corner. This line indicates that the algorithm

cannot distinguish between an outlier edge and a normal edge, which is expected. The

ROC curve of an algorithm that can detect outlier edges should be a curve above this

straight line, as all algorithms used in this experiment. As mentioned in "Motivation",

the Jaccard Index and HPI both use the number of common neighbors. Thus their scores

are all 0 for edges that connect two end nodes that do not share any common neighbors.

In real-world graphs, a large amount of edges have a Jaccard Index or HPI value 0, espe-

cially for graphs that contain many low degree nodes.

The PAI value is the product of the degrees of the two end nodes of an edge. Sorting

edges with their PAI values just puts the edges with low degree end nodes to the front.

The figure shows that the PAI value can detect outlier edges with fairly good perfor-

mance. This indicates that most of the injected edges connecting the nodes with low

degrees. Considering most of the nodes in a real-world graph are low degree nodes, this

is an expected behavior.

Figure 3 indicates that the proposed outlier edge detection algorithms are clearly supe-

rior to the competing algorithms. The algorithm based on the PA model performs better

than the one based on the ER model.

Table 3 shows the AUC values of the ROC curves on all test graph data. Italic font

shows the best AUC values for each test graph.

The comparison results show that the PA model algorithm gives consistently good per-

formance regardless of the test graph data. The experiment also shows the correlation

(28)sPAI = kakb.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

ER Model

NM Model

Jaccard

HPI

PAI

Random

Fig. 3 ROC curve of different algorithms on the Brightkite graph data. The curves of the proposed methods

are clearly above other competing methods

Page 15 of 25Zhang et al. J Big Data (2017) 4:11

between the performance of the algorithms that are based on the random graph gen-

eration model and the GCC value of the test graph. For example, the ER model and PA

model algorithms works better on Facebook-Wosn and Brightkite graph data, which

have high GCC values as shown in Table 2. Performance of the ER model algorithm

degrades considerably on graphs with a very low GCC value, such as the twitter-icwsm

graph. This result agrees with the fact that both the ER model and the PA model algo-

rithms use the clustering property of graphs. We also observe that PAI works better on

graphs with low GCC values. We estimate that these graphs contain many star struc-

tures and two nodes with low degrees are rarely linked by an edge. The large number of

claw count (28 billion) and small number of triangle count (38 k) in twitter-icwsm graph

data partially confirm our estimation.

Change of graph properties

The proposed outlier edge detection algorithms are based on the clustering property of

graphs. Since outlier edges are defined as edges that do not follow the clustering prop-

erty, removing them should increase the coefficients that measure this property. On the

other hand, some outlier edges (also called weak links in this aspect) serves an impor-

tant role to connect remote nodes or nodes from different communities. Removing

such edges should also extensively increase the distance of the two end nodes. Thus the

coefficients that measure the distance between the nodes of a graph shall increase when

outlier edges are removed. In this experiment, we verify these changes caused by the

removal of the detected outlier edges.

The global clustering coefficient (GCC) and the average local clustering coefficient (ALCC)

are the de facto measures of the clustering property of graphs. GCC is defined in "Compari-

son of outlier edge detection algorithms". Local clustering coefficient (LCC) is the ratio of the

number of edges that connect neighboring nodes of a node and the number of all possible

edges that connect these neighboring nodes. The LCC of node a can be expressed as

Average local clustering coefficient is the average of the local clustering coefficients of all

nodes in the graph.

We use diameter, the 90-percentile effective diameter (ED) and the mean shortest

path (MSP) length as distance measures between the nodes in a graph. Diameter is the

(29)ca =

∣
∣{ij|i ∈ Na, j ∈ Na, ij ∈ E

}∣
∣

ka(ka − 1)
.

Table 3 AUC values of the ROC curves on different graph data

Italic indicates the best score of each experiment

ER PA Jaccard HPI PAI

Advogato 0.887 0.893 0.858 0.859 0.877

Twitter-icwsm 0.531 0.942 0.527 0.530 0.997

Brightkite 0.885 0.905 0.833 0.827 0.873

Facebook-wosn 0.968 0.970 0.947 0.946 0.878

Ca-cit-HepPh 0.970 0.967 0.993 0.991 0.888

Youtube-friend 0.770 0.842 0.731 0.738 0.898

Web-Google 0.985 0.992 0.944 0.945 0.859

Page 16 of 25Zhang et al. J Big Data (2017) 4:11

maximum shortest path length between any two nodes in a graph. 90-percentile effec-

tive diameter is the number of edges that are needed on average to reach 90% of other

nodes. The mean shortest path length is the average of the shortest path length between

each pair of nodes in the graph. Note, if the graph is not connected, we measure the

diameter, ED and MSP of the largest component in the graph.

In this experiment, we removed 5% of the edges with the lowest authentic score.

Table 4 shows the GCC, ALCC, Diameter, ED and MSP values before and after the out-

lier edges were removed. For comparison, we also calculated values of these coefficients

after same amount of edges are randomly removed 5% from the graph.

The results show that removing the detected outlier edges clearly increases the GCC

and ALCC values, while random edge removal slightly decreases the values. This con-

firms the enhancement of the clustering property after outlier edges are removed. The

diameter, ED and MSP values all increase when the detected outlier edges were removed.

This increase is much more significant than when random edges were removed. This

also confirms the theoretical prediction.

Applications

In this section, we demonstrate various applications that benefit from the proposed

outlier edge detection algorithms. In these applications, we use the algorithm of the PA

model combined with scheme 4 and the score function defined by Eq. 23.

Impact on graph clustering algorithms

Graph clustering is an important task in graph mining [31–33]. It aims to find clusters in

a graph- a group of nodes in which the number of inner links between the nodes inside

the group is much higher than that between the nodes inside the group and those out-

side the group. Many techniques have been proposed to solve this problem [34–37].

The proposed outlier edge detection algorithms are based on the graph clustering

property. They find edges that link the nodes in different clusters. These edges are also

called weak links in the literature. With the proposed techniques, we can now remove

detected outlier edges before applying a graph clustering algorithm. This should improve

the graph clustering accuracy and reduce the computational time.

In this application, we evaluate the performance impact of the proposed outlier edge

detection technique on different graph clustering algorithms. We use simulated graph

data with cluster structures as used in [36, 38–40]. We generated test graphs of 512

nodes. The average degree of each node is 24. The generated cluster size varies from

16 to 256. Let dout be the average number of edges that link a node from the cluster to

Table 4 Graph properties changes after noise edges removal

Original ER model PA model Random

GCC 0.111 0.121 0.120 0.105

ALCC 0.172 0.180 0.183 0.158

Diameter 18 19 20 18

ED 5.91 6.78 6.36 5.95

MSP 3.92 4.10 4.10 3.95

Page 17 of 25Zhang et al. J Big Data (2017) 4:11

nodes outside the cluster. Let d be the average degree of the node. Let μ = dout
d

 be the

parameter that indicates the strength of the clustering structure. The smaller μ is, the

stronger the clustering structure is in the graph. We varied μ from 0.2 to 0.5. Note, when

μ = 0.5, the graph has a very weak clustering structure, i.e. a node inside the cluster has

an equal number of edges that link it to other nodes inside and outside the cluster.

We use the Normalized Mutual Information (NMI) to evaluated the accuracy of a

graph clustering algorithm. The NMI value is between 0 and 1. The larger the NMI value

is, the more accurate the graph clustering result is. An NMI value of 1 indicates that the

clustering result matches the ground truth. More details of the NMI metric can be found

in [35, 41].

We first apply graph clustering algorithms to the test graph data and record their NMI

values and computational time. Then we remove 5% of the detected outlier edges from

the test graph data, and apply these graph clustering algorithms again to the new graph

and record their NMI values and computational time. The differences of the NMI values

and the computational time show the impact of the outlier edge removal on the graph

clustering algorithms.

The evaluated algorithms are LRW [42], GN [36], SLM [43], Danon [38], Louvain [34]

and Infomap [44]. MCL [45] is not listed since it failed to find the cluster structure from

this type of test graph data.

We repeated the experiment 10 times and calculated the average performance. Table 5

shows the NMI values before and after outlier edges were removed. The first number in

each cell shows the NMI values of the clustering result on the original graph and the sec-

ond number shows the NMI values of the clustering result on the graph after the outlier

edges were removed.

Table 6 shows the NMI value changes in percentage. A positive value indicates that the

NMI value has increased.

The results show that outlier edge removal improves the accuracy of most graph clus-

tering algorithms. The clustering accuracy of the SLM algorithm and the Louvain algo-

rithm decrease slightly in some cases.

Table 7 shows the computational time changes in percentage before and after outlier

edges are removed. Negative values indicate that the computational time is decreased.

These results show that outlier edge removal decreases the computational time of

most algorithms used in the experiment. In some cases, SLM and the Louvain algo-

rithms show significant gains in computation time. Note further that the increase of the

Table 5 The NMI values before and after outlier edges were removed

μ LRW GN SLM Danon Louvain Infomap

0.2 1.0/1.0 0.99/1.0 1.0/1.0 0.99/1.0 1.0/1.0 1.0/1.0

0.25 0.97/1.0 0.98/0.99 1.0/1.0 0.99/0.98 1.0/1.0 1.0/1.0

0.3 0.89/0.95 0.93/0.97 1.0/1.0 0.95/0.98 1.0/1.0 0.92/1.0

0.35 0.78/0.82 0.74/0.72 0.96/0.94 0.66/0.84 0.90/0.86 0.36/0.91

0.4 0.80/0.86 0.66/0.70 0.83/0.81 0.67/0.70 0.84/0.81 0.78/0.83

0.45 0.25/0.73 0.53/0.52 0.71/0.67 0.51/0.55 0.68/0.60 0.22/0.43

0.5 0.03/0.61 0.39/0.47 0.58/0.56 0.39/0.49 0.51/0.53 0/0.47

Page 18 of 25Zhang et al. J Big Data (2017) 4:11

computational time in the Infomap algorithm leads to a crucial improvement of the clus-

tering accuracy.

Outlier node detection in social network graphs

As mentioned in "Previous work", many algorithms have been proposed to detect outlier

nodes in a graph. In this section we present a technique to detect outlier nodes using the

proposed outlier edge detection algorithm.

In a social network service, if a user generates many links that do not follow the clus-

tering property, we have good reasons to suspect that the user is a scammer. To detect

this type of outlier nodes, we can first detect outlier edges. Then we find nodes that are

the end points of these outlier edges. Nodes that are linked to many outlier edges are

likely to be outlier nodes.

In this application, we use Brightkite data for outlier node detection. In the experi-

ment, we rank the edges according to their authentic scores. We take the first 1000 edges

as outlier edges and rank each node according to the number of outlier edges that it is

connected to.

Table 8 shows the top 8 detected outlier nodes: the node ID, the number of outlier

edges that the node links, the degree of the node, the rank of the degree among all nodes

and LCC values of the node.

The results show that the detected outlier nodes tend to have large degree values. In

particular, the LCC values of the detected outlier nodes are extremely low comparing

to the ALCC value (0.172) of the graph. This shows that the neighboring nodes of the

detected outlier nodes have very weak clustering property.

Table 6 Changes of normalized mutual information on graph clustering algorithms in per-

centage

μ LRW GN (%) SLM Danon (%) Louvain Infomap

0.2 0 0.8 0 1.0 0 0

0.25 3.3% 1.5 0 −1.0 0 0

0.3 7.3% 5.0 0 3.5 0 9.1%

0.35 5.7% −2.2 −2.1 26 −4.9% 155%

0.4 8.5% 6.7 −2.2 4.8 −3.0% 5.8%

0.45 190% −1.1 −6.2 8.4 −12% 95%

0.5 1730% 19 −4.4 26 2.4% ∞

Table 7 Changes of computational time on graph clustering algorithms in percentage

μ LRW (%) GN (%) SLM (%) Danon (%) Louvain (%) Infomap (%)

0.2 −52 −11 −36 −3.1 −33 −47

0.25 −23 −18 1.0 −1.0 −41 −16

0.3 −8.9 −9.3 7.7 −1.4 −31 −13

0.35 −11 −0.3 −21 −3.5 −35 31

0.4 −11 −5.7 −5.3 −3.0 −20 17

0.45 −16 2.8 −14.4 2.1 −41 33

0.5 −21 −6.7 −1.9 −3.4 −39 55

Page 19 of 25Zhang et al. J Big Data (2017) 4:11

Clustering of noisy data

Clustering is one of the most important tasks in machine learning [46]. During the last

decades, many algorithms have been proposed, i.e. [47–49]. The task becomes more

challenging when noise is present in the data. Many algorithms, especially connectivity-

based clustering algorithms, fail over such data. In this section we present a robust clus-

tering algorithm that uses the proposed outlier edge detection techniques to find correct

clusters in noisy data.

Graph algorithms have been successfully used in clustering problems [50, 51]. To

cluster the data, we first build a mutual k-nearest neighbor (MKNN) graph [52, 53]. Let

x1, x2, . . . , xn ∈ Rd be the data points, where n is the number of data points and d is the

dimension of the data. Let d(xi, xj) be the distance between two data points xi and xj. Let

Nk(xi) be the set of data points that are the k-nearest neighbors of the data point xi with

respect to the predefined distance measure d
(
xi, xj

)
. Therefore, the cardinality of the set

Nk(xi) is k. A MKNN graph is built in the following way. The nodes in the MKNN graph

are the data points. Two nodes xi and xj are connected if xi ∈ Nk(xj) and xj ∈ Nk(xi). The

constructed MKNN graph is unweighted and undirected.

With a proper distance function, data points in a cluster are close to each other

whereas data points in different clusters are far away from each other. Thus, in the con-

structed MKNN graph, a node is likely to be linked to other nodes in the same cluster

while the links between the nodes in different clusters are relatively less. This indicates

that the MKNN graph has the clustering property similar to social network graphs.

Outlier data points are normally far away from the normal data points. Some outlier

nodes form isolated small components in the MKNN graph. However, the outlier nodes

that fall between the clusters form bridges that connect different clusters. These bridges

greatly degrade the performance of connectivity-based clustering algorithms, such as

single-linkage clustering algorithm and complete-linkage clustering algorithm [46].

