
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2005

Energy Efficient Designs for Collaborative Signal and Information Energy Efficient Designs for Collaborative Signal and Information

Processing inWireless Sensor Networks Processing inWireless Sensor Networks

Yingyue Xu
University of Tennessee - Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Xu, Yingyue, "Energy Efficient Designs for Collaborative Signal and Information Processing inWireless
Sensor Networks. " PhD diss., University of Tennessee, 2005.
https://trace.tennessee.edu/utk_graddiss/2309

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2309&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=trace.tennessee.edu%2Futk_graddiss%2F2309&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Yingyue Xu entitled "Energy Efficient Designs

for Collaborative Signal and Information Processing inWireless Sensor Networks." I have

examined the final electronic copy of this dissertation for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Doctor of

Philosophy, with a major in Electrical Engineering.

Hairong Qi, Major Professor

We have read this dissertation and recommend its acceptance:

J. Douglas Birdwell, Itamar Elhanany, Lynne E. Parker, Stephen Fulton Smith

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Yingyue Xu entitled “Energy Efficient De-
signs for Collaborative Signal and Information Processing in Wireless Sensor Networks.” I have
examined the final electronic copy of this dissertation for form and content and recommend that
it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Electrical Engineering.

Hairong Qi
Major Professor

We have read this dissertation
and recommend its acceptance:

J. Douglas Birdwell

Itamar Elhanany

Lynne E. Parker

Stephen Fulton Smith

Accepted for the Council:

Anne Mayhew
Vice Chancellor and Dean of
the Graduate Studies

(Original signatures are on the files with official student records.)

Energy Efficient Designs for Collaborative

Signal and Information Processing in Wireless

Sensor Networks

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Yingyue Xu

May 2005

Copyright c
�

2005 by Yingyue Xu

All rights reserved.

ii

Acknowledgments

First, I would like to express my deepest gratitude my adviser Dr. Hairong Qi. Her valuable

guidance and patience through my studies has allowed me to develop my skills as a researcher.

Whenever I met difficulties, whether in my research or personal life, she provided steadfast

support and encouragement. Without her guidance, this work would not have been possible.

Also I am highly indebted to Dr. Birdwell, Dr. Elhanany, Dr. Parker and Dr. Smith for many

valuable discussions, insightful suggestions and serving as my committee members.

Many thanks are to my peers, Yang Liu, Hongtao Du, Xiaoling Wang, Lidan Miao, Sankar

Venkatraman, Balasubramanian Lakshminarayanan, Olawoye Oyeyele, Phani Teja Sastry Ku-

ruganti, and Gaurav Baone, for their friendship and support.

Last but not least, I sincerely thank my parents, my sister, and my brother-in-law. Your

support, love and enthusiasm through my life make everything possible and meaningful.

iii

Abstract

Collaborative signal and information processing (CSIP) plays an important role in the de-

ployment of wireless sensor networks. Since each sensor has limited computing capability,

constrained power usage, and limited sensing range, collaboration among sensor nodes is im-

portant in order to compensate for each other’s limitation as well as to improve the degree of

fault tolerance. In order to support the execution of CSIP algorithms, distributed computing

paradigm and clustering protocols, are needed, which are the major concentrations of this dis-

sertation.

In order to facilitate collaboration among sensor nodes, we present a mobile-agent com-

puting paradigm, where instead of each sensor node sending local information to a processing

center, as is typical in the client/server-based computing, the processing code is moved to the

sensor nodes through mobile agents. We further conduct extensive performance evaluation ver-

sus the traditional client/server-based computing. Experimental results show that the mobile

agent paradigm performs much better when the number of nodes is large while the client/server

paradigm is advantageous when the number of nodes is small. Based on this result, we propose

a hybrid computing paradigm that adopts different computing models within different clusters

of sensor nodes. Either the client/server or the mobile agent paradigm can be employed within

clusters or between clusters according to the different cluster configurations. This new com-

puting paradigm can take full advantages of both client/server and mobile agent computing

paradigms. Simulations show that the hybrid computing paradigm performs better than either

the client/server or the mobile agent computing.

The mobile agent itinerary has a significant impact on the overall performance of the sensor

network. We thus formulate both the static mobile agent planning and the dynamic mobile

agent planning as optimization problems. Based on the models, we present three itinerary

planning algorithms. We have showed, through simulation, that the predictive dynamic itinerary

iv

performs the best under a wide range of conditions, thus making it particularly suitable for CSIP

in wireless sensor networks.

In order to facilitate the deployment of hybrid computing paradigm, we proposed a decen-

tralized reactive clustering (DRC) protocol to cluster the sensor network in an energy-efficient

way. The clustering process is only invoked by events occur in the sensor network. Nodes that

do not detect the events are put into the sleep state to save energy. In addition, power control

technique is used to minimize the transmission power needed. The advantages of DRC protocol

are demonstrated through simulations.

v

Contents

1 Introduction 1

1.1 Sensor Nodes . 2

1.2 Wireless Sensor Networks: Promises and Challenges 8

1.3 Energy Efficiency in Wireless Sensor Networks 10

1.3.1 Source of Power Consumption . 10

1.3.2 Power-Save Protocols . 14

1.4 Collaborative Signal and Information Processing in Wireless Sensor Networks . 22

1.5 Agent Technologies . 26

1.5.1 Agent Standards . 26

1.5.2 Agent Communications . 27

1.5.3 Agent Migration . 27

1.5.4 Mobile Agent Systems . 28

1.6 Contributions . 29

1.7 Dissertation Outline . 32

2 Distributed Computing Paradigms Supporting CSIP: Modeling, Evaluation, and

Implementation 33

2.1 Computing Paradigms . 33

2.2 Evaluation Metrics . 39

vi

2.2.1 Assumptions . 40

2.2.2 The Execution Time Metric . 40

2.2.3 The Energy Metric . 42

2.2.4 The energy*delay Metric . 43

2.2.5 Experimental Parameter Setup . 43

2.3 Experiments and Simulation Results . 44

2.3.1 Effect of the Number of Nodes (�) . 45

2.3.2 Effect of the Number of Mobile Agents (�) 47

2.3.3 Effect of the Data Size/Mobile Agent Size (�������	�) 47

2.3.4 Effect of the Overhead Ratio (
�����
 �) 50

2.3.5 Effect of the Node Transmission Range 50

2.3.6 Effect of Different Protocols and Models 53

2.4 Detection Performance Comparison for Different Computing Paradigms 53

2.5 Discussions . 58

2.6 A Mobile Agent Framework for CSIP . 59

3 Cluster-based Hybrid Computing Paradigm 64

3.1 Hybrid Computing Paradigm . 64

3.2 Discussions . 70

4 Mobile Agent Planning for CSIP 72

4.1 Related Work . 73

4.2 Mobile Agent Migration . 75

4.2.1 Assumptions . 76

4.2.2 Symbols Used for Mobile Agent Migration 77

4.2.3 Evaluation Metrics for Mobile Agent Migration 77

4.2.4 Sensing Model . 78

vii

4.2.5 Information Gain Model . 79

4.2.6 Beacon Frames . 80

4.2.7 Target Localization Algorithm . 80

4.2.8 Procedure of Mobile Agent Migration 82

4.3 Static Mobile Agent Planning (SMAP) Modeling 86

4.4 Dynamic Mobile Agent Migration Modeling 90

4.5 Mobile Agent Planning Algorithms . 95

4.5.1 Information-driven Static Mobile Agent Planning (ISMAP) 96

4.5.2 Information-driven Dynamic Mobile Agent Planning (IDMAP) 98

4.5.3 Predictive Information-driven Dynamic Mobile Agent Planning (P-IDMAP) 98

4.6 Simulation and Algorithm Evaluation . 103

4.6.1 The Effect of the Target Speed (�) . 107

4.6.2 The Effect of the Number of Nodes 107

4.7 Conclusion . 110

5 Decentralized Reactive Clustering (DRC) in Collaborative Processing 111

5.1 Motivation . 112

5.2 Detail Descriptions of DRC . 117

5.2.1 Post-Deployment Phase . 119

5.2.2 Cluster Forming Phase . 120

5.2.3 Intra-Cluster Data Processing Phase 125

5.2.4 Cluster-Head-to-Processing Center Phase 125

5.3 Performance Evaluation . 126

5.3.1 Effect of the Node Density . 131

5.3.2 Effect of the Target Speed . 133

5.3.3 Effect of the Signal Range . 133

5.3.4 Effect of the Number of Events . 134

viii

5.4 Discussions . 134

6 Conclusions and Future Work 137

6.1 Summary of Contributions . 137

6.1.1 Modeling and Performance Evaluation of Distributed Computing Paradigms137

6.1.2 Cluster-based Computing Paradigm 138

6.1.3 Mobile Agent Planning Modeling and Algorithms Design 138

6.1.4 Decentralized Reactive Clustering . 139

6.2 Directions for Future Work . 139

6.2.1 Cross-layer Optimization for CSIP in Wireless Sensor Networks 140

6.2.2 Multi-Agent System for CSIP . 140

6.2.3 Strong Migration of Mobile Agent Framework 140

6.2.4 Distributed Data Mining in Wireless Sensor Networks Using Mobile

Agents . 141

6.3 Publication History . 141

Bibliography 143

Vita 161

ix

List of Tables

1.1 Power analysis of Rockwell’s WINS nodes [47]. 13

1.2 Comparison of different protocols. 14

2.1 Parameters for the basic network setup. 44

2.2 Computing paradigm related parameters for the basic network. 45

2.3 Simulation results for the client/server-based classifier. 56

2.4 Simulation results for the mobile-agent-based classifier. 57

4.1 Related parameter setup for the basic network. 106

5.1 Power consumption in different states. 129

5.2 Related parameter setup for the basic network. 129

x

List of Figures

1.1 Sensor node architecture (redrawn from [19]). 3

1.2 UCBerkeley Mote: Dot and Spec [11]. 5

1.3 Sensoria WINS NG 2.0 node [116]. 6

1.4 � AMPS-we node [6]. 7

1.5 PC-104 based sensor node. 7

1.6 A wireless sensor network. 8

1.7 Comparison of energy consumption of different devices of the general sensor

node [46]. 12

2.1 Protocol stack of wireless sensor networks. 34

2.2 Different computing paradigms. 35

2.3 Mobile agent components [99]. 36

2.4 Life cycle of data (client/server-based) and mobile agent (mobile-agent-based)

migration in time and space. 37

2.5 The effect of the number of nodes (�). 46

2.6 The effect of the number of mobile agents (�). 48

2.7 The effect of data size vs. mobile agent size (������� �). 49

2.8 The effect of the overhead ratio (
�����
��). 51

2.9 The effect of the transmission range. 52

2.10 The effect of the different routing protocols. 54

xi

2.11 The effect of the different propagation models. 55

2.12 ROC curves for different classifiers. 57

2.13 Implementation of MAF [76]. 60

2.14 The usage of mobile agent in target classification [100]. 62

3.1 Different schemes in the cluster-based hybrid computing paradigm. 66

3.2 The comparison of three computing paradigms. 69

4.1 Measurement on sensor k is inverse proportional to the square of the distance to

the target. 79

4.2 Information contained in the beacon frame. 80

4.3 Target localization using trilateration method. 81

4.4 Possible conditions of trilateration. 83

4.5 Step 1: at ����� . 84

4.6 Step 2: at time � . 85

4.7 Data space of the mobile agent. Previous target location �����
	���
 is the esti-

mated target location from previous migration, ������������� � is the summation of

