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ABSTRACT
Close-range hyperspectral images are a promising source of information in plant biology, in 
particular, for in vivo study of physiological changes. In this study, we investigate how data fusion 
can improve the detection of leaf elements by combining pixel reflectance and morphological 
information. The detection of image regions associated to the leaf structures is the first step 
toward quantitative analysis on the physical effects that genetic manipulation, disease 
infections, and environmental conditions have in plants. We tested our fusion approach on Musa 
acuminata (banana) leaf images and compared its discriminant capability to similar techniques 
used in remote sensing. Experimental results demonstrate the efficiency of our fusion approach, 
with significant improvements over some conventional methods.

1. Introduction

Close-range hyperspectral (HS) imaging is a novel 
research tool for biologists (Scharr et al. 2016). Several 
works have reported the design and implementation of 
HS imaging systems that capture reflectance information 
from plant leaves at close range (Mahlein et al. 2010; 
Rumpf et al. 2010). Most systems can be classified as 
pushbroom sensors in which the camera moves over 
the leaf and record the reflected light from a narrow sec-
tion. In practice, the main obstacle to obtain high spatial 
resolution is the mechanical subsystem. Nevertheless, 
they currently provide the highest spatial and spectral 
resolutions. Cameras that can capture the full spectral 
data of a scene in one shot have become available but 
their resolutions are still limited (Aasen et al. 2015). 
Changes in reflectance levels occur on the leaf blade 
when illumination is not homogeneous or the distance 
from the blade to the sensor is not constant (Behmann 
et al. 2016). An example of the latter case is the midrib 
that appears as a linear structure of varying colors and 
increasing width. Another source of spectral variation 
is metabolic changes induced by diseases (Mahlein et al. 
2010; Rumpf et al. 2010) or environmental stress (Kim 
et al. 2011). Depending on the infection type, leaves 
display spots or streaks of different sizes and colors. 
At later infection stages, these symptoms can be seen 
with the naked eye. At early infection stages, changes 
are subtle and difficult to detect. The latter is perhaps 
the most important research problem because limiting 

the spread of a disease can prevent revenue losses for 
farmers (Triest and Hendrickx 2016).

In previous works, HS leaf analysis has focused 
on classification of the full reflectance spectrum and 
so-called spectral indexes such as the normalized dif-
ference vegetation index (Jacquemoud et al. 2009). 
Adding spatial information can provide a more com-
plete description of leaf structures. Common methods 
for extracting spatial information include image fil-
tering (Benediktsson, Palmason, and Sveinsson 2005; 
Huang, Liu, and Zhang 2015; Liao et al. 2016), image 
segmentation (Blaschke 2010), and image pansharpen-
ing (e.g. principal component substitution and Bayesian 
methods) as in (Loncan et al. 2015; Mookambiga and 
Gomathi 2016). However, these methods have disad-
vantages such as high cost computational, significant 
spectral distortion, limited amount of spectral or spa-
tial information added for object classification and blur 
degradation.

In this paper, we present an information fusion 
approach that combines spectral data from a low reso-
lution HS image and spatial information from its cor-
responding high resolution RGB image. Morphological 
profiles are applied to extract spatial information of the 
leaf. Similar approaches have been exploited for pan-
sharpening of satellite images to improve the detection 
of man-made structures (Liao et al. 2015). In contrast 
to the above approach, our method couples spatial 
exploitation and data fusion in a unified framework by 
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enhancing the principal components of a HS image (low 
spatial resolution) using morphological profiles of the 
color image (high spatial resolution) without losing the 
spectral information of the original HS image.

To the best of our knowledge, this is the first attempt 
to apply such fusion approach in close-range HS images. 
Musa acuminata was chosen as experimental subject 
because it is an important commercial crop. In Section 
2, we describe the imaging setup. Results are presented 
in Section 3. Future research venues are discussed in 
the last Section.

2. Materials and methods

2.1. Image acquisition

We use the pushbroom scanner described in (Ochoa 
et al. 2016). As shown in Figure 1(a), it consists of a 
high-resolution 12-bit monochrome CCD camera (B) 
with extended infrared sensitivity (1500 M-GE Thorlabs) 
attached to an spectrograph (Specim Inspector V10) 
with a spectral range from 364 nm to 1031 nm and nom-
inal spectral resolution of 4.55 nm (C). These elements 
are mounted on a motorize slider (A). The run length 
of the slider is 25 cm with a step resolution of 0.5 mm. 
The camera is placed below the plant’s foliage as fungi 
and other pathogens enter by the stomata located on the 
leaf underside. As leaves overlap, a plastic holder (D) 
was used to keep them apart. Illumination is provided 
by two 50 W halogen lamps (E).