Based on these observations, we propose a hierarchical clustering algorithm by itera-

tively removing edges (weak links) according to their authentic scores. When a certain

amount of outlier edges is removed, different clusters form separate large connected

components—a connected component in a graph that contains a large proportion of

the nodes, and it is straightforward to find them in the graph. A breadth-first search or

a depth-first search algorithm can find all connected components in a graph with the

complexity of O(n), where n is the number of nodes. At each iteration step, we find large

Table 8 Outlier node detection results on Brightkite graph

Node id Outlier edges Degree Degree rank LCC

41 21 1134 1 0.005

458 16 1055 2 0.001

115 9 838 4 0.004

175 7 270 39 0.001

989 7 270 40 0.015

2443 7 379 16 0.010

36 5 467 11 0.005

158 5 833 5 0.004

Page 20 of 25Zhang et al. J Big Data (2017) 4:11

connected components in the MKNN graph and the data points that do not belong to

any large connected components are classified as outliers.

Using the proposed algorithm, we cluster a dataset taken from [54]. Figure 4 shows

some results of different number of detected clusters. Outliers are shown in light gray

color and data points in different clusters are shown in different colors.

As the Fig. 4 shows, the proposed algorithm cannot only classify outliers and nor-

mal data points but also find clusters in the data points. As more and more edges are

removed from the MKNN graph, the number of clusters increases.

Next we show how to determine the true number of clusters. Table 9 shows the num-

ber of removed edges and the number of detected clusters of this dataset.

As the result shows, removing a small amount of edges is enough to find correct clus-

ters in the data. One has to remove a large amount of edges to break a genuine cluster

into smaller components. We can simply define a threshold and stop the iteration if the

number of clusters does not increase any more.

To illustrate the performance of the proposed clustering algorithm, we use synthetic

data that are both noisy and challenging. Figure 5 shows the test datasets. We used tools

from [55] to generate the normal data points and added random data points as noise.

In our experiments, we use the Euclidean distance function. The number of nearest

neighbors is 30. At each iteration step, we remove 0.1% of total number of edges accord-

ing to their authentic scores. A large connected component is a component whose size is

(a) (b)

(c) (d)

(e) (f)
Fig. 4 Given the number of clusters, the clustering results of a dataset taken from [54]. a 1 cluster; b 2 clus-

ters; c 4 clusters; d 5 clusters; e 6 clusters; f 7 clusters

Table 9 Percentage of the removed edges and the number of detected clusters

Removed edges 2.6% 2.7% 2.8% 3.5% 6% 33.3%

Number of clusters 2 3 4 5 6 7

Page 21 of 25Zhang et al. J Big Data (2017) 4:11

larger than 5% of the total number of nodes. The clustering termination threshold is set

as 10% of the total number of edges.

We compare the proposed clustering algorithm with the k-means[46], the average-

linkage (a-link) [46], the normalized cuts (N-Cuts) [56] and the graph degree linkage

(GDL) [49] clustering algorithms. Since the competing algorithms cannot detect the

number of clusters, we use the value from the ground truth. Table 10 shows the NMI

scores of the proposed algorithm and the competing algorithms.

The results show that the k-means and the average linkage clustering algorithms fail on

complex-shaped clusters. GDL and the proposed algorithms are all graph-based cluster-

ing algorithms. They are able to find clusters with arbitrary shapes. From the NMI scores,

the proposed algorithm is clearly superior to the competing clustering algorithms.

Conclusions

In real-world graphs, in particular social network graphs, there are edges.

generated by scammers, malicious programs or mistakenly by normal users and the

system. Detecting these outlier edges and removing them will not only improve the

efficiency of graph mining and analytics, but also help identify harmful entities. In this

article, we introduce outlier edge detection algorithms based on two random graph

(a) (b) (c)

(d) (e) (f)
Fig. 5 Synthetic datasets for clustering. Clusters are separated by different colors and noise data is shown by

grey dots. a two spirals; b corners; c half kernels; d unbalanced densities; e cluster in cluster; f crescent and full

moon

Table 10 Clustering of noisy data results

Italics indicates the best score of each experiment

Dataset k-Means a-Link N-Cuts GDL Proposed

(a) 0.031 0.099 0.053 0.650 0.672

(b) 0.743 0.743 0.743 0.743 0.848

(c) 0 0.004 0.559 0.654 0.755

(d) 0.208 0.161 0.367 0.553 0.619

(e) 0.001 0.133 0.680 0.701 0.744

(f) 0.001 0.162 0.627 0.612 0.714

Page 22 of 25Zhang et al. J Big Data (2017) 4:11

generation models. We define four schemes that represent relationships of two nodes

and the groups of their neighboring nodes. We combine the schemes with the two ran-

dom graph generation models and investigate the proposed algorithms theoretically.

We tested the proposed outlier edge detection algorithms by experiments on real-world

graphs. The experimental results show that our proposed algorithms can effectively

identify the injected edges in real-world graphs. We compared the performance of our

proposed algorithms with other outlier edge detection algorithms. The proposed algo-

rithms, especially the algorithm based on the PA model, give consistently good results

regardless of the test graph data. We also evaluated the changes of graph properties

caused by the removal of the detected outlier edges. The experimental results show an

increase in both the clustering coefficients and the increase of the distance between the

nodes in the graph. This is coherent with the theoretical predictions.

Further more, we demonstrate the potential of the outlier edge detection using three

different applications. When used with the graph clustering algorithms, removing out-

lier edges from the graph not only improves the clustering accuracy but also reduces the

computational time. This indicates that the proposed algorithms are powerful preproc-

essing tools for graph mining. When used for detecting outlier nodes in social network

graphs, we can successfully find outlier nodes whose behavior deviates dramatically

from that of normal nodes. We also present a clustering algorithm that is based on the

edge authentic scores. The clustering algorithm can efficiently find true data clusters by

excluding noises from the data.

Outlier edge detection has great potentials in numerous Big Data applications. In the

future, we will apply the proposed outlier edge detection algorithms in applications in

other fields, for example computer vision and content-based multimedia retrieval in

the Big Visual Data. We observed that nodes and edges outside edge-ego-network also

contain valuable information in outlier detection. However, using this information dra-

matically increases the computational cost. We will work on fast algorithms that can effi-

ciently use the structural information of the whole graph.

Abbreviations
ALCC: average local clustering coefficient; AUC: area under the curve; CN: common neighbors; ED: effective diameter; ER:

Erd s- Rényi; GCC: global clustering coefficient; GDL: graph degree linkage; GN: Girvan–Newman; HDI: hub depressed

index; HPI: hub promoted index; LCC: local clustering coefficient; LRW: limited random walk; MC: mean conductance;

MCL: Markov Clustering Algorithm; MKNN: mutual k-nearest neighbor; MSP: mean shortest path; NMI: Normalized

Mutual Information; N-Cuts: normalized cuts; PA: preferential attachment; PAI: preferential attachment index; ROC:

receiver operating characteristic; SLM: smart local moving.

Authors’ contributions
HZ carried out the conception and design of the study, participated in the analysis and interpretation of data, and was

involved in drafting and revising the manuscript. SK and MG made substantial contributions to the design of the study,

the analysis and interpretation of the data, and were involved in critically reviewing the manuscript. All authors read and

approved the final manuscript.

Author details
1 Department of Signal Processing, Tampere University of Technology, Finland, Korkeakoulunkatu 1, FI-33101 Tampere,

Finland. 2 Electrical Engineering Department, College of Engineering, Qatar University, Qatar, 2713, Al Hala St, Doha,

Qatar.

Competing interests
The authors declare that they have no competing interests.

Funding
Achademy of Finland supported this research.

Page 23 of 25Zhang et al. J Big Data (2017) 4:11

Appendix: Proof of Theorem 2

Proposition 6.1 α(S ∪ T ,R) = α(S,R) + α(T ,R) if S ∩ T = ∅.

Proof Let A be the adjacency matrix of an unweighted and undirected graph G. We

have α(S,T) =
∑

i∈S

∑
j∈T Aij. Given S ∩ T = ∅,

Next we prove Theorem 2.

Proof For scheme 4, P
(4)

a,b = Sa\b, R
(4)

a,b = Sb\a, P
(4)

b,a = Sb\a and R
(4)

b,a = Sa\b. Using Theo-

rem 1, we can easily get α
(
P

(4)

a,b ,R
(4)

a,b

)
= α

(
P

(4)

b,a ,R
(4)

b,a

)
.

To prove Theorem 2 for scheme 2, we divide the nodes in edge-ego-network Gab into

five mutually exclusive sets:

 • V1 =
{
x|x ∈ Na and x /∈ Sb

}
;

 • V2 =
{
x|x ∈ Nb and x /∈ Sa

}
;

 • V3 =
{
x|x ∈ Na and x ∈ Nb

}
;

 • V4 = {a};
 • V5 =

{
b
}
.

From the definition, we have

Using the definition of α(S,T) and Proposition 6.1, we get

and

α(S ∪ T ,R) =
∑

i∈S∪T

∑

j∈R

Aij

=
∑

i∈S

∑

j∈R

Aij +
∑

i∈T

∑

j∈R

Aij

= α(S,R) + α(T ,R)

P
(2)

a,b = Na\b = V1 ∪ V3,

R
(2)

a,b = Sb\a = V2 ∪ V3 ∪ V5,

P
(2)

b,a = Nb\a = V2 ∪ V3,

R
(2)

b,a = Sa\b = V1 ∪ V3 ∪ V4.

(30)

α

(
P

(2)

a,b ,R
(2)

a,b

)
= α(V1 ∪ V3,V2 ∪ V3 ∪ V5)

= α(V1,V2) + α(V1,V3) + α(V1,V5)

+ α(V3,V2) + α(V3,V3) + α(V3,V5)

(31)

α

(
P

(2)

b,a ,R
(2)

b,a

)
= α(V2 ∪ V3,V1 ∪ V3 ∪ V4)

= α(V2,V1) + α(V2,V3) + α(V2,V4)

+ α(V3,V1) + α(V3,V3) + α(V3,V4)

Page 24 of 25Zhang et al. J Big Data (2017) 4:11

Taking the fact that α(V1 ∩ V5) = 0, α(V2 ∩ V4) = 0, and α(V3,V4) = α(V3,V5), the

right hand side of Eqs. 30 and 31 are equal. Thus α
(
P

(2)

a,b ,R
(2)

a,b

)
= α

(
P

(2)

b,a ,R
(2)

b,a

)
.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 8 February 2017 Accepted: 13 April 2017

References
 1. Newman M. Networks: an introduction. 1st ed. New York: Oxford; 2010.

 2. Jiang M, Cui P, Beutel A, Faloutsos C, Yang S. CatchSync: catching synchronized behavior in large directed graphs. In:

Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining., KDD ’14.

New York: ACM; 2014. p. 941–50.

 3. Beutel A, Xu W, Guruswami V, Palow C, Faloutsos C. CopyCatch: stopping group attacks by spotting lockstep behav-

ior in social networks. In: Proceedings of the 22nd international conference on World Wide Web, 2013. p. 119–130.

 4. Yu R, Qiu H, Wen Z, Lin C, Liu Y. A survey on social media anomaly detection. SIGKDD Explor Newslett.

2016;18(1):1–14.

 5. Akoglu L, Tong H, Koutra D. Graph based anomaly detection and description: a survey. Data Mining Knowl Discov.

2015;29(3):626–88.

 6. Noble CC, Cook DJ. Graph-based anomaly detection. In: Proceedings of the Ninth ACM SIGKDD international

conference on knowledge discovery and data mining. KDD ’03, Washington, D.C. New York: ACM; 2003. p. 631–636.

doi:10.1145/956750.956831.

 7. Dai H, Zhu F, Lim EP, Pang H. Detecting anomalies in bipartite graphs with mutual dependency principles. In: 2012

IEEE 12th international conference on data mining (ICDM). IEEE; 2012. p. 171–80.

 8. Henderson K, Gallagher B, Eliassi-Rad T, Tong H, Basu S, Akoglu L, Koutra D, Faloutsos C, Li L. Rolx: structural role

extraction & mining in large graphs. In: Proceedings of the 18th ACM SIGKDD international conference on knowl-

edge discovery and data mining. ACM; 2012. p. 1231–9.

 9. Hodge VJ, Austin J. A survey of outlier detection methodologies. Artif Intell Rev. 2004;22(2):85–126.

 10. Xu X, Yuruk N, Feng Z, Schweiger TAJ. SCAN: a structural clustering algorithm for networks. Proceedings of the 13th

ACM SIGKDD international conference on knowledge discovery and data mining., KDD ’07. New York: ACM; 2007. p.

824–33.

 11. Gao J, Liang F, Fan W, Wang C, Sun Y, Han J. On community outliers and their efficient detection in information net-

works. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining.,

KDD ’10. New York: ACM; 2010. p. 813–22.

 12. Akoglu L, McGlohon M, Faloutsos C. oddball: spotting anomalies in weighted graphs. In: Zaki MJ, Yu JX, Ravindran

B, Pudi V, eds. Advances in knowledge discovery and data mining. Lecture notes in computer science. 2010. pp.

410–421.

 13. Liu L, Zuo WL, Peng T. Detecting outlier pairs in complex network based on link structure and semantic relationship.

Expert Syst Appl. 2017;69:40–9.

 14. Chakrabarti D. AutoPart: parameter-free graph partitioning and outlier detection. In: Boulicaut JF, Esposito F, Gian-

notti F, Pedreschi D, eds. Knowledge discovery in databases: PKDD 2004. Lecture notes in computer science. 2004. p.

112–24.

 15. Easley D, Kleinberg J. Networks, crowds, and markets: reasoning about a highly connected world. Cambridge Uni-

versity Press; 2010.

 16. Lu L, Zhou T. Link prediction in complex networks: a survey. Physica A Stat Mech Appl. 2011;390(6):1150–70.

 17. Barbieri N, Bonchi F, Manco G. Who to follow and why: link prediction with explanations. In: Proceedings of the 20th ACM

SIGKDD international conference on knowledge discovery and data mining., KDD ’14. New York: ACM; 2014. p. 1266–75.

 18. Freeman LC. Centered graphs and the structure of ego networks. Math Soc Sci. 1982;3(3):291–304.

 19. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature. 1998;393(6684):440–2.

 20. Coscia M, Rossetti G, Giannotti F, Pedreschi D. DEMON: a local-first discovery method for overlapping communities.

In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining., KDD

’12. New York: ACM; 2012. p. 615–23.