the information gain from previously migrated nodes. 85

4.8 Mobile agent migration by optimizing an objective cost function. 94

4.9 Algorithm 1: Information-driven Static Mobile Agent Planning (ISMAP) . . . 97

4.10 Algorithm 2: Information-driven Dynamic Mobile Agent Planning (IDMAP) . 99

4.11 Effect of not using the target movement information. 100

4.12 Predictive Mobile Agent Migration. The black dots represent the estimated tar-

get location, the grey dots represent predicted target position, the dashed track

represents the predicted target movement. 102

4.13 Algorithm 3: Predictive Information-driven Dynamic Mobile Agent Planning

(P-IDMAP) . 104

xii

4.14 The mobile agent migration using different algorithms. 105

4.15 The effect of target speed. 108

4.16 The effect of the number of nodes. 109

5.1 Comparison of proactive and reactive clusterings. 113

5.2 Message format. 118

5.3 Neighbor table. 119

5.4 Routing table. 119

5.5 Participation table. 120

5.6 Scenario 1: Both nodes A and B are unclustered. 122

5.7 Scenario 2: Node A belongs to a cluster, node B is unclustered. 123

5.8 Scenario 3: Node A unclustered, node B belongs to a cluster. 124

5.9 Scenario 4: Node A and B belong to different clusters. 125

5.10 DRC clustering result after an event. 127

5.11 Predefined clusters. 127

5.12 DRC result after another event. 128

5.13 The operation of the fixed clustering protocol. 130

5.14 The operation of the LEACH and DRC protocols. 131

5.15 The effect of node density. 132

5.16 The effect of the target speed. 133

5.17 The effect of the signal range. 134

5.18 The effect of the number of events. 135

xiii

Chapter 1

Introduction

Sensors and actuators serve as the interconnection between human being and the physical world.

Sensors detect the physical nature of the world, such as the light, the temperature, or the sound.

Similarly, actuators affect the world in some way, such as toggling a switch, making a noise, or

exerting a force. Such a close relationship with the physical world reflects a dramatic contrast

to traditional computing, which deals exclusively with the information generated by humans,

such as e-mail, digital music, or bank balances. Recent advances in Micro-Electro-Mechanical

Systems (MEMS) and wireless communications have fomented the development of low-cost,

low-power, untethered, tiny sensor nodes, equipped with significant processing, memory, and

wireless communication capabilities. These sensor nodes are capable of monitoring a wide

variety of ambient conditions, such as temperature, pressure, mechanical stress level on attached

objects, etc. Such sensor devices can be densely and randomly deployed to form a new kind of

network – the wireless sensor networks (WSNs).

Researchers on WSNs have drawn promising pictures about the future of wireless sensor

networks. In an interesting article [135], M. Weiser describes the world in the future, where

“ubiquitous computers will come in different sizes, each suited to a particular task”,“hundreds

of computers in every room, all capable of sensing people near them and linked by high-speed

1

networks”. Furthermore, “Ubiquitous computing help overcome the problem of information

overload.” “Machines that fit the human environment, instead of forcing humans to enter theirs,

will make using a computer as refreshing as taking a walk in the woods.” In an imaginary

earthquake hit in Southern California in 2053 [43], J. Elson and D. Estrin describe how Southern

California return to normal under the help of “pervasive sensors that had been woven into both

technological fabric and the natural environment”. “Sensors throughout the city’s water system

went onto high alert, ready to divert contaminants to a safe disposal if any toxins were detected.”

“Small fire was detected and a map to the area popped up on a screen.” Even though such

technology seems fanciful today, there is no doubt that wireless sensor networks will become

ubiquitous and change people’s life dramatically.

This dissertation presents the details of research at the University of Tennessee in wireless

sensor networks and their applications in collaborative information processing. The remainder

of this chapter first gives an overview of sensor nodes as well as the wireless sensor network,

including the architecture of the sensor node, the various existing sensor node designs, the chal-

lenges posed on the research of the wireless sensor networks, and the applications of WSNs. It

then focuses the discussion on the issue of energy efficiency in WSNs and provides an overview

of existing protocols designed in different layers for energy efficiency purpose. It finally ad-

dresses the application layer and introduces some background knowledge of collaborative sig-

nal and information processing (CSIP) and computing paradigms that facilitate CSIP in wireless

sensor networks, including the client/server paradigm and the mobile agent paradigm.

1.1 Sensor Nodes

A sensor node is the basic element in wireless sensor networks. It is a battery-driven device,

consisting of a sensing unit, a processing unit, a transceiver and a power unit. Some type of

nodes may also have a power generator, a location-finding system and a mobilizer. See Fig. 1.1

for the architecture of a sensor node.

2

Sensor ADC
Processor

Storage
Transceiver

MobilizerLocation finding system

Power unit Power generator

Sensing Unit Processing Unit

Figure 1.1: Sensor node architecture (redrawn from [19]).

The sensing unit consists of various sensors and analog-to-digital converters (ADC). The

sensors are transducers converting the physical phenomena into electrical signals. These sen-

sors may include, for example, a microphone, which detects acoustic signals and produces

an electrical image of the sound; a geophone, which measures the earth’s vibrations at a single

point; an accelerometer, which produces a voltage proportional to the acceleration of the ground

vibrations; or a passive infra-red (PIR) detector, which picks up the infrared (IR) radiations

emitted by moving objects that have detectably different temperatures from the surrounding

ambient temperature. All these signals from the physical world decay as the distance to the

source increases.

The processing unit is responsible for processing the digital signal and executing various

algorithms. For example, Sensoria nodes [14] use the Hitachi SH4 processor, a powerful 167

MHz processor that can handle complex algorithms. On the contrary, the Berkeley’s Motes [2]

use a lightweight Atmel AVR8535 at 4 MHz, which has high energy efficiency but much less

computing capability. In general, lightweight nodes are only suitable for simple processing,

such as the average, minimum, and maximum values from different sensor readings [85], due to

their limited computing ability. On the other hand, powerful nodes can perform processing tasks

that require extensive computations, such as beam-forming, target classification, and tracking.

3

The transceiver is responsible of communication with other nodes. The use of radio-

frequency (RF) communication is preferred in sensor networks because the packet transmis-

sion is small, and the bandwidth usage is efficient due to the short range of communication

distances [18]. The RF communication involves modulation, bandpass, filtering, and demod-

ulation circuitry. Underwater sensor networks [97] use acoustic frequencies because of the

special propagation environment.

The power unit provides the energy source for the sensor node. It is usually in the form

of batteries. Once used up, the batteries are usually difficult to be replaced. Sometimes it may

also consist of a power generator unit, such as a solar cell to supply the energy of the node. The

power unit determines the lifetime of the node and is the most important unit.

The location-finding system provides the location information of the node, which is vital to

some algorithms. The Sensoria node has a GPS system to find the current position of the node.

The mobilizer is useful when the sensor node needs to move to other place in some applica-

tions. It is, of course, an optional component.

Currently, there are considerable research programs conducted on sensor node hardware

development. Some of their products are:

� UC Berkeley Motes: Motes (including Mica, Mica2, Dot and Spec) are designed by

the University of California, Berkeley and are popularly called “Smart Dust” [65]. The

Dot mote is shown in Fig. 1.2 (left). The newest Spec mote is shown in Fig. 1.2 (right).

The design goal of the Smart Dust is to build a self-contained, millimeter-scale sensing

and communication platform for a massively distributed sensor network. The device will

be around the size of a grain of sand. It is a tiny node containing an MCU (ATMEL

90LS8535) [2] and runs at
�

MHz and ��� � V. It has an � KB flash memory and a � ��� -

byte SRAM memory. The radio is an asynchronous input/output device with hard real-

time constraints. It consists of an RF Monolithics 	 ��
������ MHz transceiver, antenna and

collection of physical-layer components to configure the physical layer characteristics

4

Figure 1.2: UCBerkeley Mote: Dot and Spec [11].

such as signal strength and sensitivity. It comes with a temperature sensor with an option

to mount custom-selected sensors on the sensor board. The nodes run the TinyOS [13]

operating system, which supports two-level scheduling and allows for high concurrency

to be handled in a very small amount of space [65].

� Sensoria WINS NG nodes: The WINS NG node is a powerful sensor node platform

with several interfaces to externally connect sensors, wireless extension cards, and other

serial port devices. Fig. 1.3 shows a Sensoria sensor node. The node uses the Hitachi

SH-
�

processor running at ��
�� MHz. The SH-
�

is a � � -bit RISC with a ��� � -bit vector

floating point unit (FPU) and super-scalar implementation providing higher speeds at

low clock rates [10]. The sensor node supports four sensing channels, including, for

example, acoustic, seismic and PIR sensors. It also hosts a GPS module for geo-location

information of the nodes. It has dual RF modems, both of which in the ���
� � � - ���

�
	 �

GHz ISM band using frequency-hopping spread spectrum (FHSS). The node runs a Linux

5

Figure 1.3: Sensoria WINS NG 2.0 node [116].

kernel as the operating system. Sensoria provides the APIs [14] required for RF modem

control and data acquisition.

� MIT � AMPS-we and II nodes: MIT’s � AMPS project is a research effort focused on

energy efficiency design at all levels of the sensor networks system. The � AMPS-we

is their first step towards building a wireless sensor network. It is implemented with

commercial off-the-shelf (COTS) components. Fig. 1.4 shows the outlook of the node.

� AMPS-II is the ongoing project to build energy-scalable micro-power DSP at 10 MIPS.

The node will have two dedicated ASICs, one for digital processing and one for the

analog/RF part of the radio.

� PC-104 based nodes: The term PC-104 is derived from the connector used to stack dif-

ferent boards having 104 pins. PC-104 is an industry standard of PC-compatible modules

that can be stacked together to form a custom-designed embedded system [3]. Since

these systems are made with hardware, compatible with PC systems, it is easy to con-

figure them along with the PCs. The PC-104 sensor nodes are custom built with chosen

processor, memory configuration and hard disk. Fig. 1.5 shows a PC-104 based sensor

node. The SCADDS testbed of USC/ISI consists of 30 nodes built using PC-104 based

products [4].

6

Figure 1.4: � AMPS-we node [6].

Figure 1.5: PC-104 based sensor node.

7

Figure 1.6: A wireless sensor network.

1.2 Wireless Sensor Networks: Promises and Challenges

A wireless sensor network is a special kind of network that consists of sensor nodes. A typi-

cal wireless sensor network looks like Fig. 1.6, where sensor nodes are scattered in the area of

interest. When certain events occur, the alerted sensors will collect data and send it to a pro-

cessing center. The processing center processes the data and generates the results, which can be

accessed by users through other networks, such as the Internet.

There are a wide spectrum of applications for wireless sensor networks, ranging from mili-

tary to civilian and medical.

For military applications, WSNs are useful in battlefield surveillance, target classification

and tracking, monitoring and reconnaissance, and the like. They can also be effectively used to

sense the chemical level in the environment in the event of biological or chemical attacks. WSNs

can be an integral part of military command, control, communications, computers, intelligence,

surveillance, reconnaissance and tracking (C4ISRT) systems. The rapid deployment, self or-

ganization and fault-tolerance characteristics of sensor networks make them a very promising

surveillance technique for military C4ISRT. Since sensor networks are based on the dense de-

ployment of disposable and low-cost sensor nodes, destruction of some nodes by an enemy does

not affect a military operation as much as the destruction of a traditional sensor. The Sensor

8

Information Technology (SensIT) project sponsored by Defense Advanced Research Projects

Agency (DARPA) [9] is one of the first-initiative programs in wireless sensor network tech-

nologies that seeks applications in the future battlefield.