Spectral calibration was done by fitting known peaks 
of the emission spectrum of argon (Ar) and mercury 
(Hg) lamps. A common issue with this kind of imag-
ing system is noise, in particular, at wavelengths near 
the ultraviolet and infrared regions of the spectrum. To 
estimate image noise levels, we measured the reflectance 
standard deviation for a dark reference at different expo-
sure times. Based on these results, we set the camera’s 
exposure time to 200 ms, which provided an adequate 
trade-off between image contrast and noise.

For spatial calibration, scanning area and working 
distance were estimated from the optical parameters of 
the spectrograph lenses, the f-number of the lens was 
selected to f/7. The CCD sensor binning was chosen to 

reduce the differences in vertical and horizontal spatial 
resolutions. The effective scan area was 16 cm × 16 cm 
with a resolution of 0.5 mm per pixel. For each leaf scan, 
the system generates a set of 520 images of 198 × 186 
pixels in the visible and infrared region (IR) of the spec-
trum. Finally, a high dynamic range camera is used to 
record 856 × 900 pixels RGB images. Examples of the 
system’s output can be seen in Figure 1(b) and (c). Since 
the first step in plant automatic analysis is the identifica-
tion of meaningful leaf regions, we built a test data-set 
with the following object classes:

(1)  Dead leaf: Necrotic areas.
(2)  Dying leaf: Interface between healthy and 

necrotic areas.
(3)  Flat blade: Region with homogeneous distance 

to the camera.
(4)  Bent blade: Region with changes in distance to 

the camera.
(5)  Spot: Small lesions caused either by diseases, 

insects or mechanical stress.
(6)  Midrib: Central nerve of a leaf.

There are two classes associated to the blade because 
sometimes the leaf surface becomes uneven when it is 
held by the plastic mesh. The test datasets for each object 
class, highlighted with different colors, are depicted in 
Figure 2(a).

2.2. Preprocessing

Spectral data was normalized using images of white and 
dark standard reflectance surfaces at each scan session. 
The resulting image Rλ is computed as follows:

 

where Sλ, Dλ, and Wλ are the leaf, white, and dark pixel 
intensities at wavelength λ, respectively. Figure 2(b) 
shows the average normalized spectral profiles of the 
corresponding test regions, which are shown in Figure 
2(a).

To perform multi-sensor and multi-resolution data 
fusion, we registered the high spatial resolution color 
image with respect to the low spatial resolution HS 
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(a) experimental setup          (b) HS image at 780 nm spectral band                     (c) RGB image 

Figure 1. imaging system components and sample data.
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image. The junctions of the plastic holder in both images 
were used as control points. They are detected by averag-
ing the response values of a line detector along rows and 
columns (Steger 1998). The response peaks were used to 
detect salient lines ends and a simple tracking routine 
was employed to find the location of junction points. 
From these points, the affine transformation coefficients 
were computed and the transformation was applied to 
the color image. An example of input and aligned images 
is depicted in Figure 3.

2.3. Proposed morphological information 
fusion
Our fusion method is aimed at obtaining an enhanced 
HS cube, which includes morphological information 
without increasing the dimensionality of the original 
HS cube. Figure 4 shows an overview of the proposed 
method. To explore the spatial information of high 
spatial resolution color images, morphological profiles 
are built by performing opening and closing by recon-
struction at several scales (Benediktsson, Palmason, and 
Sveinsson 2005). For an input image f, these operators 
are defined as follows:
 

 

where R�

f  and R�

fare the reconstruction by dilation and 
erosion operators using a structural element (SE) of size 
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n (Soille 2003). Opening by reconstruction removes 
smaller brighter objects, whereas closing by reconstruc-
tion removes smaller darker objects.

In contrast to (Liao et al. 2015), the extraction of mor-
phological profiles (MP) was done on the high spatial 
resolution color image (instead of the principal compo-
nents of the original HS image). Hence, the proposed 
method transfers spatial information (size, shape, tex-
ture) contained in the morphological profile of the color 
image to guide the spatial enhancement of the low spatial 
resolution HS image, while enabling spectral and spatial 
preservation. Also, the proposed method is very robust 
to image calibration as we exploit the whole spatial infor-
mation instead of the channels of a panchromatic or 
color image.