 21. Bollobás B. Random graphs. 2 ed. Cambridge : New York; 2001.

 22. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103(23):8577–82.

 23. Cho E, Myers SA, Leskovec J. Friendship and mobility: user movement in location-based social networks. In: Pro-

ceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. New York:

ACM; 2011. p. 1082–90.

 24. Kunegis J. Konect: the koblenz network collection. In: Proceedings of the 22nd international conference on World

Wide Web. New York: ACM; 2013. p. 1343–50.

 25. Massa P, Salvetti M, Tomasoni D. Bowling alone and trust decline in social network sites. In: IEEE International confer-

ence on dependable, autonomic and secure computing, 2009. DASC’09 Eighth. 2009. p. 658–63.

 26. De Choudhury M, Lin YR, Sundaram H, Candan KS, Xie L, Kelliher A. How does the data sampling strategy impact the

discovery of information diffusion in social media? ICWSM. 2010;10:34–41.

Page 25 of 25Zhang et al. J Big Data (2017) 4:11

 27. Viswanath B, Mislove A, Cha M, Gummadi KP. On the evolution of user interaction in facebook. In: Proceedings of the

2nd ACM workshop on online social networks. New York: ACM; 2009. p. 37–42.

 28. Leskovec J, Kleinberg J, Faloutsos C. Graph evolution: densification and shrinking diameters. ACM Transa Knowl

Discov Data. 2007;1(1):2.

 29. Yang J, Leskovec J. Defining and evaluating network communities based on ground-truth. Knowl Inform Syst.

2015;42(1):181–213.

 30. Leskovec J, Lang KJ, Dasgupta A. Statistical properties of community structure in large social and information net-

works. In: Proceedings of the 17th international conference on World Wide Web. New York: ACM; 2008. pp. 695–704.

 31. Fortunato S. Community detection in graphs. Phys Rep. 2010;486(3–5):75–174.

 32. Coscia M, Giannotti F, Pedreschi D. A classification for community discovery methods in complex networks. Stat

Anal Data Min. 2011;4(5):512–46.

 33. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P. Community detection in social media. Data Min Knowl

Discov. 2011;24(3):515–54.

 34. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech

Theory Exp. 2008;2008(10):10008.

 35. Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community structure identification. J Stat Mech Theory Exp.

2005;2005(09):09008.

 36. Newman ME, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;69(2):026113.

 37. Schaeffer SE. Graph clustering. Comput Sci Rev. 2007;1(1):27–64.

 38. Danon L, Díaz-Guilera A, Arenas A. The effect of size heterogeneity on community identification in complex net-

works. J Stat Mech Theory Exp. 2006;2006(11):11010.

 39. Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms. Phys Rev E.

2008;78(4):046110.

 40. Newman ME. Fast algorithm for detecting community structure in networks. Phys Rev E. 2004;69(6):066133.

 41. Ana LN, Jain AK. Robust data clustering. In: Proceedings 2003 IEEE computer society conference on computer vision

and pattern recognition, 2003. vol. 2, p. 128–1332.

 42. Zhang H, Raitoharju J, Kiranyaz S, Gabbouj M. Limited random walk algorithm for big graph data clustering. J Big

Data. 2016;3(1):26.

 43. Waltman L, Eck NJV. A smart local moving algorithm for large-scale modularity-based community detection. The.

Eur Phys J B. 2013;86(11):1–14.

 44. Rosvall M, Bergstrom CT. Maps of random walks on complex networks reveal community structure. Proc Natl Acad

Sci. 2008;105(4):1118–23.

 45. Dongen S. Graph clustering by flow simulation. PhD thesis, Utrecht: Universiteit Utrecht; 2000.

 46. Theodoridis S, Koutroumbas K. Pattern recognition. 4 ed. Amsterdam; 2008.

 47. Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Comput Surv. 1999;31(3):264–323.

 48. Lloyd S. Least squares quantization in PCM. IEEE Trans Inform Theory. 1982;28(2):129–37.

 49. Zhang W, Wang X, Zhao D, Tang X. Graph degree linkage: agglomerative clustering on a directed graph. In: Fitzgib-

bon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Computer Vision - ECCV 2012. Lecture Notes in Computer

Science. 2012. p. 428–41.

 50. Harel D, Koren Y. On clustering using random walks. In: Hariharan R, Vinay V, Mukund M, editors. FST TCS 2001:

Foundations of software technology and theoretical computer science. Lecture notes in computer science. 2001.

pp. 18–41.

 51. Dong X, Frossard P, Vandergheynst P, Nefedov N. Clustering with multi-layer graphs: a spectral perspective. IEEE

Trans Sign Process. 2012;60(11):5820–31.

 52. Brito MR, Chávez EL, Quiroz AJ, Yukich JE. Connectivity of the mutual k-nearest-neighbor graph in clustering and

outlier detection. Stat Probab Lett. 1997;35(1):33–42.

 53. Ozaki K, Shimbo M, Komachi M, Matsumoto Y. Using the mutual k-nearest neighbor graphs for semi-supervised clas-

sification of natural language data. In: Proceedings of the fifteenth conference on computational natural language

learning. 2011. p. 154–62.

 54. Karypis G, Han E-H, Kumar V. Chameleon: hierarchical clustering using dynamic modeling. Computer.

1999;32(8):68–75.

 55. 6 functions for generating artificial datasets - File Exchange - MATLAB Central. http://se.mathworks.com/matlabcen-

tral/fileexchange/41459. Accessed 23 Feb 2017.

 56. Shi J, Malik J. Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell. 2000;22(8):888–905.

PUBLICATION

III

A k-nearest neighbor multilabel ranking algorithm with application to
content-based image retrieval

H. Zhang, S. Kiranyaz and M. Gabbouj

2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)2017,
2587–2591

DOI: 10.1109/ICASSP.2017.7952624

Publication reprinted with the permission of the copyright holders

A K-NEAREST NEIGHBOR MULTILABEL RANKING ALGORITHM WITH APPLICATION
TO CONTENT-BASED IMAGE RETRIEVAL

Honglei Zhang∗, Serkan Kiranyaz∗†, Moncef Gabbouj∗

∗ Signal Processing
Tampere University of Technology

† Electrical Engineering
Qatar University

ABSTRACT

Multilabel ranking is an important machine learning task
with many applications, such as content-based image re-
trieval (CBIR). However, when the number of labels is large,
traditional algorithms are either infeasible or show poor per-
formance. In this paper, we propose a simple yet effec-
tive multilabel ranking algorithm that is based on k-nearest
neighbor paradigm. The proposed algorithm ranks labels
according to the probabilities of the label association using
the neighboring samples around a query sample. Different
from traditional approaches, we take only positive samples
into consideration and determine the model parameters by
directly optimizing ranking loss measures. We evaluated the
proposed algorithm using four popular multilabel datasets.
The proposed algorithm achieves equivalent or better perfor-
mance than other instance-based learning algorithms. When
applied to a CBIR system with a dataset of 1 million samples
and over 190 thousand labels, which is much larger than any
other multilabel datasets used earlier, the proposed algorithm
clearly outperforms the competing algorithms.

Index Terms— Multilabel Learning, k-Nearest Neighbor,
Content-Based Image Retrieval

1. INTRODUCTION

Multilabel ranking algorithms deal with the problems that
each sample can be assigned to multiple labels [1, 2]. Labels
used in multilabel learning are not mutually exclusive. This
is different from the classes used in traditional multiclass
classification where a sample can only be assigned to one
class. Multilabel data is very common in many applications
such as text categorization, bioinformatics and multimedia
content retrieval. For example, an image may be labeled by
keywords “cat”, “animal” and “funny”. Given a query sam-
ple, multilabel ranking algorithms give scores to each label
and sort them from the most relevant to the least relevant.

Different approaches have been developed to solve the
multilabel learning problems. Tsoumakas et al. categorized
the algorithms into three groups: problem transformation
methods, algorithm adaptation methods and ensemble meth-
ods [2]. The problem transformation methods take the binary

classification methods as basis and use either one-against-all
or one-against-one strategy to get the classification results.
The algorithm adaptation methods modify the existing binary
classification algorithms to handle multiple labels. The en-
semble algorithms apply a set of basic classifiers to subsets
of samples and labels and the results are aggregated using
sum, voting or other appropriate rules [3]. However, when
the number of labels is large, previous algorithms are either
infeasible or perform poorly.

In this paper, we propose an instance-based learning al-
gorithm that can effectively handle the problem of the large
number of labels. We compared the proposed algorithm with
other instance-based multilabel ranking algorithms on four
popular benchmark datasets. More importantly, we evaluated
the performance of the proposed algorithm using a real-world
content-based image retrieval (CBIR) system with a dataset
of one million samples and over 190 thousand labels. To our
best knowledge, this dataset is much larger than any other
multilabel datasets used earlier [1, 2, 4].

2. BACKGROUND AND RELATED WORKS

2.1. Notations

Let L = {L1, L2, · · ·Lq} be the set of labels, where q is the
number of labels. Let xi ∈ Rd, i = 1, 2, · · · , n be the feature
vector of the samples, where R is the field of real numbers,
d is the dimension of the feature vector and n is the number
of samples. Let yi =

(
y
(1)
i , y

(2)
i , · · · y(q)i

)
∈ {0, 1}q , i =

1, 2, · · · , n be the set of labels to which sample xi is assigned,
where y

(l)
i = 1 if xi is assigned to label Ll. We call Yi ={

l|y(l)i = 1
}

the relevant label set, and Ȳi =
{
l|y(l)i = 0

}
the irrelevant label set. Let T = {(xi, yi)|i = 1, 2, · · · ,m}
be the training set.

The score function for label Lk is defined as fk(x) :
Rd → R, k = 1, 2, · · · q. The labels are ranked accord-
ing to these scores such that rank(x, Li) < rank(x, Lj) if
fi(x) > fj(x), where rank(Li) is the rank of label Li. We
aim to learn a set of score functions F = {f1, f2, · · · , fq}
that optimize a predefined objective function.

2.2. Evaluation measures

Different measures have been proposed to evaluate the per-
formance of multilabel ranking algorithms.

Ranking loss evaluates the fraction of label pairs that have
been ranked in a wrong order. The evaluation function is de-
fined as

ranking loss =
1

n

n∑
i=1

|Di|
|Yi|

∣∣Ȳi

∣∣ , (1)

where and Di = {(k, l) |fk(x) > fl(x), rank(Lk) > rank(Ll)}
is the set of labels pairs that have been ranked in a wrong or-
der.

Average precision evaluates average fraction of the labels
that are ranked above a true label that is actually in the rele-
vant label set. The metric is defined as

average precision =
1

n

n∑
i=1

1

|Yi|
∑
l∈Yi

|Bi,l|
rank(xi, Ll)

, (2)

where Bi,l = {k|rank(xi, Lk) > rank(xi, Ll), k ∈ Yi}.
In this paper we also use one error and coverage as evalu-

ation measures. Details can be found in [2].
Note, smaller values indicate better performance for all

measures except average precision.

2.3. Related work

Binary Relevance (BR) methods apply one against all strat-
egy and learn a binary classifier for each label [2]. For pre-
diction, the binary classifiers for each label are applied in-
dependently. Read et al. further developed Classifier Chain
(CC) [5] and Classifier Trellis (CT) [6] such that binary clas-
sifiers are connected by extending the feature space with the
output of other classifiers. Label Power-set (LP) methods
learn binary classifiers for sets of labels with different com-
binations. These methods can effectively deal with the corre-
lation between labels [2]. However, the number of classifiers
explodes as the number of labels increases. Most machine
learning algorithms for binary classes have been adapted for
the multilabel learning problems, for example ML-C4.5 [7],
RFML-4.5 [8], and rank-SVM [9]. All of these algorithms
learn certain number of classifiers or models from the train-
ing set. They show difficulties to handle the problems of large
number of labels, large dataset or changes in the training set.
For this reason, instance-based learning algorithms are more
appropriate for some applications.

Zhang et al. developed the Multilabel k-NN (MLkNN) al-
gorithm from the traditional k-nearest neighbor (k-NN) clas-
sification method [10]. MLkNN gather statistical informa-
tion (the counts of the labels around a sample) for each label
from the training set. For prediction, the maximum a posteri-
ori (MAP) approach is applied to determine the set of labels.
DMLkNN extends MLkNN method by using not only the sta-
tistical information from positive samples, but also negative

samples [11]. However neither MLkNN nor DMLKNN per-
form well when the number of labels is large, since there is in-
sufficient training data to achieve reliable statistical informa-
tion. Cheng and Hullermerier developed IBLR-ML method
by combining linear regression and k-NN algorithms [12].
IBLR-ML method contains q classifiers, similar to BR meth-
ods, and thus suffers from the big label set problem too.

Spyromitros et al. combined BR methods with k-NN
method (BRkNN) by using the count of label Ll in the set
of neighbors as the confidence score [4]. MLC-WkNN im-
proves BRkNN by giving weights to each sample according
to its distance to the query sample [13]. The weights are
the coefficients of a linear model learned by approximating
the query sample from its k nearest neighbors. BR-kNN
and MLC-WkNN can handle the large label problem. But
their performance suffers due to the simple models they have
applied.

3. K-NEAREST NEIGHBOR MULTILABEL
RANKING ALGORITHM

3.1. Positive sample model

In our approach, we treat labels as the properties of a sample.
The closer two samples are, the more likely they share same
labels. In an extreme case, if two samples are identical, they
will have the same set of labels.