Environmental applications may include tracking the movements of animals; monitoring

marine, soil, and atmospheric conditions; forest fire detection; macroinstruments for large-scale

Earth monitoring and planetary exploration; flood detection, and so forth [16, 70, 74, 122, 134].

The Habitat Monitoring on Great Duck Island by the Intel Research Laboratory at Berkeley,

College of the Atlantic, and the University of California at Berkeley [86] monitors the micro-

climates in and around nesting burrows used by the Leach’s Storm Petrel in Great Duck Island,

Maine. The goal is to develop a habitat monitoring kit that enables researchers worldwide to

engage in the non-intrusive and non-disruptive monitoring of sensitive wildlife and habitats.

Wireless sensor networks may also be used in medical applications. Some of the potential

applications include remote patient monitoring, drug administration and in-hospital environ-

ment control. For example, the University of Notre Dame, Brunel University, and the Univer-

sity of Miami are conducting a Mobile Patient project [27] that uses sensor networks for patient

monitoring and care.

Residential and commercial applications for wireless sensor networks include home au-

tomation and smart environment. Some of them include building virtual keyboards; construct-

ing smart office spaces; and environmental control in office buildings [44, 74, 96, 102]. The

sensor nodes can be embedded into furniture or clothes, such as in the Smart Kindergarten

project by UCLA [124]. This project targets the early childhood education environment as a

testbed in order to provide parents and teachers with the abilities to comprehensively investigate

students’ learning processes.

Although promising, the unique characteristics of wireless sensor networks also pose unique

challenges to traditional network design. In the following, we summarize some important issues

brought up by wireless sensor networks [18, 19, 60].

9

Energy [50, 103]. Sensor devices are battery operated. Once deployed, it is usually impos-

sible to replace the batteries. Therefore, how to save energy, and thus prolong the lifetime of

the individual sensor node as well as the whole sensor network, is a major challenge in wireless

sensor networks.

Scalability [45]. A huge amount of sensor nodes could be deployed to form a wireless sensor

network. For such a large-scale network, the many protocols proposed for ad hoc networks may

not be suitable. Innovative scalable algorithms and protocols need to be developed.

Reliability [125]. Sensor nodes are often deployed in harsh, dangerous, or inaccessible

environments, such as battlefields or underwater. Such environments make sensor nodes prone

to failures. They can also inoperative because of battery depletion. Furthermore, the wireless

transmission in sensor networks has a high bit-error rate (BER) and low bandwidth. In such a

dynamic network environment, system fault-tolerance and reliability is another challenge.

Real-time operation [84]. Although real-time performance is not the first priority, in some

applications, emergent information has to be provided in a timely manner. Thus, how to reduce

latency in the presence of limited energy is also worth studying.

1.3 Energy Efficiency in Wireless Sensor Networks

Energy optimization in the case of wireless sensor networks is much more complex than con-

ventional low-power design techniques [33], because it involves not only reducing the energy

consumption of a single sensor node, but also maximizing the lifetime of an entire network. The

energy efficient designs should be incorporated into every stage of the wireless sensor network

design and operation in order to prolong the overall network lifetime.

1.3.1 Source of Power Consumption

In order to design energy-efficient systems, we need to first investigate the sources of power and

dissipation characteristics of a wireless sensor node.

10

First, we consider the microcontroller unit. The microcontroller unit (MCU) is responsible

for control of the sensors and the execution of communication protocols and signal processing

algorithms on the gathered sensor data, thus giving intelligence to the node. The commonly

used MCUs are Intel’s StrongArm microcontroller and Atmel’s AVR microcontroller. Some

research has been conducted to estimate the power consumption of these embedded proces-

sors [120, 129]. The choice of MCU is related to the application scenario. The StrongARM

microprocessor consumes around 400 mW of power while executing instructions, whereas the

ATmega103L AVR microcontroller consumes only around 16.5 mW, but provides much lower

performance. MCUs usually support various operating modes, including Active, Idle, and Sleep

modes, for power management purposes. Each mode is characterized by a different amount of

power consumption. For instance, the StrongARM consumes 50 mW of power in the Idle mode,

and only 0.16 mW in the sleep mode. However, transitioning between modes involves a power

and latency overhead. Thus, the power consumption levels of various modes, the transition

costs, and the amount of time spent in each mode all have a significant effect on the total energy

consumption of the microcontroller.

Second, we consider the transceiver unit. Several factors affect the power consumption

characteristics of a transceiver, including the type of modulation scheme used, data rate, RF

transmission power (determined by the transmission range), and the operational duty cycle. Ra-

dios can also operate in four distinct modes: Transmit, Receive, Idle and Sleep. Xu et al. [139]

shows that the Idle mode consumes significantly higher power than the Sleep mode, almost

equal to the power consumed in the Receive mode. Thus, we should make the radio stay in the

Sleep state instead of the Idle mode whenever possible. The change from one mode to another

mode causes a comparatively large amount of power dissipation. For example, when the radio

switches from sleep mode to transmit mode in order to send a packet, a significant amount of

power is consumed for starting up the transmitter [131]. When designing protocols, we should

consider all these facts and avoid unnecessary changes of modes.

11

0

5

10

15

20

E
ne

rg
y

C
on

su
m

pt
io

n
(m

W
)

Devices (working modes)

Sensors CPU TX RX IDLE SLEEP
Radio

Figure 1.7: Comparison of energy consumption of different devices of the general sensor node
[46].

Third, we consider the sensing unit. Sensors translate physical phenomena to electrical

signals and can be classified as either analog or digital devices, depending on the type of out-

puts they produce. There are several sources of power consumption in a sensor, including:

signal sampling and conversion of physical signals to electrical ones; signal conditioning; and

analog-to-digital conversion. Given the wide diversity of sensor types, there is no typical power

consumption number. In general, the energy consumed by the sensors is small. However, active

sensors such as sonar rangers, and array sensors such as imagers can be large consumers of

power.

Fig. 1.7 shows the energy consumptions of different components on a sensor node. We can

conclude that the largest part of the energy consumption goes to the Radio. More specifically,

Table 1.1 gives the power consumption of Rockwell’s WINS node, which is equipped with

a StrongARM SA-1100 processor, a radio module from Conexant Systems, and acoustic and

seismic sensors. We can see that the node power consumption is strongly dependent on the op-

erating modes of the components. For example, as Table 1.1 shows, the WINS node consumes

only around one-sixth the power when the MCU is in the Sleep mode, compared to the Active

mode. We also notice that the transmission power can be adjusted to different levels of energy

consumption.

12

Table 1.1: Power analysis of Rockwell’s WINS nodes [47].

MCU mode Sensor Mode Radio Mode Power (mW)���
(Power:36.3 mW) 1080.5� �
(Power:19.1 mW) 986.0���
(Power:13.8 mW) 943.6� �
(Power:3.47 mW) 815.5

Active On
���

(Power:2.51 mW) 807.5���
(Power:0.96 mW) 787.5� �
(Power:0.30 mW) 773.9���
(Power:0.12 mW) 771.1

Active On � � 751.6

Active On Idle 737.5

Active On Sleep 416.3

Active On Removed 383.3

Sleep On Removed 64.0

Active Removed Removed 360.0

13

Table 1.2: Comparison of different protocols.

Protocol Layer Energy-saving method

LEACH [62] Application Clustering, cluster head rotation

STEM [114] Application Topology management, two channels

Directed Diffusion [69] Routing Data centric, receiver initiate

SPIN [60] Routing Data centric, meta-data, sender initiate

SAR [147] Routing Minimum QoS metrics

SMAC [146] MAC Periodic listen and sleep, collision and overhearing avoidance

B-MAC [32] MAC Upcalls

PAMAS [119] MAC Two channels

EAR [130] MAC Registry

DPM [29] Physical Idle component shutdown

DVS [89] Physical Adapting supply voltage

TinyOS [13] Operation system Event-based approach

1.3.2 Power-Save Protocols

Power-save protocols seek to maximize energy saving, while minimizing their impacts on

throughput and latency. According to different functions, we can divide the wireless sensor

network protocols into application layer, network layer, MAC layer, physical layer and operat-

ing system (OS) layer. The sensor network lifetime can be significantly enhanced if all these

layers are designed energy-efficiently. Here, we briefly review the state-of-the-art energy effi-

cient designs in wireless sensor networks in Table 1.2.

Application Layer

Low-Energy Adaptive Clustering Hierarchy (LEACH): LEACH [60] is a cluster-based pro-

tocol that divides the sensor network into clusters, thus allowing nodes that are close to each

other to share data. The nodes in the cluster send their data to a local cluster-head, which is

responsible for receiving all the data from nodes within the cluster and aggregating this data

14

into a smaller set of information that describes the events the nodes are sensing. The opera-

tion of LEACH is divided into two phases: the setup phase and the steady phase. During the

setup phase, each node generates a random number and compares it to a threshold to decide

whether it becomes a cluster head or not. Once the cluster heads are determined, they will

announce their decisions to the whole network. The sensors receiving the announcements will

determine which cluster to join based on the signal strengths of the announcements. LEACH

uses the following techniques to achieve energy and latency efficiency: (i) use of a cluster-

formation algorithm which allows each node to make autonomous decisions that result in good

clusters being formed; (ii) localized control for data transfer; (iii) use of local control to set up a

TDMA schedule and implementing low-energy media access; and (iv) application-specific data

processing, such as data aggregation or compression to reduce the amount of data need to be

transmitted.

Sparse Topology and Energy Management (STEM): STEM [114] is a new topology

management scheme. It trades off energy consumption in the monitoring state, a state to monitor

its environment, versus latency of switching back to the transfer state, which is the state to

forward data. It emulates a paging channel by having a separate radio operating at a lower

duty cycle. Upon receiving a wakeup message, it turns on the primary radio, which takes care

of regular data transmissions. STEM is specifically geared towards those scenarios where the

network spends most of its time waiting for events to happen without forwarding traffic.

Sensor Query and Tasking Language (SQTL): SQTL [117] is a language providing a

large set of services. It supports three types of events, which are defined by keywords receive,

every, and expire. Receive defines events generated by a sensor node when the sensor node

receives a message; every defines events occurring periodically due to a timer time out; and

expire defines the events when a timer is expired.

Ghaisi et al. [54] study the theoretical aspects of the clustering problem in wireless sensor

networks with application to energy optimization. The authors illustrate an optimal algorithm

15

for clustering the sensor nodes such that each cluster is balanced and the total distance between

sensor nodes and the cluster heads is minimized. It is helpful in reducing the communication

overhead and hence the energy dissipation. The authors solve this optimization problem by

modeling it as a minimum-cost flow problem.

Network Layer

Youssef et al. [149] introduce a new energy-aware routing protocol that tries to minimize the

energy consumption and at the same time maintain good end-to-end delay and throughput per-

formance. The protocol is based on a constrained shortest-path algorithm. The paper shows that

for large values of the constraint, the algorithm gives performance similar to the direct routing

algorithm and for moderate values, the performance is acceptable under all performance met-

rics and presents a balance between the minimum transmission energy routing algorithm and

the direct routing algorithm.

