669 research outputs found

    Data Aggregation Scheme Using Multiple Mobile Agents in Wireless Sensor Network

    Get PDF
    Wireless sensor networks (WSNs) consist of large number of sensor nodes densely deployed in monitoring area with sensing, wireless communications and computing capabilities. In recent times, wireless sensor networks have used the concept of mobile agent for reducing energy consumption and for effective data collection. The fundamental functionality of WSN is to collect and return data from the sensor nodes. Data aggregation’s main goal is to gather and aggregate data in an efficient manner. In data gathering, finding the optimal itinerary planning for the mobile agent is an important step. However, a single mobile agent itinerary planning approach suffers from two drawbacks, task delay and large size of the mobile agent as the scale of the network is expanded. To overcome these drawbacks, this research work proposes: (i) an efficient data aggregation scheme in wireless sensor network that uses multiple mobile agents for aggregating data and transferring it to the sink based on itinerary planning and (ii) an attack detection using TS fuzzy model on multi-mobile agent-based data aggregation scheme is shortly named as MDTSF model

    Multi-mobile agent itinerary planning algorithms for data gathering in wireless sensor networks: a review paper

    Get PDF
    Recently, wireless sensor networks have employed the concept of mobile agent to reduce energy consumption and obtain effective data gathering. Typically, in data gathering based on mobile agent, it is an important and essential step to find out the optimal itinerary planning for the mobile agent. However, single-agent itinerary planning suffers from two primary disadvantages: task delay and large size of mobile agent as the scale of the network is expanded. Thus, using multi-agent itinerary planning overcomes the drawbacks of single-agent itinerary planning. Despite the advantages of multi-agent itinerary planning, finding the optimal number of distributed mobile agents, source nodes grouping, and optimal itinerary of each mobile agent for simultaneous data gathering are still regarded as critical issues in wireless sensor network. Therefore, in this article, the existing algorithms that have been identified in the literature to address the above issues are reviewed. The review shows that most of the algorithms used one parameter to find the optimal number of mobile agents in multi-agent itinerary planning without utilizing other parameters. More importantly, the review showed that theses algorithms did not take into account the security of the data gathered by the mobile agent. Accordingly, we indicated the limitations of each proposed algorithm and new directions are provided for future research

    CDS-MIP: CDS-based Multiple Itineraries Planning for mobile agents in wireless sensor network

    Get PDF
    using multi agents in the wireless sensor networks (WSNs) for aggregating data has gained significant attention. Planning the optimal itinerary of the mobile agent is an essential step before the process of data gathering. Many approaches have been proposed to solve the problem of planning MAs itineraries, but all of those approaches are assuming that the MAs visit all SNs and large number of intermediate nodes. This assumption imposed a burden; the size of agent increases with the increase in the visited SNs, therefore consume more energy and spend more time in its migration. None of those proposed approaches takes into account the significant role that the connected dominating nodes play as virtual infrastructure in such wireless sensor networks WSNs. This article introduces a novel energy-efficient itinerary planning algorithmic approach based on the minimum connected dominating sets (CDSs) for multi-agents dedicated in data gathering process. In our proposed approach, instead of planning the itineraries over all sensor nodes SNs, we plan the itineraries among subsets of the MCDS in each cluster. Thus, no need to move the agent in all the SNs, and the intermediate nodes (if any) in each itinerary will be few. Simulation results have demonstrated that our approach is more efficient than other approaches in terms of overall energy consumption and task execution time

    Determination of Itinerary Planning for Multiple Agents in Wireless Sensor Networks

    Get PDF
    The mobile agent is a new technology in wireless sensor networks that outperforms the traditional client/server architecture in terms of energy consumption, end to end delay and packet delivery ratio. Single mobile agent will not be efficient for large scale networks. Therefore, the use of multiple mobile agents will be an excellent solution to resolve the problem of the task duration especially for this kind of networks. The itinerary planning of mobile agents represents the main challenge to achieve the trade-off between energy consumption and end to end delay. In this article we present a new algorithm named Optimal Multi-Agents Itinerary Planning (OMIP). The source nodes are grouped into clusters and the sink sends a mobile agent to the cluster head of every cluster; which migrates between source nodes, collects and aggregates data before returning to the sink. The results of the simulations testify the efficiency of our algorithm against the existing algorithms of multi-agent itinerary planning. The performance gain is evident in terms of energy consumption, accumulated hop count and end to end delay of the tasks in the network

