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This dissertation takes inspiration from the abilities of our brain to extract infor-

mation and learn from multiple sources of data and try to mimic this ability for some

practical problems. It explores the hypothesis that the human brain can extract and

store information from raw data in a form, termed a common representation, suitable for

cross-modal content matching. A human-level performance for the aforementioned task

requires - a) the ability to extract sufficient information from raw data and b) algorithms

to obtain a task-specific common representation from multiple sources of extracted infor-

mation. This dissertation addresses the aforementioned requirements and develops novel

content extraction and cross-modal content matching architectures.

The first part of the dissertation proposes a learning-based visual information ex-

traction approach: Recursive Context Propagation Network or RCPN, for semantic seg-

mentation of images. It is a deep neural network that utilizes the contextual information

from the entire image for semantic segmentation, through bottom-up followed by top-down

context propagation. This improves the feature representation of every super-pixel in an

image for better classification into semantic categories. RCPN is analyzed to discover that

the presence of bypass-error paths in RCPN can hinder effective context propagation. It

is shown that bypass-errors can be tackled by inclusion of classification loss of internal

nodes as well. Secondly, a novel tree-MRF structure is developed using the parse trees to

model the hierarchical dependency present in the output.

The second part of this dissertation develops algorithms to obtain and match the

common representations across different modalities. A novel Partial Least Square (PLS)



based framework is proposed to learn a common subspace from multiple modalities of data.

It is used for multi-modal face biometric problems such as pose-invariant face recognition

and sketch-face recognition. The issue of sensitivity to the noise in pose variation is

analyzed and a two-stage discriminative model is developed to tackle it. A generalized

framework is proposed to extend various popular feature extraction techniques that can be

solved as a generalized eigenvalue problem to their multi-modal counterpart. It is termed

Generalized Multiview Analysis or GMA, and used for pose-and-lighting invariant face

recognition and text-image retrieval.
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Chapter 1

Introduction

The ultimate goal of Machine Learning and Artificial Intelligence is to mimic human
reasoning and learning capabilities. One of the most remarkable feats of the human brain
is its ability to extract and combine relevant information from multiple sources of data.
The machine learning literature speaks of this indispensable ability as extracting content
(information) from multiple modalities (sources). For example, we can readily combine
written instructions and 2D diagrams to assemble an office desk. To date, there is no
machine that can perform this task for even moderately complex structures. This simple
task illustrates the following challenges that arise due to multi-modality:

1. Content extraction - This refers to the process of extracting task-dependent useful
information from data. In the desk installation example, it refers to the ability to
understand the illustrative diagrams and the written textual instructions from the
manual.

2. Cross-modal content matching - This refers to the process of possible transfor-
mation of the extracted contents followed by matching or relating across different
modalities. In the desk installation example, it refers to relating one visual modality,
a sketch of a wrench, to the 3D wrench we look at, as we assemble the desk.

This work attempts to address the aforementioned problems by developing models for
visual content extraction from images and algorithms to obtain task-dependent content
from multi-modal features.

The cross-modal content matching problem involved in the desk-installation example
is a case where the required human effort and time is manageable but there are a number
of situations where it is impossible for humans to carry out the task due to the amount of
required effort and time. For example, sometimes it is necessary to match a forensic sketch,
based on verbal description, to a very large database of face images. Fig 1.1 shows that
we can easily figure out the face image corresponding to the given forensic sketch despite
a great difference in the overall appearance. In this case, content is the appearance of
the person and different modalities are CCD image and forensic sketch. But, a machine-
based automatic algorithm performs very poorly on the same task, Fig. 1.1b. As a second
example, in Fig 1.2, we can easily tell that the first image is the closest match to the
semantics conveyed by the sentence among the five images in terms of the spatial layout
of the scene. In this example, despite completely different ways (image and text) of
conveying the information, we are able to relate them easily. The state-of-the-art systems
of sentence generation from an image and text-based image retrieval are far worse than
human performance on real-life images [54].

All these different instantiations of cross-modal content matching are so easy that
anyone can perform them with great accuracy and ease, but performing them on a database
with thousands of samples becomes totally impractical, if not impossible. Therefore, we
need machines to perform these tasks for us. The two key requirements for a machine
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(a) Sketch-face pairs
SAME PAIRS DIFFERENT PAIRS 

(b) Computer performance

Figure 1.1: (a) Forensic sketch and image pairs of some suspects drawn by sketch artist
Lois Gibson. Each column contains a pair of sketch (first row) and the corresponding
photo (second row) of the same subject. The sketches are drawn based on the verbal
description given by the victim. (b) The result of automatic sketch-face matching for 49
subjects, taken from [56]. LFDA is their approach, LFDA-Gender is the approach with
a gender filter, LFDA-Race is the approach with a race filter and LFDA-Gender-Race
is the approach with a gender and race filter. faceVACS is a commercial face recognition
software. It can be see that the automatic algorithms are only around 50% accurate for
rank-70 matching, which is far from acceptable. Whereas, humans are far better at this
task for limited size datasets.
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Two parked jet 
airplanes 
facing 
opposite 
directions. 

Figure 1.2: Five images containing the same object ie aeroplanes, the difference is in terms
of the spatial layout of these objects in the scene. The task is to find the closest matching
image for the descriptive sentence. The images and sentence come from UIUC sentence
dataset [94].
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for satisfactory performance are speed and accuracy. From the aforementioned examples
one can observe that there is a huge difference between human and machine performance.
Although these problems look entirely different, they all are simply different instantiations
of content extraction and cross-modal content matching. Here, we stress upon the fact
that sufficiently rich task-dependent content extraction from each modality is also crucial
for the final performance of the subsequent cross-modal content matching. For example,
[56] showed that local-gradient based discriminative feature extraction from the sketches
and faces is crucial for sketch-face matching and it improves the performance from 4% to
20% rank-1 accuracy when compared against traditional features. Similarly, [54] showed
that the use of deep Convolution Neural Network based features from images and deep
Recurrent Neural Network based text-generation led to twice better accuracy for image
retrieval and sentence generation as compared to traditional features.

We have already seen that humans are very good at content extraction and cross-
modal content matching. A natural question is: Why? To date, there is no concrete
theory that offers a complete explanation, yet there are some popular hypotheses that
offer possible explanations. One such hypothesis is that our brain extracts and stores
content from multi-modal data in a canonical form [24]. Thus, it facilitates seamless
cross-modal content matching. Informally, this can be termed the common representation
hypothesis. It is useful and interesting in cases with more than two modalities because it
provides a common framework for representing and working with multiple modalities.

1.1 From ideas to numbers

So far, we spoke of concepts such as: task, content and modalities in an abstract
sense in order to facilitate intuition. In this section, we model these concepts as mathe-
matical objects with well defined operations to facilitate analysis on a machine.

1. Task - A task, just as with its normal definition refers to a set of operations with a
desired goal. For example, given a face image and a forensic sketch, the task is to
tell whether they come from the same person or not. Mathematically, it is a function
that takes in arguments and outputs the result.

2. Content - Content refers to the task-specific representation of information required
to complete the task. Most machine learning algorithms operate on vectors spaces
of real numbers. Therefore, it is natural to represent the content as a vector with
each dimension describing some part (attribute) of the content. Such a vector and
the associated vector space are formally known as feature vector and feature space,
respectively. For example, a gray-scale face image can be represented as a vector
of pixel intensities. Similarly, a document can be represented as a bag-of-word
vector with each dimension being the count of occurrence of a particular word in
a dictionary. Note that the usefulness of the content depends on the task. For
example, gray-scale face images are sufficient for face recognition under controlled
lighting condition, but it is required to obtain gradient based features from gray-scale
images for satisfactory performance under varying illumination. Therefore, we can
see that useful content extraction within a modality is also important and crucial
for the success of cross-modal content matching.

3. Modality - We can have several different representations for the (approximately)
same content, depending on our requirements and input data. In some cases, it is
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trivial to find a mapping to bring different representations to a common representa-
tion. For example, coordinates of points in the 2D plane can either be expressed in
Cartesian or Polar coordinate system and the mapping between these two is known
to us. However, in some situations the mapping between different representations
is not straightforward to obtain. Under this situation, different representations of
the same content constitute modalities. For example, the task of face recognition
can either use pixel intensities or visual attributes (gender, race, hair color, skin
color, etc.) as feature vectors. These two modalities are completely different and
span different feature spaces, yet both contain information that can be useful for face
recognition. Therefore, these two representations constitute two different modalities,
for the task of face recognition.

With these definitions in hand, let’s try to understand the requirement of content
extraction and a common representation. To facilitate intuition and provide a visual
aid we will take up the examples of text-based image retrieval and pose-invariant face
recognition. In text-based image retrieval, the task is to retrieve an image from a database
using a verbal query. We want the retrieved image to be a close match to the concept
described in the query. Although, a vector of all the pixel values of the image constitutes
a representation scheme, but it is not a good representation of the task-dependent visual
content such as objects, scene type and geometric layout. Similarly, a string of characters
is also a representation scheme for textual query, but it is not a useful representation
for the aforementioned task. A pair of representations for image and text that contains
the required content could be a SIFT histogram and a Bag-Of-Word feature, respectively.
Therefore, both of them can be represented as vectors. However, it is possible to have
different dimensions for the two feature vectors. In this situation, it is not even possible to
calculate a distance between the image and text feature vectors unless we have a learned
metric. Suppose we decide to have the same dimensions for the image and text feature
vectors in order to facilitate simple Euclidean distance based similarity. Unfortunately, the
Euclidean distance will not give any meaningful information, though the feature vectors
have similar content, they are entirely different in terms of presentation of the content.
Therefore, a common representation is required to relate samples across modalities.

Similarly, we can regard a face image as a vector in <D. The coordinate axes defined
for each pixel will constitute a representation scheme (S) for the face which is basically
the set of column vectors of an identity matrix in <D space. Corresponding pixels across
different subjects’ faces roughly correspond to the same facial region in the absence of
pose difference and controlled lighting conditions. This feature correspondence facilitates
comparison. In fact, feature correspondence is essential for comparison based on any
learned model. For faces especially, it has been shown to be crucial [133].

Unfortunately, face images under different poses lose the feature correspondences
because of missing facial regions, unequal dimensions and/or region displacements. Region
displacement refers to the same facial region at different indices in feature vectors (see
Fig.1.3). This example shows that even though we have used pixel intensities as features,
pose difference led to a different modality. On the other hand, the case of text-image
retrieval gave rise to a case where the two modalities represent entirely different concepts.
It is this lack of harmony between representations that requires a common representation
scheme to facilitate any meaningful relation between samples from different modalities.
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Figure 1.3: An example showing lack of correspondence due to missing regions and region
displacement for pose variation. Black and red blocks indicate region displacement and
missing region, respectively.

1.2 An overview of the Dissertation

This dissertation consists of two parts. The first part describes a novel neural net-
work based approach for visual content extraction from images. In particular, a deep
recursive neural network based semantic segmentation of real-life images has been pro-
posed. Arguably, a pixel-wise dense segmentation mask is a rich form of visual content,
because it can be used to understand the scene, objects and their relative positions, inter-
actions between the objects and the world in the image. The proposed approach not only
yields state-of-the-art results on benchmark datasets, but it is also orders of magnitude
faster than the competing approaches.

In the second part we draw motivation from the common representation hypothe-
sis and build mathematical models to extract content from multi-modal data in a form
that affords cross-modal content matching. We attempt to explore and understand the
shortcomings of previous approaches and build richer and more accurate models for some
of the discussed problems. These problems were tackled using different approaches in
the past. We, on the other hand, try to tackle these seemingly different problems using
the same general idea of common representation and show impressive improvements in
the current state-of-the-art. The success of our common representation approach on dif-
ferent problems validates the hypothesis and motivates us to explore richer models with
more human-centric abilities. In particular, we develop a Partial Least Square based
common representation for multi-modal face biometrics and extended it to a two-stage
discriminative model to handle pose-errors. We formulated a common framework to ex-
tend any content extraction technique, such as Principal Component Analysis [82], Linear
Discriminant Analysis [8, 125], Marginal Fisher Analysis [138] etc., to their multi-modal
counterpart, given that the original problem can be formulated as an eigenvalue problem.

The rest of dissertation is organized as the following.
Chapter 2 provides a brief background on semantic segmentation, neural networks

and some previous mathematical models to obtain common representation.
Chapter 3 presents the neural network model, Recursive Context Propagation

Network or RCPN, for semantic segmentation.
Chapter 4 presents a PLS based common representation for multi-modal face recog-

nition.
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Chapter 5 extends the PLS based model to a two-stage discriminative architecture
to handle small pose-errors. The adverse effect of pose-errors and the advantages of the
proposed extension is also shown for larger datasets, such as FERET and MultiPIE.

Chapter 6 describes our supervised common representation model, Generalized
Multiview Analysis or GMA, for pose and illumination invariant face recognition and
text-image retrieval.

Chapter 7 summarizes the dissertation with conclusion and future directions.
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Chapter 2

Background

This chapter provides a brief overview of some basic concepts required for under-
standing the material presented in this dissertation. We talk about 1) visual feature
extraction with a focus on semantic segmentation, 2) deep neural networks and training
and 3) a few popular techniques for learning a common representation from multi-modal
data, in the order.

2.1 Visual feature extraction

Computer vision has been an active field of research for more than five decades. It
has witnessed a colossal increment in the degree of sophistication and variety in terms
of computer-vision based tasks. A principle requirement for almost every task is visual
feature extraction that makes it one of the most active fields of research within computer-
vision community. The large variation between different tasks is also reflected in the
variety of the used visual features and the techniques to obtain them. The aforementioned
variation between the visual features is so much so that there are several major areas of
study solely dedicated to different feature extraction techniques. One such area is semantic
segmentation owing to its challenging nature and wide-spread use with various tasks such
as navigation, action recognition, medical images analysis and image understanding. A
pixel-wise segmentation mask affords information such as objects in the images and their
relative positions, the scene type in the image and interactions between animate and
inanimate objects. This information is essential for a successful matching of an image to a
verbal sentence that carries similar semantics. Although, there are other visual features,
such as SIFT [77], HOG [22], GIST [85], Gabor features [136] and Fisher vectors [86],
that can offer similar visual information, but the aforementioned applications of semantic
segmentation along with its potential use in text-image matching motivates us to develop
accurate and real-time algorithms for it.

2.1.1 Semantic Segmentation

Semantic segmentation aims at labeling each pixel of an input image as one of
the required semantic categories. Fig. 2.1 illustrates an input image and its semantic
segmentation mask. The immense variability in the appearance of objects, man-made
and natural structures makes the problem very challenging. For example, in Fig. 2.1, it
is required to correctly label the sand, sky and water regions despite very close visual
similarity between them.

There are various approaches to obtain a semantic segmentation mask of a given
image. Some approaches try to label individual pixels into semantic categories [44, 60, 114,
115]. Unfortunately, the per-pixel labeling approaches lead to a noisy labeling with lots
of miss-classified small isolated pixels or group of pixels. The noisy per-pixel approaches
can benefit by labeling at super-pixel level. Super-pixels are contiguous similar color or
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Figure 2.1: An example of a color image with its semantic segmentation mask and super-
pixel segmentation. Different super-pixels are depicted by different colors.

texture regions of an image, please see Fig. 2.1 for an example. A few popular algorithms
to obtain super-pixels from an input image are [30, 73, 2]. Some semantic segmentation
approaches that work at super-pixel level are [93, 119, 79, 48]. These approaches assign the
same label to each pixel within a super-pixel. Some semantic categories are particulary
challenging due to large variation in their color, texture, shape or view-point such as
human, car, bike and animals. These objects are first detected using object detectors and
the detection bounding boxes are used to obtain a per-pixel segmentation of the object
within the bounding box [45, 40, 4, 41].

2.2 Neural Networks and Related Concepts

A neural network maps an input to an output. Any artificial intelligence problem
can be thought of as a mapping from an input to an output space, therefore, it can be
modeled as a neural network. The input and output spaces depend on the problem in
hand. For example, object classification takes an image as the input and outputs the
classes of the present objects in the image. An excellent tutorial on neural networks and
their use in artificial intelligence tasks is given in [10]. Here, we gloss over some of the
key-concepts required to facilitate the understanding of the material in this dissertation,
please refer to [10] for a detailed discussion of any of the following concepts.

Mathematically a neural network can be defined as -

y = f(x; θ) (2.1)

here, y, x and θ are output, input and network parameters. Almost always, a neural
network is broken down into a layer-wise structure with non-linear function sand-witched
between the layers. Fully-connected [100], convolutional [21], recurrent [47, 104, 103] and
recursive [89, 119] neural networks are the most popular neural networks among various
possible neural architectures [10]. This dissertation does not deal with recurrent neural
network, therefore, all the discussions from now onwards pertaining to neural network will
be applicable to fully-connected, convolutional and recursive networks only.

Network parameters (θ) refer to the set of learnable parameters of each layer,
commonly referred to as layer weights. The layer weights depend on the architecture type
and the number of neurons present in the layers. For example, a fully-connected layer fcl
with 1000 input and 200 output neurons will have its weight parameter W fc

l ∈ <
200×1000

and a convolutional layer cnl with a convolution kernel of size 5 × 5, 100 input and 200
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output feature maps will have W cn
l ∈ <200×100×5×5.

Capacity of a neural network refers to the possible complexity of the mapping
function given a particular architecture and hyper-parameter setting such as type of non-
linear function, number of layers and neurons within each layer. The capacity of a network
always increases with an increase in the number of layers and neurons [49]. From the
examples of fully-connected and convolutional networks we can see that the increase in
the number of layers and neurons leads to an increase in the total number of network
parameters as well.

Loss function takes the output of a neural network and the corresponding ground-
truth and maps them to a scalar value proportional to the penalty incurred for that input
under the current settings of θ -

L(y, ỹ; θ) ∈ {l : y × ỹ→ <} (2.2)

here, y and ỹ are the network output and ground-truth, respectively.
Training data refers to a collection of inputs (xi) and the corresponding ground-

truth labels (ỹi) suitable for the problem in hand. For example, object classification
problem can use a training data of visual images that contain objects and a label for each
image that indicates the presence and absence of each object category.

Parameter learning refers to the process of altering θ to bring down the cumula-
tive loss function over the given training data. The learning process is commonly known
as back-propagation due to the fact that gradients with respect to the network parameters
is facilitated through reverse propagation of error from the final layer to the data input
layer [100]. Typically, gradient descent or stochastic gradient descent with mini-batches
of training data is used to bring down the loss function. The learning stops when the
gradient of the parameters become vanishingly small. Naturally, we would like to obtain
the global minimum of the loss function for the optimal performance. Unfortunately, due
to the highly non-convex nature of the loss function the learning will inevitable stop at a
local minimum solution and our best hope is to settle down in a useful local minimum.

Over-fitting refers to the scenario when the learned network can correctly predict
the ground-truth for the training data inputs, but fails to correctly predict the outputs for
the test data. Over-fitting may occur due to several reasons such as small training set, a
training set that is not representative of the test set and unnecessary capacity that allows
the network to fit the idiosyncracies of training data. Please note that the small training
set and unnecessary network capacity are relative in their effect, for example, a network
with large capacity can be made to avoid over-fitting, commonly referred to as generalize,
by training it with a large amount of data and similarly, smaller datasets can be used for
training with controlled network capacity.

Regularization refers to the set of techniques that can be used to avoid over-fitting
while training a neural network. Common regularization techniques are - l2-penalty on
the layer weights, data-augmentation [58], controlling the number of network parameters
by parameter sharing [21, 89], unsupervised pre-training [26], supervised pre-training on
large datasets [76, 54] etc.. While training neural network for complicated tasks it is a
common practice to start with a large-capacity network without any regularization and
keep on increasing the capacity with the degree of regularization to reach a point where
an increase in capacity does not effect the performance either positively or adversely.

Dropout refers to a technique that has been proposed recently and it is found to
be extremely effective for obtaining a better solution [120]. It randomly omits a fraction
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of neurons from the computation graph of the neural network during a forward-backward
propagation cycle. The exact effect of dropout is not yet clear, but it consistently improves
the performance for almost every deep neural network based approach.

2.3 Common Representation Extraction

As stated earlier, we are not the first one to explore the common representation
hypothesis. This idea goes back to at least 1933 when it first appeared in the seminal
paper of Hotelling in the form of Canonical Correlation Analysis [38]. Since then, there
has been a vast amount of work on building models to learn a common representation
from different modalities. The large volume of available literature forbids an exhaustive
review, therefore, we will only discuss the approaches that were either used in our study
or similar to our work.

A popular approach for finding a common representation for cross-modal content
matching is to learn linear/non-linear projection directions in each modality to project
samples from different modalities into a common subspace. The projection directions are
obtained as solutions of different optimization problems. The two lines of optimization
problem come from subspace and probabilistic approaches. Canonical Correlation Analysis
(CCA), Bilinear Model (BLM) and Partial Least Squares (PLS) are representatives of
subspace approaches and Tied Factor Analysis (TFA), shared private model etc. represent
probabilistic approaches. In the discussion that follows, we will use face recognition as the
working example. Therefore, the task would be to find the identity of the person, content
could be any feature vector that is useful for the task and modalities would be different
representations of the content.

2.3.1 Bilinear Model

Tannenbaum and Freeman [128] proposed a bilinear model (BLM) for separating
modality and content. They suggested different methods for learning BLMs and using them
in a variety of tasks, such as identifying the modality of a new image with unfamiliar
content, or generating novel images based on separate examples of the modality and
content. However, their approach also suggests that their content-modality models can be
used to obtain a modality-invariant content representation that can be used for relating
a sample in different modalities. Following their asymmetric model, they concatenate the
ith subject’s images under M different poses (yi

m : m = 1, 2, . . .M) to make a long vector
yi and construct matrix Y having columns as yi with i = {1, 2, . . . N = #subjects} such
that:

Y =


y1
1 y2

1 . . . yN
1

y1
2 y2

2 . . . yN
2

...
...