Directed Diffusion: Directed diffusion [45] is a novel routing protocol suitable for event-

driven applications like wireless sensor networks. It is “data-centric”, meaning routing is based

on data contained in the sensor nodes rather than traditional IP address. The data is identified

by its attributes in directed diffusion. Sinks or nodes that request data send out interests. If the

attributes of the data match these interests, a gradient is setup and data will be pulled to the

sinks. It provides a Geographic and Energy Aware Routing Protocol (GEAR) which is energy

efficient by using geographic regions and avoiding blind flooding.

Sensor Protocols for Information via Negotiation (SPIN): SPIN [62] is a routing protocol

designed for wireless sensor networks. SPIN names its data using high-level data descriptors,

called the meta-data, which have a one-to-one mapping relation with the raw data. In the

SPIN protocol, the node which has new data advertises the data to the neighboring nodes in

the network using meta-data. When the neighboring node wants the data, it sends a request to

the initiator node, which will send data to the sinks. Each node has its own resource manager

16

to keep track of the usage of energy resource and make decisions such as whether it should

participate in transmission accordingly.

Sequential Assignment Routing (SAR): SAR [123] takes into consideration the energy

resources and QoS on each path, and the priority level on each packet for making routing de-

cisions. A multi-path approach is used to avoid the overhead of route recomputation on failure

and localized path restoration schemes. To create multiple paths from each node to the sink,

multiple trees, each rooted from a one-hop to the sink, are built. Each tree is grown outward

from the sink by successively branching and going for higher hop paths while avoiding nodes

with lower QoS and energy reserves. At the end of this process, each node will belong to mul-

tiple paths and each sensor can control which one-hop neighbor of the sink will be used for

relaying the message. An additive QoS metric and a measure of the energy resources are as-

sociated with each path. SAR calculates a weighted QoS metric as the product of the additive

QoS metric and a weight coefficient associated with the priority level of the packet. A periodic

recomputation of paths is triggered by the sink to account for any changes in topology. Failure

recovery is done through a handshaking procedure between neighbors and local path restoration

is used.

Minimum Cost Forwarding Algorithm: Ye et al. [145] exploits the fact that data flows in

sensor networks are in a single direction and are always to the fixed base station. Their method

resembles the natural gravity field that drives waterfalls from top of the mountain to the ground.

Each node maintains the least cost estimate from itself to the base station. Each message to be

forwarded is broadcasted by the node. On receiving a message, the node checks whether it is on

the least cost path between the source and the base station. If so, it would forward the message.

MAC Layer

Self-Organizing Medium Access Control for Sensor Network (SMAC): SMAC [146] is a

new MAC protocol explicitly designed for wireless sensor networks. While the primary goal

17

in the design of SMAC is reducing energy consumption, it also achieves good scalability and

collision avoidance by utilizing a combined scheduling and contention scheme. It consists of

three major components: periodic listen and sleep, collision and overhearing avoidance, and

message passing. Each node goes to sleep periodically, and then wakes up and listens to see

if any other node wants to talk to it. Before this, it needs to choose a schedule and exchange

it with its neighbors. It performs neighbor discovery in the bootup period. As soon as a new

link is discovered, the first time slot during which both nodes are free is assigned a channel and

is added permanently to their schedule. As time goes on each node grows its neighbor list by

attaching new nodes and eventually all the nodes are connected to each other. The ability to have

nonsynchronous scheduled communication enables nodes to form links on the fly. After a link

is formed, a node knows when to turn on its transceiver ahead of the time for communication. It

adopts a contention-based scheme for collision avoidance. SMAC fragments the long message

into many small fragments, and transmits them in bursts to achieve high energy and latency

efficiency. It has the ability to make trade-offs between energy and latency according to traffic

conditions.

B-MAC: B-MAC [95] is a new CSMA-CA scheme proposed by the University of Cali-

fornia, Berkeley. It uses upcalls to notify applications of the underlying channel utilization to

enable an application to change its sampling phase, sampling interval, or aggregation methods.

It also presents an effective carrier sense algorithm for collision avoidance (CA). The B-MAC

protocol is implemented on the UC Berkeley Mica2 platform. Their experiments show that

B-MAC outperforms the default 802.11-style TinyOS MAC layer by over 100% in terms of

packet throughput and achieves 85% channel utilization. It also shows the need for application

coordination in wireless sensor network media access layers.

PAMAS: The PAMAS [119] protocol uses an RTS/CTS-style mechanism with a separate

control signaling channel. A node that is waiting to initiate a transmission or is in the process

of receiving a transmission causes other nodes to defer their transmissions by generating a busy

18

tone on the control channel. When a node wakes up, it transmits a sequence of probe messages

and awaits a response on the control channel to get the information of the channel. The node

turns itself off if a neighbor is transmitting and it has no packets to transmit or if it has a packet

to transmit, but a neighbor is receiving. PAMAS is most effective in networks with high density

and traffic load.

Eavesdrop-And-Register (EAR) Algorithm: EAR [123] has been designed for commu-

nication between mobile nodes and stationary nodes on the ground. The mobile nodes are

responsible of connection setup to conserve energy. The mobile node keeps a registry of all

the sensors in its neighborhood and makes handoff decisions whenever the SNR drops below a

threshold value. The EAR uses the invitation messages broadcast during the bootup period as

a trigger. The mobile node eavesdrops on all kinds of messages and forms a registry of all the

stationary nodes within hearing range.

IEEE 802.15.4 Standard: The IEEE 802.15.4 [67] is a MAC and Physical layer standard

for a low data-rate system, providing a multi-month to multi-year battery life solution with very

low complexity. It operates at low data rates of 250 kbps (2.4 GHz), 40 kbps, and 20 kbps

(868/915 MHz) in order to enhance the lifetime. It has an extremely low duty-cycle (� 10 ppm)

capability. It also supports a “Battery Life Extension” (BLE) mode, in which the CSMA-CA

backoff exponent is limited to range 0-2 time slots and greatly reduces receiver duty cycle in

low traffic applications.

Physical Layer

In addition to using low-power hardware components during sensor node design, operating the

various system resources through the use of dynamic power management (DPM) [29] can also

save energy consumption. It is based on idle component shutdown, in which the sensor node,

or part of it, is shut down or sent into one of several low-power states if no interesting events

occur. Besides DPM, additional energy savings are possible in the active state through the use of

19

dynamic voltage scaling (DVS) [93]. It is to dynamically adapt the processor’s supply voltage

and operating frequency to just meet the instantaneous processing requirement, thus trading off

unutilized performance for energy saving. Several processors, such as Intel’s StrongARM and

Transmeta’s Crusoe, support such scaling of voltage and frequency.

Shih et al. [118] emphasize the importance of correct and accurate modeling of the under-

lying hardware on energy efficiency and shows the impact of the hardware on the design of

the link, MAC, and physical layers of the protocol stack. Data-link and media-access proto-

cols should adapt parameters of the underlying physical layer in order to minimize energy. The

protocols designed without knowledge of the hardware can be energy inefficient.

Warneke et al. [134] discuss transmission media for the Smart Dust mote [74]. Two trans-

mission schemes, passive transmission using a corner-cube retroreflector and active communi-

cation using a laser diode and steerable mirrors are examined. In the former, the mote does not

require an on-board light source. A configuration of three mirrors is used to communicate bi-

nary information. The latter, however, uses an on-board laser diode to send a tightly collimated

light beam toward the intended receiver.

Two modulation schemes, binary and M-ary modulations, are compared in [118]. The au-

thors point out that while an M-ary scheme can reduce the transmission on-time by sending

multiple bits per symbol, it causes complex circuitry and increased power consumption. More-

over, the authors formulate these trade-off parameters and conclude that under startup-power

dominant conditions, the binary modulation scheme performs better in terms of energy effi-

ciency. So, M-ary modulation outperforms binary scheme only for low startup power systems.

Operating System (OS) and Software Layer

The energy consumption can be greatly reduced through energy-efficient software and operating

system design. The operating system has direct control over the underlying hardware resources,

so its performance can largely determine the performance of the whole network. Moreover, the

20

OS is ideally poised to implement DPM and DVS based power management policies, since it

has global knowledge of the performance and fidelity requirements of all applications, and can

directly control the underlying hardware. The core of the OS is the task scheduler, which is

responsible for scheduling a given set of tasks to run on the system.

TinyOS: TinyOS [66] is an operating system specifically designed for network embedded

systems. TinyOS has a programming model tailored for event-driven applications as well as a

very small footprint with only 400 bytes of code and data memory requirement. It is written

in nesC, an extension of C for networked embedded systems, such as Berkeley’s Mote sen-

sor node. TinyOS uses the event-based approach to create a system that uses CPU resources

efficiently. A complete system configuration consists of a tiny scheduler and a graph of compo-

nents. An application connects components using a wiring specification. There are two kinds of

concurrency in TinyOS: tasks and events. Tasks are a deferred computation mechanism, which

run to completion and do not preempt each other. In contrast, events may preempt the execution

of a task or another event.

Lee et al. [78] propose an accurate software energy consumption model that combines

empirical measurement with a statistical analysis technique. By identifying the factors affecting

the energy consumption of software, the model also provides insight information that can be

used in program optimization for high energy efficiency.

Raghunathan et al. [104] propose an energy-aware real-time scheduling algorithm, which

exploits two aspects about the operating scenario of wireless systems: providing an adaptive

power vs. fidelity tradeoff.

By transforming application software to be energy scalable, the energy-fidelity can be ex-

ploited further. The most significant computations should be performed first, so that terminating

the algorithm due to energy constraints does not impact the results severely. Several transforms

to enhance node energy efficiency are discussed in [121].

21

1.4 Collaborative Signal and Information Processing in Wireless

Sensor Networks

Collaborative signal and information processing (CSIP) in sensor networks has become an im-

portant research field. One of the unique features of wireless sensor network applications is

the necessity of collaboration. Each sensor node normally has limited processing limitation,

constrained power usage, and limited sensing range. Therefore, collaboration among sensor

nodes is important in order to compensate for each other’s capability as well as improve the

degree of fault tolerance. So, the main concern of CSIP is to develop situational awareness

using low-level sensor processing and local exchange of data to reach consensus in the neigh-

borhood about the occurring events. The characteristics of wireless sensor networks bring up

some important issues for CSIP in wireless sensor networks, which are summarized as follows:

First, dense deployment of sensor nodes [45, 75]. Since thousands of sensor nodes are

usually densely deployed in the field, it is possible for the wireless sensor network to provide

dense spatial sampling in multi-modality of phenomena of interest. Therefore, the challenge

would be to combine the distributed data, first at each node and then with collaboration among

the relevant devices in the network to produce meaningful global results. One of the biggest

concerns in this process is the design of scalable CSIP algorithms to combat the large number

of nodes.

Second, the asynchronous property [75]. The distributed processing in a wireless sensor

network typically is asynchronous, for example, in a sequential fusion center, the data from

other sensor nodes may arrive out of order. This makes it necessary to design relevant signal and

information processing and fusion algorithms in order to deal with the asynchronous executions.

Third, energy efficiency [50, 103]. Sensor devices are battery operated. Once deployed, it

is usually very difficult or impossible to replace the battery. Therefore, how to save energy and

22

how to prolong the lifetime of individual sensor nodes, as well as the whole wireless sensor net-

work, is a major challenge in wireless sensor network research. The network must optimize the

trade-off between fault tolerance and energy efficiency in signal processing, data fusion, query-

ing, and routing tasks in order to meet the energy constraints and at the same time to achieve

reliable performance. One measurement of energy efficiency is the lifetime of the wireless sen-

sor network, which is the time from node deployment to the time when the first node is out of

operation due to energy depletion.