The number of MPs images depends on the num-
ber scales and SEs types to be used. Figure 5(a)–(c) 
shows the MP images obtained with a disk-shaped SE 
of increasing size n = [1, 2, 4], and the arrow direction 
indicates larger SE sizes. Differences in relative con-
trast of leaf sections are clearly visible at certain scales, 
this suggests that geometrical and spatial information 
can be captured by the MPs. For a linear-shaped SE of 
length L and orientation θ (10°), an opening (resp. clos-
ing) deletes bright (resp. dark) objects (or object parts) 
which are smaller than that length in that direction. 
When performing such openings (or closings) with dif-
ferent orientations (e.g. every 10 degrees), objects which 
are shorter than L will be completely removed in all of 
these images. The maximum (resp. minimum) over all of 
these openings (resp. closings) will therefore remove the 
short objects (or object parts) and keep the long objects. 

(a) Test regions                                                  (b) Spectral profiles 

Figure 2. normalized spectral profiles for test regions.

(a) RGB image                      (b) HS image                      (c) Aligned RGB image 

Figure 3. rGB image align.
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Component Analysis (PCA) to decorrelate the original 
hyperspectral image, and separate the image content 
into two parts. The first several principal components 
(PCs) keep the most important information of a HS 
cube and the remaining PCs contain mainly noise. We 
use the spatial information (from MPs generated on 

Creating multiple such maximum or minimum images 
for different lengths L gives you the directional MP. In 
our experiments, the multiple color channels are used 
as information source.

In order to transfer the spatial information to the 
low spatial resolution HS image, we employ Principal 

Figure 4. the proposed fusion method operations.

(a) Red channel. 

(b) Green channel. 

(c) Blue channel. 

Figure 5. morphological profiles for a disk shaped se of sizes [1, 2, 4].
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Algorithm 1 fusion of Hs and mps data
Input: Hs, rGB
1. Generate morphological profiles (mps): for each channel of the rGB 

data-set, get M openings and M closings by reconstructions with dif-
ferent ses (e.g. line, disk, square, octagon, dodecagon, hexadecagon). 
the se size increases from 1 to M.

2. Decorrelate the original Hs data by pca, and separate image content 
into two different parts.

3. spatial resolution enhancement of the first k pcs by using equation 
(4).

4. only remove noise for the remaining pcs by soft- thresholding, and 
enlarge their spatial sizes to the same as the rGB image using cubic 
interpolation.

5. inverse pca on results (3) and (4)
Output: enhanced Hs

3. Results

To evaluate the gains in detection rates of the proposed 
fusion approach, MPs were generated for increasing val-
ues of M, from 1 to 4, and for all SEs listed in Algorithm 1.  
The parameters of the joint bilateral filter were set to 
σs = 5 and σr = 0.01. Among the different values tested, 
these values offered a good trade-off between denois-
ing and detail preservation, see Figure 6. Filtering was 
applied on the first k  =  6 principal components. The 
K-nearest neighbor classifier (K  =  6) was employed 
in our experiments. 10% of test data-set is randomly 
selected as training data-set. The classifier was evaluated 
against the testing sets; the results were averaged over 
5 runs.

We compared leaf classification rates of the proposed 
fusion method (Proposed), the original HS image (Raw), 
MPs generated on the high spatial resolution color image 
(MPs), and the fusion method based on stacking HS and 
MPs data (Stacked). Overall accuracy (OA) and average 
accuracy (AA) metrics were computed for each case. The 

high-resolution RGB image) to guide the spatial reso-
lution enhancement of the first k PCs by using the joint 
bilateral filter (Tomasi and Manduchi 1998). We deter-
mine parameter k through our visual analysis, we found 
in our data-set that the first 6 PCs contain most informa-
tion, thus we set k = 6. The joint bilateral filter has proven 
to be computationally efficient while preserving edges 
and smoothing flat areas (He, Sun, and Tang 2013). The 
enhanced pixel PCi is computed as follows:

 

where Ki is a normalizing term;
 

where ω is the window of size (2σs + 1) × (2σs + 1), σs 
is the scale of the Gaussian filter G that weights the 
distance between pixel locations, and σr controls the 
relative weight of intensity difference between guided 
profile pixels. Figure 6 shows the filtering performances 
when using different parameter values. Larger values 
of σs and σr result in oversmoothing effects. The filter 
implementation in (Paris and Durand 2009) was used 
in our experiments. The remaining N-k PCs mainly con-
tain noise, where N is the amount of PCs, therefore, it 
is not recommended to filter them because this opera-
tion will amplify the noise and considerably increases 
computational times. A soft-thresholding scheme is 
applied for denoising those PCs. To enlarge the PCs, 
spatial sizes same as the RGB image cubic interpolation 
was used. The image processing chain is summarized in  
Algorithm 1.
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Figure 6. performances of joint bilateral filter for different parameter combinations.
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spot categories in which larger intensity variations are 
recorded. The range of reflectance values differ for each 
channel as well as the curves relative position. The char-
acteristics can be exploited for further improvement in 
automatic class discrimination.