    A new Itinerary planning approach among multiple mobile agents in wireless sensor networks (WSN) to reduce energy consumption

    Get PDF
    one of the important challenges in wireless sensors networks (WSN) resides in energy consumption. In order to resolve this limitation, several solutions were proposed. Recently, the exploitation of mobile agent technologies in wireless sensor networks to optimize energy consumption attracts researchers. Despite their advantage as an ambitious solution, the itineraries followed by migrating mobile agents can surcharge the network and so have an impact on energy consumption. Many researches have dealt with itinerary planning in WSNs through the use of a single agent (SIP: Single agent Itinerary Planning) or multiple mobile agents (MIP: Multiple agents Itinerary Planning). However, the use of multi-agents causes the emergence of the data load unbalancing problem among mobile agents, where the geographical distance is the unique factor motivating to plan the itinerary of the agents. The data balancing factor has an important role especially in Wireless sensor networks multimedia that owns a considerable volume of data size. It helps to optimize the tasks duration and thus optimizes the overall answer time of the network.  In this paper, we provide a new MIP solution (GIGM-MIP) which is based not only on geographic information but also on the amount of data provided by each node to reduce the energy consumption of the network. The simulation experiments show that our approach is more efficient than other approaches in terms of task duration and the amount of energy consumption

    Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks

    Get PDF
    Collaborative signal and information processing (CSIP) plays an important role in the deployment of wireless sensor networks. Since each sensor has limited computing capability, constrained power usage, and limited sensing range, collaboration among sensor nodes is important in order to compensate for each other’s limitation as well as to improve the degree of fault tolerance. In order to support the execution of CSIP algorithms, distributed computing paradigm and clustering protocols, are needed, which are the major concentrations of this dissertation. In order to facilitate collaboration among sensor nodes, we present a mobile-agent computing paradigm, where instead of each sensor node sending local information to a processing center, as is typical in the client/server-based computing, the processing code is moved to the sensor nodes through mobile agents. We further conduct extensive performance evaluation versus the traditional client/server-based computing. Experimental results show that the mobile agent paradigm performs much better when the number of nodes is large while the client/server paradigm is advantageous when the number of nodes is small. Based on this result, we propose a hybrid computing paradigm that adopts different computing models within different clusters of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within clusters or between clusters according to the different cluster configurations. This new computing paradigm can take full advantages of both client/server and mobile agent computing paradigms. Simulations show that the hybrid computing paradigm performs better than either the client/server or the mobile agent computing. The mobile agent itinerary has a significant impact on the overall performance of the sensor network. We thus formulate both the static mobile agent planning and the dynamic mobile agent planning as optimization problems. Based on the models, we present three itinerary planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary performs the best under a wide range of conditions, thus making it particularly suitable for CSIP in wireless sensor networks. In order to facilitate the deployment of hybrid computing paradigm, we proposed a decentralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient way. The clustering process is only invoked by events occur in the sensor network. Nodes that do not detect the events are put into the sleep state to save energy. In addition, power control technique is used to minimize the transmission power needed. The advantages of DRC protocol are demonstrated through simulations

    Pemodelan Sistem Multiagent pada Wireless Sensor Network

    Full text link
    Wireless Sensor Network (WSN) merupakan perangkat embedded kecil yang dipasang di jaringan skala besar yang memiliki kapabilitas penginderaan, komputasi, dan komunikasi. WSN mengkombinasikan teknologi sensor modern, teknologi micro electronic, komputasi, teknologi komunikasi, dan pemrosesan terdistribusi. Implementasi sistem multiagent pada WSN cukup menjanjikan untuk meningkatkan efektifitas dan efisiensi kerja WSN. Namun, penelitian yang dilakukan terkait sistem multiagent di WSN masih parsial dengan kata lain terlalu fokus pada isu-isu tertentu. Paper ini mendeskripsikan penelitian terkait dengan penerapan sistem multiagent di WSN yang memperhatikan berbagai aspek pendukung untuk efektifitas dan efisiensi agent seperti arsitektur organisasi multiagent, itinerary planning, kapabilitas agent, middleware, dan platform hardware yang digunakan. Metodologi yang digunakan adalah INGENIAS yang berbasis pada agent-oriented software enginering
    corecore