Fourth, the reliability issue [125]. Sensor nodes are often deployed in harsh, disastrous

or inaccessible environments. Such environments make sensor nodes prone to failures. In

addition, the wireless transmission in wireless sensor networks has high bit-error rate (BER)

and low bandwidth. Such dynamic network environments present another challenge to achieve

fault-tolerance and reliability.

Fifth, the requirement for progressive accuracy [75]. As mentioned before, the sensor nodes

are normally battery powered. The limited energy resource makes it important to develop

power-aware signal processing and communication methods to provide progressive accuracy,

such that the collaboration process could be terminated anytime (upon achieving the desired

accuracy) to conserve energy.

In order to combat the challenges posed on CSIP in wireless sensor networks, more and

more researchers have been working on various issues to use CSIP technique for intelligence,

surveillance and monitoring applications.

Target Detection: Target detection deals with the problem of detecting the presence of tar-

gets in the area of interest. The challenging problem in target detection is source number estima-

tion, which is to estimate the number of sources [107]. Several techniques have been proposed

to tackle this problem. In [107], the authors show that the principled approaches are superior

than heuristic methods. Some examples of principled estimation approaches include the Markov

chain Monte Carlo (MCMC) [106], Bayesian estimation method [108], and variational learning

23

approximation [21]. Wang [133] developed a cluster-based distributed estimation framework.

The local estimation is generated within each cluster using a progressive detection approach

and a posteriori probability fusion algorithm is performed to combine the local results based

on Bayes theorem. In contrast to the centralized scheme, the progressive approach sequentially

estimates the number of targets based on only local observation. She conducted several experi-

ments and showed that the progressive approach can reduce the amount of data transmission to

���
���

(10 sensors) and ����� � ��� (15 sensors) compared to the classic approach.

Target Localization: The term localization refers to the collection of techniques that mea-

sure the spatial relationships in wireless sensor networks. The target localization technique

can be divided into two categories: in active localization, the sensor nodes emit signals into

the environment; in passive localization, the sensor nodes passively monitor existing signals

in a particular channel [113]. Yao et al. [144] proposed a blind beamforming technique for

blind source localization, which is an operation without any a priori knowledge of the type

of signal emitted. They applied several sub-optimal space-time processing algorithms, such

as the closed-form least squares source localization, MUSIC (multiple signal classification)

algorithm, and the maximum-likelihood parametric method. They claimed that by using the

maximum-likelihood algorithm, they can effectively locate multiple targets with random sensor

deployment. Zou et al. [153] proposed an energy aware target localization strategy based on

an a posteriori algorithm with a two-step communication protocol. The cluster head, with very

limited data from sensor nodes, executes a localization procedure to determine the subset of sen-

sors to be queried. As shown in the paper, the approach reduces energy consumption, decreases

the latency for target localization, and filters false alarms. Wang et al. from UCLA proposed an

entropy-based sensor selection heuristic for localization [132]. The heuristic greedily selects an

informative sensor at each step and is proved to be more effective when the optimal candidate

sensor is more informative.

24

Collaborative tracking, classification, and data fusion: Zhao et al. developed an infor-

mation driven approach to sensor collaboration for target tracking, routing, and sensor querying

in wireless sensor networks [75, 82, 83, 152]. The key idea is to introduce an information

utility measure to select which sensors take part in the tracking, querying, or routing process.

This allows us to maximize information gain while minimizing detection latency and bandwidth

consumption. They further develop an information-driven sensor querying (IDSQ) framework

that select a sensor which is most likely to provide greatest improvement to the estimation

of target state. Guibas proposes a way of collaboration from an interesting angle, which is

to sense the environment through relation [57] instead of the extensive and detailed data. It

uses high-level description of the task to command selective sensor nodes to sense and com-

municate. The selection process results in minimizing the computational, communication, and

sensing resources. The relation-based approach provides us a new angle to solve collaborative

information processing problems. If the information-driven approach can be regarded as us-

ing a bottom-up approach, then relation-based approach uses a top-down solution. Researchers

from the University of Wisconsin-Madison [39, 79] developed a collaborative signal processing

framework for tracking multiple targets in a distributed sensor network. The key components of

the framework include event detection, estimation and prediction of target location, and target

classification. One of the key characteristics in this framework is that routing of information in a

sensor network is geographic centric rather than node centric. Brooks and his colleagues present

a distributed entity-tracking framework, which embeds the tracking logic in a self-organized

distributed network. Tracking is performed by solving the sub-problems of detection, fusion,

association, track formation, and track extrapolation [31]. A unique feature of the system is that

it contains a mobile code infrastructure for flexible tasking. Mobile code is a software that is

transmitted across the sensor network from a remote site to a local system and then executed on

that local system without explicit action on the part of the user [53]. In the case of target classi-

fication, there may be several different classifiers available at a central site. Different classifiers

25

are suitable for different target types. A new classifier, which outperforms others for the given

target type, can be downloaded to the local sensor node and replace the default classifier.

1.5 Agent Technologies

Since collaborative processing is essential in wireless sensor networks, a new computing paradigm

is needed to facilitate the collaboration among sensor nodes. There are two kinds of computing

paradigms: the client/server paradigm and the mobile agent paradigm, which we will discuss in

detail in the next chapter. Here we briefly introduce the concept of agent and the mobile agent

systems.

Simply put, agents are just independently executing programs which are capable of acting

autonomously in the presence of expected and unexpected events. The central concept which

distinguishes agents from simple programs is their interaction with their environment [71]. In

another word, agents can be embedded or situated within their environments.

Agents can be defined by a set of attributes: active, autonomous, goal-driven, and typically

acting on behalf of a user or another agent. The research of agent technology can be divided

into two communities: the intelligent and multi-agent systems community, and the mobile agent

community. Multi-agent systems are those in which an agent has the ability to be social and to

interact with other agents, while mobile agent systems are those where an agent has the mobility

feature, which enables modification of both services and customer profiles at separate locations.

1.5.1 Agent Standards

The Foundation for Intelligent Physical Agents (FIPA) [15] is a non-profit standards organiza-

tion established in 1996 to promote the development of generic agent technologies that maxi-

mize interoperability within and across agent-based applications. Part of its function is to pro-

duce a specification for an agent-enabling software framework. Contributors are free to produce

their own implementations of the software framework as long as its construction and operation

26

comply with the published FIPA specification. In this way, individual software frameworks can

be interoperable. The FIPA agent standard aims to bring the commercial world a step closer

to true software components, the benefits of which will include increased reusability, together

with ease of upgrade.

1.5.2 Agent Communications

Communication enables agents to coordinate their actions and behavior, resulting in systems

that are more coherent. Moreover, through coordination, agents can better achieve their design

objectives or system’s goals. Communication among agents has been most successfully mod-

eled using the speech act theory [115]. The Knowledge Query Meta-Language, or KQML [49],

was one of the first initiatives to specify how to support the social interaction characteristics of

agents using a protocol based on speech acts. It involves three aspects: the method of message

passing, the format, or syntax, of the information being transferred, and the meaning, or se-

mantics, of the information. One of the main drawbacks with KQML is its lack of well-defined

semantics, which forces the FIPA specification of its own agent communication language (ACL)

[15]. The FIPA ACL describes a standard way to package messages, in a way that is clear to

other agents what the purpose of the communication is.

1.5.3 Agent Migration

Migration means the movement of an agent to another location in the network and transparent

continuation at the point before the migration occurs. That means code and state, such as

data and execution information of the agent, must be transferred to and restored at the other

location. Since transferring all these aspects is difficult and very expensive, we can distinguish

between strong and weak migration. Strong migration means the transfer of the agent’s code

and its complete state, whereas weak migration can be defined as every migration that is not

strong. The strong migration consists of two aspects: code and state migration [151]. The state

27

migration is further composed of execution and data migration [68] which means that the state

of an agent is generally made up of the current execution point and the current data of the agent.

1.5.4 Mobile Agent Systems

The focus of this dissertation is the mobile-agent-based computing paradigm. Mobile agents are

processes (i.e., executing programs) that can migrate from one machine of a system to another

in order to satisfy requests made by their clients [72]. There are many mobile agent systems

developed so far, of which six examples are briefly discussed.

Concordia is a mobile agent system developed at the Mitsubishi Electric ITA Laboratory in

Waltham, Massachusetts [136]. It is a Java-based system that addresses security and reliability

concerns. Concordia deploys an identity-based system protection of agents and it also relies

on hashing the agent code, thereby protecting access to its resources and extensions to the

Java security manager. Reliable network transmission is achieved using a message queuing

subsystem based on a two-phase-commit protocol.

Agent TCL/D’Agents [56] is a mobile agent system created at Dartmouth College. It

started as a Tcl/Tk based system, but later was extended to support Java, Scheme, and C/C++,

with the new name, D’Agent. There are two types of agents in Agent TCL – those that move

from machine to machine accessing resources, and those that remain on the machine whose

purposes are to provide specific services not inherently provided by the system. Agent TCL has

been used in both information-management and information retrieval applications.

Mole [28] is one of the first academic agent systems written in Java. There are different

types of communication among agents: service-to-agent interaction, which is very much like

the Remote Procedure Call (RPC) type client/server communication; session, which is the com-

munication between mobile agents; anonymous group agent communication; and user agent

communication. Mole supports asynchronous communication by an event-driven model. In

28

this model, depending on the input, internal rules, state information, and timeout intervals, the

output events are generated, which in turn may be the inputs for other synchronization objects.

TACOMA [126] is a joint project between Tromso University in Norway and Cornell Uni-

versity in US. One of the applications using TACOMA system is the WeatherStorm distributed

application. While other mobile agent research addresses programming language aspects of

mobile agents, TACOMA mainly addresses operating system aspects. An agent needs to store

code and data for future computations. It must be able to carry this information around when it

migrates, and later retrieves it. Also, agents should be allowed to leave data behind at hosts or

share data with other agents.

Voyager [7], developed by ObjectSpace, is one of the few systems that has achieved wide

deployment. Goals of this product are to create state-of-the-art distributed programs quickly

and easily, while providing a large degree of flexibility and extensibility for the products that

are being created. It has many communication mechanisms, such as remote method invocation,

object request broker, and DCOM support. It is a 100% Java-based system.

MASIF [88] is the first attempt to standardize the mobile agent system interoperability. It

has been developed by IBM, General Magic, GMD Fokus, Crystaliz, and The Open Group.

MASIF standardizes the interoperability between mobile agent systems, by specifying agent

management, transfer, and naming. MASIF has been accepted as an OMG technology and

reference implementations are being pursued by its proposers as well as by other companies.

1.6 Contributions

In this dissertation, we focus on the energy-efficient designs for CSIP in wireless sensor net-

works. The work has the following contributions:

Modeling, Evaluation and Implementation of Distributed Computing Paradigms. An

energy-efficient, high-performance distributed computing paradigm, the mobile agent paradigm,

is developed to support CSIP in sensor networks, where instead of each sensor node sending

29

local information to a processing center, as is typical in client/server-based computing, the pro-

cessing code is moved to the sensor nodes through mobile agents. This approach has great

potential in providing energy-efficient and scalable collaborative processing with low latency.