In the last experiment, detection accuracy was 
measured for each object class. The raw spectral data 
was included as previous work and have successfully 
detected leave’s objects using only spectral features. 
Table 2 shows that in most classes the proposed method 
provides higher accuracy. For certain objects, spectral 
information is enough to obtain good results, for exam-
ple, the dead and dying leaf categories. This is consist-
ent with the expected differences in spectra of such leaf 
areas. Whereas the inclusion of spatial data improves 
detection rate for the other object classes. These results 
support our claim that the proposed fusion scheme 
manages to capture more morphological information 
than the approaches used to build the MPs and stack 
data-set. This effect can be observed in the classification 
map depicted in Figure 8. It is important to mention that 
the experiment has been repeated 5 times with different 
object class. The upper part of Table 2 shows AA’s for 
each class in the experiment. The lower part of the table 
shows OA and average AA of the same experiment and 
the standard deviation (Std) for the 5 runs. To compare 
the efficiency of each method, we report the consumed 
time with 74.16, 273.67, 21.63, and 99.20 s for Raw, 
Stacked, Morph, and our proposed method, respectively. 
We can find that our proposed method consumes less 
time than Stacked and produces better results.

first metric is the ratio of correctly classified points to 
the number of test data points. The AA is similar to OA 
but calculated for each object class. In our experiments, 
we found that regardless of the SE shape as M increases 
the classification accuracy improves. However, for M 
higher than 4, the improvement of the detection rates 
is marginal.

Table 1 summarizes the results obtained using MPs for 
different SE’s shapes and M = 4. We noted that detection 
rates for simple SE shapes are higher than that for complex 
ones. Classification accuracy for the proposed method is 
consistently higher than that of other approaches. This 
indicates that our fusion method is capable of fusing the 
complementary information from multi-sensor and mul-
ti-resolution data without increasing the dimensionality 
of the original HS image. The best results correspond to 
our fusion method for MPs generated using the line-
ar-shaped SE. This can be explained by the fact that leaves 
contain mostly low-contrast linear-like features at the 
midrib and veins. In general, leaves do not show a wide 
variety of objects in comparison to HS urban images and 
other types of images used in remote sensing.

To understand how spatial information is captured 
from the color image, we plotted the morphological 
profiles extracted using the linear-shaped SE for each 
object class. A point in a curve corresponds to the out-
put of either an opening or closing by reconstruction. 
For M = 4, eight images are generated, 4 for the open-
ing on the left side and 4 for the closing on the right, 
for each color channel, see Figure 7. Most curves dis-
play a small slope with the exception of the midrib and 

Table 1. classification results by se shape (%).

SE Shape

MPs Stacked Proposed

OA AA OA AA OA AA
Disk 81.34 80.67 93.28 91.67 97.14 95.21
square 88.36 87.91 93.71 92.16 97.32 95.57
line 83.65 82.28 93.47 91.76 97.43 95.63
octagon 89.04 90.16 93.96 92.29 97.32 95.57
Dodeca-

gon
79.38 77.72 91.79 90.87 97.32 95.57

Hexadeca-
gon

79.38 77.72 91.79 90.87 97.32 95.57

(a) Red channel (b) Green channel (c) Blue ch

Figure 7. average reflectance for linear-shaped se, size 1–4, opening on the left side and closing on the right in each channel as is 
pointing out by the x-axis.

Table 2. classification rates for each object class.

Object class Raw MPs Stacked Proposed
Dead leaf 100.00 99.71 100.00 100.00
spot 71.67 61.67 71.67 85.00
midrib 88.69 70.66 89.78 94.52
Dying leaf 97.01 77.78 98.50 94.23
Bent blade 76.43 74.18 90.15 97.50
flat blade 99.76 100.00 99.90 100.00
oa 88.53 83.70 93.53 97.41
aa 88.92 82.30 91.85 95.65
std 13.56 12.35 16.50 15.00
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