. . .
...

y1
M y2

M . . . yN
M

 =
(

y1 y2 . . . yN
)

(2.3)

Modality matrices Am which can be thought of as different representation schemes
and can be obtained by decomposing the matrix Y using SVD as -

Y = USV T = (US)V T = (A)B (2.4)

A can be partitioned AT =
(
AT

1 AT
2 . . . AT

M

)
to give different representation schemes

Am’s where m represents different poses.
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2.3.2 Canonical correlational analysis

Canonical Correlational Cnalysis or CCA is a technique that learns a set of M
different projection directions from a set of observed content under M different modalities.
The projections of different modalities of a particular content are maximally correlated in
the projected space. Hence, CCA can be used to learn a common intermediate subspace in
which projections of different pose images of the same subject will be highly correlated and
recognition can be done on the basis of the correlation score. Given a set of face images of
N different subjects under M different poses, CCA learns a set of K dimensional subspaces
Wm = {wk

m : wk
m ∈ <Dm; k = 1, 2, . . .K} for m = 1, 2, . . .M such that [39]:

C11 C12 . . . C1M

C21 C22 . . . C2M
...

...
. . .

...
CM1 CM2 . . . CMM




wk
1

wk
2

...
wk

M

 = (1 + λk)


C11 0 . . . 0
0 C22 . . . 0
...

...
. . .

...
0 0 . . . CMM




wk
1

wk
2

...
wk

M


CW = W (I + Λ) (2.5)

where, Dm is the feature dimension of the mth modality, Cij = 1
N Yi(Yj)

T and Λ is a
diagonal matrix of eigen-values λk, N is the number of training subjects, each pose is a
modality and Yi is defined in the previous sub-section. Equation (2.5) is a generalized
eigenvalue problem which can be solved using any standard eigensolver. The columns
of the projector matrices Wm will span a linear subspace in modality m. So, when the
modalities are different poses, we get a set of vectors spanning a linear subspace in each
pose.

2.3.3 Partial Least Squares

Partial Least Square analysis [113, 98, 1, 14], also known as PLS, is a regression
model that differs from Ordinary Least Square regression by first projecting the regressors
(input) and responses (output) onto a low dimensional latent linear subspace. The PLS
projectors try to maximize the covariance between latent scores of regressors and responses.
Hence, we can use PLS to obtain common representation for two different poses in the
same way as BLM and CCA.

There are several variants of PLS analysis based on the objective function and related
constraints to learn the latent space, see [14] for details on different PLS algorithms. In
this paper, we have used the factor model assumption given in [14, 98] to develop intuitions
and a variant of NIPALS given in [1] to learn the projection directions.

Following the same conventions as for BLM and CCA, Yp represents a matrix con-
taining face images in pose p as its columns. PLS greedily finds vectors wp and wq such
that -

[wp,wq] = argmax
wp,wq

(cov[Y T
p wp, Y

T
q wq]

2)

s.t. ‖wp‖ = ‖wq‖ = 1
(2.6)

MATLAB code of the NIPALS [1] based variant for learning the common latent
space is given below.

function [W,Z] = PLS_bases(X,Y,nfactor)
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% INPUT PARAMETERS

% X and Y both are supplied in a form where each column contains one sample

% nfactor - # desired PLS fatcors

% OUTPUT PARAMETERS

% W - the projection directions for X as columns

% Z - Projection directions for Y as columns

XD = size(X,1); % X-dimension

YD = size(Y,1); % Y- dimension

% Input check

if nargin < 3

print (’Not enough input arguments probably missing nfactor’)

return;

end

% Number of samples

nx = size(X,2);

ny = size(Y,2);

if nx == ny

n = nx;

else

print (’The number of samples in X and Y are different’);

return;

end

% make them as row vectors now

X = X’;

Y = Y’;

% Initialisation of some matrices

W = zeros(XD,nfactor);

A = X’*Y;

M_ = X’*X;

C = eye(XD);

P = zeros(XD,nfactor);

Z = zeros(YD,nfactor);

for i = 1:nfactor

[dumm d q] = svds(A,1);

w = C*(A*q);

w = w/norm(w);

W(:,i) = w;

p = M_*w;
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c = w’*p;

p = p/c;

P(:,i) = p;

q = A’*(w/c);

Z(:,i) = q;

A = A - (c*p)*q’;

M_ = M_ - (c*p)*p’;

C = C - w*p’;

end

2.3.4 Probabilistic common representation

These approaches use generative models to explain the data. Generally, they as-
sume a common latent space, usually Gaussian for computational simplification, and use
linear transformations to map the points in the latent space to the data points. Different
architectures of connections give rise to different models with different properties. Some
popular models are Tied Factor Analysis (TFA) [91], Probabilistic Linear Discriminant
Analysis (PLDA) etc.. A common feature of all these approaches is the use of the EM
algorithm for inference which is prone to local minima. Therefore, these approaches can-
not guarantee convergence to the optimal solution. We do not discuss these approaches
in detail because we are not going to use them in this dissertation.

14



Chapter 3

Deep Recursive Hierarchical Scene Parsing

This chapter introduces a novel recursive neural network architecture, referred to as
Recursive Context Propagation Networks (RCPN), for semantic segmentation of images.
RCPN first maps the local visual features into a semantic space followed by a bottom-up
aggregation of local information into a global representation of the entire image. Then a
top-down propagation of the aggregated information takes place that enhances the contex-
tual information of each local feature. Therefore, the information from every location in
the image is propagated to every other location. RCPN is further analyzed and modified
accordingly to improve the model. The presence of bypass error paths, in the computation
graph of RCPN, that can hinder contextual propagation is discovered by analyzing the
temporal gradient strength during training. The classification loss of the internal nodes of
the random parse trees in the original RCPN model is added to the loss function to tackle
the problem that leads to Pure-node RCPN (PN-RCPN). Secondly, a novel tree-MRF on
the parse tree nodes is used to model the hierarchical dependency present in the output,
leading to Tree-MRF RCPN (TM-RCPN). Experimental results on Stanford background,
SIFT Flow and Daimler Urban datasets show that the proposed methods outperform pre-
vious approaches in terms of accuracy for semantic segmentation. Most notably, RCPN
and PN-RCPN are orders of magnitude faster than previous methods, except for Daimler
dataset, and take only 0.07 seconds on a GPU for pixel-wise labeling of a 256× 256 image
starting from raw RGB pixel values, given the super-pixel mask that takes an additional
0.3 seconds using an off-the-shelf implementation. This work is the result of a collabo-
ration with Dr. Oncel Tuzel and Dr. Ming-Yu Liu, a part of this work was completed
during my internship at Mitsubishi Electric Research Lab Cambridge.

3.1 Motivation and Introduction

As discussed earlier in Sec. 2.1.1, semantic segmentation aims at getting pixel-wise
dense labeling of an image in terms of semantic concepts such as tree, road, sky, water,
foreground objects etc. The pixel-wise dense semantic mask for an image is a very rich form
of visual information that can be leveraged for a variety of complicated visual tasks such
as navigation, scene understanding, robotics, and medical image analysis. The versatility
and usefulness of dense semantic mask calls for highly accurate and real-time algorithms
to obtain it from the input images. Unfortunately, the rich diversity in the appearance of
even simple concepts (sky, water, grass) makes semantic segmentation very challenging.
Surprisingly, human performance is almost close to perfect on this task. This striking
difference of performance has led to a heated field of research in the vision community.
Past experiences and recent research [131, 81, 80] have conclusively established that the
ability of humans to utilize the information from the entire image is the main reason behind
the large performance gap. Interestingly, [81, 80] have shown that human performance in
labeling a small local region (super-pixel) is worse than a computer when both are looking
at only that region of the image.
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Mathematically, semantic segmentation can be framed as a mapping from a set
of nodes arranged on a 2D grid (pixels) to the semantic categories. Typically seman-
tic segmentation can be broken down into two steps - feature extraction and inference.
Feature extraction involves the retrieval of descriptive information for semantic labeling
under varying illumination and view-point conditions. These features are generally color,
texture or gradient based and extracted from a local or large patch around each pixel.
The inference step consists of predicting the labels of the pixels using the extracted fea-
tures. Taking a cue from human performance with and without contextual information,
previous works have developed increasingly sophisticated inference algorithm to utilize
the information from the entire image via different algorithms. Markov Random Fields
(MRFs) [68], Conditional Random Fields (CRFs) [62, 88] and Structured Support Vector
Machines (SVMs) [132] are among the most successful and widely used algorithms for
inference.

The basic philosophy behind the aforementioned inference algorithms is to model
the distribution of label nodes according to a hypothesized image formation process. The
interaction between the label nodes and the observed image is facilitated through binary
or higher-order interaction potential functions. The difference between these approaches
is mainly in terms of 1) image formation process, 2) type of potential function used and
3) parameter estimation and test-time inference. MRF based approaches model the joint
distribution of the node labels via binary or higher order potential functions on the 2D
label grid. These potential functions are hand-designed to conform to the common image
models, such as smoothness of the label field. The unary potentials are employed through
local visual features for each node. CRFs model the joint distribution of the node labels
given the observations and can include higher order potentials in addition to the unary
potentials. Higher order potentials allow these models to represent complex dependencies
between the node labels, which is important for structured prediction tasks. On the
downside, except for a few exceptions such as non-loopy models, the inference algorithms
for these models require solving a non-submodular discrete optimization problems, which
can be only approximately solved and are time consuming. Moreover, parameter learning
procedures that are tractable usually limit the form of the potential functions to simple
forms such as linear models.

From the discussion so far, it is clear that utilization of information from the entire
image can result in more accurate semantic segmentation, but the complicated inference
step introduces a critical trade-off between accuracy and efficiency. I seek motivation
from these facts and develop a computationally efficient feed-forward neural network that
utilizes the information from the entire image while labeling any region of the image.

3.2 Overview of Proposed Approach

This section presents the intuition and outlines the proposed approach for semantic
segmentation. The semantic segmentation task is modeled as a learnable mapping from
the set of all pixels in an image I to the corresponding label image Y. There are several
design considerations for a desired mapping -

• Real-time evaluation for robotics, urban scene understanding, etc..

• It should utilize the entire image such that every location can potentially influence
the labeling of every other location for greater accuracy. Please refer to Fig. 3.1 and
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observe that the white boat in isolation can be confused with a white building, but
the presence of water removes this confusion and we can tell that its a boat.

• Its parameters should be learned from the training data to remove the need for
domain expertise and to minimize the need for human-input.

• It should scale to different image sizes.

• It must generalize to unseen images that requires limiting the capacity of the map-
ping while still utilizing the entire image information at once. For example, a simple
fully-connected-linear mapping from I to Y would require 4 Trillion parameters for
an image of size 256× 256, but it will fail to generalize under practical conditions of
limited training data. Please refer to Sec. 2.2 for a better understanding.

Considering the requirements discussed above, the mapping is designed as a single
feed-forward neural network with carefully controlled capacity by parameter sharing. All
the network parameters are learned from the data and the feed-forward structure allows
very fast, almost real-time, inference. The proposed network can be functionally parti-
tioned into two sub-networks: local feature extraction and recursive context propagation.

As the name implies, local-feature extraction refers to the extraction of pixel- or
region-wise visual features for semantic labeling. The multi-scale convolution neural net-
work (Multi-CNN) proposed in [28] is used to get pixel-wise features. A convolution
structure with shared parameters brings down the number of parameters for local feature
extraction, thereby offers better generalization.

The main contribution of this chapter is a novel recursive context propagation net-
work (RCPN) and its derivatives, which, starting from the local features, recursively ag-
gregate contextual information from local neighborhoods up to the entire image and then
disseminate the aggregated information back to individual local features for better seman-
tic classification. RCPN is a recursive neural network with shared parameters through
the parse tree hierarchy. A conceptual illustration of such networks is given in Figure 3.1.
The scene consists of three segments corresponding to a boat, a tree and a water/sky
region. The nodes of the graph (formed by a binary parse tree and its inversion) represent
a semantic description of the segments. The distributions on the left are probable label
distributions for the segments, based on their appearance. Initially (at the bottom), the
boat can be confused with a white building while looking only at the bottom-left segment.
The RCPN recursively combines two segment descriptions and produces the semantic de-
scription of the combined segment. Therefore, as the tree is combined with the boat,
the belief that the combined segment includes a building increased since usually they ap-
pear together in the images. Similarly, after we merge the water/sky segment description
with the boat-tree segment description, the probability of the boat increased since the
simultaneous occurrence of water and building is rare. The middle node in the graph
(root node of the segmentation tree) corresponds to the semantic description of the entire
image. After all the segment descriptions are merged into a single holistic description of
the entire image, this information is propagated to the local regions. This is achieved by
recursive updates of the semantic descriptions of the segments given the descriptions of
their parent segments. Finally, contextually enhanced descriptions of the leaf nodes are
used to label the segments. Note that RCPN only uses segment descriptions and not the
illustrative-only label distributions shown in the figure.

RCPN is influenced by Socher et al.’s work [119] that learns a non-linear mapping
from feature space to a semantic space, termed semantic mapping. In [119], the semantic
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Semantic labels: SKY WATER BLDG BOAT TREE

Figure 3.1: Conceptual illustration of the proposed RCPN architecture for semantic seg-
mentation. RCPN recursively aggregates contextual information from local neighborhoods
to the entire image and then disseminates global context information back to individual
local features. In this example, starting from a confusion between boat and building, the
propagated context information helps resolve the confusion by using the feature of the
water segment. Please note that the probability distributions are only meant to convey
the confidence of presence/absence of a particular class in the RCPN hierarchy for the
associated image-region.
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space is learned by optimizing a structure prediction cost on the ground-truth parse trees
of training images or sentences. Next, a classifier is learned on the semantic mappings
of the individual local features from the training images. At test time, individual local
features are projected to the semantic space using the learned semantic mapping followed
by classification. Therefore, only the information contained in an individual feature is used
for labeling. In contrast, RCPN uses recursive bottom-top-bottom paths on randomly
generated parse trees to propagate contextual information from local regions to all other
regions in the image. Therefore, it is expected to do better, please see experiments section
for detailed comparison.

The major advantages of the RCPN family of networks are -

• Scalability - RCPNs are a combination of CNN and recursive neural network and
the entire pipeline can be trained without using any human-designed features. In
addition, convolution+recursive structure allows scaling to arbitrary image sizes
while still utilizing the entire image content at once.

• Performance - RCPNs achieve state-of-the-art segmentation accuracy on three
important benchmarks while being an order of magnitude faster than the existing
methods. This enormous speed-up is possible due to the feed-forward operations
only. For instance, it takes only 0.07 seconds on GPU and 0.8 seconds on CPU
for pixel-wise semantic segmentation of a 256 × 256 image, with a given super-
segmentation mask, that can be computed using an off-the-shelf algorithm within
0.3 second.

• Modularity - Proposed RCPN modules can be used in conjunction with pre-
computed features to propagate context information through the structure of an
image (see experiments section) and potentially other structured prediction tasks.

• Hierarchical scene understanding - The pure-node variant of RCPN, referred
to as PN-RCPN, provides an opportunity to parse the image at multiple resolutions
through the parse tree hierarchy. The label distributions at various resolutions of
image regions are used to enforce spatial smoothness and local-global label consis-
tency through an MRF model on the parse tree that leads to Tree-MRF RCPN or
TM-RCPN.

3.3 Semantic Segmentation Architecture

This section describes the proposed semantic segmentation architecture and dis-
cusses the design choices for practical considerations. An illustration of this architecture
is shown in Figure 3.2. The input image is fed to a CNN, FCNN , which extracts local
features per pixel. Then a super-pixel tessellation of the input image and average pooling
of the local features within the same super-pixel is carried out to obtain visual features
for each super-pixel. Lastly, one of the proposed RCPN derivatives is used to obtain the
final labels of each super-pixels.

3.3.1 Local feature extraction

End-to-end trainability is a desired requirement for our pipeline, therefore, we re-
sort to a learning based approach for feature extraction. Multi-scale convolution neural
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Figure 3.2: Overview of semantic scene labeling architecture

network (Multi-scale CNN) [28] based pixel-wise features are used for per-pixel visual
feature extraction. The process outlined in [112] was used with the same CNN structure
and similar preprocessing (subtracting 0.5 from each channel at each pixel location in the
RGB color space) at 3 different scales (1,1/2 and 1/4) to obtain the visual features. The
CNN architecture has three convolutional stages with 8×8×16 conv → 2×2 maxpool→
7 × 7 × 64 conv → 2 × 2 maxpool → 7 × 7 × 256 conv configuration. Each max-pooling
operation is non-overlapping. Therefore, every image scale has 256 dimensional features
for each pixel. Multi-scale CNN obtains per-pixel visual features from a patch around
each of the pixels. The size of the patch depends on the CNN parameters and the scales.
Features extracted at different scales give rise to a different field of view (FOV) for each
pixel. For example, using the aforementioned architecture with all the three scales results
in 188× 188 FOV.

Note that the 768 dimensional concatenated output feature map is still 1/4th of the
height and width of the input image due to the two max-pooling operations. To obtain
the input size per-pixel feature map we have two possible options

• Slow: Shift the input image by one pixel on a 4 × 4 grid to get 16 output feature
maps that can be combined to get the full-resolution image.

• Fast: Scale-up each feature map by a factor of 4 in height and width using Bilinear
interpolation.

Empirically, the latter was found out to be equally accurate as the former.

3.3.1.1 Super-pixel representation

Although it is possible to do per-pixel classification using the RCPN, learning such
a model would be computationally intensive and the resulting network would be pro-
hibitively deep to propagate the gradients efficiently due to recursion. To reduce the
complexity, the super-pixel segmentation algorithm of [73] is utilized, which provides the
desired number of super-pixels per image. We average pool the per-pixel local features
within the same super-pixel and retrieve s local features, {vi}i=1...s, one per super-pixel.
During training however, 5 different sets of 5 random pixels in a super-pixel are averaged
to obtain 5 different visual features per super-pixel, it is done to expand the training data
to avoid over-fitting.
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3.3.2 Inference

This step corresponds to obtaining the final semantic labels for each pixel (or super-
pixel). The following sections describe the basic RCPN model and its derivatives as
inference modules for semantic segmentation.

3.4 Recursive Context Propagation Network

The basic RCPN architecture consists of four neural networks -

• Fsem maps local features to the semantic space in which the local information can
be propagated to other segments.

• Fcom recursively aggregates local information from smaller segments to larger seg-
ments through a parse tree hierarchy to capture a holistic description of the image.

• Fdec recursively disseminates the holistic description to smaller segments using the
same parse tree.

• Flab classifies the super-pixels utilizing the contextually enhanced features.

3.4.1 Parse tree synthesis

Both for training and inference, the binary parse trees, used for propagating infor-
mation through the network, are synthesized randomly. The parse trees are obtained by
randomly combining two adjacent super-pixels. The synthesis algorithm favors roughly
balanced parse trees by greedily selecting sub-trees with smaller heights at random. The
parse trees are only used as computation paths to propagate the contextual information
throughout the image. Therefore, it is not needed that the parse trees represent an ac-
curate hierarchical segmentation of the image, unlike [63, 119]. The MATLAB code for
generating roughly balanced binary parse trees from the adjacency matrix of the super-
pixels is given below -

function parents = BalancedRandomTree(adjMatrix)

% adjMatrix is the adjacency matrix of the super-pixel neighbor graph

% parents is the output tree structure

numNodes = size(adjMatrix,1);

allNodeIndices = [1:2*numNodes-1];

nodeDepths = zeros(1,2*numNodes-1);

parents = zeros(1,2*numNodes-1);

extendedAdjMatrix = sparse(2*numNodes-1,2*numNodes-1);

extendedAdjMatrix(1:numNodes,1:numNodes) = adjMatrix;

nCurrentNodes = numNodes;

while nCurrentNodes < 2*numNodes-1

for currentDepth=0:max(nodeDepths)

tmpExtendedAdjMatrix = extendedAdjMatrix;

bigDepthIndices = find(nodeDepths > currentDepth);

if (~isempty(bigDepthIndices))
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tmpExtendedAdjMatrix(bigDepthIndices,:) = 0;

tmpExtendedAdjMatrix(:,bigDepthIndices) = 0;

end

indices = find(tmpExtendedAdjMatrix(1:nCurrentNodes,1:nCurrentNodes));

if (length(indices) > 0)

randIndex = ceil(rand() * length(indices));

index = indices(randIndex);

[firstNode secondNode] = ind2sub([nCurrentNodes nCurrentNodes], index);

parents(firstNode) = nCurrentNodes+1;

parents(secondNode) = nCurrentNodes+1;

extendedAdjMatrix(nCurrentNodes+1,:) = extendedAdjMatrix(firstNode,:)...

| extendedAdjMatrix(secondNode,:);

extendedAdjMatrix(:,nCurrentNodes+1) = extendedAdjMatrix...

(nCurrentNodes+1,:)’;

extendedAdjMatrix(firstNode,:) = 0;

extendedAdjMatrix(:,firstNode) = 0;

extendedAdjMatrix(secondNode,:) = 0;

extendedAdjMatrix(:,secondNode) = 0;

nodeDepths(nCurrentNodes+1) = max(nodeDepths(firstNode), ...

nodeDepths(secondNode)) + 1;

nCurrentNodes = nCurrentNodes+1;

break;

end

end

end

The code takes the adjacency matrix of the super-pixel graph as input. Initially all the
nodes (super-pixels) are detached and have depth 1. We randomly select two nodes among
the lowest depth nodes that are adjacent, and combine them into a merged-node. The
depth of the merged-node is set to the max depth of the two child nodes plus one and
its adjacency matrix is set to the union of the neighbors of the two child nodes. The two
child nodes are then removed from the graph. This process is repeated until there remains
a single merged-node corresponding to the union of all the nodes (entire image). With
this algorithm, the expected depth of the parse tree becomes O(log2S), S is the number
of super-pixels, except for the degenerate adjacency matrices.

3.4.2 Semantic mapping network

The semantic mapping network is a feed-forward neural network that maps the dv
dimensional local features vi to the ds dimensional semantic vector space

xi = Fsem(vi; Ws). (3.1)

where Ws : <dv → <ds is the model parameter for the semantic module. The aim of
the semantic features is to capture a joint representation of the local features and the
context, and being able to propagate this information through a parse tree hierarchy to
other super-pixels. Please note that Ws will be a ds×dv matrix for a single layer semantic
mapper and a cell of matrices with appropriate sizes for multi-layer semantic mapper.
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3.4.3 Combiner network

The combiner network is a recursive neural network that maps the concatenation of
semantic features of two child nodes, each associated with either a super-pixel or a merged-
region, in the parse tree to obtain the semantic feature of the parent node (combination
of the two child nodes), associated with a merged-region

xi,j = Fcom([xi,xj ]; Wc). (3.2)

where Wc : <2ds+1 → <ds is the model parameter for the combiner network. Intuitively,
the combiner network attempts to aggregate the semantic content of the children nodes
such that the parent node becomes representative of its children. The information is
recursively aggregated bottom-up from super-pixels to the root node through the parse
tree. The semantic features of the root node correspond to the holistic description of the
entire image.