We first present analytical models for both the client/server paradigm and the mobile agent

paradigm, then performance evaluations are carried out through simulation. We employ the

execution time, energy and energy*delay as metrics to measure the performance. Several ex-

periments are designed to show the effect of different parameters on the performance of the

paradigms. Experimental results show that the mobile-agent-based model does not always per-

form better than the client/server-based model. However, in the context of ad hoc sensor net-

works with hundreds or even thousands of nodes, unreliable communication links, and reduced

bandwidth, the mobile-agent-based computing provides effective solutions for low network la-

tency. From experiments, we also find out that the mobile agent model is less affected by

network parameter changes; indeed, stability is one of its biggest advantages.

Cluster-based Hybrid Computing Paradigm. Based on the performance evaluation re-

sults, which show that the mobile agent paradigm performs much better when the number of

nodes is large, while the client/server paradigm is more advantageous when the number of nodes

is small, we then propose a cluster-based hybrid computing paradigm to combine the advantages

of these two paradigms. There are in total four schemes in this paradigm, and simulation re-

sults show that there is always one scheme which performs better than either the client/server

or the mobile agent paradigms. Thus, the cluster-based hybrid computing method provides an

energy-efficient and high-performance solution to CSIP.

Mobile Agent Planning Modeling and Algorithms Design. The mobile agent migration

route, including the selection of nodes and the order of migration, determines the amount of

energy consumption, data fusion accuracy, and mobile agent migration time and thus has a

significant impact on the overall performance of the sensor network. An improper design of

30

itinerary (or route) of mobile agent migration can largely deteriorate the performance of col-

laborative processing. As a result, one of the most challenging problems in mobile agent based

computing, the design of mobile agent itinerary, is examined. We first present the mathematical

models for both the static mobile agent planning and the dynamic mobile agent planning. We

then propose three itinerary planning algorithms, the Information-driven Static Mobile Agent

Planning (ISMAP), the Information-driven Dynamic Mobile Agent Planning (IDMAP), and the

Predictive Information-driven Dynamic Mobile Agent Planning (P-IDMAP), with the goal of

consuming a minimum amount of energy, spending the least number of hops, and prolonging

the lifetime of the whole network. We develop several experiments to investigate the effect of

different parameters on the performance of the algorithms. We design three metrics (energy

consumption, network lifetime, and the number of hops) and use simulation tools to quanti-

tatively measure the performance of different itinerary planning algorithms for collaborative

processing. We show, through simulation, the advantages of the P-IDMAP algorithm in terms

of energy consumption, network lifetime, and the number of hops.

Decentralized Reactive Clustering. In order to support the cluster-based hybrid comput-

ing and guide the mobile agent migration process, a clustering protocol is necessary. Different

clustering protocols can affect the performance of the network to a great extent. Most existing

clustering protocols either do not adequately address the energy-constraint problem or derive

clusters proactively which may not be suitable for event-driven collaborative processing in sen-

sor networks. We thus propose a decentralized reactive clustering (DRC) protocol where the

clustering procedure is initiated only when events are detected. It has several desirable features:

First, it is an event-driven protocol that forms clusters reactively. That is, only those nodes close

to phenomena take part in the clustering procedure while other nodes can still be in the sleep

mode. Thus the energy usage of the entire network can be reduced. Second, it employs power

control techniques to lower the energy usage. It forms a two-tier hierarchy to support collabo-

rative data processing. The performance of DRC is compared with another popular clustering

31

algorithm, LEACH [61]. Simulation results show considerable improvements over LEACH in

energy conservation and network lifetime using the DRC approach.

1.7 Dissertation Outline

The remainder of this dissertation is organized as follows:

Chapter 2 first describes the mobile agent framework (MAF) and one application using

MAF. It then presents a mathematical model of the client/server and the mobile agent paradigm.

Three metrics are employed to evaluate the performance, and then a thorough simulation is

carried out to determine under which conditions that one computing paradigm performs better

than the other.

Chapter 3 presents a cluster-based hybrid computing paradigm, which is an enhancement

over the client/server paradigm and the mobile agent paradigm. It divides the network into

clusters. Four distinct schemes can be used according to the configuration of the clusters.

Chapter 4 discusses the mobile agent planning (MAP) problem. It first proposes the Information-

driven Mobile Agent Migration for collaborative processing. Then it models the procedures of

mobile agent migration for both static planning and dynamic planning. Three migration algo-

rithms are proposed and performance evaluations are carried out.

Chapter 5 proposes a decentralized reactive clustering (DRC) protocol to support the cluster-

based hybrid computing paradigm. It is a reactive protocol which is only invoked by events.

It uses power-control techniques to reduce the energy consumption. It consists of the post-

deployment phase, the cluster-forming phase, the intra-cluster data processing phase, and finally

the cluster head-to-processing center phase.

Chapter 6 summarizes the breakthroughs of this work, and discusses possible future devel-

opments.

32

Chapter 2

Distributed Computing Paradigms

Supporting CSIP: Modeling,

Evaluation, and Implementation

In the previous chapter, we discussed the background knowledge of wireless sensor networks

and collaborative signal and information processing (CSIP), as well as the computing paradigms

that support CSIP. In this chapter, the focus is on the development of distributed computing

paradigms to support CSIP in wireless sensor networks to combat the unique challenges in sen-

sor networks. We will further discuss the modeling, performance evaluation of the client/server

and mobile agent paradigms, and the implementation of the mobile agent paradigm. Seven

experiments are designed for performance evaluation under varying network conditions.

2.1 Computing Paradigms

In the context of wireless sensor networks, the computing paradigm refers to the information

processing model deployed at the application layer of the protocol stack. Since collaborative

33

Figure 2.1: Protocol stack of wireless sensor networks.

processing is essential in wireless sensor networks, a computing paradigm is needed to facilitate

the collaboration between sensor nodes. As seen from Fig. 2.1, it is located above the routing

layer and is used to support the collaborative signal and information processing. There are

two types of computing paradigms for use: the client/server paradigm and the mobile agent

paradigm.

The client/server paradigm has been one of the most popular models adopted in distributed

computing [51, 73]. In this paradigm, a server offers a set of services, resources, and know-how

needed for service execution. The client requests the execution of a service. As a response, the

server performs the requested service by executing the corresponding service know-how and

accessing the required resources at the server. In wireless sensor networks, the server is the pro-

cessing center and the clients are the sensor nodes. Fig. 2.2(a) illustrates the client/server-based

paradigm. Various systems are built based on the client/server paradigms in wireless sensor net-

works. The habitat monitoring system [86] is one example. It uses the client/server computing

paradigm to transfer data from sensor nodes to the gateway to implement habitat monitoring

functions. Another example is the IVY system [5], a wireless sensor network infrastructure

used at Berkeley, that adopts a multi-level client/server paradigm.

34

Processing Center

Sensor Node

(a) The client/server computing paradigm.

Processing Center

Sensor Node

Mobile Agent

(b) The mobile-agent computing paradigm.

Figure 2.2: Different computing paradigms.

Although widely used, the disadvantages of this model are also dramatic, especially for

wireless sensor networks [63, 98, 127]. First of all, in this model, there should be some super-

nodes acting as processing centers, which need much higher energy, storage and computing

capabilities. These will largely reduce the lifetime of the whole wireless sensor network, espe-

cially in autonomic and homogeneous sensor networks. Secondly, in data fusion, large amounts

of data gathered by the sensor nodes have to be moved from the clients to the server. In a system

with many clients, the total bandwidth requirements may exceed the actual available bandwidth,

resulting in poor performance of the system. Finally, the topology of wireless sensor networks

determines that the closer a node is to the server, the higher energy the node will consume be-

cause it has to be an intermediate node to route the packets from other nodes. This results in

nodes closer to the server dying much more quickly than other nodes.

The mobile-agent-based paradigm [64, 87, 90, 110, 137] is an elegant alternative. In this

paradigm, the service know-how is owned by the server, which dispatches the mobile agents,

but most of the resources are located at the clients. The server sends out mobile agents carrying

the service know-how. The mobile agents complete the service using resources available at the

35

Figure 2.3: Mobile agent components [99].

clients. In wireless sensor networks, it is the processing center that sends out the mobile agents

and finally receives the mobile agents. The mobile agent will migrate to each node and conduct

data fusion. It then carries the partially integrated results and continues migration. Fig. 2.2(b)

shows the framework of the mobile agent model.

Generally speaking, a mobile agent is a special kind of software that can execute au-

tonomously. We define the mobile agent as an entity of four attributes: identification, itinerary,

data space, and service know-how, as shown in Fig. 2.3 [99]. Identification uniquely specifies

each mobile agent. Data space is the agent’s data buffer which carries a partially integrated

result. Itinerary is the route of migration. It can be fixed or dynamically determined based on

the current network status. Service know-how is the processing task (or execution code) carried

with the agent.

In order to better illustrate how these two computing models perform, we present a temporal

and spatial comparison of the life cycle of their migration units in [101, 140]. Here, we briefly

summarize the comparison in Fig. 2.4. In the client/server-based model, the migration unit is

“data”, while in the mobile-agent-based model, the migration unit is “mobile agent”. The life

cycle of both units is composed of three components: ����� ����� , the time spent in transferring the

migration unit from one node to the other, ���
	 , the overhead time and � ��� �
� , the processing time.

In the case of client/server-based model, ���
	 is the time spent on file access. Here, we assume

36

TIME

S
P
A
C
E

wait for incoming data queue incoming data for processing result generated

���

� � �

���

� � �

���

� 	
 � ��
 � � ��� � ��� �
 � �

(a) Data migration.

S
P
A
C
E

mobile agent migration

TIME

result returned

� � � � ��� � � ��� � � � � � � �

��

� � � � ��� � � ��� � � � � � � �

�"!

�"#

� � � � � � � �$� � � ��� � � � �

(b) Mobile agent migration.

Figure 2.4: Life cycle of data (client/server-based) and mobile agent (mobile-agent-based) mi-
gration in time and space.

that data collected by sensor nodes is stored in a file; in the case of mobile-agent-based model,

in addition to the time spent on file access, it also includes the time used to create, dispatch, and

receive the mobile agent, which makes the overhead time larger than that in the client/server-

based model. Note that the length of � ��� � � � , �
�
	 , and � ��� �
� are used here as symbols to show the

sequence of events in the life cycle. They do not reflect the actual time spent.

In the client/server-based model (Fig. 2.4 (a)), if we assume
%'&

and
%'(

are identical nodes

and can start data transfer at the same time, then the clients spend � �
	 to read the data files and

�
��� ����� to transfer them to the server (
%*)

).
%+)

uses �
�
	 amount of time to receive each data file

and access it. After receiving all the incoming data files, the server can start processing, which

would take � � � �
� amount of time.

In the mobile-agent-based model (Fig. 2.4 (b)), a mobile agent is created at node
%,)

using

�
�
	 . It then migrates to
% &

using � ��� � � � . % &
spends �
�
	 to parse the mobile agent and read the

data file and � � � �
� to do data fusion. After an amount of time ���
	 , the agent is sent from node
%-&

to
%'(

. After the same procedure, it finishes migration and returns to
%)

.

37

The mobile agent model has many advantages over the client/server model [59, 77, 94, 98]

and is especially suitable for distributed computing in wireless sensor networks:

(1) Performance. Network bandwidth requirement is reduced for the mobile-agent-based

computing. Instead of passing large amounts of data over the network through several round

trips, only the agent (with a relatively small size) is sent. This is especially important for

real-time applications and where the communication is through low-bandwidth wireless con-

nections.