Let i be the query sample, t be a sample that has label
Ll and d(i, t) be the distance between sample i and t. Let
E

(l)
i denote the event that sample i has label Ll. We model

the probability of E(l)
i as a function of the distance between

sample i and t, and define it by

P
(
E

(l)
i |E

(l)
t , d(i, t)

)
= exp (−z · d(i, t)) , (3)

where z is a constant number. When d(i, t) = 0 (sample i and
t are identical), the probability of sample i to have label Ll is
1. In such a case, the prediction of label Ll is determined.
Note, when d(i, t) 7→ ∞, the probability function in Eq. 3
returns 0, which shall not be interpreted as the probability of
E

(l)
i is 0. It actually indicates that sample t does not give any

information to infer the association of label Ll.
Taking all positive samples into consideration, we make

each of them contribute to the association of label Ll. A sam-
ple is not associated with label Ll if none of the positive sam-
ple is in favor of it. Thus we derive the probability of E(l)

i

given the training set T as

P
(
E

(l)
i |T

)
= 1−

∏
j∈T (l)

(1− exp (−z · d(i, t))) , (4)

where T is the training set and T (l) = {j|(xj , yj) ∈ T, l ∈ Yj}.
Because the samples located far from the query sample do

little contribution to the probability function in Eq. 4, we can

apply the k-nearest neighbor paradigm. Let Nk(i) be the set
of k neighboring samples, we have

P
(
E

(l)
i |Nk(i)

)
= 1−

∏
j∈N

(l)
k (i)

(1− exp (−z · d(i, t))) ,

(5)
where N

(l)
k (i) is the set of samples that are associated with

label Ll in Nk(i), which is the set of k nearest neighbors of
sample i.

Both our approach and IBLR-ML algorithm use expo-
nential function to model the label association. The funda-
mental difference between our approach and IBLR-ML (and
other similar algorithms) is the way we treat negative samples.
IBLR-ML algorithm uses both positive and negative samples
to learn binary classifiers or regressors; whereas in our ap-
proach, only positive samples contribute to the label associ-
ation. When the number of labels is large, the training set
can only be labeled loosely such that the relevant label set for
a sample is incomplete even if the labels are accurate. Thus
the models using both positive and negative samples often get
confused because of the wrong negative samples in training
set.

3.2. Model fitting

Since only positive samples are used for prediction, we can-
not use maximum likelihood (ML), maximum a posteriori
(MAP), or other classification techniques to fit the parame-
ters. However, we can directly optimize any ranking measure
defined in Section 2.2. In this paper, we choose the ranking
loss as our objective function since it gives a complete evalu-
ation of a ranking result.

Although an analytical solution is hard to find and the
objective function is not convex, we can obtain a subopti-
mal solution using grid search or stochastic gradient descent
method because of the model we incorporate. Subsampling
techniques can be applied when the size of the training data is
large.

Note that the parameter z acts like the smoothing param-
eter (bandwidth) used in kernel density estimation method.
When z is small, a positive sample has a wide impact to the
feature space around it; and when z is large, the impact of
a positive sample is small. Considering the model in Eq. 4,
when z → 0, the proposed algorithm assign the labels accord-
ing to their empirical prior probabilities. When z → +∞, the
proposed algorithm is equivalent to BRkNN algorithm.

4. EXPERIMENTAL RESULTS ON BENCHMARK
DATASETS

In this section, we evaluate the performance of the proposed
algorithm on four popular benchmark datasets: Emotions,
Scene, Yeast and Mediamill. The datasets are collected

from [14] and have been widely used to evaluate the perfor-
mance of multilabel learning algorithms [1, 6, 10, 15]. Each
of the datasets is divided into training and test set by the data
providers [14].

We first show the impact of the parameter z using the
Yeast dataset. We fix the number of neighbors to be 40 and
vary z from 0.01 to 1. The values of the ranking loss against
the parameter z are shown in Fig. 1.

0 0.2 0.4 0.6 0.8 1
0.165

0.17

0.175

0.18

0.185

0.19

z

ra
n
k
in

g
 l

o
ss

Fig. 1. Graph of ranking loss against the parameter z

The result shows that even though the objective function
of the proposed algorithm is not convex, the problem is not
ill-posed. Using grid search or stochastic gradient descent
method, a good solution can be found. The result also il-
lustrates that the ranking loss converge to a certain value as
z increases. According to Section 3.2, the proposed method
converges to BRkNN algorithm.

Next, we compare the results of the proposed algorithm
with other instance-based methods. Results of MLkNN,
IBLR-ML, BRkNN and DMLkNN are obtained using Mulan
multilabel learning toolbox [14] and parameter k is selected
by optimizing the ranking loss on the test sets. The results
are shown in Table 1, where r.l. stands for ranking loss, o.e.
stands for one error, cov. stands for coverage and a.p. stands
for average precision. The best values are marked using bold
font.

Except the Scene dataset, the proposed method performs
better than most of the other competing algorithms. Next,
we will show the performance of the proposed algorithm in a
real-world application with significant higher number of sam-
ples and labels.

5. APPLICATION TO CONTENT-BASED IMAGE
RETRIEVAL

Given a query image, a CBIR system tries to find “similar”
images in a large dataset and present the retrieved images in
the order of relevance [16]. However, the concept of “simi-
larity” is ambiguous since it totally depends on the user and
the purpose of the query. A query result might be totally ir-
relevant if the purpose is not correctly justified. One aspect

Table 1. Comparison with other instance-based algorithms

r.l. o.e. cov. a.p.
Emotions
MLkNN 0.145 0.252 1.787 0.818

IBLR-ML 0.145 0.262 1.752 0.821
BRkNN 0.150 0.262 1.792 0.818

DMLkNN 0.148 0.252 1.802 0.817
Ours 0.145 0.257 1.772 0.817
Scene

MLkNN 0.082 0.252 0.512 0.852
IBLR-ML 0.081 0.237 0.508 0.859
BRkNN 0.101 0.278 0.607 0.826

DMLkNN 0.083 0.242 0.513 0.855
Ours 0.093 0.259 0.564 0.843
Yeast

MLkNN 0.170 0.243 6.336 0.753
IBLR-ML 0.166 0.233 6.338 0.763
BRkNN 0.169 0.237 6.314 0.757

DMLkNN 0.169 0.249 6.371 0.757
Ours 0.160 0.226 6.116 0.771

Mediamill
MLkNN 0.051 0.181 18.277 0.716

IBLR-ML 0.050 0.181 17.988 0.718
BRkNN 0.054 0.197 19.047 0.709

DMLkNN 0.050 0.178 17.924 0.719
Ours 0.051 0.169 16.963 0.739

of this problem has been coined as “semantic gap”, which
describes the mismatching of the visual feature and the se-
mantic intention of the query [17–19]. Since an image can be
described by multiple labels and the purpose of the query is
unknown, the CBIR system we used first rank the labels for
the query image and then group the retrieved images accord-
ingly. This requires a large number of labels that can describe
an unknown image well and a large amount of images that
have been labeled.

In this experiment, we converted the MSR-bing challenge
dataset into a multilabel ranking dataset [20]. The VGG deep
neural network is used to extract features [21].

Because neither the training set nor the test set are fully
labeled, we are not able to use the measures defined in Section
2.2. We propose to use the mean inverse rank (MIR) as the
evaluation metric. MIR is defined as

MIR =
1

n

n∑
i=1

1∣∣∣Ỹi

∣∣∣
∑
l∈Ỹi

1

rank (xi, Ll)
, (6)

where Ỹi is the label set given in the test set for sample xi.
Note, Ỹi ⊆ Yi, where Yi is the set of ground truth labels.
MIR is similar to average precision defined in Eq. 2. But it
does not require the full set of ground truth labels. The larger
a MIR value is, the better the algorithm performs.

Other than MIR, we also use success rate as a measure. A
query is marked as success if the rank of a true label is less
than a predefined value. Let SR@r denote a success rate at
position r. Large success rate value indicates better perfor-
mance of an algorithm.

In this experiment, we compared the proposed algorithm
with BRkNN, BRkNN-w and MLkNN algorithms. BRkNN-
w algorithm differs from standard BRkNN method by apply-
ing a weight to each sample in the nearest neighbor set. In our
experiments, the inverse of the distance is used as the weight.
For all algorithms, k is set to be 100. The experiment result is
shown in Table 2.

Table 2. Experiment results on MSR-bing multilabel dataset

BRkNN BRkNN-w MLkNN Ours(z=10)
MIR 0.0807 0.0930 0.0551 0.123

SR@5 0.103 0.117 0.0736 0.159
SR@10 0.152 0.176 0.1075 0.216

SR@100 0.327 0.328 0.2160 0.333

Table 2 shows that the proposed algorithm significantly
outperforms the competing algorithms. The results of BRkNN-
w and BRkNN method show that using the distance informa-
tion between the query sample and the neighboring sample
can clearly improve the performance. MLkNN method does
not incorporate this information. Since of the number of la-
bels is large, there is not enough samples to collect statistical
information for each label. That also accounts for the poor
performance of MLkNN algorithm.

6. CONCLUSIONS

In this paper, we have proposed a simple yet effective
instance-based multilabel ranking algorithm to tackle the
problem of the large number of labels for content-base image
retrieval in large scale. We treat labels as the properties of
samples and model the probability of having a certain prop-
erty as an exponential function of the distance. Taking all the
positive samples around a query sample into consideration,
we calculate the probability of not having the property using
a product rule. Unlike traditional methods, we use only pos-
itive samples in our method. For this reason, we choose to
optimize the ranking loss function directly. Because of the
simplicity of our model, grid search or stochastic gradient
descent method can effectively find a suboptimal solution.

We compared the performance of the proposed algorithm
with other instance-based algorithms on four benchmark
datasets. The proposed algorithm is either the best or close
to the best on three datasets. We used the proposed algorithm
in a CBIR system with the MSR-bing challenge multilabel
dataset, which contains 1M samples and over 190 thousand
labels. The proposed algorithm clearly outperforms other
methods by a significant margin.

7. REFERENCES

[1] E. Gibaja and S. Ventura, “A Tutorial on Multilabel
Learning,” ACM Comput. Surv., vol. 47, no. 3, pp. 52:1–
52:38, Apr. 2015.

[2] G. Tsoumakas and I. Katakis, “Multi-label classifica-
tion: An overview,” Dept. of Informatics, Aristotle Uni-
versity of Thessaloniki, Greece, 2006.

[3] J. Read, L. Martino, and D. Luengo, “Efficient monte
carlo methods for multi-dimensional learning with clas-
sifier chains,” Pattern Recognition, vol. 47, no. 3, pp.
1535–1546, Mar. 2014.

[4] E. Spyromitros, G. Tsoumakas, and I. Vlahavas, “An
empirical study of lazy multilabel classification algo-
rithms,” in Hellenic conference on Artificial Intelli-
gence. Springer, 2008, pp. 401–406.

[5] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Clas-
sifier chains for multi-label classification,” Machine
Learning, vol. 85, no. 3, pp. 333–359, Jun. 2011.

[6] J. Read, L. Martino, P. M. Olmos, and D. Luengo,
“Scalable multi-output label prediction: From classi-
fier chains to classifier trellises,” Pattern Recognition,
vol. 48, no. 6, pp. 2096–2109, Jun. 2015.

[7] A. Clare and R. D. King, “Knowledge discovery in
multi-label phenotype data,” in European Conference on
Principles of Data Mining and Knowledge Discovery.
Springer, 2001, pp. 42–53.

[8] D. Kocev, C. Vens, J. Struyf, and S. Džeroski, “En-
sembles of multi-objective decision trees,” in European
Conference on Machine Learning. Springer, 2007, pp.
624–631.

[9] A. Elisseeff and J. Weston, “A kernel method for multi-
labelled classification,” in Advances in neural informa-
tion processing systems, 2001, pp. 681–687.

[10] M.-L. Zhang and Z.-H. Zhou, “ML-KNN: A lazy learn-
ing approach to multi-label learning,” Pattern Recogni-
tion, vol. 40, no. 7, pp. 2038–2048, Jul. 2007.

[11] Z. Younes, F. Abdallah, T. Denoeux, and H. Snoussi,
“A dependent multilabel classification method derived
from the k-nearest neighbor rule,” EURASIP Journal on
Advances in Signal Processing, vol. 2011, no. 1, pp. 1–
14, 2011.

[12] W. Cheng and E. Hüllermeier, “Combining instance-
based learning and logistic regression for multilabel
classification,” Machine Learning, vol. 76, no. 2-3, pp.
211–225, 2009.

[13] J. Xu, “Multi-Label Weighted k-Nearest Neighbor Clas-
sifier with Adaptive Weight Estimation,” in Neural
Information Processing, ser. Lecture Notes in Com-
puter Science, B.-L. Lu, L. Zhang, and J. Kwok, Eds.
Springer Berlin Heidelberg, Nov. 2011, no. 7063, pp.
79–88.

[14] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and
I. Vlahavas, “Mulan: A java library for multi-label
learning,” Journal of Machine Learning Research,
vol. 12, no. Jul, pp. 2411–2414, 2011.

[15] G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski,
“An extensive experimental comparison of methods
for multi-label learning,” Pattern Recognition, vol. 45,
no. 9, pp. 3084–3104, Sep. 2012.

[16] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta,
and R. Jain, “Content-based image retrieval at the end
of the early years,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 22, no. 12, pp. 1349–
1380, Dec. 2000.

[17] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma, “A survey
of content-based image retrieval with high-level seman-
tics,” Pattern Recognition, vol. 40, no. 1, pp. 262–282,
Jan. 2007.

[18] M. K. Kundu, M. Chowdhury, and S. Rota Bulò, “A
graph-based relevance feedback mechanism in content-
based image retrieval,” Knowledge-Based Systems,
vol. 73, pp. 254–264, Jan. 2015.

[19] B. Xu, J. Bu, C. Chen, C. Wang, D. Cai, and X. He,
“EMR: A Scalable Graph-Based Ranking Model for
Content-Based Image Retrieval,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 1, pp.
102–114, Jan. 2015.

[20] X.-S. Hua, M. Ye, and J. Li, “Mining knowledge from
clicks: MSR-Bing image retrieval challenge,” in Multi-
media and Expo Workshops (ICMEW), 2014 IEEE In-
ternational Conference on. IEEE, 2014, pp. 1–4.

[21] K. Simonyan and A. Zisserman, “Very deep convo-
lutional networks for large-scale image recognition,”
arXiv preprint arXiv:1409.1556, 2014.

