967 research outputs found

    Parsimonious Labeling

    Get PDF
    We propose a new family of discrete energy minimization problems, which we call parsimonious labeling. Specifically, our energy functional consists of unary potentials and high-order clique potentials. While the unary potentials are arbitrary, the clique potentials are proportional to the {\em diversity} of set of the unique labels assigned to the clique. Intuitively, our energy functional encourages the labeling to be parsimonious, that is, use as few labels as possible. This in turn allows us to capture useful cues for important computer vision applications such as stereo correspondence and image denoising. Furthermore, we propose an efficient graph-cuts based algorithm for the parsimonious labeling problem that provides strong theoretical guarantees on the quality of the solution. Our algorithm consists of three steps. First, we approximate a given diversity using a mixture of a novel hierarchical PnP^n Potts model. Second, we use a divide-and-conquer approach for each mixture component, where each subproblem is solved using an effficient α\alpha-expansion algorithm. This provides us with a small number of putative labelings, one for each mixture component. Third, we choose the best putative labeling in terms of the energy value. Using both sythetic and standard real datasets, we show that our algorithm significantly outperforms other graph-cuts based approaches

    Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation

    Get PDF
    The Hierarchical Conditional Random Field (HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales. At higher scales in the image, this representation yields an oversimplified model since multiple classes can be reasonably expected to appear within large regions. This simplified model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combination of labels, penalizing only unlikely combinations of classes. We also propose an effective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-2

    LEARNING FROM MULTIPLE VIEWS OF DATA

    Get PDF
    This dissertation takes inspiration from the abilities of our brain to extract information and learn from multiple sources of data and try to mimic this ability for some practical problems. It explores the hypothesis that the human brain can extract and store information from raw data in a form, termed a common representation, suitable for cross-modal content matching. A human-level performance for the aforementioned task requires - a) the ability to extract sufficient information from raw data and b) algorithms to obtain a task-specific common representation from multiple sources of extracted information. This dissertation addresses the aforementioned requirements and develops novel content extraction and cross-modal content matching architectures. The first part of the dissertation proposes a learning-based visual information extraction approach: Recursive Context Propagation Network or RCPN, for semantic segmentation of images. It is a deep neural network that utilizes the contextual information from the entire image for semantic segmentation, through bottom-up followed by top-down context propagation. This improves the feature representation of every super-pixel in an image for better classification into semantic categories. RCPN is analyzed to discover that the presence of bypass-error paths in RCPN can hinder effective context propagation. It is shown that bypass-errors can be tackled by inclusion of classification loss of internal nodes as well. Secondly, a novel tree-MRF structure is developed using the parse trees to model the hierarchical dependency present in the output. The second part of this dissertation develops algorithms to obtain and match the common representations across different modalities. A novel Partial Least Square (PLS) based framework is proposed to learn a common subspace from multiple modalities of data. It is used for multi-modal face biometric problems such as pose-invariant face recognition and sketch-face recognition. The issue of sensitivity to the noise in pose variation is analyzed and a two-stage discriminative model is developed to tackle it. A generalized framework is proposed to extend various popular feature extraction techniques that can be solved as a generalized eigenvalue problem to their multi-modal counterpart. It is termed Generalized Multiview Analysis or GMA, and used for pose-and-lighting invariant face recognition and text-image retrieval

    A learning framework for higher-order consistency models in multi-class pixel labeling problems