(2) Energy. Since the total amount of data transmission is reduced, the energy usage can also

be reduced, because a major part of the energy consumption goes to radio transmission [47].

Furthermore, in client/server-based computing, there are generally some super-nodes acting as

processing centers, which need much higher energy, storage and computing capabilities. These

will usually reduce the lifetime of the whole wireless sensor network, especially in autonomic

and homogeneous sensor networks. The mobile-agent-based computing paradigm, on the con-

trary, distributes the energy usage much more evenly among all the nodes and processing center,

so the lifetime of the wireless sensor network can be prolonged. Moreover, the mobile agent can

terminate migration and return when the accuracy of the fusion results satisfy the requirement,

thus further reducing the energy usage and execution time since unnecessary data transfers are

avoided.

(3) Scalability. For client/server-based computing, there will be increased queuing length as

the number of clients increases. As a result, it may cause longer processing times and more pos-

sible drops at the server side. Unfortunately, in wireless sensor networks, the number of nodes

may reach hundreds or even thousands. On the other hand, the mobile-agent-based computing

may not be significantly affected as the number of nodes increase.

(4) Reliability. When a node is down, which occurs quite often in sensor networks, the

mobile agent can bypass that node and migrates to the next available node. Therefore, the

performance of mobile agent is not appreciably affected by the reliability of the network.

38

2.2 Evaluation Metrics

Even though the mobile-agent-based computing method is promising and seems more appro-

priate for wireless sensor networks, we need to determine the key factors in wireless sensor

networks that affect the performance of mobile-agent computing. The mobile-agent-based com-

puting scheme may not always perform better than the client/server-based computing since mo-

bile agents also introduce overhead, which not only comes from the agent creation and dispatch

time but also from file accesses. On the other hand, the client/server-based computing method-

ology needs to transfer data files to the processing center, which also causes overhead due to

file accesses. Therefore, a performance evaluation of these two computing paradigms under

different scenarios is essential. In [140], we reported some preliminary simulation results using

GloMoSim [150], which only uses the execution time as evaluation metric. In [101], an en-

ergy model is derived through analytical modeling. In this research, we employ three metrics

to evaluate the performance. The lack of energy modeling capability prevents us from using

GloMoSim. After careful study of current existing simulation software, we chose to use Net-

work Simulator 2 (� � -2) [30] to simulate the wireless sensor network. � � -2 is a discrete event

simulator targeted at networking research and is the most popular choice of simulators used in

academia. Following the OSI seven layer network architecture, � � -2 divides a network into

an application layer, transport layer, network layer, MAC layer, physical layer, and radio and

mobility layer. In each layer, � � -2 provides different models and protocols. In the following

subsections, the three performance metrics are described in detail.

39

2.2.1 Assumptions

For performance evaluation purposes, we make the following assumptions in our simulations:

� When a certain event occurs in the sensor field, all sensor nodes can detect it and collect

the raw data. This is to ensure that there are always the same number of sensor nodes

participating in the data fusion.

� There are no events simultaneously occurring in the field.

2.2.2 The Execution Time Metric

The execution time is the time spent to finish an information processing task. In the mobile-

agent-based paradigm, it starts from the time a mobile agent is created to the time the mobile

agent returns with results. In the client/server-based paradigm, it is from the time the clients

send out requests to the time the server generates results. The execution time consists of three

parts – data transfer time (� ��� �����), overhead time (� �
), and data process time (� ��� �
�). In [101],

we found that in both client/server-based computing and mobile-agent-based computing, we

have exactly the same amount of data to process and the only difference is where data processing

takes place. Therefore, the data process time (� � � �
�) is the same for both computing paradigms

and we need not include this part in our model.

For the client/server paradigm, the execution time is determined by the network transfer rate

��� , the data file size ��� (the size of the raw data each node collects), the overhead of file access

 � (the time used to read and write a data file), the number of sensor nodes � , the number of

agents � and the number of sensor nodes � that each agent migrates (the server is not included).

Notice that � � ��� � . Thus, the data transfer time is � ��� � � � � � � ����� � � and the overhead time

is �
�
	 � ��� �
 � (assuming the time used to read and write the data file is the same). Therefore,

40

the total execution time for the client/server paradigm is:

� � � � � � ���
���

� ��� �
 ��� (2.1)

For the mobile agent paradigm, the execution time is determined by the network transfer

rate ��� , the mobile agent size ��� , the overhead of mobile agent
�� , the number of sensor nodes

� , number of agents � , and the number of sensor nodes � that each agent migrates. Again,

� � � � � . Thus, the time used to transfer agents is ����� ����� � � � �
�
 � �	� ��� , since mobile

agents use � �	�	� ��� to transfer simultaneously and they return to server after finishing the task

serially, which takes � � � � � � additional time for � mobile agents; the agent overhead time is

�
�
	 � � � � �
�

�� , since it takes ���
 � for the server to send and receive � mobile agents

in sequence, and � �
 � for the nodes to send and receive each mobile agent simultaneously.

Therefore, the total execution time for the mobile agent paradigm is:

��� � � � � �
�
 � �

���

� � � � �
�

�� � (2.2)

The mathematical model derived above characterizes the behavior of these two computing

paradigms to some extent, but it is difficult to obtain any quantitative measurement, especially

when modeling the data transfer time, where retransmission and error control are not consid-

ered. Unfortunately, these factors occur quite often in wireless sensor networks because of the

use of wireless links. Therefore, we propose to use simulation tools for more accurate estima-

tion of the data transfer time � ��� ����� . The model used to calculate the execution time is then:

� � � � � ��� ������� � � � ��� �
���� (2.3)

and

��� � ��� ��� � � ����� � � � � � �
�

�� (2.4)

41

where �
��� ������� � � and �
��� ��������� � are obtained from simulation.

2.2.3 The Energy Metric

The energy is another important metric to measure the performance of different computing

paradigms in wireless sensor networks, since sensor nodes are energy-constrained. The energy

metric measures the total energy the wireless sensor network consumes to finish a processing

task. Similar to the execution time metric, the energy metric is also composed of three parts

– data transfer energy (� ��� � � �), overhead energy (� �
), and data process energy (� � � �
�). Since

in both cases there are same amount of data to process, we may safely ignore the data process

energy (� � � �
�). For the same reason, we do not include the energy used for sensing either. From

[111] the estimate of energy consumed during processing is shown with the following set of

equations:
�
� � ����� ����� �

� �
	���
��������
�
	 � ���
�� � � (2.5)

where � ����� � is the time taken for executing software and � ���
 is the instantaneous power of the

processor. Also,

� ����� � ����� �
�

������� �
� �
	���
������ �
�
	 � ���
�� � � (2.6)

which implies that
�
� � � �!� ����� �"�#����� � � � ���$� � ���$� � (2.7)

Thus the overhead energy for one transmission can be computed by � � � � � �
� �
�
� � � � �
�
	 , where

��� � �
� �
� � � � is the power consumption of the node processor in full load, � �
	 is either the overhead

of file access
�� or the overhead of mobile agent
�� , the multiplier 2 considers both transmission

and receiving that use the same amount of energy in the overhead processing. We choose

��� � �
� �
� � � �
� � � mW to simulate the ARM Thumb processor clocked at 40 MHz [47]. There are

a total of � � � transmissions occurring in the client/server-based computing and � � � �
� ��

transmissions occur in the mobile-agent-based computing. For the data transfer energy (� ��� �����)

42

part, we again use simulation tools for more accurate estimation. Therefore, the model used to

calculate the energy usage is:

� � �
� � ��� ������� � � � ��� � ��� � �
� �
�
� � �
���� (2.8)

and

� � � � � ��� � � � ��� � � ��� � �
� ��
 ��� � �
� �
�
� � �
�� � (2.9)

where ����� ������� � � and ����� � � � ��� � are obtained from simulation.

2.2.4 The energy*delay Metric

In wireless sensor networks, it is important to consider both energy and execution time. Clearly,

a more suitable metric in wireless sensor networks is the combined effect, the energy*delay

metric [81], which reflects both the energy usage and the execution time. We adopt the following

equations:

� � � � � ��� � ��� � � � � � � � � � � � � � (2.10)

and

� � � � � ��� � ��� ��� � � � � � � � � � � � (2.11)

where � � � and � � � are the energy usage, and � � � and � � � are the execution time of the client/server

and the mobile agent paradigms respectively.

2.2.5 Experimental Parameter Setup

In our simulation, the basic network consists of wireless nodes randomly distributed within a

10 m by 10 m square area. The mobility model we use is the random waypoint model, where

nodes randomly choose a destination and move at a speed of 1 m/s. Once the nodes arrive

at the destination, they pause for 2 seconds and then continue moving. Other parameters that

43

Table 2.1: Parameters for the basic network setup.

Network area ��������� m �
Node placement Random

Initial energy 36 Joules

Mobility Random waypoint, 1 m/s with 2 s pause

Transmission Radio frequency 914 MHz
range Transmission power 0.6 W

Receiving threshold �	�
���
������������ W

Propagation model Two-ray ground reflection

MAC layer IEEE 802.11

Routing protocol DSDV

Transport layer protocol UDP

characterize the network include the MAC layer protocol, the routing protocol, the transport

layer protocol, the transmission and receive power, the propagation model, radio frequency, and

radio receiving threshold. The default parameter values in the basic network setup are listed in

Table 2.1.

Parameters that affect the data processing time (� � � �
�) and the overhead (� �
) in different

computing paradigms include the number of nodes (�) [in the mobile-agent based paradigm, �
is the multiplication of the number of mobile agents (�) and the number of nodes migrated by

each agent (�)], the data file size (���), the mobile agent size (���), the mobile agent overhead

(
��), the file access overhead (
��), the network transfer rate (� �), and the data processing rate

(� �). The parameter values in the basic network setup are shown in Table 2.2.

2.3 Experiments and Simulation Results

We designed six experiments to evaluate the effect of different parameters on the execution time,

energy usage and energy*delay. These parameters include the number of nodes, the number

of mobile agents, the ratio between data size and mobile agent size, the overhead ratio, the

44

Table 2.2: Computing paradigm related parameters for the basic network.

� � �	� ��� ��� ��� ��� �
	
20 1 1000 b 200 b 0.00005 s 0.0002 s 2 Mbps 100 Mbps

node transmission range, and different underlying protocols or models in each layer. In each

experiment, we changed one of the parameters of the basic network and kept all the others

unchanged. We conducted five simulations and calculate their means and standard deviations.

Since the standard deviations are less than 2% of the means, only the means are plotted in the

figures.

2.3.1 Effect of the Number of Nodes (�)

In this experiment, we changed the number of nodes � from 2 to 30. The execution time

measurement is shown in Fig. 2.5(a). It can be observed that the execution time using both

paradigms grows as the number of nodes increases, but the client/server model grows much

faster than the mobile-agent model. This is because as the number of nodes increases, the server

has to deal with more connections requested by the clients at the same time, which increases the

execution time. On the other hand, the mobile agent model is less influenced by the number of

nodes because there are much fewer connections at any given time for the mobile agent model.

The figure also shows that, for � � ��� , the client/server model performs a little better than the

mobile agent model. This happens because the mobile agent model needs more connections

than the client/server model in order to send and receive mobile agents. Another reason is that

the overhead of the mobile agent surpasses the overhead of the client/server model. Therefore,

in a network with fewer nodes, the client/server model may have a shorter execution time than

that of the mobile agent model. However, if the number of nodes is large, the mobile agent

model will perform better. As for the total energy the network consumed shown in Fig. 2.5(b),

45

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of nodes

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based

(a) � ��� vs. ����� .