3.4.4 Decombiner network

The decombiner network is a recursive neural network that disseminates the con-
text information from the parent nodes to the children nodes throughout the parse tree
hierarchy. This network maps the semantic features of the child node and its parent to
the contextually enhanced feature of the child node

x̃i = Fdec([x̃i,j ,xi]; Wd). (3.3)

where Wd : <2ds+1 → <ds is the model parameter for the decombiner network. The dis-
semination of the information content of the entire image, as the root feature, starts from
the root and recursively propagates in a top-down manner till it reaches the super-pixel
features, therefore, it is expected that every super-pixel feature contains the contextual
information aggregated from the entire image. Therefore, it is influenced by every other
super-pixel in the image.

3.4.5 Labeler network

The labeler network is the final feed forward network that maps the context en-
hanced semantic features (x̃i) of each super-pixel to the C dimensional label vector yi, C
is the number of semantic categories.

yi = Flab(x̃i; Wl). (3.4)

where Wl : Rds+1 → RC is the model parameter for the labeler module. Contextually
enhanced features contain both local and global context information, thereby leading to
better classification.

Together, all the parameters of RCPN are denoted as Wrcpn = {Ws,Wc,Wd,Wl}.
Let’s assume there are S super-pixels in an image I and denote a set of R random parse
trees of I as T . Then, the loss function for I is

L(I) =
1

RS

R∑
r=1

Si∑
s=1

L(yr,s, ts; Tr,Wrcpn) (3.5)
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Figure 3.3: Learning schematic of RCPN with the input as the raw image and label as
the semantic mask of the input image.

here, yr,s is the predicted class-probability vector and ts is the ground-truth label for the
sth super-pixel for random parse tree Tr and L(ys, t) is the cross-entropy loss function.
Network parameters, Wrcpn, are learned by minimizing L(I) for all the images in the
training data.

3.4.6 Side information

It is possible to input information to the recursive networks not only at the leaf
nodes but also at any level of the parse tree. The side information can encode the static
knowledge about the parse tree nodes and it is not a result of neural computations through
the tree. The implementations in this chapter used average x and y locations of the nodes
and their sizes as the side information.

3.5 Learning

The proposed segmentation architecture is a feed-forward neural network that can
be fully trained using training data. However, the recursion makes the depth of the
neural network too deep for an efficient joint training. Therefore, we first learn the CNN
parameters (Wcnn) using the raw image and the ground truth segmentation labels. The
trained CNN model is used to extract per-pixel features that are used to obtain super-pixel
features (see Sec. 3.3.1.1 for details) followed by training of RCPN (Wrcpn) to predict the
ground truth super-pixel labels. The schematic of learning process is shown in the Fig. 3.3.

3.5.1 Local feature extractor

Feature extractor CNN (Fcnn) is trained on a GPU using a publicly available im-
plementation CAFFE [52]. In order to avoid over-fitting we used data augmentation and
dropout [58, 120]. All the training images were flipped horizontally to get twice the orig-
inal images and we also used 1-pixel shifted input image to increase the dataset by an
additional factor of two. We used dropout in the last layer with dropout ratio equal to
0.5. Standard back-propagation for CNN is used with stochastic gradient descent update
scheme on mini-batches of 6 images, with weight decay (λ = 5 × 10−5) and momentum
(µ = 0.9). It typically took 6-8 hours of training on a GPU as compared to 3-5 days
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training on a CPU as reported in [28]. We found that simply using RGB images with
ReLU units and dropout gave slightly better pixel-wise accuracy as compared to [28].

3.5.2 RCPN parameter learning

RCPN parameters are trained using back-propagation through structure [33], which
back-propagates the error through the parse tree, from Flab to Fsem. The basic idea is
to split the error message at each node and propagate it to the children nodes. Limited
memory BFGS [72] with line-search is used for parameter updates using publicly available
implementation 1. As explained earlier in Sec. 3.3.1.1, we generate 5 sets of features of
each super-pixel and used a different random parse tree for each set of random feature,
thus we increased our training data by a factor of 5. It typically took 600 to 1000 iterations
for complete training.

3.6 Pure-node RCPN

In this section, the RCPN model is studied leading to a discovery of potential
problems with parameter learning. Useful modifications to the learning and the model are
also proposed to tackle the learning problems. Especially, it is shown that the direct path
from the semantic mapper to the labeler gives rise to bypass errors that can cause RCPN to
bypass the combiner and decombiner assembly. This can cause back-propagation to reduce
RCPN to a simple multi-layer neural network for each super-pixel. A simple remedy is
also proposed to tackle this issue by adding the classification loss of those internal nodes
of the random parse trees that correspond to a single semantic category, referred to as
pure-nodes, to the original RCPN loss function. This serves the following purposes -

• It provides more labels for training, which results in better generalization.

• It encourages stronger gradients deep in the network.

• It explicitly forces the combiner to learn meaningful combinations, because the in-
ternal node mis-classifications are penalized.

• Lastly, it tackles the problem of bypass errors, resulting in better use of contextual
information.

3.6.1 RCPN analysis and pure-node inclusion

Here we propose a model that will handle bypass errors. At the same time, this
model solves a problem of gradient attenuation, increases the training data and forces the
combiner to learn meaningful combinations of features.

For ease of understanding all our discussions will be limited to 1-layer modules. This
result in each of the Ws, Wc, Wd and Wl as matrices, denoted as Ws, Wc,Wd and Wl,
respectively. Like most deep networks, RCPN also suffers from vanishing gradients for the
lower layers. This stems from the vanishing error signal, because the gradient (gn) for the
nth layer depends on the error signal (en+1) from the layer above -

gn = en+1z
T
n (3.6)

1http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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here, zn is the input to the nth layer. For RCPN, vanishing gradients are more of a problem
because of very deep parse trees due to recursion. For instance, a 100 super-pixel image
will lead to a minimum of (log2(100) × 2 + 2 > 14) layers under the strong assumption
of perfectly balanced binary parse trees. In practice, we can only create roughly balanced
binary trees that often lead to ∼ 30 layers.

We show that the internal nodes of the parse tree can be used to alleviate these
problems. Each node in the parse tree corresponds to a connected region in the image.
The leaf nodes correspond to the initial super-pixels and the internal nodes correspond to
the merger of two or more connected regions, referred to as merged-region. We use the
term pure nodes to refer to the internal nodes of the parse tree associated with the merger
of two or more regions of the same semantic category. Therefore, the merged-regions
corresponding to the pure nodes can serve as additional labeled samples during training.
We empirically found that roughly 65% of all the internal nodes are pure-nodes for all
three datasets. We include the classification loss of the pure-nodes in the loss function
(Eqn. 3.5) for training and refer to the new procedure as pure-node RCPN or PN-RCPN
for short. The classification loss, Lp(I), now becomes -

Lp(I) = L(I) +
1∑
Pr

R∑
r=1

Pr∑
p=1

L(yr,p, tr,p; Tr,Wrcpn) (3.7)

here, Pr is the number of pure-nodes for the rth random parse tree Tr and subscripts (r, p)
map to the pth pure-node for the rth random parse tree. Note that different parse trees
for the same image can have different pure nodes.

In order to understand the benefits of PN-RCPN and contrast it with RCPN, we
make use of an illustrative example depicted with the help of Fig. 3.4. The left-half of
a random parse tree for an image I with 5 super-pixels is shown in Fig. 3.4. The figure
also contains various variables involved during one forward-backward propagation through
RCPN (Fig. 3.4a) and PN-RCPN (Fig. 3.4b). We denote, eli ∈ <C as the error at enhanced
super-pixel nodes; edk ∈ <2ds as the error at the decombiner; eck ∈ <2ds as the error at
the combiner and esi ∈ <ds as the error at the semantic mapper. Subscripts bp and total
indicate bypass and the sum total error at a node, respectively. We assume a non-zero
categorizer error signal for the first super-pixel only, ie eli 6=1 = 0. These assumptions
facilitate easier back-propagation tracking through the parse tree, but the conclusions
drawn will hold for general cases as well. Under the aforementioned assumptions, we
also trace the mathematical relations between various variables, presented in Eq. 3.8, to
facilitate the analysis. The variables in red color are indicative of bypass-error paths.

26



ed6 = (W T
d (el1 • f ′(x̃1)))[1+dsem:end] (3.8a)

es1,bp = (W T
d (el1 • f ′(x̃1)))[1:dsem] (3.8b)

ed9 = (W T
d (ed6 • f ′(x̃6)))[1+dsem:end] (3.8c)

ec6,bp = (W T
d (ed6 • f ′(x̃6)))[1:dsem] (3.8d)

ec6 = (W T
c (ed9 • f ′(x9)))[1:dsem] (3.8e)

ec6,total = ec6 + ec6,bp (3.8f)

ec1 = (W T
c (ec6,total • f ′(x6)))[1:dsem] (3.8g)

es1,total = es1,bp + ec1 (3.8h)

gs
1 = (es1,total • f ′(x1))v

T
1 (3.8i)

here, ym:n, is a sub-vector of y from index m to n, f ′() is the derivation of the non-linearity
and a • b is the element-wise product.

The first obvious benefit of using pure-nodes is more labeled samples from the same
training data that can improve generalization. The second advantage of PN-RCPN can
be understood by contrasting the back-propagation signals for a sample image for RCPN
and PN-RCPN, with the help of Fig. 3.4a (RCPN) and 3.4b (PN-RCPN). Note that in
the case of RCPN, the back-propagated training signal was generated at the enhanced
leaf-node features and progressively attenuates as it back-propagates through the parse
tree, shown with the help of variable thickness solid red arrows. On the other hand, pure-
node RCPN has an internal node (shown as a green color node) that injects a strong error
signal deep into the parse tree, resulting in stronger gradients even in the deeper layers.
Moreover, PN-RCPN explicitly forces the combiner to learn meaningful combination of
two super-pixels, because incorrect classification of the combined features is penalized.

Now, we come to the fourth benefit of the PN-RCPN architecture. In what follows,
we describe a subtle yet potentially serious problem related to RCPN learning, provide
empirical evidence that this problem exists, and argue that PN-RCPN can offer a solution
to this problem.

3.6.1.1 Understanding the Bypass Error

During the minimization of the loss functions (Eqn. 3.5 or 3.7), typically, more ef-
fective parameters in bringing down the objective function receive stronger gradients and
reach their stable state early. Due to the presence of multiple layers of non-linearities and
complex connections, the loss function is highly non-convex and the solution inevitably
converges to a local minimum. It was shown in [112] that the combiner and decombiner
assembly is the most important constituent of the RCPN model. Therefore, we expect the
learning process to pay more attention to Wc and Wd. Unfortunately, the RCPN archi-
tecture introduces short-cut paths in the computation graph from the semantic mapper
to the categorizer during the forward propagation that gives rise to bypass errors during
back-propagation. Bypass errors severely affect the learning by reducing the effect of the
combiner on the overall loss function, thereby favoring a non-desirable local minimum.

In order to understand the effect of bypass error, we again make use of the example
in Fig. 3.4 to show that bypass paths allow the back-propagated error signals from the
categorizer (eli) to reach the semantic mapper through one layer only. On the other hand,
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eli goes through multiple layers before reaching the combiner. Therefore, the gradient gc

for the combiner is weaker than the gradient for the semantic mapper (gs).
From the Fig. 3.4a we can see that there are two possible paths for ec1 to reach

the combiner. One of them requires 2 layers (x̃1 → x̃6 → x6) and the other requires 3
layers (x̃1 → x̃6 → x9 → x6). Similarly, ec1 can reach x1 through a 1 layer bypass path
(x̃1 → x1) or a several layers path through the parse tree. Due to gradient attenuation
and non-expansive nature of non-linearities, the smaller the number of layers the stronger
the back-propagated signal, therefore, bypass errors lead to gs ≥ gc. This can potentially
render the combiner network inoperative and guide the training towards a network that
effectively consists of a Nsem +Ndec +Ncat layer network from the visual feature ( vi) to
the super-pixel label (yi). This results in little or no contextual information exchange be-
tween the super-pixels. In the worst case Wd = [W 0]; this removes the effect of parents
on their children features during top-down contextual propagation through the decom-
biner, thereby completely removing the effect of the combiner from RCPN. Practically,
the random initialization of the parameters ensures that they will not converge to such a
pathological solution. However, we show that a better local minimum can be achieved by
tackling the bypass errors.

In order to see that gs ≥ gc, we compute the gradient strengths of each module (gs,
gc, gd, gl) during training. The gradient strengths of different modules for RCPN and PN-
RCPN are normalized by the number of parameters and plotted in Fig. 3.5a and Fig. 3.5b,
respectively. As expected, gl is the strongest, because it is closest to the initial error signal.
Surprisingly, for RCPN gs is slightly stronger than gd and significantly stronger than gc

during the initial phase of training. Normally, we would expect gs, which is the farthest
away from the error signal, to be the weakest due to vanishing gradients. This observation
suggests that the initial training phase favors a multi-layer NN. However, we also observe
that during the later stages of training, gc is comparable to other gradients. Unfortunately,
it has been conclusively established, by many empirical studies, that the initial phase of
training is crucial for determining the final values of the network parameters, and thereby
their performance [26]. From the figure we see that the combiner catches up with the
other modules during later stages of training, but by then the parameters are already in
the attraction basin of a poor solution.

On the other hand, the gradients for PN-RCPN (Fig 3.5b) follow the natural order of
strength, which gives more importance to the combiner and decombiner than the semantic
mapper during the initial training. Fig. 3.4b provides an intuitive explanation by showing
the categorizer error signal (el6) for x̃6 that reaches to the combiner through one layer only
(ec6,bp). To further investigate which of the three aforementioned benefits play the biggest
role in improving the performance of PN-RCPN over RCPN, we trained PN-RCPN on
SIFT flow under the same setting as Table 3.2, but we removed as many leaf node labels
from the classification loss as the number of pure-nodes. This makes the number of labeled
samples equal in both RCPN and PN-RCPN, but leaf-nodes are replaced with pure-nodes.
As expected, it still improves PPA and MCA score for PN-RCPN (80.5% and 35.3%) vs.
RCPN (79.6% and 33.6%). This last experiment confirms that inclusion of pure-nodes does
not only provide more samples but also helps in overcoming the discussed shortcomings
of RCPN.

28



1x 2x

6x

9x

2v1v

1
~x 2

~x

6
~x

cate1

dece6

dece9

come6

come1

Right tree

(a) RCPN

1x 2x

6x

9x

2v1v

1
~x 2

~x

6
~x

cate1

dece6

dece9

come6

come1

Right tree

cate6

(b) PN-RCPN

Figure 3.4: Back-propagated error tracking to visualize the effect of bypass error. The
variables follow the notation introduced in Sec. 3.6.1. Forward propagation and back-
propagation are shown by solid black and red arrows, respectively. The attenuation of
the error signal is shown by variable width red arrows. The bypass errors are shown
with dashed red arrows. (a) RCPN: Error signal from x̃1 reaches to x1 in just one step,
through the bypass path. (b) PN-RCPN introduces pure-nodes classification loss (for
x̃6), thereby, forcing the network to learn meaningful internal node representation via
combiner, thereby, promoting effective contextual propagation.
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Figure 3.5: Comparison of gradient strengths of different modules of (a) RCPN and (b)
PN-RCPN during training.
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Figure 3.6: Factor graph representation of the MRF model.

3.7 Tree-MRF RCPN

The pure node extension of RCPN provides the label distributions over merged-
regions associated with the internal nodes in addition to individual super-pixel labels. In
this section, we describe a Markov Random Field (MRF) structure to model the output
label dependencies of the super-pixels while leveraging the internal node label distributions
for hierarchical consistency. The proposed MRF uses the same trees structure as that of
the parse trees used for RCPN inference. A factor graph representation of this MRF is
shown in Figure 3.6. The variables Yi are L-dimensional binary label vectors associated
with each region of the image, L is the number of possible labels. The kth dimension of
Yi is set according to the presence (1) or absence (0) of the kth class super-pixel in the
region.

The unary potentials f1 are given by the label distributions predicted by the RCPN
and defined as -

f1(Yi) =
−Yi

T log(pi)

‖Yi‖1
(3.9)

where pi is the softmax output of the categorizer network for super-pixel i. If the proba-
bilities given by RCPN are not degenerate, the unary potential prefers to assign a single
label, that of the node with the highest probability.

The pairwise potentials f2 are introduced to impose consistency between a pair of
child and parent regions. The parent region must include all the labels assigned to its
children regions, which is a hard constraint:

f2(Yi, Yj) =

{
∞, if S(Yi) \ S(Yj) 6= ∅.
0, otherwise.

(3.10)
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where node j is the parent node of i and S(Y ) is the set of all the labels in the merged-
region with label vector Y .

The unary potentials f1 utilize all levels of the tree simultaneously and prefer purer
nodes, whereas pairwise potentials, f2 enforce consistency across the tree hierarchy. This
design allows for spatial smoothness at lower levels and mixed labeling at the higher
levels. The tree structure of the MRF affords exact decoding using max-product belief
propagation. The size of the state space is exponential in the number of labels. However,
in practice there are rarely more than a handful of different object classes within an image.
Therefore, to reduce the size of the state space, we first identify different labels predicted
by the RCPN and only retain the 9 most frequently occurring super-pixel labels per image.

3.8 Experimental analysis

In this section we evaluate the performance of proposed methods for semantic seg-
mentation on three different datasets: Stanford Background, SIFT Flow and Daimler
Urban. Stanford background dataset contains 715 color images of outdoor scenes, it has
8 classes and the images are approximately 240 × 320 pixels. We used the 572 train
and 143 test image split provided by [119] for reporting the results. SIFT Flow con-
tains 2688, 256 × 256 color images with 33 semantic classes. We experimented with the
train/test (2488/200) split provided by the authors of [130]. Daimler Urban dataset has
500, 400 × 1024 images captured from a moving car in a city, it has 5 semantic classes.
We trained the model using 300 images and tested on the rest of the 200 images, the same
split-ratio has been used by previous work on this dataset.

3.8.1 Visual feature extraction

We use a Multi-scale convolution neural network (Multi-scale CNN) [28] to extract
pixel-wise features using the publicly available library Caffe [52]. We follow [112] and use
the same CNN structure with similar preprocessing (subtracting 0.5 from each channel
at each pixel location in the RGB color space) at 3 different scales (1,1/2 and 1/4) to
obtain the visual features. The CNN architecture has three convolutional stages with
8× 8× 16 conv → 2× 2 maxpool→ 7× 7× 64 conv → 2× 2 maxpool→ 7× 7× 256 conv
configuration, each max-pooling is non-overlapping. Therefore, every image scale gives a
256 dimensional output map. The outputs from each scale are concatenated to get the
final feature map. Note that the 256× 3 = 768 dimensional concatenated output feature
map is still 1/4th of the height and width of the input image due to the max-pooling
operations. In order to obtain the input size per-pixel feature map we simply scale-up
each feature map by a factor of 4 in height and width using bilinear interpolation, .

We use the publicly available implementation of [73] to obtain 100 (same as RCPN)
and 800 super-pixels per image for SIFT Flow and Daimler Urban, respectively. Daimler
uses more super-pixels due to its larger size. For Stanford background, we have used the
super-pixels provided by [119].

3.8.2 Model Selection

Unlike most of the previous works that rely on careful hand-tuning and expert
knowledge for setting the model parameters, we only need to set one parameter, namely
dsem, after we have fixed the modules to be 1-layer neural networks. This affords a generic
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approach to semantic segmentation that can be easily trained on different datasets. For
the sake of strict comparison with the original RCPN architecture, we also use 1-layer
modules with dsem = 60 in all our experiments. Plain-NN refers to training a 2-layer NN
with 60 hidden nodes, on top of visual features for each super-pixel. RCPN refers to the
original RCPN model [112]. PN-RCPN refers to pure-node RCPN and TM-RCPN refers
to tree-MRF RCPN.

3.8.3 Evaluation metrics

We have used four standard evaluation metrics -

• Per pixel accuracy (PPA): Ratio of the correct pixels to the total pixels in the
test images, while ignoring the background.

• Mean class accuracy (MCA): Mean of the category-wise pixel accuracy.

• Intersection over Union (IoU): Ratio of true positives to the sum of true
positive, false positive and false negative, averaged over all classes. This is a popular
measure for semantic segmentation of objects because it penalizes both over- and
under-segmentation.

• Time per image (TPI): Time required to label an image on GPU and CPU.

The results from previous works are taken directly from the published articles. Some
of the previous works do not report all four evaluation metrics; we leave the corresponding
entry blank in the comparison tables.

3.8.4 Stanford Background

We report our results with CNN features extracted from the original scale only,
because multi-scale CNN features overfit, perhaps due to small training data, as observed
in [112]. We use 10 and 40 random trees for training and testing, respectively. The results
are shown in Table 3.1. From the comparison, it is clear that our proposed approaches
outperform previous methods. We observe that PN-RCPN significantly improves the
results in terms of MCA and IoU over RCPN. We observe a marginal improvement offered
by TM-RCPN over PN-RCPN.

3.8.5 SIFT Flow

We report our results using multi-scale CNN features at three scales (1,1/2 and
1/4), as in [112]. Some of the classes in the SIFT Flow dataset have a very small number
of training instances, therefore, we also trained with balanced sampling to compensate for
rare occurrence, referred to as bal. prefix. We use 4 and 20 random trees for training and
testing, respectively. The results for SIFT flow dataset are shown in Table 3.2. PN-RCPN
led to significant improvement in all three measures over RCPN and balanced training led
to a significant boost in MCA. The use of TM-RCPN does not affect the results much
compared to PN-RCPN. We observe a strong trade-off between PPA and MCA on this
dataset. Our overall best model in terms of both PPA and MCA (bal. TM-RCPN ) looks
equivalent to the work in [139]; PPA: 76.4 vs. 79.8, MCA: 52.6 vs. 48.8.
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Table 3.1: Stanford background result.