PUBLICATION

IV

Data Clustering Based on Community Structure in Mutual k-Nearest
Neighbor Graph

H. Zhang, S. Kiranyaz and M. Gabbouj

2018 41st International Conference on Telecommunications and Signal Processing (TSP)2018,
1–7

DOI: 10.1109/TSP.2018.8441226

Publication reprinted with the permission of the copyright holders

Data Clustering Based on Community Structure in
Mutual k-Nearest Neighbor Graph

Honglei Zhang∗, Serkan Kiranyaz†, and Moncef Gabbouj∗
∗Department of Signal Processing, Tampere University of Technology, Tampere, Finland

†Electrical Engineering Department, Qatar University, Doha, Qatar

Abstract—Data clustering is a fundamental machine learn-
ing problem. Community structure is common in social and
biological networks. In this article we propose a novel data
clustering algorithm that uses this phenomenon in mutual k-
nearest neighbor (MKNN) graph constructed from the input
dataset. We use the authentic scores–a metric that measures the
strength of an edge in a social network graph–to rank all the
edges in the MKNN graph. By removing the edges gradually
in the order of their authentic scores, we collapse the MKNN
graph into components to find the clusters. The proposed method
has two major advantages comparing to other popular data
clustering algorithms. First, it is robust to the noise in the data.
Second, it finds clusters of arbitrary shape. We evaluated our
algorithm on synthetic noisy datasets, synthetic 2D datasets and
real-world image datasets. Results on the noisy datasets show
that the proposed algorithm clearly outperforms the competing
algorithms in terms of Normalized Mutual Information (NMI)
scores. The proposed algorithm is the only one that does not fail
on any data in the the synthetic 2D dataset, which are specifically
designed to show the limitations of the clustering algorithms.
When testing on the real-world image datasets, the best NMI
scores achieved by the proposed algorithm is more than any other
competing algorithm. The proposed algorithm has computational
complexity of O

(
k3n+ kn log (kn)

)
and space complexity of

O (kn), which is better than or equivalent to the most popular
clustering algorithms.

Keywords—data clustering, authentic score, graph

I. INTRODUCTION

Data clustering is a fundamental machine learning problem
[1]. Given a set of data points, a clustering algorithm groups
the data points according to certain similarity measurements
and clustering criteria. Over the last several decades, nu-
merous clustering methods have been proposed, such as:
centroid-based algorithms like K-means and K-medians [1];
connectivity-based algorithms like single-linkage and average-
linkage [1]; and density-based algorithms like DBSCAN [2].
Each algorithm has its advantages and limitations. One has to
choose an appropriate method based on the input datasets and
the requirements of a particular application.

Graph-based method is an important approach for data
clustering [3], [4], [5], [6], [7]. These algorithms construct
a graph from the given data points and take advantage of
graph theories and technologies to partition the graph into
components. Hu and Bhatnagar proposed an agglomerative
algorithm using the constructed mutual K-nearest neighbor
(MKNN) graph from the data points [8]. Their algorithm finds
initial clusters from dense areas in the graph, and then merges
these clusters according to the connectivity measurement until

predefined criteria is reached. Zhang et al. studied directed K-
nearest neighbor (DKNN) graph and presented an effective
affinity measurement using the product of the average in-
degrees and the average out-degrees [6]. They applied a greedy
approach to minimize the affinity measurement and partition
the DKNN graph. Zhang et al. studied another agglomerative
method that merge clusters based on the incremental path
integral–an affinity measurement that measures the stability
of a dynamic system built from a random walk model [7].

Aforementioned graph-based data clustering methods are
agglomerative and focus on the affinities of nodes and clusters.
In this paper, we present a novel divisive approach using
MKNN graph. Our paradigm is different from traditional
clustering methods: instead of grouping similar data points into
clusters, the algorithm tries to find appropriate boundaries to
split the data points. Our proposed method uses the common
phenomenon in social and biological networks that a commu-
nity has dense connections among the nodes inside but sparse
connections to the nodes outside [9]. Zhang et al. studied this
phenomenon and introduced the authentic score of an edge
based on random graph generation models [10]. Authentic
score measures the strength of an edge from the neighboring
nodes around it. To find the cores of the clusters, the proposed
algorithm collapses a weighted MKNN by gradually removing
edges in the ascending order of their authentic scores.

II. BACKGROUNDS

A. Mutual k-Nearest Neighbor Graph

Let X = {x1, x2, · · ·xn} be the set of input data points,
where xi ∈ Rd is a d-dimensional vector and n is the number
of data. Let d(xi, xj) be the distance between data points xi

and xj . In this paper, we assume that Euclidean distance is
used. Let Nk (xi) be the set of the k nearest neighbors of data
point xi. Obviously |Nk (xi)| = k. Let G(V,E) be the graph
constructed from the input dataset, where each node is a data
point from X , V is the set of nodes and E is the set of edges.
We connect node xi and xj with the edge xixj if both of
the two end data points are in the set of the K-nearest data
points of the other one. That is: xixj ∈ E if xj ∈ Nk (xi) and
xi ∈ Nk (xj). The graph G(V,E) is called mutual k-nearest
neighbor (MKNN) graph of dataset X . Let A be the adjacency
matrix of graph G (V,E). Let m = |E| be the number of edges
of the graph. Note that MKNN graphs are undirected.

A component of a graph is a subgraph that every pairs of
the nodes in the subgraph are linked by at least one path, but

no path links any node in the subgraph to a node outside of
the subgraph.

B. The Linking Strength of Edges

Zhang et al. studied outlier edges in social networks [10]
and pointed that an edge is likely to be an outlier if the
neighboring nodes of the two end nodes do not form a dense
cluster. For example, in Fig. 1, the edge xixj in (b) is more
authentic than xixj in (a) since there are more connections of
the neighboring nodes of the two end nodes xi and xj in (b).

(a) (b)

Fig. 1. Strength of the edges in a graph

Using random graph generation models, Zhang et al. define
the authentic score sxixj

of edge xixj as

sxixj
= rxixj

− exixj
, (1)

where rxixj
is the actual number of edges that link the two

sets of the neighboring nodes of node xi and xj , and exixj
is

the expected number of edges that link these two sets of nodes.
The lower the authentic score is, the more likely an edge is
an outlier. Their research shows that better performance can
be achieved using the Preferential Attachment random graph
generation model with the authentic score function:

sxixj
= r2

xixj
− exixj

. (2)

Let N (xi) be the set of neighboring nodes of node xi. Let
Sxi

= {xi}∪N (xi) \ {xj}, and Sxj
= {Xj}∪N (xj) \ {xi}.

The actual number of edges that link Sxi and Sxj is

rxixj
=

∑
a∈Sxi

,b∈Sxj

Aab. (3)

Using the Preferential Attachment model, the expected number
of edges that link Sxi

and Sxj
is

exixj
=

1

2m

∑
a∈Sxi

,b∈Sxj

kakb, (4)

where ka and kb are the degrees of node a and b.
The authentic scores of the edges that link the nodes in the

same cluster are higher than the scores of the edges that link
the nodes from different clusters. Zhang et al. demonstrated an
effective clustering algorithm based on outlier edge detection
[10]. After constructed a MKNN graph, they remove edges
one by one in the ascending order of their authentic scores.
At each step, the number of components is detected. It would
require a large portion of edges to be removed to break a
genuine cluster into smaller pieces. Thus a threshold can be
defined to find the right split of the MKNN graph.

This method is robust to noise and also insensitive to the
variation of the data density of clusters. But, it can not handle
the data in which the sizes of clusters vary significantly. A
large cluster would normally dominate the process and lead
to wrong split being detected. Another disadvantage is that
the generated MKNN does not incorporate the distance of the
nodes. This may lead to inaccurate clustering results. Next,
we present a novel clustering method that addresses these
limitations.

III. METHODOLOGY

A. Weighted MKNN Graph

We first construct a MKNN graph from the dataset as
defined in Section II-A. To facilitate the distance between the
data points, we first convert the distance values into affinity
values and assign the affinity values as weights to the edges
of the MKNN graph.

An major advantage using MKNN graphs is that the algo-
rithm is insensitive to the density of the data points. To retain
this advantage, we use a linear function instead of the popular
exponential affinity conversion function [6], [7]. Recall that
the distance of two data points xi and xj is d (xi, xj), our
affinity function for data points xi and xj is defined as

a (xi, xj) = C − d (xi, xj) , (5)

where C is a constant that is large enough to make the
affinity values nonnegative. In practice, we simply choose
C = maxxi,xj∈X d (xi, xj), which is the largest distance of
the data points in the input dataset.

Assigning the affinity values as weights to the edges in the
MKNN graph, we get the weighted MKNN graph.

B. Authentic Scores of the Edges in a Weighted MKNN Graph

Let A be the adjacency matrix of the weighted MKNN
graph, where the elements of A are the affinity values of edges.
So, Axixj

= a (xi, xj) if node xi and xj are linked by an edge;
otherwise Axixj = 0. The actual number of edges that link
the nodes in sets Sxi and Sxj can be calculated by Eq. 3. To
calculate the expected number of edges that link the nodes in
sets Sxi

and Sxj
using Eq. 4, we need the degrees of each

node. For a weighted MKNN graph, we use the generalized
degree of a node:

ka =
∑

b∈N(a)

Aab. (6)

Using Eq. 6 and the adjacency matrix A, we are able get
the authentic scores for each edge by Eqs. 2, 3 and 4.

C. Partitions of a Weighted MKNN Graph

In a MKNN graph, data points from a cluster form a dense
structure like a community in social networks, where the edges
of the nodes inside the community are stronger than those that
links to the nodes outside. To find these communities in a
MKNN graph, we gradually remove edges according to their
authentic scores where edges with low authentic scores are
removed first. When certain number of the edges are removed,

the MKNN graph splits into large components since the links
between genuine clusters are removed first. During this graph
collapsing procedure, small components or isolated nodes may
also appear. They are mostly border nodes or noisy data. As
more and more edges are removed, large components split
into smaller ones. When all the edges are removed, the graph
eventually becomes n isolated nodes. Zhang et al. noticed that
a large number of edges have to be removed to break a real
community into pieces [10]. Instead, we can cluster the input
data points by analyzing how the MKNN graph breaks.

Let P = {P1, P2, · · · , Pq} be a partition of graph G(V,E),
where q is the number of components, Pi is the set of nodes
in the i-th component. We sort Pi in the descending order by
their cardinalities. Let si = |Pi| be the cardinality of set Pi.
We have i < j if si > sj . Obviously ∪qi=1Pi = V .

We use superscript to donate the step in this iterating
procedure. At step t, the partition of the MKNN graph
is P(t) and the corresponding sizes of each component is
S(t) =

[
s

(t)
1 , s

(t)
2 , · · · s(t)

q(t)

]
, where [·] denotes a list. During the

collapsing procedure, we get a list of partitions of the MKNN
graph. When t = 0, we have the original MKNN graph, that
is S(0) = [n]. When t = m, we have S(m) = [1, 1, · · · , 1].

If we can find an optimal partition of the MKNN graph,
the large components in this partition are the core of the
data clusters. We will give details of finding the optimal
partition of the MKNN graph in Section III-D. Let P(o) be
the optimal partition, and r be the number of clusters. Besides
the top r largest components in P(o), we may have small
components P

(o)
r+1, P

(o)
r+2, · · ·P

(o)

q(o)
. To achieve a partition of

the whole dataset, we simply add the removed edges back in
the reversed order and assign a small component to the first
large component that it links in this reuniting procedure.

Algorithm 1 shows the details of the proposed algorithm
when the number of cluster is given.

D. Optimal Partition Determination
Given the number of clusters r and a list of partitions
P(1),P(2), · · · P(m), we will show two methods to determine
the optimal partition. Note that P(k) =

{
P

(k)
1 , P

(k)
2 , · · ·P (k)

q(k)

}
, where P

(k)
i is the set of nodes of the i-th component,

s
(k)
i is the cardinality of set P

(k)
i , and i < j if si > sj .

P
(k)
1 , P

(k)
2 , · · · , P (k)

r are the cores of the data clusters.
1) Maximize the Minimal Cluster Size: If the sizes of clus-

ters are balanced, the sizes of the cores should be close to each
other. When a core breaks during the collapsing procedure, it
generates much smaller components. With this observation, we
can simply choose the partition that maximizes the minimal
size of the core among all partitions. We call this method
Max-Min method. Note that s

(k)
1 , s

(k)
2 , · · · s(k)

q(k) are sorted in

descending order, s(k)
r is the smallest core component. Given

s
(1)
r , s

(2)
r , · · · , s(m)

r , the optimal partition is expressed as

o = arg max
k=1,··· ,m

(
s(k)
r

)
. (7)

Note, if q(k) < r, we set s(k)
r = 0.

2) Minimize the Maximal Conductance Value: The Max-
Min method described in the previous section is fast and
efficient when the clusters are balanced. However, if this as-
sumption does not hold, Max-Min method does not guarantee
to find a good solution. Without any prior knowledge, we can
determine the optimal partition by evaluating the conductance
values of the candidate partitions.

The conductance of a cluster C is defined as

ϕ (C) =
a
(
C, C̄

)
min

(
a (C) , a

(
C̄
)) , (8)

where C̄ = V \C is the complement of cluster C, a (C) =∑
i∈C

∑
j∈V Aij is the weight of cluster C, and a

(
C, C̄

)
=∑

i∈C
∑

j∈C̄ Aij is the weight of the cut of C and C̄. A small
conductance value indicates that the cluster is well separated
from the rest of the data points.

Given a partition P(k) =
(
P

(k)
1 , P

(k)
2 , · · ·P (k)

q(k)

)
, we first

merge small components P
(k)
r+1, P

(k)
r+2, · · · , P

(k)

q(k) to the can-

didate cores P
(k)
1 , P

(k)
2 , · · · , P (k)

r by the reuniting proce-
dure described in Section III-C. This generates r clusters
C

(k)
1 , C

(k)
2 , · · · , C(k)

r for each k. The optimal partition is the
one that minimize the maximal conductance value of the
candidate partitions. That is

o = arg min
k=1,··· ,m

(
max

j=1,··· ,r

(
ϕ
(
C

(k)
j

)))
. (9)

We set ϕ
(
C

(k)
r

)
= +∞ if q(k) < r. This eliminates

the partitions that the number of big components is less
than r. We call this method Min-Max method. This method
generates better clustering result with the cost of increasing
computational complexity. Later we will describe the batch
mode of the proposed algorithm that greatly reduces the
computational complexity.

E. Noise Detection

Outliers are data points that lie far from the normal data
points. Normally, an outlier node is either isolated or weakly
connected to the normal data nodes in a MKNN graph. Since
two normal data points in a cluster often share many common
neighbors, the edge that links these nodes has high authentic
score. During the graph collapsing procedure, edges that link
different clusters are removed first. Then the edges that link
outliers to normal data points are removed. The edges that link
normal data points inside a cluster are removed last. If the
normal data clusters have clear borders, the authentic scores
of the edges inside a cluster is much larger than the scores of
the edges that link an outlier and normal data points. We use
this to distinguish outliers from normal data points.

