1,130 research outputs found

    Multi-Channel Morphological Profiles for Classification of Hyperspectral Images Using Support Vector Machines

    Get PDF
    Hyperspectral imaging is a new remote sensing technique that generates hundreds of images, corresponding to different wavelength channels, for the same area on the surface of the Earth. Supervised classification of hyperspectral image data sets is a challenging problem due to the limited availability of training samples (which are very difficult and costly to obtain in practice) and the extremely high dimensionality of the data. In this paper, we explore the use of multi-channel morphological profiles for feature extraction prior to classification of remotely sensed hyperspectral data sets using support vector machines (SVMs). In order to introduce multi-channel morphological transformations, which rely on ordering of pixel vectors in multidimensional space, several vector ordering strategies are investigated. A reduced implementation which builds the multi-channel morphological profile based on the first components resulting from a dimensional reduction transformation applied to the input data is also proposed. Our experimental results, conducted using three representative hyperspectral data sets collected by NASA's Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) sensor and the German Digital Airborne Imaging Spectrometer (DAIS 7915), reveal that multi-channel morphological profiles can improve single-channel morphological profiles in the task of extracting relevant features for classification of hyperspectral data using small training sets

    Detection of leaf structures in close-range hyperspectral images using morphological fusion

    Get PDF
    Close-range hyperspectral images are a promising source of information in plant biology, in particular, for in vivo study of physiological changes. In this study, we investigate how data fusion can improve the detection of leaf elements by combining pixel reflectance and morphological information. The detection of image regions associated to the leaf structures is the first step toward quantitative analysis on the physical effects that genetic manipulation, disease infections, and environmental conditions have in plants. We tested our fusion approach on Musa acuminata (banana) leaf images and compared its discriminant capability to similar techniques used in remote sensing. Experimental results demonstrate the efficiency of our fusion approach, with significant improvements over some conventional methods

    Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images

    Full text link
    In hyperspectral remote sensing data mining, it is important to take into account of both spectral and spatial information, such as the spectral signature, texture feature and morphological property, to improve the performances, e.g., the image classification accuracy. In a feature representation point of view, a nature approach to handle this situation is to concatenate the spectral and spatial features into a single but high dimensional vector and then apply a certain dimension reduction technique directly on that concatenated vector before feed it into the subsequent classifier. However, multiple features from various domains definitely have different physical meanings and statistical properties, and thus such concatenation hasn't efficiently explore the complementary properties among different features, which should benefit for boost the feature discriminability. Furthermore, it is also difficult to interpret the transformed results of the concatenated vector. Consequently, finding a physically meaningful consensus low dimensional feature representation of original multiple features is still a challenging task. In order to address the these issues, we propose a novel feature learning framework, i.e., the simultaneous spectral-spatial feature selection and extraction algorithm, for hyperspectral images spectral-spatial feature representation and classification. Specifically, the proposed method learns a latent low dimensional subspace by projecting the spectral-spatial feature into a common feature space, where the complementary information has been effectively exploited, and simultaneously, only the most significant original features have been transformed. Encouraging experimental results on three public available hyperspectral remote sensing datasets confirm that our proposed method is effective and efficient

    An Approach for the Customized High-Dimensional Segmentation of Remote Sensing Hyperspectral Images

    Get PDF
    Abstract: This paper addresses three problems in the field of hyperspectral image segmentation: the fact that the way an image must be segmented is related to what the user requires and the application; the lack and cost of appropriately labeled reference images; and, finally, the information loss problem that arises in many algorithms when high dimensional images are projected onto lower dimensional spaces before starting the segmentation process. To address these issues, the Multi-Gradient based Cellular Automaton (MGCA) structure is proposed to segment multidimensional images without projecting them to lower dimensional spaces. The MGCA structure is coupled with an evolutionary algorithm (ECAS-II) in order to produce the transition rule sets required by MGCA segmenters. These sets are customized to specific segmentation needs as a function of a set of low dimensional training images in which the user expresses his segmentation requirements. Constructing high dimensional image segmenters from low dimensional training sets alleviates the problem of lack of labeled training images. These can be generated online based on a parametrization of the desired segmentation extracted from a set of examples. The strategy has been tested in experiments carried out using synthetic and real hyperspectral images, and it has been compared to state-of-the-art segmentation approaches over benchmark images in the area of remote sensing hyperspectral imaging.Ministerio de Economía y competitividad; TIN2015-63646-C5-1-RMinisterio de Economía y competitividad; RTI2018-101114-B-I00Xunta de Galicia: ED431C 2017/1

    Spectral and spatial methods for the classification of urban remote sensing data

    Get PDF
    Lors de ces travaux, nous nous sommes intéressés au problème de la classification supervisée d'images satellitaires de zones urbaines. Les données traitées sont des images optiques à très hautes résolutions spatiales: données panchromatiques à très haute résolution spatiale (IKONOS, QUICKBIRD, simulations PLEIADES) et des images hyperspectrales (DAIS, ROSIS). Deux stratégies ont été proposées. La première stratégie consiste en une phase d'extraction de caractéristiques spatiales et spectrales suivie d'une phase de classification. Ces caractéristiques sont extraites par filtrages morphologiques : ouvertures et fermetures géodésiques et filtrages surfaciques auto-complémentaires. La classification est réalisée avec les machines à vecteurs supports (SVM) non linéaires. Nous proposons la définition d'un noyau spatio-spectral utilisant de manière conjointe l'information spatiale et l'information spectrale extraites lors de la première phase. La seconde stratégie consiste en une phase de fusion de données pre- ou post-classification. Lors de la fusion postclassification, divers classifieurs sont appliqués, éventuellement sur plusieurs données issues d'une même scène (image panchromat ique, image multi-spectrale). Pour chaque pixel, l'appartenance à chaque classe est estimée à l'aide des classifieurs. Un schéma de fusion adaptatif permettant d'utiliser l'information sur la fiabilité locale de chaque classifieur, mais aussi l'information globale disponible a priori sur les performances de chaque algorithme pour les différentes classes, est proposé. Les différents résultats sont fusionnés à l'aide d'opérateurs flous. Les méthodes ont été validées sur des images réelles. Des améliorations significatives sont obtenues par rapport aux méthodes publiées dans la litterature
    corecore