Method PPA MCA IoU
TPI (s)

CPU/GPU
Gould, [34] 76.4 NA NA 30 – 600 / NA
Munoz, [83] 76.9 NA NA 12 / NA
Tighe, [130] 77.5 NA NA 4 / NA
Kumar, [59] 79.4 NA NA ≤ 600 / NA
Socher, [119] 78.1 NA NA NA / NA

Lempitzky, [63] 81.9 72.4 NA ≥ 60 / NA
Singh, [118] 74.1 62.2 NA 20 / NA
Farabet, [28] 81.4 76.0 NA 60.5 / NA
Eigen, [31] 75.3 66.5 NA 16.6 / NA

Pinheiro, [87] 80.2 69.9 NA 10 / NA
Plain-NN 80.1 69.7 56.4 1.1/0.4

RCPN [112] 81.8 73.9 61.3 1.1/0.4
PN-RCPN 82.1 79.0 64.0 1.1/0.4
TM-RCPN 82.3 79.1 64.5 1.6–6.1/0.9–5.9

3.8.6 Daimler Urban

We report our results using multi-scale CNN features with balanced training. We
would like to emphasize that previously reported results make use of depth information
and/or visual odometry and yet we outperform them significantly. For this dataset pre-
vious works have not reported PPA and MCA, therefore, we drop PPA and report IoU
for all five classes (IoU) and for dynamic objects ie cars and pedestrians (IoU Dyn). The
results for Daimler Urban dataset are shown in Table 3.3. Simply using the multi-scale
CNN super-pixel features with a 2-layer NN classifier already outperforms the previous
state-of-the-art results. RCPN provides large improvements over the Plain-NN and our
PN-RCPN improves it further. We observe significant improvements in terms of IoU with
the use of PN-RCPN over RCPN and Plain-NN. We believe that the reason for such a
dramatic improvement is the well structured image semantics of the dataset that allows
RCPN and PN-RCPN to learn the structure very effectively and utilize the context in
a much better way than the other two datasets. Some of the representative segmenta-
tion results are shown in Fig. 5. We have also submitted a complete video of semantic
segmentation for all the test images for Daimler urban in the supplementary material.

3.8.7 Segmentation Time

In this section we provide the timing details for the experiments. Due to similar
image sizes, SIFT flow and Stanford Background took almost the same computation per
image except while using TM-RCPN, because of the difference in label state-space size.
The time break-up for SIFT flow (same for Stanford) in seconds is 0.3 (super-pixellation) +
0.08/0.8 (GPU/CPU visual feature) + 0.01 (PN-RCPN) + 0.5–5 (TM-MRF). For Daimler,
the corresponding timings are 2.4 + 0.4/3.5 + 0.09 + 6 seconds. Therefore, the bottleneck
for our system is the super-pixellation time for PN-RCPN and MRF inference for TM-
RCPN. Fortunately, there are real-time super-pixellation algorithms, such as [30], that
can help us achieve state-of-the-art semantic segmentation within 100 milliseconds on
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Table 3.2: SIFT Flow result. The last row shows the results of a very deep CNN network
based semantic segmentation approach that was published during the preparation of this
dissertation.

Method PPA MCA IoU
TPI (s)

CPU/GPU
Tighe, [130] 77.0 30.1 NA 8.4 / NA

Liu, [71] 76.7 NA NA 31 / NA
Singh, [118] 79.2 33.8 NA 20 / NA
Eigen, [31] 77.1 32.5 NA 16.6 / NA

Farabet, [28] 78.5 29.6 NA NA / NA
(Balanced), [28] 72.3 50.8 NA NA / NA

Tighe, [129] 78.6 39.2 NA ≥ 8.4 / NA
Pinheiro, [87] 77.7 29.8 NA NA / NA
Yang, [139] 79.8 48.7 NA ≤ 12/NA
Plain-NN 76.3 32.1 24.7 1.1/0.36

RCPN, [112] 79.6 33.6 26.9 1.1/0.4
bal. RCPN, [112] 75.5 48.0 28.6 1.1/0.4

PN-RCPN 80.9 39.1 30.8 1.1/0.4
bal. PN-RCPN 75.5 52.8 30.2 1.1/0.4

TM-RCPN 80.8 38.4 30.7 1.6–6.1/0.9–5.4
bal. TM-RCPN 76.4 52.6 31.4 1.6–6.1/0.9–5.8
FCN-16s [76] 85.2 51.7 39.5 NA/0.2

an NVIDIA Titan Black GPU. We are significantly faster than all the other competing
approaches except Stixmantics, which we outperform by a margin of 19%.

3.9 Related Work

We have already provided a brief overview of popular approaches to scene labeling
in Sec. 2.1.1. This section discusses the approaches that are more closely related to our
approach and brings out the differences and advantages of our approach over previous
art. Scene labeling has two broad categories of approaches - non-parametric and model-
based. Recently, many non-parametric approaches for natural scene parsing have been
proposed [130, 71, 118, 31, 129]. The underlying theme is to find similar looking images to
the query image from a database of pixel-wise labeled images, followed by super-pixel label
transfer from the retrieved images to the query image. Finally, a structured prediction
model such as CRF is used to integrate contextual information to obtain the final label-
ing. These approaches mainly differ in the retrieval of candidate images or super-pixels,
transfer of label from the retrieved candidates to the query image, and the form of the
structured prediction model used for final labeling. They are based on nearest-neighbor
retrieval that introduces a performance/accuracy trade-off. The variations present in nat-
ural scene images are large and it is very difficult to cover this entire space of variation
with a reasonable size database, which limits the accuracy of these methods. On the
other extreme, a very large database would require large retrieval-time, which limits the
scalability of these methods.

Model-based approaches learn the appearance of semantic categories and relations
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Table 3.3: Daimler result.

Method MCA IoU IoU Dyn
TPI (s)

CPU/GPU
Joint-ALE, [61] NA 72.6 63.7 NA / 111
Depth-ICF, [32] NA 52.8 44.2 NA/3.2

SLICbaseline, [102] NA 50.2 45.1 NA/0.5
StixBaseline, [102] NA 63.9 59.8 NA/0.5
Stixmantics, [101] NA 66.9 62.6 NA/0.05

bal. Plain-NN 85.1 78.5 60.6 5.9 / 2.8
bal. RCPN 89.3 83.1 69.4 6.0 / 2.8

bal. PN-RCPN 91.2 85.9 75.9 6.0 / 2.8
bal. TM-RCPN 91.0 85.9 75.7 12 / 8.8

among them using a parametric model. In [34, 83, 81, 80], CRF models are used to combine
unary potentials devised through the visual features extracted from super-pixels with the
neighborhood constraints. The differences are mainly in terms of the visual features, unary
potentials and the structure of the CRF model. Lempitsky et al. [63] have formulated a
joint-CRF on multiple levels of an image segmentation hierarchy to achieve better results
than a flat-CRF on the image super-pixels only. The CRF based models are among the
most popular and accurate semantic segmentation approaches, but they all suffer from
the limitation of inference algorithms and the forms of potential functions, please refer to
Sec. 3.1. In contrast, in our model, we can efficiently learn complex relations between a
single node label and all the observations from an image, allowing a large context to be
considered effectively. Additionally, the inference procedure is a simple feed-forward pass
that can be performed very fast. However, the form of our function is still a unary term
and our model cannot represent higher order label dependencies. Our model can also be
used to obtain the unary potential for a structured inference model.

Socher et al. [119] learned a mapping from the visual features to a semantic space
followed by a two-layer neural network for classification. Better use of contextual informa-
tion, with the same super-segments and features, increased the performance on Stanford
background dataset from the CRF based method of Gould et al. to semantic mapping of
Socher et al. to the proposed work (76.4%→ 78.1%→ 81.4%). It indicates that the neu-
ral network based models have the potential to learn more complicated interactions than
a CRF. Moreover, NN based approaches have the advantage of being extremely fast, due
to the feed-forward nature. Farabet et al. [28] proposed to learn the visual features from
raw-image/label training pairs using a multi-scale convolutional neural network (Multi-
CNN). They reported state-of-the-art results on various datasets using gPb, purity-cover
and CRF on top of their learned features. Pinheiro et al. [87] extended their work by
feeding in the per-pixel predicted labels using a CNN classifier to the next stage of the
same CNN classifier. However, their propagation structure is not adaptive to the image
content and only propagating label information did not improve much over the prior work.
Similar to these methods, we also make use of the trainable Multi-CNN module to extract
local features in our pipeline. However, our novel context propagation network shows that
propagating semantic representation bottom up and top down using a parse three hierar-
chy is a more effective way to aggregate global context information. Please see Tables 3.2
and 3.1 for a detailed comparison of our method with the methods discussed above.
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Figure 3.7: Some representative image segmentation results on Daimler Urban dataset.
Here, CNN refers to direct per-pixel classification resulting from the multi-scale CNN. The
images are only partially labeled and we have shown the unlabeled pedestrians by yellow
ellipses.

In parallel with our work, a very deep neural network based semantic segmentation
approaches has been proposed in [76], referred to as FCN-16s. It makes use of the pre-
trained CNN filters of a 19-layer network for object classification [117]. FCN-16s computes
pixel-wise sum of the feature maps after the 4th and 5th stages of 2 × 2 max-pooling
operations, after appropriate resizing using learned interpolation kernels, and feeds the
summed features to a semantic classifier. The pre-trained CNN layers are fine-tuned for
semantic segmentation loss like the Multi-CNN training to obtain the final segmentation
system. It is also an end-to-end trainable system, like us. FCN-16s has reported much
better performance than our approach on SIFT Flow dataset, please refer to Table 3.2.
We believe that it is due to the large-size FOV for each pixel (156× 156) and highly non-
linear pre-trained filters. Unfortunately, the pre-training stage requires a large amount of
training data in similar domain, 14 Million labeled images for this case, that may prohibit
the feasibility of this approach where training data is limited. Even with this serious
limitation, it makes a strong case to use pre-trained visual features with our approach to
assess the advantages of the proposed RCPN structure for context utilization.

3.10 Conclusion

We introduced a novel deep neural network architecture, which is a combination of
a convolutional neural network and recursive neural network, for pixel-wise semantic scene
labeling. The key contribution is the recursive context propagation network, which effec-
tively propagates contextual information from one location of the image to other locations
in a feed-forward manner. We further analyzed the recursive contextual propagation net-
work and discovered potential problems with the learning of its parameters. Specifically,
we showed the existence of bypass errors and explained how it can reduce the RCPN model
to an effective multi-layer neural network for each super-pixel. Based on our findings, we
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proposed to include the classification loss of pure-nodes to the original RCPN formulation
and demonstrated its benefits in terms of avoiding the bypass errors. We also proposed a
tree MRF on the parse tree nodes to utilize the pure-node’s label estimation for inferring
the super-pixel labels. The proposed approaches lead to impressive performance on three
segmentation datasets: Stanford background, SIFT flow and Daimler urban.
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Chapter 4

Multi-modal face recognition using PLS to learn the common representation

We present a novel way to perform multi-modal face recognition by using Partial
Least Squares (PLS) to linearly map images in different modalities to a common linear
subspace in which they are mapped to nearby locations. PLS has been previously used
effectively for feature selection in face recognition. We show both theoretically and exper-
imentally that PLS can be used effectively across modalities. We also formulate a generic
intermediate subspace comparison framework for multi-modal recognition. Surprisingly,
we achieve high performance using only pixel intensities as features. We experimentally
demonstrate the highest published recognition rates on the pose variations in the PIE data
set, and also show that PLS can be used to compare sketches to photos, and to compare
images taken at different resolutions.

4.1 Motivation

In face recognition, one often seeks to compare gallery images taken under one set of
conditions, to a probe image acquired differently. For example, in criminal investigations,
we might need to compare mug-shots to a forensic sketch drawn by a sketch artist based
on the verbal description of the suspect. Similarly, mug-shots or passport photos might be
compared to surveillance images taken from a different viewpoint. The probe image might
also be of lower resolution (LR) compared to a gallery of high resolution (HR) images.
All these situations are simply different instances of cross-modal matching and call for a
common representation framework.

4.2 Related Work

There has been a huge amount of prior work on comparing images taken in different
modalities, which we can only sample here. In much of this work, images taken in one
modality are automatically converted to the second modality prior to comparison. For
example a holistic mapping [127] is used to convert a photo image into a corresponding
sketch image. In [137, 135, 74] the authors have used local patch based mappings to convert
images from one modality to the other for sketch-photo recognition. Since the mapping
from one modality to the other is generally non-linear, local patch based approaches
generally perform better than the global ones because they can approximate the non-
linearity in a better manner. Producing good quality high-resolution (HR) face images
from very low-resolution (LR) noisy surveillance videos is an important area of study owing
to its importance for security reasons. The work in [140] proposed a holistic approach for
hallucinating HR face images from LR images. Some local patch-wise based approaches
were also proposed in [70, 67, 142] to hallucinate a HR face image from a given LR
face image. The comparison between the holistic and local approaches reveals that local
approaches perform better. For face recognition with pose and lighting variation [36,
19, 97], 3D knowledge of faces is used to warp an off-axis image to a frontal image, and
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to normalize lighting prior to comparison. These approaches may use representations
that are specific to a domain, or may employ a more general, learning-based approach,
that typically requires corresponding patches in the training set [36, 19, 96, 97]. Our
approach does not attempt to synthesize images of one modality from another. While
excellent work has been done on synthesis, this may in principle be an ill-posed problem
that is more difficult than simply comparing images taken in two different modalities.
A second approach is to compare images using a representation that is insensitive to
changes in modality. For example, [57] used SIFT feature descriptors and multi-scale
local binary patterns to represent image and sketch of faces then performed recognition
based on this common representation. This approach worked well because both SIFT
and LBP features extract gradient information that is approximately the same in both
photo and sketch at corresponding positions. While some descriptors, such as SIFT, are
robust across a range of variations in modalities, no single representation can be expected
to handle all variations in modality. Two prior methods are closer to our work in spirit,
and have provided valuable inspiration. In [128] the authors have used Singular Value
Decomposition to derive a common content space for a set of different styles and [12] uses
a probabilistic model to generate coupled subspaces for different poses. Recently, [64] used
CCA to project images in different poses to a common subspace and compared them using
probabilistic modeling. While related our approach is different in several ways: we achieve
strong results using simple pixel intensities, without probabilistic modeling of patches; we
show theoretically why projection methods can handle pose variation; and we show that
PLS can outperform CCA with pose variation.

4.3 Proposed Approach

We propose a general framework based on the common representation hypothesis
that uses Partial Least Squares (PLS) [99, 98, 1] to perform recognition in a wide range of
multi-modal scenarios. PLS has been used before for face recognition, but in a different
manner, with different motivation [23, 7, 122, 69, 105]; our contribution is to show how
and why PLS can be used for cross-modal recognition. More generally, we argue for the
applicability of linear projection to a common subspace for multi-modal recognition. One
consequence of our approach is that we do not need to synthesize an artificial gallery
image from the probe image. Experimental evaluation of our framework using PLS with
pose variation has shown significant improvements in terms of accuracy and run-time over
the state-of-art on the CMU PIE face data set [116]. For sketch-photo recognition, our
method is comparable to the state of-art. We also illustrate the potential of our method
to handle variation in resolution with a simple, synthetic example. In all three domains
we apply exactly the same algorithm, and use the same, simple representation of images.
Our generic approach performs either similar or better than state-of-the-art approaches
that have been designed for specific cross-modal conditions.

Our approach matches probe and gallery images by linearly projecting them into
a common space where images with the same identity map to nearby locations, see Fig
4.1. We argue that for a variety of cross-modal recognition and matching problems, such
projections will exist and can be found using any of the discussed techniques such as:
PLS, CCA, BLM and TFA. In order to decide the optimal technique to obtain the common
subspace we theoretically compare the objective functions of PLS, CCA and BLM to bring
out the differences.
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Figure 4.1: Common representation framework for multi-modal face recognition, Wg and
Wp are learned using some learning method with training images in gallery and probe
modalities.

4.3.1 When can the common representation hypothesis work?

We will use PLS to find projection directions wp and wq that map images taken
in modality p and q into a common subspace. PLS will seek wp and wq that tend to
produce high levels of covariance in the projection of corresponding images from different
modalities. However, PLS cannot be expected to lead to effective recognition when such
projections do not exist. In this section, we show some conditions in which projections of
images from two modalities exist in which the projected images are perfectly correlated
(and in fact equal). Then we show that these conditions hold for some interesting examples
of cross-modality recognition. We should note that the existence of such projections
is not sufficient to guarantee good recognition performance. We will assess the actual
performance of PLS empirically, in the next section.

4.3.1.1 Existence of correlated projections

In a number of cases, images taken in two different modes can be viewed as different,
linear transformations of a single canonical object. Let Ikp and Ikq denote column vectors
containing the pixels of corresponding images in modalities p and q, respectively. We
denote by Rk a matrix (or column vector) that contains a canonical version of Ikp and Ikq ,
such that we can write:

Ikp = ARk

Ikq = BRk (4.1)

for some matrices A and B. We would like to know when it will be possible to find vectors
wp and wq that project sets of images into a 1D space in which they are highly correlated.
We consider a simpler case, looking at when the projections can be made equal. That is,
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when we can find wp and wq such that for any Ikp and Ikq satisfying Eqn 4.1 we have:

wT
p I

k
p = wT

q I
k
q ⇒ wT

p ARk = wT
p BRk (4.2)

⇒ wT
p A = wT

p B (4.3)

Eqn 4.2 can be satisfied if and only if the row spaces of A and B intersect, as the LHS of
the Eqn 4.3 is a linear combination of the rows of A, while the RHS is a linear combination
of the rows of B. We now give some examples in which this condition holds.

4.3.1.2 High resolution vs. low resolution

For this situation, we can assume that the ideal image is just the high resolution
image, so that A is simply the identity matrix, and Ikp = Rk. Ikq then, can be obtained

by smoothing Rk with a Gaussian filter, and sub-sampling the result. Both operations
can be represented in matrix form. Any convolution can be represented as a matrix
multiplication. For this, the ith row of B contains a vectorized Gaussian filter centered at
the image location of the ith pixel in Rk. B can sub-sample the result of this convolution
by simply omitting rows corresponding to pixels that are not sampled. Now because A is
the identity matrix, it has full rank, and its row space must intersect that of B.

4.3.1.3 Pose variation

We now consider the more challenging problem that arises when comparing two
images taken of the same 3D scene from different viewpoints. This raises problems of
finding a correspondence between pixels in the two images, as well as accounting for
occlusion. To work our way up to this problem, we first consider the case in which there
exists a one-to-one correspondence between pixels in the image, with no occlusion.

Permutations: In this case, we can again suppose that A is the identity matrix.
In this case, B will be a permutation matrix, which changes the location of pixels without
altering their intensities. In this case, A and B are both of full rank, and in fact have a
common row space. So again, there exist wp and wq that will project Ikp and Ikq into a
space where they are equal.

Stereo: We now consider a more general problem that is commonly solved by stereo
matching. Suppose we represent a 3D object with a triangular mesh. Let Rk contain the
intensities on all faces of the mesh that appear in either image (We will assume that
each pixel contains the intensity from a single triangle. More realistic rendering models
could be handled with slightly more complicated reasoning). Then, to generate images
appropriately, A andB will be matrices in which each row contains one 1 and is 0 otherwise.
A (or B) may contain identical rows, if the same triangle projects to multiple pixels. The
rank of A will be equal to the number of triangles that create intensities in I, and similarly
for B. The number of columns in both matrices will equal the number of triangles that
appear in either image. So their row spaces will intersect, provided that the sum of their
ranks is greater than or equal to the length of Rk, which occurs whenever the images
contain projections of any common pixels. As a toy example, we consider a small 1D
stereo pair showing a dot in front of a planar background. We might have Ikp = [7 8 2 5]
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and Jk
q = [7 2 3 5]. In this example we might have Rk = [7 8 2 3 5] and:

A =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 B =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (4.4)

It can be inferred from the example that row spaces of A and B intersect hence we
expect PLS to work. More generally, whenever we are matching two 2-D projections of
the same 3-D object, we can think of each image as a linear transformation of the ideal,
3-D object. Therefore, when there is sufficient overlap in the portions of the object that
are visible, projection to a common latent space will amount to finding a correspondence
between the mutually visible portions of the two images.

4.3.1.4 Comparing images to sketches

Finally, we note that our conditions may approximately hold in the relationship
between images and sketches. This is because sketches often capture the edges, or high
frequency components of an image. A filter such as a Laplacian of a Gaussian produces an
output that is similar to a sketch. Again, the ideal image can be the same as the intensity
image, while the sketch image can be produced by a B that represents this convolution,
satisfying our conditions.

4.3.2 Difference between PLS, BLM and CCA

BLM, CCA and PLS try to achieve the same goal but the difference in their objective
functions leads to different properties. BLM tries to preserve the variance present in
different feature spaces and does not explicitly try to make projected samples similar. It
is interesting to compare the objective function of PLS with that of CCA to emphasize
the difference between the two. CCA tries to maximize the correlation between the latent
scores

[wp,wq] = argmax
wp,wq

(corr[Y T
p wp, Y

T
q wq]

2)

s.t. ‖wp‖ = ‖wq‖ = 1
(4.5)

where,

corr(a,b) =
cov(a,b)

var(a)var(b)
(4.6)

putting the expression from 4.6 into 2.6 we get the PLS objective function as:

[wp,wq] = argmax
wp,wq

([var(Y T
p wp)][corr(Y

T
p wp, Y

T
q wq)]

2[var(Y T
q wq)])

s.t. ‖wp‖ = ‖wq‖ = 1
(4.7)

It is clear from (4.7) that PLS tries to correlate the latent score of regressor and
response as well as captures the variations present in the regressor and response space
too. CCA only tries to correlate the latent score hence CCA may fail to generalize well to
unseen testing points and even fails to differentiate between training samples in the latent
space under some restrictive conditions. Let’s consider a simplified case where PLS will

43



succeed and both BLM and CCA will fail to obtain meaningful directions - Suppose we
have two sets of 3D points X and Y and xji and yji denote the jth element of the ith data
point in X and Y . Suppose that the first coordinates of xi and yi are pairwisely equal
and the variance of the first coordinate is very small and insufficient for differentiating
different samples. The second coordinates are correlated with a correlation-coefficient
ρ ≤ 1 and the variance present in the second coordinate is ψ. The third coordinate is
almost uncorrelated and the variance is � ψ.