Let the authentic scores of the last removed edge for the par-
titions P(1),P(2), · · · ,P(m) be c(1), c(2), · · · , c(m). Let P(o)

be the optimal partition. We first find partitions that contain
same core components as P(o). Assume these partitions start

Algorithm 1 Data clustering based on authentic scores of the edges in the weighted MKNN graph
given adjacency matrix A of the weighted MKNN graph G (V,E) and the number of clusters r
initialize P(0) = {G}, H = G, J = [] , and k = 1
calculate the authentic scores of the edges in graph G using Eqs. 2, 3, 4 and 6
sort the edges in the ascending order of their authentic scores and store the result in list L
for each edge e in L

1) remove e from graph H
2) do breath-first search or depth-first search to find all components in H

3) sort the components by their size and store the result in P(k) =
{
P

(k)
1 , P

(k)
2 , · · ·P (k)

q(k)

}
, where q(k) is the number of

components, P (k)
i is the set of nodes in the i-th component and

∣∣∣P (k)
i

∣∣∣ ≥ ∣∣∣P (k)
i+1

∣∣∣ for i = 1, 2, · · · q(k) − 1

4) add e to J
5) k ← k + 1

find the optimal partition P(o) of graph G from P(1),P(2), · · · P(m)

for each e in J in reverse order
1) add e to H

2) if e links a component in
{
P

(o)
r+1, P

(o)
r+2, · · · , P

(o)

q(o)

}
and a component in

{
P

(o)
1 , P

(o)
2 , · · · , P (o)

r

}
, merge the small

component into the large one.
3) if all components in

{
P

(o)
r+1, P

(o)
r+2, · · · , P

(o)

q(o)

}
are merged

break
return P

(o)
1 , P

(o)
2 , · · · , P (o)

r as the clustering result

at index u and end at index v. We have u ≤ o ≤ v. Let
d(i) = c(i+1) − c(i), for i = u, u + 1, · · · , v − 1. Let

w = arg max
i=u,u+1,··· ,v−1

(
d(i)
)
. (10)

Then the partition P(w) is the optimal partition for outlier
detection. In this case, the core components of P(w) are the
normal data cluster, and the nodes that do not belong to any
core component are outliers.

F. Batch Mode of the Proposed Algorithm

The number of iterations in Algorithm 1 equals to the
number of edges in the MKNN graph, which can be large when
the dataset is big. In practice, we can collapse the MKNN
graph by removing the edges in a batch mode. We simply
define a constant number T . At each iteration, m/T edges are
removed. After the graph collapsing stage, we have only T
candidate partitions to deal with. This greatly decreases the
computational complexity, since the number of iterations does
not depend on the dataset size. In this study we simply choose
T to be 100.

G. Complexity Analysis

Next we analyze the computational complexity and memory
requirements of the proposed algorithm. The proposed algo-
rithm contains several stages.

First, we build a MKNN graph from the given dataset.
The computational complexity of building up a MKNN graph
by a brutal-force method is O(n2). However, Callahan et al.
showed that theoretically the KNN graph construction takes
O(n log n + nk) [11]. Fast methods to approximate MKNN
graph are also available [12]. For example, Connor et al.

claimed a method with the complexity of O
(⌈

n
p

⌉
k log k

)
,

where p is the number of threads [13].
Second, we calculate the authentic scores for each edge in

the MKNN graph. The complexity of calculating authentic
scores is O

(
mk2

)
[10]. Note that m ≤ 1

2kn for a MKNN
graph. Sorting m authentic scores requires computational
time O (m logm) or O (kn log (kn)). So the complexity for
calculating the authentic scores is O

(
k3n + kn log (kn)

)
.

Third, we apply the graph collapsing procedure in the batch
mode described in Algorithm 1 and Section III-F. As a batch
of the edges are removed, we run breadth-first search or
depth-first search to find all components. The computational
complexity of these algorithms are O (n + m). Since we
need to do the search T times, the complexity for the whole
procedure is O (T (n + m)) or O (Tkn).

The forth stage of the algorithm is to determine the optimal
partition. The complexity of the Max-Min method is O(T).
The complexity of the Min-Max method is O (Tkn).

The last stage is the graph reuniting stage. For every edge
we restore, we simply update the clustering identification of
the two end nodes. The maximum number of edges that we
need to restore is m. The computational complexity of this
stage is O(m) or O(kn).

For outlier detection, determination of the optimal par-
tition involves two steps. The first step is to check if
P

(k+1)
1 , P

(k+1)
2 , · · · , P (k+1)

r contain the same core component
as P

(k)
1 , P

(k)
2 , · · · , P (k)

r and we repeat this checking until we
find all the same partitions around the optimal partition o. The
complexity of checking each pair of the partition is O(n). In
the worst case that we need to check all the partitions, the
overall complexity is O(Tn). The second step is to find the

solution of Eq. 10, which has the complexity of O(T).
Taking all the above stages into consideration and ignoring

constants and insignificant terms, the overall complexity of the
proposed algorithm is O

(
k3n + kn log (kn)

)
. The memory

requirement of the proposed algorithm, which mainly involves
manipulating the MKNN graph, is O (kn). Note that the
previous analysis suppose that the degree of each node is k
(KNN graph). In reality, the average degree of each node in a
MKNN graph is less than k.

Table I compares the computational complexity of the
proposed algorithm and other popular clustering algorithms.
In regards to n, the proposed algorithm has computational
complexity of O (n log n) which is one of the best among all
the algorithms. However, when n is small and k is large, the
proposed algorithm may be slower than other algorithms since
the term O

(
k3n

)
dominates.

TABLE I. COMPUTATIONAL COMPLEXITY OF THE PROPOSED
ALGORITHMS AND OTHER POPULAR CLUSTERING ALGORITHMS

Complexity

GDL [6] O
(
n2
)

k-means [1], [14], [15] O (ni) ∗

a-link [1], [15] O
(
n2 logn

)
N-Cut [16] O (ni) #

DBSCAN [2], [15] O (n logn)

Ours O
(
k3n+ n logn

)
∗ i is the number of iterations. In practice, i is difficult to estimate and in
worst case it is superpolynomial [17].
i is the number of iterations. Shi and Malik claimed that i is typically less
than O

(
n1/2
)

[16].

IV. EXPERIMENTS

A. Synthetic noisy toy datasets

In this experiment, we evaluate the efficiency of the pro-
posed algorithm using generated noisy toy datasets. Each
dataset contains 2000 normal data points and 500 uniformly
distributed noisy data points 1. Fig. 2 shows the synthetic
noisy toy datasets. Different clusters and noisy data points
are colored differently.

We compared the proposed algorithm with a set of popular
clustering algorithms: graph degree linkage (GDL) [6], k-
means[1], average linkage (a-link)[1], normalized cuts (N-Cut)
[16], self-tuning spectral clustering(STSC) [18] and DBSCAN
(DBS) [2]. The optimal partition is obtained by the Min-Max
method described in Section III-D2.

To evaluate the performance of different algorithms, we
choose the Normalized Mutual Information (NMI) as the
performance metric [19], [20]. NMI values are between 0 and
1. A larger NMI value indicates a better clustering result.
Value 1 means that the algorithm gives the same clustering
as the ground truth. For GDL and the proposed algorithm, we
use k = 30 to build the MKNN graph. Table II shows the
performance of the selected algorithms. The best NMI values
are illustrated with bold font.

1Normal data points were generated using the tools from
http://www.mathworks.com/matlabcentral/fileexchange/41459

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 2. Synthetic noisy datasets

TABLE II. NMI VALUES OF THE SELECTED ALGORITHMS ON
SYNTHETIC NOISY DATASETS

GDL k-means a-link N-Cut STSC DBSCAN Ours
(a) 0.650 0.031 0.099 0.053 0.022 0.724 0.734
(b) 0.743 0.743 0.743 0.743 0.743 0.847 0.753
(c) 0.654 0.000 0.004 0.559 0.654 0.749 0.754
(d) 0.646 0.454 0.717 0.691 0.483 0.819 0.823
(e) 0.553 0.208 0.161 0.367 0.517 0.287 0.646
(f) 0.701 0.001 0.133 0.680 0.714 0.429 0.750
(g) 0.612 0.001 0.162 0.627 0.641 0.749 0.749

As Table II shows, the proposed algorithm achieves the
best scores on all of the testing datasets except dataset (b).
k-means fails on almost all of the datasets since it can
not handle complex cluster shapes [21]. Poor performance
observed in the average linkage method is due to the fact
that the algorithm is very sensitive to noise. Normalized cuts,
GDL and STSC shows better performance than k-means and
average linkage methods. But these methods do not detect
noisy data points. DBSCAN is a density-based clustering
algorithm. It can find clusters with complex shapes and detect
noise data points. DBSCAN shows similar performance as
the proposed algorithm on dataset (a), (b), (c), (d) and (g).
However, DBSCAN is not able to handle the clusters that their
densities vary a lot, as shown in the results of datasets (e) and
(f). The results clearly indicate that the proposed algorithm
can cluster data with complex shape, detect noisy data points
and is robust to the variation of the density of the clusters.

B. Synthetic 2D Datasets

In this section we evaluate the performance of the proposed
algorithm using 2D datasets that have been widely used in
other studies 2: (a) [22]; (b) [23]; (c) and (d) [24]; (e) [25];

2The datasets were downloaded from https://www2.uef.fi/en/sipu/
data-and-software

(f) [26]; (g) and (h) [27]. Fig. 3 shows the testing datasets.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. Synthetic 2D datasets: (a) [22]; (b) [23]; (c) and (d) [24]; (e) [25];
(f) [26]; (g) and (h) [27].

Because of the small size of the clusters in these datasets, we
set k = 10 for the proposed algorithm. Noisy data detection is
not performed for these datasets. Other parameters are same
as the ones used in the experiments in Section IV-A. Table
III shows the NMI scores of the competing algorithms. The
scores with underline are clearly below the best score thus
indicate the failure of the method on that dataset.

TABLE III. NMI VALUES OF THE SELECTIVE ALGORITHMS ON
SYNTHETIC 2D DATASETS

GDL k-means a-link N-Cut STSC DBSCAN Ours
(a) 0.993 0.880 1.000 0.980 0.975 0.890 0.985
(b) 0.850 0.738 0.837 0.762 0.763 0.918 0.987
(c) 0.955 0.949 0.952 0.967 0.882 0.756 0.942
(d) 0.994 0.994 0.992 0.994 0.941 0.768 0.976
(e) 1.000 0.399 0.483 0.927 0.564 0.048 0.927
(f) 1.000 0.367 0.698 0.224 0.661 0.820 1.000
(g) 0.583 0.547 0.522 0.879 0.584 0.046 0.769
(h) 0.007 0.000 0.003 0.224 0.330 1.000 1.000

The results show that the proposed algorithm and GDL
work better on clusters with complex shapes, such as (e) and
(f). Normalized cuts and k-means works better on clusters
of normal distributed data points, such as (c) and (e). The
proposed algorithm is the only one that works on dataset (b)
where the density of the clusters varies significantly. Note that
the proposed algorithm is the only one that gives satisfactory
performance on all the datasets.

The authentic score of an edge is computed within a limited
range of its neighboring nodes. This affects the accuracy of
a few data points that lie on the border of the clusters and
slightly worsen the performance on datasets (c), (d) and (e).

C. Clustering on Real Image Datasets
In this section we show the performance of the proposed

algorithms on real-world image datasets. We use the digital

image datasets MNIST and USPS 3, object image datasets
COIL-20 and COIL-100 4 and face image datasets UMist,
FRGC, CMU-PIE and YTF. In this experiment, we use raw
pixel values as the feature vector.

Table IV shows the NMI scores of the selective algorithms
using raw pixel value as feature vector: k-median, graph-based
average linkage (GLink), N-Cut, STSC, GDL and the proposed
algorithm. The proposed algorithm achieves either the best or
the second best results on all datasets except the CMU-PIE.

Yang et al. proposed a supervised approach that jointly learn
deep representations and image clusters. Using the deep repre-
sentations, the clustering result can be greatly improved. Table
V shows the NMI scores of different clustering algorithms
using the deep representations as feature vector.

The results are conformance to other experiments. The
proposed algorithm gives best NMI scores on 5 out of 8 real-
world image datasets.

V. CONCLUSIONS

Community structure is a common phenomenon in social
and biological networks. Zhang et.al. studied this phenomenon
and proposed authentic scores to measure the strength of
the edges. In this paper we propose a novel and efficient
data clustering algorithm using the authentic scores of the
edges in the weighted MKNN graph. The proposed algorithm
collapses the MKNN graph by gradually removing edges
in the ascending order of their authentic scores. During the
collapsing procedure, we detect the components in the graph
by either breadth-first search or depth-first search algorithm.
The optimal partition can be determined by either maximizing
the minimal cluster size (Max-Min) method or minimizing
the maximal conductance value (Min-Max) method. We also
show that the proposed method can detect noise from the
input dataset. We evaluated the proposed algorithm over both
synthetic and real-world image datasets. The results clearly
show that the proposed algorithm is superior to the competing
algorithms. The proposed algorithm has the computational
complexity of O

(
k3n + kn log (kn)

)
and memory require-

ment of O (kn).
The proposed algorithm is fast and efficient. It is able to

find clusters of complex shape and is insensitive to density
variations of the clusters. The results of the experiments also
show some limitations. The proposed algorithm is not able
to separate clusters that are connected by a strong bridge.
This limitation also applies to other density and graph-based
algorithms, such as GDL and DBSCAN. Because the authentic
scores are calculated from a limited range of the neighboring
nodes, the data points on the border of a cluster may be
misplaced. Addressing this problem in an effective way will
be the topic of our future study.