    No full text
    Recently, higher-order Markov random field (MRF) models have been successfully applied to problems in computer vision, especially scene understanding problems. One successful higher-order MRF model for scene understanding is the consistency model [Kohli and Kumar, 2010; Kohli et al., 2009] and earlier work by Ladicky et al. [2009, 2013] which contain higher-order potentials composed of lower linear envelope functions. In semantic image segmentation problems, which seek to identify the pixels of images with pre-defined labels of objects and backgrounds, this model encourages consistent label assignments over segmented regions of images. However, solving this MRF problem exactly is generally NP-hard; instead, efficient approximate inference algorithms are used. Furthermore, the lower linear envelope functions involve a number of parameters to learn. But, the typical cross-validation used for pairwise MRF models is not a practical method for estimating such a large number of parameters. Nevertheless, few works have proposed efficient learning methods to deal with the large number of parameters in these consistency models. In this thesis, we propose a unified inference and learning framework for the consistency model. We investigate various issues and present solutions for inference and learning with this higher-order MRF model as follows. First, we derive two variants of the consistency model for multi-class pixel labeling tasks. Our model defines an energy function scoring any given label assignments over an image. In order to perform Maximum a posteriori (MAP) inference in this model, we minimize the energy function using move-making algorithms in which the higher-order problems are transformed into tractable pairwise problems. Then, we employ a max-margin framework for learning optimal parameters. This learning framework provides a generalized approach for searching the large parameter space. Second, we propose a novel use of the Gaussian mixture model (GMM) for encoding consistency constraints over a large set of pixels. Here, we use various oversegmentation methods to define coherent regions for the consistency potentials. In general, Mean shift (MS) produces locally coherent regions, and GMM provides globally coherent regions, which do not need to be contiguous. Our model exploits both local and global information together and improves the labeling accuracy on real data sets. Accordingly, we use multiple higher-order terms associated with each over-segmentation method. Our learning framework allows us to deal with the large number of parameters involved with multiple higher-order terms. Next, we explore a dual decomposition (DD) method for our multi-class consistency model. The dual decomposition MRF (DD-MRF) is an alternative method for optimizing the energy function. In dual decomposition, a complex MRF problem is decomposed into many easy subproblems and we optimize the relaxed dual problem using a projected subgradient method. At convergence, we expect a global optimum in the dual space because it is a concave maximization problem. To optimize our higher-order DD-MRF exactly, we propose an exact minimization algorithm for solving the higher-order subproblems. Moreover, the minimization algorithm is much more efficient than graph-cuts. The dual decomposition approach also solves the max-margin learning problem by minimizing the dual losses derived from DD-MRF. Here, our minimization algorithm allows us to optimize the DD learning exactly and efficiently, which in most cases finds better parameters than the previous learning approach. Last, we focus on improving labeling accuracies of our higher-order model by combining mid-level features, which we call region features. The region features help customize the general envelope functions for individual segmented regions. By assigning specified weights to the envelope functions, we can choose subsets of highly likely labels for each segmented region. We train multiple classifiers with region features and aggregate them to increase prediction performance of possible labels for each region. Importantly, introducing these region features does not change the previous inference and learning algorithms

    Characterizing Objects in Images using Human Context

    Get PDF
    Humans have an unmatched capability of interpreting detailed information about existent objects by just looking at an image. Particularly, they can effortlessly perform the following tasks: 1) Localizing various objects in the image and 2) Assigning functionalities to the parts of localized objects. This dissertation addresses the problem of aiding vision systems accomplish these two goals. The first part of the dissertation concerns object detection in a Hough-based framework. To this end, the independence assumption between features is addressed by grouping them in a local neighborhood. We study the complementary nature of individual and grouped features and combine them to achieve improved performance. Further, we consider the challenging case of detecting small and medium sized household objects under human-object interactions. We first evaluate appearance based star and tree models. While the tree model is slightly better, appearance based methods continue to suffer due to deficiencies caused by human interactions. To this end, we successfully incorporate automatically extracted human pose as a form of context for object detection. The second part of the dissertation addresses the tedious process of manually annotating objects to train fully supervised detectors. We observe that videos of human-object interactions with activity labels can serve as weakly annotated examples of household objects. Since such objects cannot be localized only through appearance or motion, we propose a framework that includes human centric functionality to retrieve the common object. Designed to maximize data utility by detecting multiple instances of an object per video, the framework achieves performance comparable to its fully supervised counterpart. The final part of the dissertation concerns localizing functional regions or affordances within objects by casting the problem as that of semantic image segmentation. To this end, we introduce a dataset involving human-object interactions with strong i.e. pixel level and weak i.e. clickpoint and image level affordance annotations. We propose a framework that utilizes both forms of weak labels and demonstrate that efforts for weak annotation can be further optimized using human context
    • …
    corecore