∀i, x1i = y1i = k ⇒ var(X1) = var(Y 1) = α� ψ (4.8)

corr(X2, Y 2) = ρ and var(X2), var(Y 2) ≈ ψ (4.9)

corr(X3, Y 3) ≈ 0 and var(X3), var(Y 3)� ψ (4.10)

Under this situation CCA will give the first coordinate as the principal direction
which projects all the data points in sets X and Y to a common single point in the latent
space, rendering recognition impossible. BLM will find a direction which is parallel to the
third coordinate, which preserves the inter-set variance but loses all the correspondence.
PLS, however, will opt for the second coordinate, which preserves variance (discrimination)
as well as maintains correspondence which is crucial for our task of cross-modal matching.

4.4 Experimental results

In this section we carry out several experiments to compare our PLS based multi-
modal face recognition with existing approaches for pose-invariant face recognition, sketch-
face recognition and high-low resolution face recognition.

4.4.1 Pose-invariant face recognition

The PLS based framework is used for pose invariant face recognition on CMU PIE
dataset which has been used by many researchers previously for evaluation. This database
contains 68 subjects in 13 different poses and 23 different illumination conditions. We took
subject IDs from 1 to 34 for training and the remaining (35 to 68) for testing. As we are
dealing with pose variation only, we took all the images in frontal illumination which is
illumination number 12. As a preprocessing step, 4 fiducial points (both eye’s centers, nose
tip and mouth) were manually annotated and an affine transformation was used to register
the faces based on the fiducial points. After all the faces are aligned in corresponding poses
we cropped 48× 40 facial region. Images were turned into gray-scale and intensity values
mapped between 0 to 1 were used as features. The number of PLS factors was set to be
30. Choosing more than 30 did not improve the performance but choosing less than 30
worsens the performance. The resulting approach is termed as PLS30, indicating 30 PLS
factors were used. The accuracy for all possible gallery-probe pairs is given in Table 4.1.
For comparing our approach with other published works we calculated the average of all
gallery-probe pairs and the resulting accuracy is listed in Table 4.2. Some authors have
reported their results on CMU PIE data with only frontal pose as gallery and a subset of
non-frontal poses as probe. For comparison we also list the gallery and probe setting in
Table 4.2. Ridge+(Intensity/Gabor) refers to the approach of [65] with raw intensity and
Gabor filter response (with probabilistic local score fusion) at fiducial locations as feature,
respectively. Similarly, PLS-(Holistic/Gabors) refers to the use of PLS to learn coupled
latent space with raw intensity feature from the whole face and probabilistic fusion of
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Table 4.1: CMU PIE accuracy using 1-NN matching and PLS with 30 factors, overall
accuracy is 90.08

Probe→ c34 c31 c14 c11 c29 c09 c27 c07 c05 c37 c25 c02 c22
Avg

Gallery↓ -60,0 -45,15 -45,0 -30,0 -15,0 0,15 0,0 0,0 15,0 30,0 45,0 45,15 60,0
c34 -/- 88.0 94.0 94.0 91.0 88.0 91.0 97.0 85.0 88.0 70.0 85.0 61.0 86.2
c31 85.0 -/- 100.0 100.0 100.0 88.0 85.0 91.0 85.0 88.0 76.0 85.0 76.0 88.4
c14 97.0 100.0 -/- 100.0 97.0 91.0 97.0 100.0 91.0 100.0 82.0 91.0 67.0 92.8
c11 79.0 97.0 100.0 -/- 100.0 88.0 100.0 100.0 97.0 97.0 85.0 88.0 67.0 91.6
c29 76.0 94.0 100.0 100.0 -/- 100.0 100.0 100.0 100.0 100.0 85.0 91.0 73.0 93.3
c09 76.0 88.0 91.0 94.0 94.0 -/- 97.0 94.0 91.0 88.0 82.0 79.0 70.0 87.2
c27 85.0 91.0 97.0 100.0 100.0 100.0 -/- 100.0 100.0 100.0 85.0 88.0 79.0 93.9
c07 79.0 91.0 97.0 100.0 100.0 97.0 100.0 -/- 100.0 97.0 85.0 91.0 76.0 92.9
c05 79.0 97.0 97.0 94.0 100.0 94.0 100.0 100.0 -/- 97.0 91.0 91.0 82.0 93.6
c37 79.0 94.0 100.0 94.0 94.0 88.0 94.0 94.0 97.0 -/- 100.0 100.0 94.0 94.1
c25 67.0 82.0 76.0 79.0 88.0 88.0 88.0 91.0 94.0 97.0 -/- 97.0 76.0 85.5
c02 76.0 88.0 88.0 94.0 94.0 88.0 97.0 94.0 100.0 100.0 100.0 -/- 97.0 93.1
c22 64.0 70.0 64.0 79.0 76.0 67.0 82.0 82.0 85.0 91.0 85.0 91.0 -/- 78.4

Table 4.2: comparison of PLS with other published work on CMU PIE.

Method Gallery/Probe Accuracy PLS30

Eigenface [35] all/all 16.6 90.1
ELF [35] all/all 66.3 90.1

Bilnear Model all/all 79.6 90.1
CCA all/all 87.4 90.1

FaceIt [35] all/all 24.3 90.1
4ptSMD [16] all/all 86.8 90.1

SlantSMD [17] all/all 90.1 90.1
Ridge+Intensity [65] c27/rest all 88.24 93.9

PLS-Holistic [66] c27/rest all 81.44 93.9
Yamada [53] c27/rest all 85.6 93.9

LLR [18] c27/c(05,07,09,11,37,29) 94.6 100
PGFR [75] c27/c(05,37,25,22,29,11,14,34) 86 93.4

Ridge+Gabor [65] c27/rest all 90.9 93.9
PLS-Gabor [66] c27/rest all 89.05 93.9

3DMM+LGBP ? [6] c27/c(11,29,07,09,05,37) 99.0 100.0

local scores based on Gabor filter response at fiducial locations, respectively. A simple
comparison clearly reveals that PLS30 approach outperforms all the methods. It should
be noted that the comparison with 3DMM+LGBP [6] is not fair because the results in [6]
are reported on 67 subject gallery whereas, we report on 34 subject gallery. However, we
still include it for the sake of completeness.

4.4.2 Low resolution vs High resolution

This problem is yet another multi-modal problem because probe images from a
surveillance camera are generally low resolution (LR) with slight motion blur and noise.
The gallery generally contains high resolution (HR) faces. To verify the applicability of
our method we have synthetically generated low resolution images for frontal face images
in a subset of FERET face dataset and performed recognition. The original HR images
were chosen to be 7666 and different size LR images were tested for recognition. Fig 4.2
shows the recognition accuracy of the proposed method. Note that a direct comparison
of HR and LR face images with as low a resolution as 54 resulted in 60% recognition
accuracy. Moreover, the number of PLS bases used in any case for optimal performance
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Figure 4.2: Accuracy for Low Resolution face recognition vs. the number of PLS bases
used with different size LR images used.

are not greater than 20 and for some cases just 3 PLS bases gave 95% accuracy. We have
used 90 faces for training and 100 for testing. Due to lack of space we have not shown the
results for BLM but it should be noted that it performed similarly. However, performance
of CCA was very poor ranging between 30-50% only.

4.4.3 Sketch-face recognition

To demonstrate the generality of our proposed approach we have also tested it on
a sketch vs. photo recognition problem. To test the performance of our method we have
used a subset of the CUHK sketch - face dataset [3]. We used a subset containing 188
subjects’ face images and corresponding hand drawn sketch pairs. 88 sketch-photo pairs
were used as the training sample and the remaining 100 were used as the testing set. We
formed 5 random partitions of the dataset to generate different sets of training and testing
data and report the average accuracy. In this case, we have used 70 PLS bases and 50
eigenvectors for the Bilinear Model. A comparison of our method with other reported
results is shown in Table 4.

From the comparison it is clear that in spite of being holistic in nature, the pro-
posed method achieves respectable accuracy. We feel that this is encouraging because
our method is completely general; we have used exactly the same algorithm for pose, LR
face recognition and sketch. The table also reflects the trend that accuracy is increasing
continuously as we move down from holistic to pixel level representation. So it may be
possible that using patch-wise features with our method will improve the accuracy. It
should be noted that in [5] and [4] the authors have used strong classifiers after extracting
patch-wise and pixel based features, whereas we have simply used the NN metric after
latent score extraction.

46



Table 4.3: Sketch-Photo pair recognition accuracy.

Method Testing set Type Accuracy
Wang 100 Holistic 81
Liu 300 Path-wise 87.7

Klare 300 Pixel-wise 99.5
PLS 100 Holistic 93.6

Bilinear 100 Holistic 94.2
CCA 100 Holistic 94.6

4.5 Conclusion

We have demonstrated a general common subspace framework for cross-modal recog-
nition and the relevance of PLS to cross-modal face recognition. Theoretically, we have
shown that in principle, there exist linear projections of images taken in two modalities
that map them to a space in which images of the same individual are equal. This is true
for images taken in different poses, at different resolutions, and approximately, for sketches
and intensity images. Experimentally, we show that PLS and BLM can be used to achieve
strong face recognition performance in these domains. Of particular note, we show that
PLS has outperformed the best reported performance on the problem of face recognition
with pose variation with impressive margin both in terms of accuracy as well as run-time
and that Bilinear Models in all three domains outperformed many existing approaches.
Moreover, using the exact same method we have also achieved comparable performance
for sketch-photo and cross resolution face recognition.
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Chapter 5

Pose-error Robust Discriminative Common Representation

In the previous chapter we have seen the use of Partial Least Square for learning
a common representation of face images in different poses. This chapter investigates the
performance of the PLS based common representation on datasets with more subjects
and larger and less-controlled pose variation. Especially, we assess the performance of
PLS based common representation in the presence of pose-errors. We show that pose-
errors lead to degraded performance and describe a two-stage discriminative model to
tackle them. The discriminative model is learned using simulated pose-errors and termed
Adjacent Discriminative Multiple Coupled Latent Space or ADMCLS. We show the em-
pirical benefits of ADMCLS over PLS based common representation for pose-invariant
face recognition on two standard pose datasets: FERET and MultiPIE. This work was
done in collaboration with Mourad Al Haj, Jonghyun Choi and Dr. Larry S. Davis; it
resulted in the paper [108].

5.1 Motivation

A fully automatic real-world pose-invariant face recognition system involves various
stages in the complete pipeline. Some important stages are - face detection, fiducial point
estimation, pose estimation, alignment to a canonical pose and recognition or matching.
The final recognition accuracy of the complete system depends on the accuracies of each of
the stages. The entire pipeline leading up to recognition stage is still far from acceptable
level of accuracy under real-life scenario. It calls for a systematic study of the effect of
errors in various stages of the pipeline on the final performance and to develop built-
in tolerance against small errors. Since the focus of this thesis is on learning common
representation from multiple pose spaces, we carry out a detailed analysis of the effects of
errors in the pose estimation on the performance of common representation based methods
and also present some novel solutions to handle them. For the rest of this chapter, pose-
error refers to the scenario when the estimated/given pose of a face is not the same as the
actual pose. Note that even the ground-truth supplied with some of the databases may
be wrong due to head movements of the subject during photo capturing.

5.2 Performance study with pose-error and more subjects

In this section, we first show the results of PLS based framework on FERET and
MultiPIE datasets and discuss the reason behind the poor performance. Subsequently, we
propose our extended two-stage discriminative approach followed by a detailed analysis of
model parameters on the overall performance in later sections.

The performance of PLS based approach on two larger and less-controlled datasets
(FERET and MultiPIE) is shown in Fig.5.6a and Fig.5.6b, respectively. From the figures
it is evident that performance has decreased significantly for both MultiPIE and FERET.
The most obvious reason is the increased number of testing subjects (gallery); FERET
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and MultiPIE have almost 3 and 7 times as many testing subjects as compared to CMU
PIE, respectively. As the number of testing subjects increases, we need a discriminative
representation for effective classification. All three i.e. CCA, BLM and PLS are generative
in nature, hence, the decline in accuracy with increasing number of testing subject is
natural. Secondly, we noticed that some of the faces in the dataset were off by a few
degrees from the reported pose in the dataset. Especially for FERET, [11] has reported
estimated poses which are very different from the ground-truth poses supplied with the
dataset. Since projectors are learned using training images from FERET and MultiPIE,
this leads to pose difference between the projectors and images. We term this phenomenon
as pose error. It can occur because of head movement during acquisition or wrong pose
estimation. Suppose, we learn two projectors for a 0o/30o gallery/probe pose pair. Let us
assume that the 30o testing images are not actually 30o but (30± θ)o with θ ∈ [0, 15]. For
θ ≤ 5, the projectors and the testing images will have sufficient pixel correspondence. But
for θ ≥ 5, we face the loss of correspondence, resulting in poor performance. Pose errors
are inevitable and present in real-life as well as controlled conditions which is evident from
FERET and MultiPIE. Moreover, due to different facial structures we may expect loss of
correspondence for pose angles greater than 45o. For example, both the eyes of Asians
are visible even at a pose angle of around 60o because of relatively flat facial structure
as compared to European or Caucasian for which the second eye becomes partially or
totally occluded at 60o. This leads to missing facial regions at large pose angles which
creates loss of correspondence. These pose errors become more frequent and prominent
with increasing pose angles.

5.2.1 Pose estimation

In order to show that the poses provided in the FERET and MultiPIE databases
are inaccurate, we assume that for each subject the frontal pose is correct and use this
information to estimate the non-frontal poses; the change in the distance between the eyes
of the subject, with respect to the distance in frontal pose, is used to calculate the new
pose. In general, the change in the observed eye distance can be due to two factors: change
in pose and/or change in the distance between the camera and the face. For the change in
the face-camera position, the distance between the nose and the lip can be used to correct
this motion, if present. For the pose change, in the two datasets, there is negligible change
in yaw and the Euclidean distance automatically correct for any roll change, i.e. in-plane
rotation; therefore, the Euclidean eye distance once corrected by the nose-lip distance can
be directly used to measure the pitch pose.

The distance between the two eyes in frontal pose will be denoted by ee1 and the
distance between the nose and the lip by nl1; similarly for the non-frontal pose to be
estimated, the distance between the eyes is given by ee2 and that between the nose and
lip by nl2. Assuming that the eyes, nose and lip are coplanar, i.e. the effect due to the
nose sticking out is negligible, the new pose θ can be calculated as: θ = arccos( ee2/nl2ee1/nl1

). A
pictorial demonstration of this calculation is shown in Fig.5.1.

To measure the poses in FERET and MultiPIE, manually annotated images were
used to obtain the fiducial points and the frontal pose was used to calculate the rest of
the non-frontal poses as explained above. The box and whisker plots for the estimated
pose vs. the ground-truth pose for FERET and MultiPIE are shown in Fig.5.2a and
Fig.5.2b, respectively. It is clear that, in both databases, there are inconsistencies between
the different subjects at the same pose, rendering both ground truth data inaccurate.
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Figure 5.1: Schematic diagram to estimate the pose of a non-frontal face using fiducials.

The pose errors are higher in magnitude and scatter in FERET which is obtained under
unconstrained conditions as compared to MultiPIE.

5.2.2 Pose Estimation Tolerance

Human head pose could be estimated in various ways besides using fiducial locations.
However, it is necessary to get a sense of robustness and accuracy of the approach for a
reliable estimate. Therefore, we empirically estimate the sensitivity of fiducial-based-pose-
estimation scheme. The accuracy of the estimated pose depends on the accuracy with
which the fiducial points are located. Therefore, it is necessary to estimate the induced
error in the estimated pose due to the errors in the fiducial points location. It is done
by randomly perturbing all four fiducial locations and re-estimating the pose using the
perturbed fiducial locations. The error is defined as the the absolute difference between
the perturbed and originally estimated pose. The amount of perturbation for the eyes
is a randomly chosen value between ±(x × ee) i.e. fraction of the distance between the
two eyes (ee). Similarly, nose and lips are perturbed by a randomly chosen value between
±(x× nl) i.e. the same fraction of distance between the nose and lips (nl). The variation
of average error over all the subjects and poses with increasing amount of perturbation
fraction is shown in Fig.5.3. We can see that the error in pose estimation is increasing
with the increment in the fiducial location error but it is not very high and only after an
error of 15% in fiducial locations is the pose estimation severely affected.

5.3 Two-stage Discriminative Correspondence Latent Subspace

A discriminative representation approach such as LDA, requires multiple images per
sample to learn the discriminative directions. We have a training set containing multiple
images of a person but all the images are in different poses. Due to the loss of feature
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(a) FERET pose error

(b) MultiPIE pose error

Figure 5.2: Box and Whisker plot for pose errors on FERET and MultiPIE data for all
the poses which have only pitch variation from frontal.
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Figure 5.3: Variation of pose estimation error with the amount of random perturbation
in the fiducial locations.

correspondence, we cannot use these multi-pose images directly to learn LDA directions.
Results in [18] show that directly using them will lead to poor performance. However,
we can learn a CLS for more than two poses simultaneously such that the projections of
different pose images in the latent space have correspondence. Now, the multiple latent
projections of a person can be used with LDA. Fortunately, using CCA as in (2.5), we can
learn projectors for multiple poses to get a common CLS for a set of multiple poses. We
empirically found that just using judiciously chosen set of poses (without LDA in latent
space) to learn projectors offers some improvement over using only two poses. We defer
the detailed discussion of selection of pose-sets and use of LDA to later sections. The
multiple pose approach without LDA in latent space is termed Multiple CLS or MCLS
and with LDA is termed Discriminative MCLS or DMCLS. The latent space projection
xi
l of ith subject in pose p (xi

p) is given as

xi
l = W T

p xi
p (5.1)

Here, W T
p is the projector for pose p and the subscript l indicates that xi

l is in latent
space. The projections of images in pose p using a projector for pose p are termed same
pose projections. The latent space LDA offers discrimination based on the identity which
is shown to be effective for classification [8, 125].

The performance drop study also suggests that pose error is an important factor
and needs to be handled for better performance. To tackle the pose error, we draw
motivation from [107, 126, 106] where it has been shown that the inclusion of expected
variations (those present in the testing set) in the training set improves the performance.
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Table 5.1: Framework names based on the components used, the super-script in the name
denotes the CLS dimension. Abbreviations are - gal. is gallery; adj. is adjacent and Int.
is Intermediate.

Name Model Training Set Poses Projections Classifier CLS Dimension
CCA10 CCA gal. + probe same pose 1-NN 10
PLS10 PLS gal. + probe same pose 1-NN 10
BLM20 BLM gal. + probe same pose 1-NN 20

MCLS10 CCA gal. + probe + Int. same pose 1-NN 10
DMCLS40 CCA all poses same + adj. pose LDA 40

ADMCLS10 CCA gallery + probe + adj. same + adj. pose LDA 10

Specifically, [107] has shown that using frontal and 30o training images with LDA improves
the performance for 15o testing images. And, [106] shows that using artificially misaligned
images, created by small random perturbation of fiducial points in frontal pose, during
training with LDA offers robustness to small errors in fiducial estimation. We combine
the two approaches and artificially simulate pose errors. Unfortunately, creating small
pose errors is not as simple as creating fiducial misalignment in frontal images. We do
it by deliberately projecting face images onto adjacent pose projectors to obtain adjacent
pose projections. The dataset used has pose angle increments in steps of 15o; therefore,
projection of a 45o image onto 30o and 60o projectors will give adjacent pose projections
for 45o. The set of adjacent projections is given by

X i
l = {x̃i

l : x̃i
l = W T

q∈A(p)x
i
p} (5.2)

here, A(p) is the set of adjacent poses for pose p. The use of adjacent pose projections
with LDA is expected to offer some robustness to small pose errors.

Same and adjacent pose projections have complementary information and both are
important for robust pose-invariant face recognition. Therefore, we use both of them to-
gether as training samples with LDA to learn a discriminative classifier in the latent space.
We call the resulting framework: Adjacent DMCLS of ADMCLS. ADMCLS is expected
to offer robustness to pose errors smaller than 15o which is indeed the general range of
pose errors observed in real-life as well as controlled scenarios. Apart from providing ro-
bustness to pose error, adjacent projection also provides more samples per class for better
estimation of class mean and covariance. We empirically found that inclusion of pose error
projections dramatically improves the performance on FERET and MultiPIE which is in
accordance with [106] and our intuition. It also supports our claim that performance drop
is due to pose errors. The complete flow diagram for the ADMCLS framework is depicted
in Fig.5.4.

5.3.1 Hyperparameter exploration

The proposed ADMCLS framework consists of two stages. The first stage involves
learning the CLS and the second stage is learning the LDA directions using the projec-
tions in the latent subspace. Both stages have several different parameters, which will
lead to different overall frameworks. For the ease of understanding and readability we
summarize the names of different frameworks in Table 5.1. In this subsection we discuss
the parameters involved and their effect on overall performance. We also discuss various
criteria to choose these parameters and their effect on the final performance.
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Figure 5.4: The flow diagram showing the complete ADMCLS process pictorially for a pair
of gallery (−30o) and probe (+45o) pose pair. The gallery and probe along with adjacent
poses constitute the set of poses for learning the CLS ( ±30o, ±45o, −15o and +60o for
this case). Once the CLS is learned, same and adjacent pose projections (indicated by
different arrow type) are carried out to obtain projected images in the latent subspace.
An arrow from pose p images to pose q projector means projection of pose p images on
pose q projector. All the projected images of a particular subject are used as samples in
latent space LDA.

Figure 5.5: Images with pose names, MultiPIE (top row), FERET (middle row) and
CMU PIE (bottom row).

To study the effect of a parameter, all the others were kept fixed but the one under
study. Then the best values of individual parameters are used in the final framework.
The final accuracy of the system in terms of rank-1 face identification rate is used as the
performance measure to obtain the best value of each parameter. In order to facilitate
future comparison of our approach, we have fixed the training subjects to be subject ID
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1 to 34 for CMU PIE, 1 to 100 for MultiPIE and 1 to 100 (when arranged according to
name) for FERET and made available the manually annotated fiducial points for FERET
and MultiPIE used in our experiments. Testing is done on the rest of the subjects i.e. 34,
237 and 100 testing subjects for CMU PIE, MultiPIE and FERET respectively.