3MNIST and USPS datasets were downloaded from http://www.cs.nyu.edu/
∼roweis/data.html

4COIL-20 and COIL-100 datasets were downloaded from http://www.cs.
columbia.edu/CAVE/software/

TABLE IV. NMI SCORES OF THE SELECTIVE ALGORITHMS ON IMAGE DATASETS

COIL-20 COIL100 USPS MNIST UMist FRGC CMU-PIE YTF
k-means 0.775 0.822 0.447 0.528 0.609 0.389 0.549 0.761
G-Link 0.710* 0.706* 0.732* 0.808* - - - -
N-Cut 0.884 0.823 0.675 0.735 0.782 0.285 0.411 0.742
STSC 0.895 0.858 0.726 0.756 0.611 0.431 0.581 0.620
GDL 0.937 0.929 0.824 0.844 0.755 0.351 0.934 0.622

SC-LS 0.877 0.833 0.681 0.756 0.810 0.550 0.788 0.759
AC-Zell 0.911 0.913 0.799 0.768 0.755 0.351 0.910 0.733
AC-PIC 0.950 0.964 0.840 0.853 0.750 0.415 0.902 0.697

ours 0.979 0.957 0.854 0.848 0.893 0.457 0.744 0.811
The NMI scores of the algorithms marked with * are taken from [6], other scores except those of the proposed algorithm are taken from [28].

TABLE V. NMI SCORES OF THE SELECTIVE ALGORITHMS ON IMAGE DATASETS USING DEEP REPRESENTATIONS

COIL-20 COIL100 USPS MNIST UMist FRGC CMU-PIE YTF
k-means 0.926 0919 0.758 0.908 0.871 0.636 0.956 0.835
N-Cut 0.963 0.900 0.705 0.910 0.877 0.640 0.995 0.823
STSC 0.959 0.922 0.741 0.911 0.847 0.651 0.938 0.741
GDL 1 0.985 0.913 0.915 0.870 0.574 1 0.842

SC-LS 0.950 0.905 0.780 0.912 0.879 0.639 0.950 0.802
AC-Zell 1 0.989 0.910 0.893 0.870 0.551 1 0.821
AC-PIC 1 0.990 0.914 0.909 0.870 0.553 1 0.829

ours 1 0.991 0.915 0.912 0.877 0.658 1 0.824

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: a review,”
ACM computing surveys (CSUR), vol. 31, no. 3, pp. 264–323, 1999.

[2] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.” in Kdd,
vol. 96, 1996, pp. 226–231.

[3] D. Harel and Y. Koren, “On Clustering Using Random Walks,” in FST
TCS 2001: Foundations of Software Technology and Theoretical Com-
puter Science, ser. Lecture Notes in Computer Science, R. Hariharan,
V. Vinay, and M. Mukund, Eds. Springer Berlin Heidelberg, 2001, no.
2245, pp. 18–41.

[4] K. Ozaki, M. Shimbo, M. Komachi, and Y. Matsumoto, “Using the
mutual k-nearest neighbor graphs for semi-supervised classification of
natural language data,” in Proceedings of the Fifteenth Conference on
Computational Natural Language Learning. Association for Compu-
tational Linguistics, 2011, pp. 154–162.

[5] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data
clustering: theory and its application to image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 15,
no. 11, pp. 1101–1113, Nov. 1993.

[6] W. Zhang, X. Wang, D. Zhao, and X. Tang, “Graph Degree Linkage:
Agglomerative Clustering on a Directed Graph,” in Computer Vision
ECCV 2012, ser. Lecture Notes in Computer Science, A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Springer Berlin
Heidelberg, 2012, no. 7572, pp. 428–441.

[7] W. Zhang, D. Zhao, and X. Wang, “Agglomerative clustering via max-
imum incremental path integral,” Pattern Recognition, vol. 46, no. 11,
pp. 3056–3065, Nov. 2013.

[8] Z. Hu and R. Bhatnagar, “Clustering algorithm based on mutual K-
nearest neighbor relationships,” Statistical Analysis and Data Mining,
vol. 5, no. 2, pp. 100–113, Apr. 2012.

[9] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences,
vol. 99, no. 12, pp. 7821–7826, Jun. 2002.

[10] H. Zhang, S. Kiranyaz, and M. Gabbouj, “Outlier edge detection using
random graph generation models and applications,” Journal of Big Data,
vol. 4, no. 1, p. 11, Apr. 2017.

[11] P. B. Callahan and S. R. Kosaraju, “A decomposition of multidimen-
sional point sets with applications to k-nearest-neighbors and n-body
potential fields,” Journal of the ACM (JACM), vol. 42, no. 1, pp. 67–90,
1995.

[12] W. Dong, C. Moses, and K. Li, “Efficient K-nearest Neighbor Graph
Construction for Generic Similarity Measures,” in Proceedings of the

20th International Conference on World Wide Web, ser. WWW ’11.
New York, NY, USA: ACM, 2011, pp. 577–586.

[13] M. Connor and P. Kumar, “Fast construction of k-nearest neighbor
graphs for point clouds,” IEEE Transactions on Visualization and
Computer Graphics, vol. 16, no. 4, pp. 599–608, Jul. 2010.

[14] D. Xu and Y. Tian, “A Comprehensive Survey of Clustering Algo-
rithms,” Annals of Data Science, vol. 2, no. 2, pp. 165–193, Jun. 2015.

[15] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans-
actions on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[16] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 22, no. 8,
pp. 888–905, 2000.

[17] D. Arthur and S. Vassilvitskii, “How slow is the k-means method?” in
Proceedings of the twenty-second annual symposium on Computational
geometry. ACM, 2006, pp. 144–153.

[18] L. Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” in
Advances in neural information processing systems, 2004.

[19] L. Ana and A. Jain, “Robust data clustering,” in 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings, vol. 2, Jun. 2003, pp. II–128–II–133 vol.2.

[20] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas, “Comparing
community structure identification,” Journal of Statistical Mechanics:
Theory and Experiment, vol. 2005, no. 09, p. P09008, 2005.

[21] A. K. Jain, “Data clustering: 50 years beyond K-means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, Jun. 2010.

[22] A. Gionis, H. Mannila, and P. Tsaparas, “Clustering aggregation,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 1, no. 1,
p. 4, 2007.

[23] C. T. Zahn, “Graph-theoretical methods for detecting and describing
gestalt clusters,” Computers, IEEE Transactions on, vol. 100, no. 1, pp.
68–86, 1971.

[24] C. J. Veenman, M. J. Reinders, and E. Backer, “A maximum variance
cluster algorithm,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 24, no. 9, pp. 1273–1280, 2002.

[25] L. Fu and E. Medico, “FLAME, a novel fuzzy clustering method for the
analysis of DNA microarray data,” BMC bioinformatics, vol. 8, no. 1,
p. 3, 2007.

[26] A. K. Jain and M. H. Law, “Data clustering: A users dilemma,” in Pattern
Recognition and Machine Intelligence. Springer, 2005, pp. 1–10.

[27] H. Chang and D.-Y. Yeung, “Robust path-based spectral clustering,”
Pattern Recognition, vol. 41, no. 1, pp. 191–203, 2008.

[28] J. Yang, D. Parikh, and D. Batra, “Joint unsupervised learning of
deep representations and image clusters,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2016, pp.
5147–5156.

PUBLICATION

V

Feature Dimensionality Reduction with Graph Embedding and Generalized
Hamming Distance

H. Zhang and M. Gabbouj

2018 25th IEEE International Conference on Image Processing (ICIP)2018, 1083–1087
DOI: 10.1109/ICIP.2018.8451089

Publication reprinted with the permission of the copyright holders

FEATURE DIMENSIONALITY REDUCTION WITH GRAPH EMBEDDING AND
GENERALIZED HAMMING DISTANCE

Honglei Zhang, Moncef Gabbouj

Signal Processing
Tampere University of Technology

Tampere, Finland

ABSTRACT

Principal component analysis (PCA) and linear discrimi-
nant analysis (LDA) are the most well-known methods to re-
duce the dimensionality of feature vectors. However, both
methods face challenges when used on multilabel data—each
data point may be associated to multiple labels. PCA does not
take advantage of label information thus the performance is
sacrificed. LDA can exploit class information for multiclass
data, but cannot be directly applied to multilabel problems.
In this paper, we propose a novel dimensionality reduction
method for multilabel data. We first introduce the general-
ized Hamming distance that measures the distance of two data
points in the label space. Then the proposed distance is used
in the graph embedding framework for feature dimension re-
duction. We verified the proposed method using three multil-
abel benchmark datasets and one large image dataset. The re-
sults show that the proposed feature dimensionality reduction
method consistently outperforms PCA and other competing
methods.

Index Terms—
dimensionality reduction, graph embedding, multilabel

1. INTRODUCTION

Feature dimensionality reduction using graph embedding
paradigm is a common approach [1]. Yan et al. showed that
Principal Component Analysis (PCA), Linear Discriminant
Analysis (LDA) , Isomap and many other dimensionality
reduction methods can be unified under a general graph em-
bedding paradigm by using different intrinsic and penalty
graph. Dimensionality reduction method using PCA aims
to represent the data better in the new lower-dimension fea-
ture space [2]. The intrinsic graph of PCA algorithm is a
fully connected graph where all edges have the same weight.
LDA algorithm is applicable for multiclass data, where each
sample belongs to one of the classes [3]. The features are
projected into a lower-dimensional space aiming to maximize
the effectiveness of discriminant.

However, many real world problems involves multilabel
data, where each data point is associated with multiple la-

bels—in contrast to multiclass data, where each data point is
assigned to one class label [4]. The classes in multiclass data
are mutually exclusive. However the relations of the labels
in multilabel data can be more complicate. For example, an
image dataset may have many labels, such as “dog”, “cat”,
“animal”, “running”, “funny”, “Labrador”, “black”, “pink”.
One may use any combination of these labels to describe an
image, although some combination may be rare, such as “pink
Labrador”. Because of the complexity of the labels, LDA can
not be directly applied for dimensionality reduction.

Previous researches have combined the feature dimen-
sionality reduction with classification task by optimizing a
joint objective function [5, 6]. These approaches have ob-
vious limitation that the dimensionality reduction algorithm
can be not combined with other classification or ranking al-
gorithms. Thus the system accuracy is bounded by the chosen
joint objective function.

In this paper, we propose the generalized Hamming dis-
tance metric that catches the relations between the labels. We
show that Hamming distance is a special case of the proposed
metric when the labels are mutually independent. We use this
metric in dimensionality reduction methods under the graph
embedding framework. The proposed algorithm can be used
together with any classification or ranking algorithm.

2. NOTATIONS AND PREVIOUS WORK

2.1. Notations

Given a multilabel dataset, let L = {L1, L2, · · · , Lq} be
the set of labels where q is the number of labels. Let
X = {x1, x2, · · · , xN} be the set of the samples where
xi ∈ RM and M is the dimension of the features. Let
Y = {y1, y2, · · · , yN} be the labels assigned to the corre-
sponding data points. We use binary code to represent the
labels of each data point, such that yi ∈ {0, 1}q . Let yi(k)
be the k-th element of vector yi. We have yi(k) = 1 if data
point xi is associated with label Lk; otherwise yi(k) = 0.

To find a lower-dimensional representation of the data
points, our target is to learn a projection z = f(x) where
z ∈ RP , P is dimension of the new feature space and

P < M . In this paper, we study the linear projection of
the feature space, such that z = Wx, where W ∈ RP×M is
the projection matrix.

2.2. Previous Work

The basic idea of dimensionality reduction with graph embed-
ding is to manipulate the distances between the pairs of data
points in the projected feature space. Different weights are
assigned to the distances and the algorithm tries optimize the
sum of the weighted distances. Let Aij be the weight for the
distance between data point xi and xj in the projected feature
space. The objective function is defined as

J =
∑

i,j,i 6=j

‖Wxi −Wxj‖2Aij . (1)

By maximizing this objective function with regard to the
projection matrix W , two data points with a larger weight are
expected to have larger distance in the projected space. How-
ever, to make the optimization tractable, we apply a regular-
ization term

xTWTBWx = I, (2)

where I is the identity matrix and B is a predefined matrix.
When B is an identical matrix, this regularization term forces
the data points to lie on an unit sphere in the projected feature
space .

Next, we can generate a complete graph in which each
node is a data point and the edge connecting node xi and xj
has the weight Aij . Let A be the weighted adjacency ma-
trix. Let D be a diagonal matrix with the weighted degree of
each node on its diagonal, such that Dii =

∑N
j=1Aij . The

Laplacian matrix of the graph is defined as

L = D −A. (3)

Yan et al. showed that PCA, LDA and other dimension-
ality reduction methods can be unified by this formation by
choosing different matrix A and regularization matrix B [1].
The graph defined by matrix A is called intrinsic graph and
the graph defined by matrix B is called penalty graph. For
example, in the formation of PCA, Aij = 1

N and B = I; in
the formation of LDA, Aij = δ(yi, yj) and B = 1 − 1

N ee
T ,

where e is the N dimensional vector of 1 and δ(yiyj) is de-
fined by:

δ (yi, yj) =

{
1 yi = yj

0 otherwise
. (4)

PCA tries to represent the data better in a lower-dimensional
feature space, while LDA tries to maximize the discriminant
in the new feature space. LDA normally achieves better
performance for the classification tasks. However, for the
multilabel problems that deal with the data that can be asso-
ciated with multiple labels, LDA can not be applied directly
since function δ (yi, yj) takes effect only if the two data

points have exactly same labels. Furthermore, because of the
complex relationship between the labels, LDA algorithm can
not capture the dependencies between the labels. Next, we
introduce a dimensionality reduction method using a novel
weight definition. The proposed algorithm can be applied to
multilabel data and take the dependencies between the labels
into consideration.

3. METHODOLOGY

As discussed in Section 2.2, the weight Aij in Eq. 1 preserve
the distance (or similarity) of the data points in the lower-
dimensional feature space. For the multilabel classification
problem or ranking problem, it is obvious that the data points
sharing many common labels should be close to each other
in projected feature space; while those data points that do not
share common labels should be separated far away. With this
intention, the following metrics may be used as the weight:

• Euclidean distance:

Aij = ‖yi − yj‖2 (5)

• Hamming distance:

Aij = count(yi ⊕ yj), (6)

where ⊕ is the XOR operator of two binary vector and
count(·) calculates the number of 1s in a binary vector.
Note, hamming distance calculate number of labels that
differs in yi and yj

However, these commonly used metrics ignore the relation-
ship between the labels and assume all the labels are inde-
pendent. For multilabel problems, the relationship between
the labels are complicate. For example, the correlation be-
tween label “dog” and “puppy” is obviously higher than that
of “dog” and “table”. Thus the data points labeled with “dog”
and “puppy” should be closer than data points labeled “dog”
and “table” in the projected feature space. With this observa-
tion, we propose to use the mutual information to capture the
correlations between labels and define a novel intrinsic graph
that is suitable for dimension reduction of multilabel data.