5.3.1.1 Latent Subspace Dimension and Learning Model

The subspace dimension is an important parameter in all the subspace based meth-
ods and plays a critical role in performance. Too many dimensions can lead to over-fitting
and too few to under-fitting; therefore, this parameter needs to be decided very carefully.
There are some techniques based on the spectral energy of the eigen-system that can guide
the proper selection such as – choosing a pre-defined ratio of energy to be preserved in
the selected number of dimensions – rejecting the directions with lower eigen-value than
a threshold. In the case of CCA, we selected the top k eigen-vectors. We will see later
that our final framework does not require a very careful selection of this parameter and
is pretty robust to its variation. In the case of PLS we are using an iterative greedy
algorithm and the number of dimensions can be selected by using only those directions
which contain some pre-specified amount of total variation. However, it was observed that
beyond a certain number of dimensions the accuracy remains constant. For BLM, we can
use the spectral energy approach to select the number of dimensions. The selected number
of dimensions of the CLS would be indicated as a superscript of the final framework name.

To keep things simple we have used 2 poses and 1-NN matching as the constituents
of the final framework and varied the number of dimensions of CLS. The accuracy is
the average accuracy for all possible gallery-probe pairs for the same number of CLS
dimensions. There are 15 poses in MultiPIE so there is a total of 210 gallery-probe
pose pairs and 72 for FERET (9 poses). The variation of accuracy for PLS, CCA and
BLM on FERET and MultiPIE is shown in the Fig.5.6a and Fig.5.6b. It is obvious that
different gallery-probe pairs will achieve the maximum accuracy with different number
of CLS dimensions but we are calculating the average accuracy by considering the same
CLS dimension for all pairs. To show the difference between our performance measure
and the best possible accuracy obtained by using different CLS dimensions for different
gallery-probe pairs, we calculated the best accuracy for all the pose pairs and averaged
them to get the overall accuracy. These best accuracies are plotted as dashed horizontal
lines in the same figure.

The choice of learning model has significant impact on the overall performance. We
investigated three different choices for learning method: CCA, PLS and BLM and found
that PLS performed slightly better than CCA for pose invariant face recognition and BLM
is the worst performing [109]. However, PLS cannot be used to learn a CLS framework for
more than two poses which makes it useless for the MCLS framework and BLM performs
significantly worse than CCA. So, we used CCA for the cases when more than two poses
are used for training.

Fig.5.6 clearly reveals the effect of learning model on face identification rate. The
most important and satisfying observation is that the maximum possible accuracy is not
significantly higher than the average accuracy justifying our assumption of equal CLS
dimension across all gallery/probe pose pairs. Clearly, BLM performance is significantly
worse than CCA and PLS which is in accordance with the results obtained in [109]. The
performance of CCA and PLS is almost similar for MutliPIE and PLS performs better
than CCA for FERET which is also in accordance with [109]. One clear observation from
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(a) FERET

(b) Multi PIE

Figure 5.6: Result of CLS based recognition using 1-NN classifier on FERET and Mul-
tiPIE. (CCA/PLS/BLM)max represents the maximum possible accuracy using different
number of CLS dimensions for all gallery-probe pairs. For MultiPIE, PLSmax and CCAmax

overlap and only one of them is visible.
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the figure is that CCA performance is sensitive to CLS dimension and achieves maxima
in a short range. On the other hand, the performance of BLM and PLS increase till a
certain number of dimensions and then stays nearly constant. This brings out the fact
that CCA is prone to overfitting while BLM and PLS are not.

5.3.1.2 Set of training poses

This has some effect on the obtained projectors since different sets of training poses
will generate somewhat different projectors for each pose pair. Moreover, the supervised
classifier in the latent space uses the projections as samples hence, it will have some
bearing on the classifier too. In the case of PLS as the learning model, we can have only 2
training poses because of poor learning for multiple poses but this is not a problem with
BLM or CCA. The set of poses used for training has deep impact on the obtained CLS
performance and further improvements. We indicate the use of multiple training poses in
the framework by preceding CLS by M i.e. MCLS.

The intuition of using more than two training poses can be understood in terms of
robustness to noise offered by additional poses for CCA. It was pointed out and proved
in [12] in a completely different context of clustering that adding more styles of data im-
proves noise-robustness which also holds in our case of pose variation. As explained earlier
in sub-section 2.3.2, CCA based CLS is a way of learning correspondence by maximizing
correlation. The correlation between the training images in two different poses are most
likely due to two factors: true correspondence and noise. We ideally want that the cor-
relation is only due to correspondence. However, our data always contains some noise in
the form of pose errors and/or inaccurate fiducial location. Presence of noise in the data
can cause spurious correlations leading to false correspondence that will affect the per-
formance. When more than two poses are used simultaneously, the obtained correlation
between these poses has a higher probability of being due to correspondence because it is
present in all the poses. However, this does not mean that we should add too many poses
because it will decrease the flexibility of the learning model and lead to under-fitting.
Thus, two poses will lead to over-fitting and too many will cause under-fitting, hence we
choose four poses to strike a balance. Note that, the value four came out of empirical
observation.

To evaluate the effect of changing the sets of training poses on the final framework
for a particular gallery-probe pair, we include poses other than gallery and probe poses
to learn CLS. This procedure raises some interesting questions: which poses should be
included in training set? how many poses should be used? To answer these questions, we
adopt a very simple approach that illustrates the effect of using multiple training poses.
We use three gallery poses and all the possible probe poses for the selected gallery poses.
For FERET, we choose pose ba(frontal), bd (25o) and bb (60o) and for MultiPIE, we
choose 051(frontal), 190(45o) and 240(90o) as gallery poses. In addition to the gallery and
probe we also select adjacent intermediate poses based on the viewing angle i.e. if we have
gallery as frontal (0o) and probe as +60o then we take two additional poses to be +15o

and +45o. Similarly, for gallery as frontal and probe as +30o we take only one additional
pose +15o since it is the only intermediate pose.

Once the latent subspace is learned we use 1-NN for classification. The number of
CLS dimensions is kept at 17 so the final frameworks are termed MCLS17. We show the
comparison of CCA based MCLS17 vs. CCA20 in Fig.5.8a and Fig.5.8b for FERET and
MultiPIE respectively. There are some missing points in the performance curves in both
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Figure 5.7: Projector bases corresponding to top eigen-values obtained using CCA (first 5
rows) and PCA (bottom 5 rows) obtained using 100 subjects from FERET. CCA projectors
are learned using all the poses simultaneously and PCA projectors are learned separately
for each pose. Each row shows the projector bases of the pose for equally indexed eigen-
value. Observe that, projector bases are hallucinated face images in different poses and
the CCA projector bases look like rotated versions of the same hallucinated face but there
is considerable difference between PCA projectors. This picture visually explains the
presence of correlation in the latent CLS space using CCA.
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(a) FERET

(b) Multi PIE

Figure 5.8: Comparison of MCLS17 vs. CCA20 with varying gallery-probe pairs for a)
three gallery poses ba(frontal), bd(40o) and bb(60o) on FERET dataset. b) Three gallery
poses 051(frontal), 190(45o) and 240(90o) on MultiPIE dataset. MCLS17ba indicates that
the gallery is pose ba, multiple poses are used during training and CCA is the learning
model with 17 dimensional CLS and 1-NN classifier while CCA20ba indicates that the
gallery is pose ba, two poses are used during training and CCA is the learning model
with 18 dimensional CLS and 1-NN classifier
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figures because an adjacent gallery-probe pose pair does not have any intermediate pose.
The comparison clearly highlights the improvement offered by using multiple poses for
learning the latent subspace. We generally observe some improvement with the MCLS17

framework for gallery and probe poses with large pose difference except for few places
where it either remained the same or decreased slightly. We also observe that the im-
provement is more significant in FERET as compared to MultiPIE which is due to the
fact that MulitPIE dataset has less pose errors than FERET, as shown in subsection 5.2.1.
Therefore, MCLS framework has more to offer in terms of robustness to pose errors in
FERET as compared to MultiPIE.

The second stage of the framework is learning a supervised classifier using the latent
subspace projections. This stage has two crucial parameters: Set of projections and
classifier. The next two sections explore their affect on the performance.

5.3.1.3 Set of projections and Classifier

This subsection explores the combination of the set of latent subspace projections
for a subject and the classifier used for matching. As discussed earlier, we have two choices
for projecting a face image in the CLS and both contain complementary information which
can be utilized by a classifier for recognition. Since all the databases used in this paper
have pose angles quantized in steps of 15o, the difference between any two adjacent poses
is 15◦. In our framework, we do not consider more than 15o pose difference because they
will render the projection meaningless and they do not exist in real life scenarios.

As mentioned earlier, CCA is used as the learning model for all the experiments with
more than two poses in the training. MultiPIE has 15 poses and FERET has 9, so the size
of the eigen-system for MultiPIE becomes too big and requires large memory. So, all the
exploratory experiments were done with FERET and conclusions were used to decide the
optimal strategy for MultiPIE. In order to avoid under-fitting we adopt a simple strategy
to select a subset of poses for training that is based on gallery-probe pair. The gallery-
probe pairs along with the adjacent poses of them are selected as the training set of poses.
So, for a +45o/− 30o gallery/probe pair the training set would be ±30o,±45o,+60o,−15o

and for -15o/0o training pose set is ±15o, 0o, 30o. Adjacent poses are selected to simulate
pose error scenario. We call this variant of DMCLS as Adjacent Discriminant Multiple
Coupled Subspace (ADMCLS). To evaluate the effect of different latent space projections,
we plot the average accuracy across all 72 gallery/probe pairs in Fig.5.9 for the following
settings: 1-NN classifier with two poses denoted by CLS; Intermediate poses and 1-NN
classifier denoted by MCLS; two poses and LDA denoted by DCLS; all 9 poses for FERET
and adjacent projections with LDA denoted by DMCLS and adjacent set of training poses
with adjacent projections and LDA denoted by ADMCLS.

It is clear from the Fig.5.9 that ADMCLS performs the best closely followed by
DMCLS, while, CLS is the worst performing approach with DCLS and MCLS performance
being slightly better than CLS. The use of LDA with adjacent projections did not only
increase the accuracy significantly but also makes the final framework fairly insensitive to
CLS dimension, which eliminates the burden of determining it by cross-validation. This
significant improvement is due to artificial simulation of pose error scenarios and learning
to effectively neglect such misalignments for classification using LDA. One more reason
contributing to the improvement is the LDA assumption of similar within-class covariance
for all the classes. In our case, indeed the within-class covariance matrices are almost the
same because the samples of all the classes in CLS are obtained using the same set of CLS
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bases and the types of projection are also the same for all the classes. The recognition
rates for all the 72 pose pairs with DMCLS40 using all the pose pairs in training set are
given in Table 5.2.

Figure 5.9: Variation of CLS, MCLS, DCLS, DMCLS and ADMCLS accuracy with latent
space dimension for all the gallery-probe pairs on FERET.

To prove the point that the improvement is actually due to handling pose errors we
also obtain the relative improvement by ADMCLS40 over CLS22 for all gallery-probe pairs.
The difference is plotted as a heat map for better visualization in the Fig.5.10a. From the
figure, it is evident that the most significant improvements are in the cases where either
the gallery or the probe pose is far away from frontal pose. In these cases, the occurrence
and severity of pose errors and incorrect fiducial locations is most likely and prominent.

5.3.2 Computational Complexity

It is obvious that learning an ADMCLS with multiple poses offers various advantages
but it also requires some additional computational cost. The computational bottleneck of
the ADMCLS framework is the solution of the generalized eigen-value problem in (2.5).
The complete generalized eigen-value decomposition of a pair of N × N square matrices
(A,B) is O(N3) but we only need the leading k eigen-vectors. Therefore, the cost comes
down to O(kN2). In our case, N =

∑
mDm where, Dm is the dimension of the mth pose

feature space (number of pixels in our experiments). For simplicity, let’s assume that the
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Table 5.2: DMCLS40/ADMCLS40 for all possible gallery-probe pairs on FERET

Pose bi bh bg bf ba be bd bc bb DMCLS40 Avg/
Angle −60o −40o −25o −10o 0o 10o 25o 40o 60o ADMCLS40 Avg

bi -/- 98/98 92/93 88/82 70/77 81/80 79/80 76/69 70/63 81.75/80.25
bh 97/97 -/- 99/99 94/94 80/84 90/87 79/77 71/70 62/60 84.00/83.50
bg 95/96 97/99 -/- 100/100 91/92 98/97 90/92 78/76 68/68 89.63/90.00
bf 83/91 93/95 96/99 -/- 93/97 97/99 95/95 85/84 73/71 89.38/91.37
ba 75/79 77/85 89/94 91/96 -/- 90/95 87/94 81/82 67/70 82.13/86.38
be 86/83 91/88 96/96 98/99 90/99 -/- 99/100 97 84 92.50/93.25
bd 79/78 84/83 90/90 91/95 90/89 98/98 -/- 98 84/86 89.25/89.63
bc 75/70 73/67 77/73 82/79 80/80 92/94 97/97 -/- 95/96 83.88/82.00
bb 71/70 66/60 67/62 67/67 64/65 81/82 82/84 95/95 -/- 74.13/73.12

dimension of each pose feature space is equal to a constant D. Therefore, N = MD, where
M is the number of coupled poses. Hence, the computational complexity as a function of
the number of coupled poses M and the dimension of feature space is O(kD2M2).

5.4 Experimental Analysis

In this section we provide the rank-1 indentification rates obtained on CMU PIE,
FERET and MultiPIE using best parameters settings and compare our results with prior
work on the same datasets. Please note that, CCA is used as the learning model for all the
methods using more than two poses in training set, for the reasons explained in previous
sections.

5.4.1 Training and Testing Protocol

Like any other learning based approach we require training data to learn the model
parameters. We assume access to a training data that has multiple images of a person
under different poses and ground-truth poses of training as well as testing faces. Although
fiducial points can be used for a better estimation of pose, we use the ground-truth poses
for a fair comparison with previous approaches. Moreover, automatic pose estimation
algorithms and fiducial detectors always have some error. Therefore, working with small
pose errors reflects performance with automatic pose or fiducial detector. CMU PIE,
FERET and MultiPIE have multiple images of a person under a fixed set of poses. Hence,
we use some part of the data as training and the rest as testing. We also need to align the
faces under different poses which requires fiducial landmark points. In the training phase,
we obtain the projectors for all the possible gallery/probe pose pairs for the required
framework i.e. ADMCLS, DMCLS etc. At testing time, we assume that the gallery and
probe poses are known and use appropriate projectors for projection followed by matching.
For testing purpose we always project the images on the same pose projector as per as the
ground-truth poses. For a completely automatic face recognition system, pose and fiducial
landmarks should be obtained automatically. However, for experimentation purposes, we
assume them to be known beforehand, a common practice followed in much previous work
[91, 92, 65, 53, 35, 5, 78, 64, 107, 66]. Prima facie, it may look like a serious limitation but
research and commercial systems have shown impressive performance in automatic pose
and fiducial determination [9, 15] that can be used in conjunction with our approach to
make an automatic pose invariant face recognition system.
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Table 5.3: comparison of ADMCLS40 with other published works on feret with frontal
gallery.

Method
Probe pose

bi bh bg bf be bd bc bb Avg
LDA [64] 18.0 55.0 78.0 95.0 90.0 78.0 48.0 24.0 60.8
LLR [64] 45.0 55.0 90.0 93.0 90.0 80.0 54.0 38.0 68.1
CCA [64] 65.0 81.0 93.0 94.0 93.0 89.0 80.0 65.0 82.5
Stack [5] 40.0 67.5 88.5 96.5 94.5 86.0 62.5 38.0 71.7

Yamada [53] 8.5 32.5 74.0 88.0 83.0 54.0 23.5 6.5 46.3
Ridge+Int [65] 67.0 77.0 90.0 91.0 92.0 89.0 78.0 69.0 81.6

DMCLS40 75.0 77.0 89.0 91.0 90.0 87.0 81.0 67.0 82.1
ADMCLS40 79.0 85.0 94.0 96.0 95.0 90.0 82.0 70.0 86.4
3DMM [11] 90.7 95.4 96.4 97.4 99.5 96.9 95.4 94.8 95.8

Ridge+Gab [65] 87.0 96.0 99.0 98.0 96.0 96.0 91.0 78.0 92.6
3DMM-LGBP [6] – 90.5 98.0 98.5 97.5 97.0 91.9 – 95.6
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(a) FERET improvement map

(b) MultiPIE improvement map

Figure 5.10: Improvement map for (a) using ADMCLS40 over CCA20 for FERET and (b)
using ADMCLS25 over CCA18 for MultiPIE. The original accuracies were all between 0
(0%) and 1 (100%). It is evident from the two maps that the amount of improvement is
more in FERET as compared to MultiPIE. Also, the improvement is more when either
the gallery or probe pose is far from the frontal view.
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Table 5.4: MultiPIE accuracy for all possible 210 gallery-probe pairs using ADMCLS25 with 237 testing subjects. The duplet below the
pose name indicates the horizontal, vertical angle i.e. 45,15 means 45o horizontal and 15o vertical angle.

Prb→ 110 120 090 081 080 130 140 051 050 041 190 191 200 010 240
Avg

Gal↓ -90,0 -75,0 -60,0 -45,45, -45,0 -30,0 -15,0 0,0 15,0 30,0 45,0 45,45 60,0 75,0 90,0
110 -/- 76.4 65.8 34.6 48.5 37.6 33.3 27.4 21.9 31.6 31.2 24.9 35.9 49.4 43.9 37.5
120 78.5 -/- 81.9 48.5 68.8 57.8 54.9 43.9 42.2 44.7 44.7 27.4 59.1 65.0 50.2 51.2
090 67.1 81.9 -/- 59.5 80.2 72.2 51.9 46.0 46.8 54.0 55.3 32.1 64.1 60.8 43.0 54.3
081 38.0 49.8 57.8 -/- 78.5 82.3 73.8 55.7 48.9 52.3 57.0 63.7 49.8 40.1 28.7 51.8
080 55.3 70.9 78.9 76.8 -/- 97.9 93.2 85.7 84.8 82.7 84.0 54.0 72.6 59.9 40.1 69.1
130 39.7 58.6 72.6 84.4 97.0 -/- 96.2 93.7 92.8 90.7 86.9 60.8 68.4 54.9 33.8 68.7
140 30.4 52.7 57.0 73.8 90.7 97.5 -/- 98.7 95.4 92.8 89.0 60.8 64.1 45.6 24.1 64.8
051 27.0 42.2 48.5 58.6 84.8 96.6 99.2 -/- 99.2 96.2 89.0 65.0 57.4 47.7 27.8 62.6
050 25.7 40.9 47.7 54.0 85.2 95.4 97.5 98.7 -/- 98.7 94.9 74.7 75.1 59.5 35.9 65.6
041 26.6 50.2 51.9 52.3 81.0 93.7 95.8 94.9 98.7 -/- 96.6 88.6 80.6 72.6 43.9 68.5
190 27.4 50.2 51.9 53.2 78.9 86.1 89.9 87.8 94.5 97.5 -/- 85.7 90.3 70.0 53.6 67.8
191 22.8 30.8 30.8 65.0 49.8 65.8 60.8 62.4 70.0 87.3 83.1 -/- 77.2 63.3 39.2 53.9
200 36.3 59.1 65.8 52.3 72.2 67.9 63.7 58.6 72.2 84.4 87.3 81.0 -/- 97.0 75.1 64.9
010 44.7 63.7 61.6 43.0 64.6 53.2 47.7 54.0 63.7 77.6 75.5 65.4 95.4 -/- 94.9 60.3
240 43.5 52.3 43.0 26.6 41.8 31.6 28.3 22.4 34.6 45.6 51.1 38.8 79.7 93.2 -/- 42.2

65



5.4.2 FERET

This dataset contains 200 subjects in 9 different poses spanning ±60o view-point. All
the images for one person along with the pose name are shown in Fig.5.5. Pre-processing
steps similar to CMU PIE were used except that the final facial region crops are of size
50×40 pixels. Subjects 1 to 100 were chosen as training subjects and 101 to 200 as testing.
Since, there are 9 poses, we have 72 different gallery-probe pairs.

We report the accuracy for FERET data set using two different variants of DMCLS
to bring out the fact that using more than the required number of poses in training may
lead to poor performance. We report DMCLS based accuracy which uses all the 9 poses
in the training and adjacent projection based LDA in latent space and ADMCLS based
accuracy which uses a subset of poses for training. The number of CLS dimension is
indicated as the superscript and CCA is used as the learning model. Table 5.2 reports the
accuracy for all possible gallery-probe pairs using the two different variant i.e. DMCLS
and ADMCLS. The table clearly indicates the advantage of using ADMCLS over DMCLS
when near frontal poses are used as gallery pose. It also indicates that when extreme poses
are gallery then using DMCLS is slightly better than ADMCLS, a possible explanation is
that extreme poses require more regularization than flexibility. We report the accuracy ob-
tained using 3DMM [11] approach to indicate the performance difference between 2D and
3D approaches. The difference in performance between 2D and 3D approaches supports
the fact that 3D information improves performance in pose invariant face recognition.

The results of [65] are shown under two settings: with and without Gabor fea-
tures. The authors have extracted Gabor features at 5 hand annotated fiducial locations
using 5 scales and 8 orientations resulting in 200 local classifiers which they fuse using
the technique given in [53]. The method involves modeling the conditional probability
of the Gabor response gi of classifier i for same and different identities i.e. P (gi|same)
and P (gi|dif) respectively. Then, Bayes Rule is used to obtain posteriors P (same|gi) and
P (dif |gi) and the probability of final classification is the sum of the posterior probabil-
ities. The inclusion of Gabor features has improved the accuracy dramatically because
they are more discriminative than intensity features. Moreover, using Gabor features at
hand-annotated fiducial landmarks is providing manual correspondence to the learning
method. Combining Gabor features with probabilistic fusion is interesting and worth try-
ing within our framework. Surprisingly, for CMU PIE our simple PLS based approach
even outperformed the Gabor feature based approach.

5.4.3 Multi PIE

MultiPIE is an extension of CMU PIE data set containing more subjects and more
pose-variation. It has a total 337 subjects photographed in 4 different sessions, under
15 different poses, 20 illumination conditions and 4 different expressions. We only took
neutral expression and frontal lighting images for our experiments. All the pre-processing
steps are the same as in CMU PIE except that the cropped facial region is 40× 40 pixels.
We took subject ID 1 to 100 as training and 101 to 346 as testing, resulting in a total of
237 testing subjects. For MultiPIE we could not obtain MCLS using all the poses in the
training set due to memory problem associated with large eigen-value problem. Hence, we
adopt the ADMCLS approach to select a subset of training poses and report the accuracy
in Table 5.4. The MultiPIE data is relatively new and not many results are reported for
pose invariant face recognition on it. We show our results along with the results of other
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Figure 5.11: Comparison of ADMCLS25 with other approaches on MultiPIE dataset with
frontal gallery.

works in Fig.5.11. It should be noted that we are reporting the results of [65] with pixels
intensities as feature.

Interestingly, our 2D approach is better than the 3D GEM [90] approach. We also
observe that our approach is comparable to the approach in [65] for small pose differences
but the difference increases with the pose angle. This might be due to the fact they report
their result under frontal gallery and non-frontal probe only, giving them the opportunity
to better tune the parameter but we report the results under general pose variation and
do not optimize our method for frontal gallery and non-frontal pose. Moreover, we have
outperformed [65] on both CMU PIE and FERET by large margins without optimizing
for the case of frontal gallery images.

5.5 Conclusion and Discussion

We have proposed a generic Discriminative Coupled Latent Subspace based method
for pose invariant face recognition. The learned set of coupled subspaces projects the
images of the same person under different poses to close locations in the latent space,
making recognition possible using a simple 1-NN or discriminative learning. We have
discussed the conditions for such projection directions to exist and perform accurately.
We further exploit the property of CCA to couple more than two subspaces corresponding
to different poses and show that judiciously using multiple poses to learn the coupled
subspace performs better than using just two poses. That is because information from
multiple views is more consistent and robust to noise (pose errors and incorrect fiducials)
than just two views. Multiple coupled subspaces also provide us with the opportunity to
generate multiple samples of a person in the latent subspace which can be used with LDA
to encode discriminative information.

We have provided empirical evidence that pose-invariant-face recognition suffers
from pose errors even under controlled settings, leading to poor performance. We tackle
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this problem by artificially simulating pose error scenarios via adjacent-pose-latent projec-
tion. The latent projections obtained by projecting the images of a person under different
poses on the same and adjacent pose projectors are used with LDA to effectively avoid
the drop in performance due to small pose errors. The proposed approach has achieved
state-of-the-art results on CMU PIE and FERET when four fiducial points are used with
simple intensity features and comparable results on MultiPIE.

We experiment with pose variation only and illumination is considered to be con-
stant. However, owing to the independent block structure of the overall framework, it can
be easily extended to handle lighting variations by using some illumination invariant rep-
resentation such as: The Self Quotient Image [134], Oriented gradient [46] etc... Moreover,
Gabor features extracted at specific fiducial locations can be used to improve the perfor-
mance further as in [65, 91, 92, 66, 6]. The coupled subspaces are learned in generative
manner and only after projection on these subspaces, label information is used with LDA.
The method could be improved by learning a discriminative coupled subspace directly.
Learning such a subspace and using it for pose and lighting invariant face recognition is
one of our future endeavors.
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Chapter 6

Generalized Multiview Analysis

The previous chapter discussed the use of a two-stage discriminative model for pose-
invariant face recognition, however, it did not tackle the problem of pose and lighting
variation simultaneously. This chapter presents a general multi-view (view has the same
meaning as modality throughout this chapter) content extraction approach that we call
Generalized Multiview Analysis or GMA. It affords simultaneous learning of common
representation and discriminative projections. It has all the desirable properties required
for cross-view classification and retrieval: it is supervised, it allows generalization to unseen
classes, it is multi-view and kernelizable, it affords an efficient eigenvalue based solution
and is applicable to any domain. GMA exploits the fact that most popular supervised
and unsupervised feature extraction techniques are the solution of a special form of a
quadratic constrained quadratic program (QCQP), which can be solved efficiently as a
generalized eigenvalue problem. GMA solves a joint, relaxed QCQP over different feature
spaces to obtain a single (non)linear subspace. Intuitively, GMA is a supervised extension
of Canonical Correlational Analysis (CCA), which is useful for cross-view classification
and retrieval. The proposed approach is general and has the potential to replace CCA
whenever classification or retrieval is the purpose and label information is available. We
outperform previous approaches for text-image retrieval on Pascal and Wiki text-image
data. We report state-of-the-art results for pose and lighting invariant face recognition on
the MultiPIE face dataset, significantly outperforming other approaches.

6.1 Motivation

The motivation comes from the fact that utilization of label information while learn-
ing the common subspace can improve the performance over unsupervised learning when
the task is classification. This can be visualized by looking at the toy example in Fig
6.1. It’s a simple pictorial demonstration of various multi-view approaches along with
the proposed GMA and an ideal approach. Shapes represent classes, the same color and
shape indicates paired samples in different views, dashed outline shapes (triangles) are
the unseen classes (not used in training). Ideally, we would like different classes (seen and
unseen) to be well separated with all the same-class samples collapse to a point. Unsuper-
vised approaches like CCA, PLS and BLM try to unite paired samples only. Supervised
approaches, like SVM-2K and HMFDA unite same-class samples and separate different
classes but they cannot generalize to unseen classes. Our proposed approach GMA, unites
same class samples, separates different classes and generalizes to unseen classes.

6.2 Related work

As discussed earlier in Sec. 2.3, the popular approaches to learn common latent
subspace are Canonical Correlational Analysis (CCA) [39, 38], Bilinear Model (BLM)
[128] and Partial Least Squares (PLS) [99, 39, 109]. Specifically, CCA has been the
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CCA/PLS/BLM

VIEW 2

PROPOSED GMA VIEW 1

SVM-2K/HMFDA IDEAL

DIFFERENT LATENT SPACESORIGINAL SPACE

Figure 6.1: A toy example to illustrate the requirements in the common subspace for
classification. (Figure best viewed in color)

workhorse for learning a common subspace which is evident from its wide-spread use in
vision [39, 107, 109], cross-lingual retrieval[38], cross-media retrieval [51, 95], etc.. Un-
fortunately, the above mentioned approaches only care about pair-wise closeness in the
common subspace so they are not well suited for classification/retrieval. Especially, when
within-class variance is large, these methods are bound to perform poorly for classifica-
tion/retrieval because classification and retrieval both require that within-class samples
are united. Moreover, the costly label information that might be available during train-
ing is unharnessed. Locality preserving CCA (LPCCA) was introduced to capture the
non-linearity present in the data by forcing nearby points in the original feature space
to be close in the common subspace as well [124]. However, they did not use the label
information and we will see that it is a special instance of our general model. Discrimina-
tive CCA (DCCA) uses multi-dimensional labels as the second view, which is just single
view scenario with multidimensional labels [123]. CCA is used to match sets of images
by maximizing within-set correlation and minimizing between set correlation, which is
again a single view scenario with set membership information [55]. We are interested in
scenarios in which the data has two different views, along with label information.

A number of supervised approaches to multi-view analysis have also been proposed.
Multi-view Fisher Discriminant Analysis (MFDA) learns classifiers in different views by
maximizing the agreement between the predicted labels of these classifiers[25]. But, MFDA
can only be used for two-class problems. To cope with this, [20] extended MFDA to a
multi-class scenario using a Hierarchical clustering approach. In [29], the authors obtained
a multi-view version of SVM by constraining the one-dimensional outputs of individual
SVM’s to be equal. These approaches however, use multi-view data to learn classifiers in
each view that are better than the classifiers learned using single-view data only. With
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some non-trivial adaptation they can be used for cross-view classification and retrieval,
but originally the authors have used them as single-view classifiers trained with multi-view
data. The prime objective of this paper is cross-view classification and retrieval. Most
importantly, none of MFDA, SVM-2K or HMFDA can classify samples from unseen classes,
which is required in many real-world applications such as face recognition, cross-view
retrieval and domain adaptation. For example, practical face recognition often requires
a classifier that can compare images of unseen subjects (not used in training) at testing
time, while cross-view retrieval also requires retrieval of unseen categories.

Finally, some domain-specific approaches use domain information to learn discrimi-
native cross-view classifiers. Lighting invariant features are used in [65]. Synthetic virtual
images in new pose and lighting conditions are used to train LDA for pose and lighting
invariant face recognition in [107]. Geometry assisted hashing is used to counter pose
and lighting change in [141]. Use of logistic regression with topic modeling features to
obtain semantically meaningful features is used in [95] to extract text and image features
for cross-media retrieval. Unfortunately, it might not work for unseen classes or when
topic modeling is not effective e.g. face recognition. These approaches are customized to
a particular task and such domain information may not be available in general.

Based on the above discussion we conclude that an ideal cross-view classification
approach must be

• Supervised(S): Use label information for class based discrimination.

• Generalizable (G): Able to analyze new classes that are not used during training.

• Multi-view (MV): Applicable to cross-view classification and retrieval, rather than
just using multi-view data for learning.

• Efficient (E): Have an efficiently computed optimal solution.

• Kernelizable (K): Have a kernel extension to model non-linearities.

• Domain-Independent(DI): Applicable to general problems.

Table 6.1 lists some popular approaches and we can see that none of the previous
approaches has all the desired properties but the proposed approach has all of them.

6.3 Proposed Approach

Our approach is motivated by the fact that popular supervised and unsupervised
feature extraction techniques can be cast as a special form of a quadratically constrained
quadratic program (QCQP). Specifically, the optimal projection direction v̂ can be ob-
tained as

v̂ = argmax
v 6=0

vTAv

s.t. vTBv = 1 or vTv = 1
(6.1)

Here, A is some symmetric square matrix and B is a square symmetric Definite Matrix i.e.
no eigenvalue of B is equal to 0. Methods that fit this equation include PCA [82, 138], LDA
[8, 138], LPP [43, 138], CCA, and MFA [138]. So, we first extend Eqn. 6.1 to a multi-view
scenario and then use it with different (A,B) combinations to obtain different common
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Table 6.1: Properties of popular approaches for classification and feature extraction. Note
that only the proposed GMA approach has all the required properties. S: Supervised, G:
Generalizable, MV: Multi-View, E: Efficient, K: Kernelizable, DI: Domain-Independent
(X indicates presence of property).

Method
Properties

S G MV E K DI
PCA [82] X X X X
LDA [8] X X X X X

MFA [138] X X X X X
LPP [43] X X X X X

BLM [128] X X X X X
CCA [39] X X X X X

PLS [39, 99] X X X X X
SVM-2K [29] X X X X
MFDA [25] X X X X

HMFDA [20] X X X X
LPCCA [124] X X X X X
DCCA [123] X X X X X
SetCCA [55] X X X X

GMA X X X X X X

subspaces with desired properties. For ease of understanding, we derive the results for
two views and later extend it to multiple views.

6.3.1 Generalized Multiview Analysis

We now present a generalization of this framework to a multi-view setting. We first
extend Eqn. 6.1 to a multi-view setting in Eqn. 6.2, combining two optimization problems
without yet coupling them. Then, in Eqn. 6.6 we constrain the samples from the same
content to project to similar locations in the latent space.

A joint optimization of two objective functions over two different vector spaces can
be written as

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2

s.t. vT
1 B1v1 = vT

2 B2v2 = 1
(6.2)

The positive term µ is to bring a balance between the two objectives, because if max vT
1 A1v1 �

max vT
2 A2v2, the joint objective will be biased towards optimizing v1 and vice-versa.

Please note that the optimization problem from Eqn. 6.2 can be solved as a generalized
eigen-value problem to obtain v1 and v2, but in order to facilitate a stream-lined flow of
building up the multi-view extension we couple the constraints with γ = tr(B1)

tr(B2)
to obtain

a relaxed version of the problem with a single constraint as

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2

s.t. vT
1 B1v1 + γvT

2 B2v2 = 1
(6.3)
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When v̂T
1 B1v̂1 = v̂T

2 B2v̂2, the constraints in Eqn. 6.2 and Eqn. 6.3 are equivalent.
When v̂T

1 B1v̂1 6= v̂T
2 B2v̂2, the constraint in Eqn. 6.3 is an approximation of the constraints

in Eqn. 6.2. We empirically observed that parameter γ did not have much effect on overall
performance.

Intuitively, the resulting problem in Eqn. 6.3 is solving the relaxed version of the
original optimization problem in two different vector spaces (views). To facilitate under-
standing, let’s consider a multi-view extension of LDA. In this case, Ai = Sbi, Bi = Swi

for i = 1, 2 where Sbi and Swi are between and within class scatter matrices and v1 and v2

are the projection directions in view 1 and 2 respectively. Eqn. 6.3 is jointly solving for
LDA projection directions v̂1 and v̂2 to maximize between class separation and minimize
within class variation in each view.

Now we introduce a constraint to couple these projection directions. For cross-view
classification we require that the projections (ai1 and ai2) of the exemplars (zi1 and zi2) of
the ith content in different views should be close to each other in the projected latent
space. ai1 and ai2 are defined as

ai1 = vT
1 zi1 and ai2 = vT

2 zi2 (6.4)

We chose to maximize covariance between the exemplars from different views to obtain
directions to achieve closeness between multi-view samples of the same class. This leads
to a closed form solution and better preserves the between class variation as argued in
[109]

[v̂1, v̂2] = argmax
v1,v2

vT
1 Z1Z

T
2 v2 (6.5)

Here, Zi’s are the matrices constructed such that ith column in both Z1 and Z2 contains
exemplars corresponding to the same content. The exemplars can be chosen to suit the
problem and feature extraction techniques. For instance, LDA represents a class as the
mean of class samples, so class mean can be used as the exemplar.

Without any constraints on v1 and v2 the objective in Eqn. 6.5 can be increased
indefinitely. But we couple this objective with the constrained objective of Eqn. 6.3 to get
the final constrained objective

[v̂1, v̂2] = argmax
v1,v2

vT
1 A1v1 + µvT

2 A2v2 + 2αvT
1 Z1Z

T
2 v2

s.t. vT
1 B1v1 + γvT

2 B2v2 = 1
(6.6)

Projection directions v1 and v2 will tend to balance the original feature extraction opti-
mization with latent space covariance between exemplars that represent the same content.
The vector form of Eqn. 6.6 is[

v̂1

v̂2

]
= argmax

v1,v2

[
v1

v2

]T [
A1 αZ1Z

T
2

αZ2Z
T
1 µA2

] [
v1

v2

]
s.t.

[
vT
1 vT

2

] [ B1 0
0 γB2

] [
v1

v2

]
= 1

(6.7)
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Equivalently,

v̂ = argmax
v

vT Ãv

s.t. vT B̃v = 1

⇒ Ãv̂ = λB̃v̂

(6.8)

Here, v̂T = [v̂T
1 v̂T

2 ] and matrices Ã and B̃ are the square symmetric matrices in Eqn. 6.7.
The final objective function is a standard generalized eigenvalue problem that can

be solved using any eigen-solver. It will produce real eigenvectors and eigenvalues because
both Ã and B̃ are square symmetric matrices. When data dimensions are greater than
the number of classes, B̃ could be positive semi-definite and the problem becomes ill-
posed. We can add a regularizer to the B̃ or project the original feature vectors to a lower
dimensional subspace to handle this.

6.3.2 Multiview Extensions

There are several unsupervised and supervised feature extraction techniques with
different properties in a single view scenario such as PCA [82], LDA [8], LPP [43], NPE
[42], MFA [138] and their kernel versions. On the multi-view side we are already familiar
with the most popular unsupervised feature extraction techniques, namely CCA, BLM and
PLS. We showed in the last subsection that a feature extraction technique in the form of a
QCQP (Eqn. 6.1) can be extended to a multi-view scenario using our framework. Plugging
in different (A,B) pairs for different feature extraction techniques in our framework we
can obtain multi-view extensions of PCA [82], LDA [8], LPP [43], NPE [42] and MFA
[138]. We also show the relation between CCA, BLM and PLS and Generalized Multiview
PCA or GMPCA as specific instances of our general framework. For further discussion,
we use Xi to denote the data matrix with columns that are data samples in view i with
the mean subtracted.

6.3.2.1 CCA, BLM, PLS and GMPCA

PCA in the ith view is the following eigen-value problem

XiWiX
T
i vi = λvi (6.9)

Wi = Ii/Ni with Ni equal to number of samples and Ii is the identity matrix in the ith

view. With different Ai, Bi and Zi’s in Eqn. 6.7 we get

• GMPCA Ai = XiWiX
T
i , Bi = I, Zi = Xi

• CCA Ai = 0, Bi = XiWiX
T
i and Zi = Xi.

• BLM Ai = XiWiX
T
i , Bi = I and Zi = Xi i.e. same as GMPCA.

• PLS Ai = 0, Bi = I and Zi = Xi. The difference from our approach is that in PLS
eigen-vectors are found using asymmetric deflation of Xi’s [39].

So, we see that all four approaches are related to each other under the proposed GMA
framework.
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6.3.2.2 Generalized Multiview LDA or GMLDA

LDA in the ith view is the following eigenvalue problem

XiWiX
T
i vi = λXiDiX

T
i vi (6.10)

Wi and Di are Ni × Ni matrices with W kl
i = 1/N c

i if Xk
i and X l

i belong to class c, 0
otherwise, N c

i is the number of samples for class c in view i and Di = I−Wi [138, 43]. So,
Ai = XiWiX

T
i , Bi = XiDiX

T
i in Eqn. 6.7. For Zi we have different choices; we can align

corresponding samples giving Zi = Xi, or class means, giving Zi = Mi, with Mi defined
as the matrix with columns that are class means. We choose class mean as exemplars
because LDA tries to collapse all the class samples to the class mean. So if we align class
means in different views we expect the samples to be aligned. Under some situations the
within-class variation may not be a unimodal Gaussians. In such cases, samples from the
same class can be clustered, and the class can be represented by the cluster centers as
exemplars.

6.3.2.3 Generalized Multiview Marginal Fisher Analysis

LDA assumes a Gaussian class distribution, a condition that is often violated in
real-world problems. Marginal Fisher Analysis, or MFA, is a technique that does not
make this assumption, and instead tries to separate different- and compress same-class
samples in the feature space [138]. It leads to following eigenvalue problem

Xi(Sbi −Wbi)X
T
i v = λXi(Swi −Wwi)X

T
i v (6.11)

here, Skk
(b/w)i =

∑
kl,k 6=lW

kl
(b/w)i. The within class compression or intrinsic graph for the

ith view is defined as

W kl
wi =

{
1 : k ∈ Rk1

i (l) or l ∈ Rk1
i (k)

0 : otherwise
(6.12)

Here, Rk1
i (l) indicates the index set of the k1 nearest neighbors of the sample xli in the

same class. The between class separation or penalty graph for ith view is defined as

W kl
bi =

{
1 : (k, l) ∈ P k2

i (cl) or (k, l) ∈ P k2
i (ck)

0 : otherwise
(6.13)

Here, P k2
i (l) is a set of data pairs that are the k2 nearest pairs among the set {(k, l) :

k and l are not in the same class}. Hence, Ai = Xi(Sbi−Wbi)X
T
i , Bi = Xi(Swi−Wwi)X

T
i

and Zi = Xi. Similarly, multi-view extensions of LPP [43](the same as LPCCA [124]) and
NPE [42] can be derived.

6.3.3 Kernel GMA

Kernel GMA involves mapping to a non-linear space and then carrying out GMA in
that mapped space to obtain projection directions νi for the ith view. So, we replace Xi

with Φi = [φ(x1i ), φ(x2i ) . . . φ(xNi
i )] and observe that νi = Φiτi. The exemplars in kernel

space are the columns of Ni × z matrix Zi = ΦiGi, Ni = # samples in view i), z (same
for each view) is the number of exemplars in each view, and Gi is an appropriately chosen
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Ni×z matrix. For example - Gi is the Ni×Ni identity matrix if all the samples are chosen
to be exemplars and Ni × C matrix with Gr,c

i = 1/N c
i if the rth sample belongs to class

c, C = # of classes and N c
i = # of samples in class c. The resulting eigenvalue problem

Ãτ = λB̃τ will give N =
∑V

i=1Ni dimensional eigenvectors τ , which can be broken down
into V parts to obtain the dual form of the eigenvectors for V views. These dual vectors
will be used to project test sample tji into the common non-linear latent space as

tjcommon =

Ni∑
n=1

ϕ(tji .x
n
i ).τni = τTi φ(tji ) (6.14)

Here, φ(tji ) is an Ni× 1 vector of kernel evaluations of tji with all the data samples in the
ith view.

6.3.4 More than two views

For more than two views simple algebra tells that we need to set Ã and B̃ as

Ã =


A1 λ12Z1Z

T
2 · · · λ1nZ1Z

T
n

λ12Z
T
1 Z2 µ2A2 · · · λ2nZ2Z

T
n

...
...

. . .
...

λ1nZ
T
n Z1 λ2nZ

T
n Z2 · · · µnAn

 B̃ =


B1 0 · · · 0
0 γ2B2 · · · 0
...

...
. . .

...
0 0 · · · γnBn

 (6.15)

6.4 Experimental Results

In this section we test the proposed GMA approach on problems for cross-view
classification with available class labels, showing improvement over other approaches.

6.4.1 Pose and Lighting Invariant Face Recognition

This is a problem with simultaneous cross view (pose) and within-class (lighting)
variation. We use the MultiPIE [37] face dataset, which has 337 subjects’ face images
taken across 15 different poses, 20 illuminations, 6 expressions and 4 different sessions.
We have done experiments using 5 poses ranging from frontal to profile (75◦) at an interval
of 15◦. We have considered 18 lighting conditions for our experiments (illuminations 1 to
18). All the images are cropped (40 by 40 pixels) and aligned using 4 hand annotated
fiducial points (eyes, nose tip and mouth) and affine transformations.