3.1. Normalized mutual information of labels

In information theory, mutual information measures the rela-
tions between two random variables. Mutual information of
two random variables X and Y is defined as

I(X;Y) =
∑
y

∑
x

p(x, y) log
p(x, y)

p(x)p(y)
(7)

Note that mutual information is greater than zero but not
bounded from above [7]. We use the following normalized

mutual information to capture the correlation between the ran-
dom variables:

NI(X,Y) =
I(X;Y)

min (H(X), H(Y))
, (8)

whereH(X) andH(Y) are the marginal entropies of variable
X and Y . Eq. 8 is equivalent to the total correlation, which is
the Kullback-Leibler divergence from distribution p(X,Y) to
p(X)p(Y). It is easy to see that 0 ≤ NI(X,Y) ≤ 1, where
and 0 is reached if the two random variables are independent
and 1 is reached if they are linearly correlated.

We consider each labelLi as a random variable. Given the
set of multilabel dataX and the set of corresponding labels Y ,
empirical probability of Li can be calculated by

p (Li) =
1

N

N∑
k=1

yk(i), (9)

and the joint probability of two labels Li and Lj by

p (Li, Lj) =
1

N

N∑
k=1

yk(i)y(j). (10)

From Eqs. 7,8, 9 and 10, we can calculate the empiri-
cal normalized mutual information matrix F where element
Fij = NI(Li, Lj). Note that matrix F is symmetric.

We consider yi lies in a label space where the basis are
the labels. If the labels are correlated, the basis of the label
space are nonorthogonal. Given matrix F , next we define a
novel metric to measure the distance of two data points in
label spaces.

3.2. Generalized hamming distance

Hamming distance defined in Eq. 6 is the number of different
labels that are associated to data points xi and xj . Eq. 6 can
be written as:

Aij = count (yi ∨ yj)− 〈yi, yj〉 , (11)

where “∨” is the “or” operator of two binary vectors. Because
of the correlations between labels, the basis of label space is
not orthogonal. The inner product of two vectors yi and yj
with nonorthogonal basis is defined as

〈yi, yj〉 =
∑
l

∑
m

yi(l)yj(m) 〈el, em〉 , (12)

where el and em are the basis vectors. From Eqs. 11 and 12,
we define the generalized Hamming distance of two samples
xi and xj with label yi and yj in label space as the following:

Aij = count(yi ∨ yj)− yTi Fyj , (13)

where F is the normalized mutual information matrix de-
fined in Section 3.1. The first term of Eq. 13 counts the num-
ber of labels that data points xi and xj are associated. The
second term is the inner product of vector yi and yj in the
label space.

Theorem 1. Generalized Hamming distance becomes Ham-
ming distance if labels are mutually independent.

Proof. Let Li and Lj be two independent label variable.
We have I(Li, Lj) = 0. Thus NI(Li, Lj) = 0. Since
I(Li, Li) = H(Li)−H(Li|Li) = H(Li), we haveNI(Li, Li) =
1. Thus matrix F in Eq. 13 is an identical matrix when the
label variables are mutually independent. According to Eqs.
6 and 13, the theorem is proved.

3.3. Solving the optimization problem

When the weights Aij are known, our target is to find the
optimal solution of the objective function defined in Eq. 1.
Such that

W ∗ = argmax
W

∑
i,j,i 6=j

‖Wxi −Wxj‖2Aij (14)

subject to xTi W
TWxi = 1 for i = 1, 2, · · · , N

The solution of optimization problem 14 can be obtained
by solving the eigenvalue problem

L̃w = λw,

where L̃ = XTLX and L is the Laplacian matrix of the in-
trinsic graph [8]. By keeping the first P (the dimension of
the projected feature space) eigenvectors of matrix L̃ with the
largest eigenvalues, we get the matrix W ∗.

4. EXPERIMENTS

In this section, we evaluate the proposed dimension reduction
method using some of the most popular benchmark datasets
for multilabel ranking tasks.

4.1. Small datasets

We first evaluate the proposed algorithm using three small
datasets taken from [9]. The statistics of these datasets are
shown in Table 1.

Table 1. Statistics of the testing datasets
Name domain instance label dimension cardinality

Yeast [10] biology 2417 14 103 4.24
Scene [11] image 2407 6 294 1.07

Emotions [12] music 593 6 72 1.87

In our first experiment, we used the Yeast dataset [10] and
applied the proposed dimensionality reduction method to re-
duce the dimension from 103 to 1, 2, 4, 8 and 16. After di-
mensionality reduction, we applied MLkNN method [13] on
the multilabel ranking problem and recorded the ranking loss
[14] values. We compared 5 results using different weight
definitions in the intrinsic graph :

• PCA: Aij =
1
N .

• Hamming distance (Eq. 6).

• Euclid. Y: Euclidean distance on labels (Eq. 5).

• Euclid. X: Aij = ‖xi − xj‖2. This is the Euclidean
distance of the training data in its original feature space.

• GH: Generalized Hamming distance (Eq. 13).

Table 2 shows the results of the competing methods. Best
score among all methods are shown in bold font.

Table 2. Raking loss values of dimensionality deduction
methods and ML-kNN on Yeast data

Dimension 1 2 4 8 16
PCA 0.209 0.202 0.196 0.18 0.172

Hamming 0.212 0.205 0.198 0.177 0.174
Euclid. Y 0.21 0.208 0.198 0.177 0.173
Euclid. X 0.209 0.204 0.197 0.179 0.173

GH 0.209 0.202 0.195 0.177 0.172

As Table 2 shows, the dimensionality reduction using gen-
eralized Hamming distance achieves the best results on all di-
mensions.

Next we executed the experiments on Yeast, Scene and
Emotions datasets. To evaluate the general performance of
different methods, we recorded the average ranking loss of di-
mensions of 1, 2, 4, 8 and 16. We used the competing dimen-
sionality reduction methods and different multilabel ranking
methods: MLkNN [13], IBLR ML [15], BRkNN[16], DM-
LkNN [17] and RLkNN [18]. The results are shown in Tables
3, 4 and 5.

Table 3. Average ranking loss on Yeast dataset
method MLkNN IBLR ML BRkNN DMLkNN RLkNN

PCA 0.1918 0.1917 0.194 0.1986 0.2015
Hamming 0.1932 0.192 0.1952 0.2022 0.2015
Euclid. Y 0.1932 0.1916 0.195 0.2015 0.2015
Euclid. X 0.1924 0.1919 0.195 0.1992 0.202

GH 0.191 0.1887 0.1922 0.1995 0.2019

Table 4. Average ranking loss on Scene dataset
method MLkNN IBLR ML BRkNN DMLkNN RLkNN

PCA 0.1542 0.1482 0.16 0.1614 0.1551
Hamming 0.1537 0.1474 0.1572 0.1586 0.1529
Euclid. Y 0.1537 0.1468 0.158 0.159 0.152
Euclid. X 0.159 0.1534 0.1638 0.1646 0.1569

GH 0.153 0.1462 0.1575 0.1574 0.152

As the results show, the dimensional reduction methods
using generalized hamming distance consistently achieves
better performance than other competing methods. It should
also be noted that the proposed algorithm achieves the best
average ranking loss score on all the datasets.

Table 5. Average ranking loss Emotions dataset
method MLkNN IBLR ML BRkNN DMLkNN RLkNN

PCA 0.2204 0.2019 0.2006 0.2352 0.1831
Hamming 0.2138 0.2011 0.1983 0.2302 0.1823
Euclid. Y 0.2161 0.198 0.1968 0.223 0.1828
Euclid. X 0.2282 0.1996 0.1996 0.2465 0.1881

GH 0.2147 0.2035 0.1948 0.2336 0.18

4.2. Big dataset

Next we evaluated the proposed method using a large image
dataset–NUS-WIDE 128 [19]. The NUS-WIDE 128 dataset
has 269648 instances and 61 labels. The original dimension
of the feature is 128.

Since the number of samples is large, 5000 instances of
data from the training dataset were randomly selected to cal-
culate the projection matrix W . We reduced the dimension of
the feature from 128 to 4 and 32 and recorded ranking loss of
different multilabel classification algorithms. The results are
shown in Table 6 and Table 7.

Table 6. Ranking loss on NUS-WIDE 128 dataset - feature
dimension is 4
Dimension MLkNN IBLR ML BRkNN DMLkNN RLkNN

PCA 0.098 0.106 0.128 0.097 0.1422
Hamming 0.096 0.103 0.126 0.095 0.1396
Euclid. Y 0.097 0.104 0.126 0.095 0.1403
Euclid. X 0.098 0.106 0.128 0.097 0.142

GH 0.096 0.103 0.126 0.095 0.1394

Table 7. Ranking loss on NUS-WIDE 128 dataset - feature
dimension is 32
Dimension MLkNN IBLR ML BRkNN DMLkNN RLkNN

PCA 0.093 0.097 0.127 0.091 0.1234
Hamming 0.092 0.097 0.123 0.089 0.1195
Euclid. Y 0.092 0.096 0.124 0.09 0.1202
Euclid. X 0.093 0.097 0.127 0.091 0.1233

GH 0.091 0.097 0.123 0.089 0.1195

As the results show, the proposed feature reduction
method using generalized Hamming distance achieves the
best results when combined with all multilabel ranking algo-
rithms.

5. CONCLUSIONS

In this paper, we introduced the generalized hamming dis-
tance as a measurement to capture the correlations between
the labels in a multilabel dataset. We applied the proposed
metric to the graph embedding dimensionality reduction
framework. We evaluated the proposed methods using three
small benchmark datasets and a large image dataset that have
been widely used for evaluating multilabel ranking algo-
rithms. The results show that the proposed method consis-
tently outperforms other dimensionality reduction methods.

6. REFERENCES

[1] Shuicheng Yan, Dong Xu, Benyu Zhang, Hong-Jiang
Zhang, Qiang Yang, and S. Lin, “Graph Embedding and
Extensions: A General Framework for Dimensionality
Reduction,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 1, pp. 40–51, 2007.

[2] Sergios Theodoridis and Konstantinos Koutroumbas,
Pattern Recognition, Fourth Edition, Academic Press,
Amsterdam, 4 edition edition, Nov. 2008.

[3] William S. Rayens, “Discriminant Analysis and Statis-
tical Pattern Recognition,” Technometrics, vol. 35, no.
3, pp. 324–326, Aug. 1993.

[4] Eva Gibaja and Sebastián Ventura, “A Tutorial on Mul-
tilabel Learning,” ACM Comput. Surv., vol. 47, no. 3,
pp. 52:1–52:38, Apr. 2015.

[5] Shuiwang Ji and Jieping Ye, “Linear Dimensionality
Reduction for Multi-label Classification.,” in IJCAI,
2009, vol. 9, pp. 1077–1082.

[6] Yao-nan Chen and Hsuan-tien Lin, “Feature-aware La-
bel Space Dimension Reduction for Multi-label Classi-
fication,” in Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds., pp. 1529–1537. Curran Asso-
ciates, Inc., 2012.

[7] Thomas M. Cover and Joy A. Thomas, Elements of in-
formation theory, John Wiley & Sons, 2012.

[8] Fan RK Chung, Spectral graph theory, vol. 92, Ameri-
can Mathematical Soc., 1997.

[9] Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis,
Jozef Vilcek, and Ioannis Vlahavas, “Mulan: A java
library for multi-label learning,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2411–2414,
2011.

[10] André Elisseeff and Jason Weston, “A kernel method
for multi-labelled classification,” in Advances in neural
information processing systems, 2001, pp. 681–687.

[11] Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and
Christopher M. Brown, “Learning multi-label scene
classification,” Pattern recognition, vol. 37, no. 9, pp.
1757–1771, 2004.

[12] Konstantinos Trohidis, Grigorios Tsoumakas, George
Kalliris, and Ioannis P. Vlahavas, “Multi-Label Classifi-
cation of Music into Emotions.,” in ISMIR, 2008, vol. 8,
pp. 325–330.

[13] Min-Ling Zhang and Zhi-Hua Zhou, “ML-KNN: A
lazy learning approach to multi-label learning,” Pattern
Recognition, vol. 40, no. 7, pp. 2038–2048, July 2007.

[14] Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and
Sašo Džeroski, “An extensive experimental comparison
of methods for multi-label learning,” Pattern Recogni-
tion, vol. 45, no. 9, pp. 3084–3104, Sept. 2012.

[15] Weiwei Cheng and Eyke Hüllermeier, “Combining
instance-based learning and logistic regression for mul-
tilabel classification,” Machine Learning, vol. 76, no.
2-3, pp. 211–225, 2009.

[16] Jianhua Xu, “Multi-Label Weighted k-Nearest Neighbor
Classifier with Adaptive Weight Estimation,” in Neural
Information Processing, Bao-Liang Lu, Liqing Zhang,
and James Kwok, Eds., number 7063 in Lecture Notes
in Computer Science, pp. 79–88. Springer Berlin Hei-
delberg, Nov. 2011.

[17] Zoulficar Younes, Fahed Abdallah, Thierry Denoeux,
and Hichem Snoussi, “A dependent multilabel classifi-
cation method derived from the k-nearest neighbor rule,”
EURASIP Journal on Advances in Signal Processing,
vol. 2011, no. 1, pp. 1–14, 2011.

[18] Honglei Zhang, Serkan Kiranyaz, and Moncef Gabbouj,
“A k-nearest neighbor multilabel ranking algorithm with
application to content-based image retrieval,” in IEEE
Conference on Acoustics, Speech and Signal Processing
(ICASSP 2017), Mar. 2017.

[19] Eleftherios Spyromitros-Xioufis, Symeon Pa-
padopoulos, Ioannis Yiannis Kompatsiaris, Grigorios
Tsoumakas, and Ioannis Vlahavas, “A comprehensive
study over vlad and product quantization in large-scale
image retrieval,” IEEE Transactions on Multimedia,
vol. 16, no. 6, pp. 1713–1728, 2014.