In the training phase, multiple images of a person (under different lighting condi-
tions) in two different poses p1 and p2 are used to learn pairs of pose-specific projection
directions v̂1 and v̂2, respectively. At testing time, gallery and probe images are pro-
jected using learned pairs of pose-specific projection directions i.e. a face image in pose
p is projected on v̂p. 1-NN matching is done in the feature space using the normalized
correlation score as a metric. We use two different modes for our recognition experiments.
Mode-1 matches the conditions in a number of prior experiments and Mode-2 highlights
our ability to generalize to unseen classes that were not used to obtain the latent space
projection directions. In all our experiments, the gallery consists of a single image per
individual, taken in the frontal pose with a frontal light (illum 7); probe images come from
all poses and illuminations.
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• Mode-1 We use training images of 129 subjects from session 01 (these 129 subjects
were selected because they appear in all 4 sessions which allows future evaluation
across sessions 03 and 04) under 5 lightings (1, 4, 7, 12 and 17) and testing images
of the same subjects from session 02 under all 18 lightings.

• Mode-2 Training images of 120 subjects from session 01 (different than the one
chosen in Mode-1) under 5 lightings (1, 4, 7, 12 and 17); testing images are the same
as Mode-1 testing images.

We have used LDA and MFA with the proposed GMA approach and called the
resulting approach GMMFA and GMLDA respectively. A naive way to obtain discriminant
directions in two views is to learn a common subspace using CCA followed by LDA in the
latent space (CCA+LDA) or LDA in individual spaces followed by CCA to get a common
space (LDA+CCA). Surprisingly, neither of these approaches has been used before and we
found that even these naive approaches outperform some competitive approaches. LDA,
PCA, CCA, BLM, CCA+LDA and LDA+CCA are implemented by us. PLS, BLM and
CCA have been used before for pose invariant face recognition to achieve state-of-the-
art results on the CMU PIE dataset using PLS (code1) [109]. However, we find that with
simultaneous pose and lighting variations all three perform poorly. Performance for Gabor
[65], Local Feature Hashing or LFH [141], PittPatt [141], Sparse coding [133] are taken
directly from the papers. Since, all the implemented approaches lead to large eigenvalue
problems, we use PCA to reduce the data dimension before feeding it to any of the feature
extraction techniques. We kept the top p principal components that retained 95% of the
variance. For GMA based approaches we fix α = 10, µ = 1, γ = tr(B1)

tr(B2)
, k1 = 50, k2 = 400

(for GMMFA), and all samples are taken as exemplars for both GMMFA and GMLDA.
Parameters for MFA (k1 and k2) were selected based on the guidelines given in [138].
For simple LDA and PCA, different illumination images in gallery and probe poses are
used together to learn common projection directions. The dimension of the feature space
is selected by choosing the top k eigenvectors that contain 98% of the total eigenvalues
produced by the eigenvalue problems involved in finding projection directions. We tried
similar approaches to automatically determine the dimension for PLS based classification
but the results were very poor. So for PLS only, we did testing for all possible dimensions
and report the best accuracy. While reporting the results from [65] we have considered
results for the selected 18 illumination conditions only. PittPatt is a commercial face
recognition software and its results were taken directly from [141]. LFH uses a hashing
technique with SIFT features for face recognition and frontal, 45◦ and 90◦ in the gallery for
pose robustness in contrast to our approach in which we have used only frontal pose in the
gallery. Use of SIFT features provides some tolerance to pose, and a multi-pose gallery
makes matching possible across different poses. The results for LFH and PittPatt are
reported using the same 129 subjects from session 02 used in our testing set with gallery
images in the left illumination condition, whereas, we have used frontal illumination as
the gallery image. However, we found that using any of the 18 illuminations as gallery
with GMLDA and GMMFA resulted in negligible differences in performance compared
to those reported in Table 6.2. In [133], the authors have used a sparse representation
for simultaneous registration and recognition. They have reported results for pose and
lighting invariant face recognition for 15◦ probe pose only, under all illuminations with a
gallery of 249 subjects and reported 77.5% accuracy whereas we have used a gallery of

1http://www.cs.umd.edu/˜djacobs/pubs files/PLS Bases.m
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Table 6.2: Performance for MultiPIE pose and lighting invari-
ant face recognition in Mode-1. Some approaches from other
published works have not reported results for all pose differ-
ences; the absence is indicated by ’-’.

Method
Probe pose

Avg
15◦ 30◦ 45◦ 60◦ 75◦

PCA 15.3 5.3 6.5 3.6 2.6 6.7
PLS [109] 39.3 40.5 41.6 41.1 38.7 40.2
BLM [109] 46.5 55.1 59.9 63.6 61.8 57.4
CCA [109] 92.1 89.7 88.0 86.1 83.0 83.5

LDAa 98.0 94.2 91.7 84.9 79.0 89.5
CCA+LDA 96.4 96.0 93.6 86.2 83.6 91.2
LDA+CCA 95.9 94.9 93.6 91.3 89.9 93.1

PittPatt [141] a 94 34.0 3.0 – – –
LFH [141]a 63 58 61 41 43 53.2

Sparse [133]a 77.5 – – – – –
GMLDA 99.7 99.2 98.6 94.9 95.4 97.6
GMMFA 99.7 99.0 98.5 95.0 95.5 97.5

a Domain-dependent for cross-view classification

129 subject and report 99.7%.
The results from the experiments done under Mode-2 are shown in Table 6.3. It is

clear that GMMFA and GMLDA outperformed other approaches except [65] for large pose
differences but overall performance of the proposed GMA based approach is better than
all the domain-specific as well as generic approaches. Surprisingly, LDA performance is
better than CCA, which is not expected due to the large pose difference. This unexpected
observation indicates the importance of using label information in training. It also explains
the improvements offered by GMLDA, because GMLDA is a fusion of CCA and LDA.
Unfortunately, LDA cannot be used in cases when the data dimensions are different in
different views, for example - image-text or text-link cases.

6.4.2 Text-Image Retrieval

Text-image retrieval is yet another cross-view problem that requires a common
representation. We show results on two publicly available datasets - Pascal VOC 2007
[51, 50, 27] and Wiki Text-Image data [95]. Pascal data consists of 5011/4952(train-
ing/testing) image-tag pairs collected by the authors in [51, 50, 27] and it has 20 different
classes. We used the publicly available features 2 consisting of histograms of bag-of-
visual-words, GIST and color for images and relative and absolute tag ranks for text with
a Chi-square kernel (see [51] for details). Some images are multi-labeled so we selected
images with only one object from the training and testing set, which resulted in 2808
training and 2841 testing data. The category of the object is used as the content so we
have a 20 class problem. A second data set, Wiki Text-image, consists of 2173/693(train-
ing/testing) image-text pairs with 10 different classes. We have used the same data as
supplied by the authors3. It has a 10 dimensional latent Dirichlet allocation model [13]

2http://www.cs.utexas.edu/˜grauman/research/datasets.html
3http://www.svcl.ucsd.edu/projects/crossmodal/
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Table 6.3: Performance for MultiPIE pose and lighting
invariant face recognition in Mode-2. Some approaches
from other published works have not reported results for
all pose differences; the absence is indicated by ’-’.

Method
Probe pose

Avg
15◦ 30◦ 45◦ 60◦ 75◦

PCA 14.0 4.9 6.1 3.3 2.4 6.2
PLS [109] 29.0 26.2 23.3 17.3 12.4 21.6
BLM [109] 53.9 44.6 34.3 22.5 20.8 35.3
CCA [109] 79.5 62.2 46.1 19.5 14.4 44.3

LDAa 88.5 68.9 56.2 21.7 21.0 51.3
CCA+LDA 79.5 58.0 44.6 21.0 20.1 44.6
LDA+CCA 74.9 54.7 37.8 13.4 11.0 38.4
Gabor [65]a 77.9 74.5 58.1 45.2 31.0 57.4
GMLDA 92.6 80.9 64.4 32.3 28.4 59.7
GMMFA 92.7 81.1 64.7 32.6 28.6 59.9

a Domain-dependent for cross-view classification

Table 6.4: mAP scores for image and text query on Wiki text-image data.

Query
Others Proposed

PLS BLM CCA SM SCM GMMFA GMLDA
Image 0.207 0.237 0.182 0.225 0.277 0.264 0.272
Text 0.192 0.144 0.209 0.223 0.226 0.231 0.232

Average 0.199 0.191 0.196 0.224 0.252 0.248 0.253

Table 6.5: mAP scores on Pascal data.

Query
Others Proposed

KPLS KCCA KGMMFA KGMLDA
Image 0.279 0.298 0.421 0.427
Text 0.232 0.269 0.328 0.339

Average 0.256 0.283 0.375 0.383

based text features and 128 dimensional SIFT histogram image features (see [95] for more
details). Both data sets have class labels that can be leveraged in our proposed GMA
framework to achieve within-class invariance. The task is to retrieve images/text from a
database for a given query text/image. A correct retrieval is one that belongs to the same
class as the query. So we want more and more correct matches in the top k documents
for a better retrieval.

Semantic Correlation Matching (SCM) with a linear kernel [95] has shown state-
of-the-art performance for Wiki data, so we have compared the proposed GMLDA and
GMMFA with CCA, PLS, BLM, SCM and Semantic Matching (SM) [95]. SM corresponds
to using Logistic regression in the image and text feature space to extract semantically
similar feature to facilitate better matching. SCM refers to the use of Logistic regression
in the space of CCA projected coefficients (a two-stage learning process). Results for
SM and SCM are directly taken from the paper [95]. The authors in [51] have shown the
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advantage of using a Chi-square kernel over a linear mapping so we have used a Chi-square
kernel for Pascal data for all the methods resulting in KernelCCA (KCCA), KernelPLS
(KPLS), KernelGMLDA (KGMLDA) and KernelGMMFA (KGMMFA). For GMA based

approaches we fix α = 100, µ = 1, γ = tr(B1)
tr(B2)

, k1 = 500, k2 = 2200 (for GMMFA) and all
the samples belonging to a class are taken as exemplars for both GMMFA and GMLDA.
We have kept same number of dimensions for all the methods as mentioned in [95] and [51]
i.e. 10 for Wiki and 20 for Pascal. Precision at 11 different recall levels {0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} is used to evaluate the performance. The Mean Average
Precision (mAP) scores= 1

11

∑r=1
r=0 Precisionr for text and image query for Wiki and Pascal

data are listed in Table3 and Table4, respectively. It is evident that GMLDA and GMMFA
outperform CCA, PLS, BLM and SM on Wiki data. Surprisingly, our generic single-stage
approach’s performance is similar to the domain specific two-stage SCM approach. We
also outperformed KCCA and KPLS on Pascal data. The improvement is more for Pascal
data because there are more classes (20 vs 10) and more testing samples (2841 vs 693)
as compared to Wiki data, which requires better union of within-class samples for better
performance.

6.5 Conclusion

We have proposed a novel generic framework for multi-view feature extraction by ex-
tending several unsupervised and supervised feature extraction techniques to their multi-
view counterpart. We call the proposed framework Generalized Multiview Analysis or
GMA. It is a first step towards unified multi-view feature extraction. The proposed ap-
proach is general and kernelizable, simultaneously learns multi-view projection directions
and generalizes across unseen classes. We have shown that any feature extraction tech-
nique in the form of a generalized eigenvalue problem can be extended to its multi-view
counterpart and we have used GMA to obtain multi-view counterparts of PCA, LDA,
LPP, NPE and MFA. We have also unified CCA, PLS, BLM as specific instances of Gen-
eralized Multiview PCA. Using LDA and MFA in our framework we have significantly
outperformed all generic and most of the domain specific approaches for pose and lighting
invariant face recognition. Using the same general framework we have also shown state-of-
the-art results on text-image retrieval on Wiki data and outperformed generic approaches
on Pascal data. GMA has outperformed CCA for all tasks when label information is
available therefore, proving to be a superior alternative for CCA under similar conditions.
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Chapter 7

Concluding Remarks and Future Directions

This dissertation studies the problem where data can occur in multiple modalities
and it is required to extract and match task-dependent content across modalities. We
work with the postulate that humans extract and store task-dependent content from mul-
tiple modalities as a common representation that affords seamless cross-modal content
matching. The primary contribution of this dissertation lies in developing novel algo-
rithms for visual content extraction and cross-modal content matching. These algorithms
can be used while dealing with pose-invariant face recognition, text-image matching and
multi-modal biometrics. Some specific contributions of this dissertation are -

1. Development of a novel recursive neural network for semantic segmentation of im-
ages, termed Recursive Context Propagation Network or RCPN [112, 111].

2. Modeling pose-invariant face recognition, sketch-photo recognition and low resolu-
tion vs high resolution face recognition as cross-modal content matching problems
and obtaining a Partial Least Square based common representation to achieve im-
pressive results on standard datasets [109]. It was further extended to a two-stage
discriminative architecture to handle pose-errors in [108].

3. Development of a novel framework to extend any feature extraction technique, based
on generalized eigenvalue analysis, to its multi-view counterpart [110]. The resulting
framework is kernelizable and applicable to more than two modalities. It has been
used for text-image retrieval and shown to outperform state-of-the-art approaches
for both the problems.

7.1 Future Directions

I believe that the common representation hypothesis has a lot of merits and is prob-
ably the key to many cross-modal matching problems. However, either pure statistics
based or domain dependent solutions are not expected to provide a complete solution.
Therefore, we require a mix of these two approaches for acceptable solutions under most
conditions. The recent rise and spectacular success of deep neural network based ap-
proaches for visual and textual content extraction dictates the use of the learned features
from deep nets. Unfortunately, the space of multi-modal matching via deep learning is
less explored and only a few general approaches exist [84, 121, 3]. Recently, impressive
performance has been demonstrated on sentence generation from images and image re-
trieval using complex text queries in [54]. However, it still relies on the richness of the
content extraction from individual modality that leaves a lot of room for improvement in
developing deep algorithms for cross-modal content matching. Moreover, the requirement
of large amount of labeled data for training a deep net also puts serious limitations on the
versatility of deep net based approaches for different problem domains. Therefore, col-
lecting large amount of annotated data for various tasks coupled with domain-dependent
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deep neural architectures seems to be a promising future direction for solving cross-modal
content matching problem.

Sometimes it’s possible that different modalities have complementary, missing or
noisy content and it becomes mandatory to combine the contents extracted from different
modalities to achieve the best results. This situation calls for multi-modal content fusion.
For example, it would be very difficult even for humans to assemble an office desk without
the aid of a 2D diagram just by reading the written instructions and vice-versa. However,
having both of them makes the task relatively simpler. This simple looking task of multi-
modal content fusion involves some fundamental problems that can create hindrance such
as how to deal with the different representation of content, what common representation
should be selected for efficient fusion etc. Some crucial applications that can benefit from
multi-modal content fusion are: visual object recognition, scene understanding etc. The
key idea is to represent the content from different modalities in a form that makes multi-
modal content fusion possible. Therefore, formulating domain dependent algorithms for
multi-modal content fusion can be a promising future direction.
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[41] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simultaneous detection and
segmentation. In European Conference on Computer Vision (ECCV), 2014.

[42] X. He, D. Cai, S. Yan, and H. Zhang. Neighborhood preserving embedding. In
ICCV, volume 2, pages 1208 –1213, 2005.

[43] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recognition using laplacianfaces.
IEEE TPAMI, 27(3):328–340, 2005.

[44] X. He, R. S. Zemel, and M. A. Carreira-Perpiñán. Multiscale conditional random
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[101] T. Scharwächter, M. Enzweiler, U. Franke, and S. Roth. Stixmantics: A medium-
level model for real-time semantic scene understanding. ECCV, 2014.

[102] T. Scharwchter, M. Enzweiler, U. Franke, and S. Roth. Efficient multi-cue scene
segmentation. In Pattern Recognition, volume 8142 of Lecture Notes in Computer
Science, pages 435–445. 2013.

[103] J. Schmidhuber. Learning complex, extended sequences using the principle of history
compression. Neural Comput., 4(2):234–242, Mar. 1992.

[104] M. Schuster and K. Paliwal. Bidirectional recurrent neural networks. Trans. Sig.
Proc., 45(11):2673–2681, 1997.

[105] W. Schwartz, H. Guo, and L. Davis. A robust and scalable approach to face identi-
fication. in Proc. ECCV, pages 476–489, 2010.

[106] S. Shan, Y. Chang, W. Gao, B. Cao, and P. Yang. Curse of mis-alignment in face
recognition: problem and a novel mis-alignment learning solution. IEEE conf. Auto
Face Gesture Recog., pages 314–320, 2004.

[107] A. Sharma, A. Dubey, P. Tripathi, and V. Kumar. Pose invariant virtual clas-
sifiers from single training image using novel hybrid-eigenfaces. Neurocomputing,
73(10):1868–1880, 2010.

[108] A. Sharma, M. A. Haj, J. Choi, L. S. Davis, and D. W. Jacobs. Robust pose
invariant face recognition using coupled latent space discriminant analysis. Comput.
Vis. Image Underst., 116(11):1095–1110, Nov. 2012.

[109] A. Sharma and D. W. Jacobs. Bypassing synthesis: Pls for face recognition with
pose, low-resolution and sketch. In CVPR, pages 593–600. IEEE, 2011.

[110] A. Sharma, A. Kumar, H. D. III, and D. W. Jacobs. Generalized multiview analysis:
A discriminative latent space. In IEEE Conf. on Computer Vision and Pattern
Recognition, Providence, RI, USA, June 16-21, 2012, pages 2160–2167, 2012.

89



[111] A. Sharma, O. Tuzel, and D. W. Jacobs. Deep hierarchical parsing for semantic
segmentation. IEEE CVPR, 2015.

[112] A. Sharma, O. Tuzel, and M. Y. Liu. Recursive context propagation network for
semantic segmentation. NIPS, 2014.

[113] J. Shawe-Taylor and N. Christianini. Kernel methods for pattern analysis. Cam-
bridge University Press, 2004.

[114] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image catego-
rization and segmentation. In IEEE CVPR, pages 1–8, 2008.

[115] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image un-
derstanding: Multi-class object recognition and segmentation by jointly modeling
texture, layout, and context. Int. J. Comput. Vision, 81(1):2–23, 2009.

[116] T. Sim, S. Baker, and M. Bsat. The cmu pose, illumination, and expression database.
IEEE Trans. Patt. Anal. Mach. Intel., 25(12):1615–1618, 2003.

[117] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[118] G. Singh and J. Kosecka. Nonparametric scene parsing with adaptive feature rele-
vance and semantic context. IEEE CVPR, 2013.

[119] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning. Parsing natural scenes and
natural language with recursive neural networks. ICML, 2011.

[120] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach.
Learn. Res., 15(1):1929–1958, 2014.

[121] N. Srivastava and R. R. Salakhutdinov. Multimodal learning with deep boltzmann
machines. In Advances in Neural Information Processing Systems 25, pages 2222–
2230. 2012.

[122] V. Struc and N. Pavesic. Gabor-based kernel partial-least-squares discrimination
features for face recognition. Informatica, 20(1), 2009.

[123] L. Sun, S. Ji, and J. Ye. Canonical correlation analysis for multilabel classification:
A least-squares formulation, extensions, and analysis. TPAMI, 33(1):194 – 200,
2011.

[124] T. Sun and S. Chen. Locality preserving cca with applications to data visualization
and pose estimation. Image and Vision Computing, 25(5):531 –543, 2007.

[125] D. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE
Trans. Patt. Anal. Mach. Intel., 18(8):831–836, 1996.

[126] D. Swets and J. Weng. Using discriminant eigenfeatures for image retrieval. IEEE
Trans. Patt. Anal. Mach. Intel., 18(8):831–836, 1996.

[127] X. Tang and X. Wang. Face sketch recognition. IEEE Transactions on Circuits
Systems for Video Technology, 14(1):50–57, 2004.

[128] J. Tenenbaum and W. Freeman. Separating style and content with bilinear models.
Neural Comp., 12(6):1247–1283, 2000.

[129] J. Tighe and S. Lazebnik. Finding things: Image parsing with regions and per-
exemplar detectors. IEEE CVPR, 2013.

90



[130] J. Tighe and S. Lazebnik. Superparsing: Scalable nonparametric image parsing with
superpixels. IJCV, 101:329–349, 2013.

[131] A. Torralba, K. Murphy, W. Freeman, and M. Rubin. Context-based vision system
for place and object recognition. IEEE CVPR, 2003.

[132] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, and Y. Singer. Large margin
methods for structured and interdependent output variables. Journal of Machine
Learning Research, 6(2):1453, 2006.

[133] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, and Y. Ma. Towards a practical face
recognition system: Robust registration and illumination by sparse representation.
in Proc. IEEE CVPR, 42:597–604, 2009.

[134] H. Wang, S. Li, and Y. Wang. Face recognition under varying lighting conditions
using self quotient image. in Proc. IEEE Int. Conf. Auto. Face Gesture Recog., pages
819–824, 2004.

[135] X. Wang and X. Tang. Face photo-sketch synthesis and recognition. TPAMI,
31(11):1955–1967, 2009.

[136] L. Wiskott, J. Fellous, N. Kruger, and C. V. der Malsburg. Face recognition by
elastic bunch graph matching. IEEE Trans. Patt. Anal. Mach. Intel., 19(7):–, 1997.

[137] B. Xiao, X. Gao, D. Tao, Y. Yuan, and J. Li. Photo-sketch synthesis and recognition
based on subspace learning. Neurocomputing, 73:840–852, 2010.

[138] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph embedding
and extensions: A general framework for dimensionality reduction. IEEE TPAMI,
29(1):40–51, 2007.

[139] J. Yang, B. Price, S. Cohen, and M.-H. Yang. Context driven scene parsing with
attention to rare classes. CVPR, pages 3294–3301, 2014.

[140] J. Yang, H. Tang, Y. Ma, and T. Huang. Face hallucination via sparse coding. IEEE
ICIP, pages 1264–1267, 2008.

[141] Z. Zeng, T. Fang, S. Shah, and I. Kakadiaris. Local feature hashing for face recog-
nition. In IEEE BTAS, pages 1–8, 2009.

[142] Y. Zhuang, J. Zhang, and F. Wu. Hallucinating faces: Lph super-resolution and
neighbor reconstruction for residue compensation. Pattern Recognition, 40:3178–
3194, 2007.

91