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

Number of nodes

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based

(b) � ��� vs. � ��� .

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Number of nodes

en
er

gy
*d

el
ay

client/server based
mobile−agent−based

(c) energy*delay.

Figure 2.5: The effect of the number of nodes (�).

46

mobile-agent computing almost always consumes less energy, because the amount of data trans-

mitted are significantly reduced in the mobile agent computing, thus saving total energy. The

pattern is also seen in the energy*delay profile shown in Fig. 2.5(c), that the mobile agent model

quickly shows an advantage over the client/server model when ����� � .

2.3.2 Effect of the Number of Mobile Agents (�)

In this experiment, we fixed the node number at 100 and observed the effect of the number of

mobile agents on the performance of different computing paradigms. Without loss of generality,

we assume that each agent migrates the same number of nodes. We expect a constant profile

from the client/server-based computing since it is irrelevant to the number of mobile agents. We

observe from Fig. 2.6(a) that the mobile agent model always has less execution time than the

client/server model because the node number is large. Interestingly, the execution time of the

mobile agent model decreases as the number of mobile agents increases and reaches the lowest

point when there are five mobile agents. Above that, the execution time begins to increase.

This is because more mobile agents will reduce the number of nodes each agent migrates, thus

reducing the execution time. However, using more mobile agents also cause more connections

and overhead. Therefore, a proper number of mobile agents can make the model perform more

efficiently. The energy*delay metric in Fig. 2.6(c) also shows that when � � � � it has the

lowest energy*delay value.

2.3.3 Effect of the Data Size/Mobile Agent Size (��� � � �)

In this experiment, we changed the size of the data file ��� , but fixed the other parameters and

let �	��� ����� b, � =20. Fig. 2.7(a) shows the result. We observe from Fig. 2.7(a) and Fig. 2.7(b)

that the execution time and energy consumption using the mobile-agent based computing are

constant because data are located at the local nodes; only a fixed amount of results are trans-

ferred. When the data size is less than 1.1 kb, the client/server-based computing method has

47

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of mobile agents

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based

(a) � ��� vs. ����� .

0 5 10 15 20 25 30 35 40 45 50
125

130

135

140

145

150

155

Number of mobile agents

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based

(b) � ��� vs. � ��� .

0 5 10 15 20 25 30 35 40 45 50
20

40

60

80

100

120

140

160

180

200

Number of mobile agents

en
er

gy
*d

el
ay

client/server based
mobile−agent−based

(c) energy*delay.

Figure 2.6: The effect of the number of mobile agents (�).

48

0 5 10 15
0.1

0.15

0.2

0.25

0.3

0.35

Size of data/Size of the mobile agent (Sf/Sa)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based

(a) � ��� vs. � ��� .

0 5 10 15
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Size of data/Size of the mobile agent (Sf/Sa)

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based

(b) � ��� vs. � ��� .

0 5 10 15
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Size of data/Size of the mobile agent (Sf/Sa)

en
er

gy
*d

el
ay

client/server based
mobile−agent−based

(c) energy*delay.

Figure 2.7: The effect of data size vs. mobile agent size (�������	�).

49

less execution time than that of the mobile-agent case. However, the larger the data size, the

more advantageous the mobile-agent based paradigm is. This is because as � � increases, more

data needs to be transferred, thus increasing the time used by the client/server model. For the

same reason, when the data size is less than 300 b, the client/server-based computing format

consumes less energy.

2.3.4 Effect of the Overhead Ratio (� � � � �)

In this experiment, we fixed all other parameters in the basic network, and observed the effect

of the overhead ratio
�����
�� (between 0.01 and 20.0) to the performance of different computing

paradigms. We can see from Fig. 2.8(a) that when the ratio is greater than 1.5, the client/server-

based computing starts to perform worse than the mobile-agent model since the larger the
 � ,

the longer the execution time. From Fig. 2.8(b) we observe that the client/server paradigm

always consumes more energy. Fig. 2.8(c) gives the energy*delay metric, which shows the

combined effects of energy usage and execution time.

2.3.5 Effect of the Node Transmission Range

In this experiment, we fixed all other parameters in the basic network, but changed the transmis-

sion range from 49 m to 198 m. Fig. 2.9 shows the effect of transmission range. The execution

time remains the same while energy consumption decreases as the transmission range increases.

The explanation is straightforward. Since the sensor nodes are deployed in a 10 m by 10 m field,

the transmission range of sensor nodes is always large enough to connect each other through a

single hop. Thus, the execution time is not affected by the changes of the transmission range.

However, as the transmission range increases, more transmission power is needed, thus consum-

ing more energy. Again, the mobile agent model is less affected by the change of transmission

range than is the client/server model. The energy*delay graph also shows similar patterns.

50

0 2 4 6 8 10 12 14 16 18 20
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Overhead ratio (Of/Oa)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based

(a) � ��� vs. � ��� .

0 2 4 6 8 10 12 14 16 18 20
2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

Overhead ratio (Of/Oa)

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based

(b) � ��� vs. � ��� .

0 2 4 6 8 10 12 14 16 18 20
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Overhead ratio (Of/Oa)

en
er

gy
*d

el
ay

client/server based
mobile−agent−based

(c) energy*delay.

Figure 2.8: The effect of the overhead ratio (
 ����
��).

51

40 60 80 100 120 140 160 180 200
0.24

0.242

0.244

0.246

0.248

0.25

0.252

Transimission range (m)

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based

(a) � ��� vs. � ��� .

40 60 80 100 120 140 160 180 200
2

3

4

5

6

7

8

Transimission range (m)

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based

(b) � ��� vs. � ��� .

40 60 80 100 120 140 160 180 200
0.5

1

1.5

2

Transimission range (m)

en
er

gy
*d

el
ay

client/server based
mobile−agent−based

(c) energy*delay.

Figure 2.9: The effect of the transmission range.

52

2.3.6 Effect of Different Protocols and Models

In this experiment, we changed the protocols and models used at different layers of the network,

but fix the other parameters in the basic network and kept � � ��� .
Fig. 2.10 shows the effect of different routing protocols, including AODV, DSDV and DSR.

It can be seen from Fig. 2.10(a) and Fig. 2.10(b) that both the client/server and mobile-agent

computing perform the best using the DSR protocol in terms of the execution time and energy

consumption. Fig. 2.10(c) shows the energy*delay values.

Fig. 2.11 demonstrates that in the physical layer, the different propagation models have little

effect on the execution time, energy consumption, and energy*delay.

2.4 Detection Performance Comparison for Different Computing

Paradigms

One of the main objectives of a wireless sensor network is to detect and classify events of

interest, for instance the possible presence and type of an intruder. Therefore, the detection

performance is one of the major performance metrics to evaluate a classifier. We now compare

the detection performance using different computing paradigms in this section. The detection

performance is characterized by the receiver operating characteristic (ROC) curve, which gives

the relationship between the probability of false alarms and probability of successful detections.

For both false alarms and successful detections, the detection signal exceeds its threshold, there-

fore concluding the presence of a target. If a target does exist in the area under monitoring, then

we say that the target is successfully detected or it is a true positive. Otherwise, the detection

decision is a false alarm or a false positive. If there is no target existing in the area, while the

classifier reports no target, we call it a true negative, otherwise we call it a false negative.

Each sensor has a particular ROC curve determined by the characteristic of the type of the

sensor. For the acoustic amplitude sensor, the true positive rate is related to the distance to the

53

client/server based

mobile−agent−based

DSDV

AODV

DSR

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) � ��� vs. ����� .

client/server based

mobile−agent−based

DSDV

AODV

DSR

0

1

2

3

4

5

6

7

8

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

(b) � ��� vs. � ��� .

client/server based

mobile−agent−based

DSDV

AODV

DSR

0

1

2

3

4

5

6

7

8

9

en
er

gy
*d

el
ay

(c) energy*delay.

Figure 2.10: The effect of the different routing protocols.

54

client/server based

mobile−agent−based

free space

two ray ground

shadowing

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

(a) � ��� vs. ����� .

client/server based

mobile−agent−based

free space

two ray ground

shadowing

0

0.5

1

1.5

2

2.5

3

3.5

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

(b) � ��� vs. � ��� .

client/server based

mobile−agent−based

free space

two ray ground

shadowing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

en
er

gy
*d

el
ay

(c) energy*delay.

Figure 2.11: The effect of the different propagation models.

55

Table 2.3: Simulation results for the client/server-based classifier.

Number of Simulations 50

Number of Correct 34

Accuracy 68.0%

Positive Cases Missed 4

Negative Cases Missed 12

Fitted ROC Area 0.874

target and is modeled by the following equation:

� � � � � � ��� ����	 � ��� � � � ��� � �
� � � ��� � � � (2.12)

where � � � ��� � � is the maximal distance that a sensor can detect the target, � ��� � � � ��� ��� is the

distance from the current node to the target. The true positive rate on a sensor node is the local

detection decision. It is necessary to fuse the different detection decisions on different sensor

nodes in order to get a more accurate detection result. We employ two kind of classifiers: the

client/server-based classifier fuses the local decisions on a central node through the client/server

computing paradigm; the mobile agent-based classifier uses a mobile agent to fuse the local

decisions. The distributed data fusion algorithm the mobile agent employs is the modified MRI

algorithm [101]. We developed a simulator in Java to simulate the process of data fusion for

these two classifiers. In the simulation, 100 sensor nodes are randomly deployed in a ��� � ���
m � area. The ROC curve for a single sensor is the green dashed curve on Figure 2.12. We

ran the simulation several times, including the situations that there is a target or no target. We

then used a web-based calculator [8] to draw the ROC curve. Table 2.3 is the summary of the

simulation results for the client/server-based classifier.

For the mobile-agent-based classifier, we allow the mobile agent to migrate among the nodes

that are closer to the target and get a final integrated results. Table 2.4 is the summary of the

simulation results for the mobile-agent-based classifier.

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive

T
ru

e
P

os
iti

ve

client/server based
mobile−agent−based
single sensor

True Negative

F
al

se
 N

eg
at

iv
e

Figure 2.12: ROC curves for different classifiers.

Table 2.4: Simulation results for the mobile-agent-based classifier.

Number of Simulations 47

Number of Correct 40

Accuracy 85.1%

Positive Cases Missed 0

Negative Cases Missed 7

Fitted ROC Area 0.935

57

The ROC curves for the single sensor (plotted in green dashed line), client/server-based

classifier (plotted in blue solid line), and the mobile-agent-based classifier (plotted in red solid

line) are shown in Figure 2.12.

Area under an ROC curve (AUC) is equivalent to the probability that the classifier will rank a

randomly chosen positive instance higher than a randomly chosen negative instance [48]. From

Figure 2.12, we find the ROC curve for single sensor has the smallest AUC, which indicates

that the single-sensor classifier performance is worse than for a classifier utilizing data-fusion

techniques. Furthermore, the ROC for the mobile-agent-based classifier has a bigger AUC

(0.935) than that of the client/server-based classifier (0.874), we can conclude that it performs

better than the client/server-based computing paradigm. The reason is that in the mobile-agent-

based classifier, the mobile agent selectively migrates to the sensor nodes with higher local

detection accuracy; thus, the final fused result is better than the client/server-based classifier,

which fuses the results from all sensor nodes. To summarize, our simulations illustrate the

following:

(1) In general, decision fusion can significantly improve the detection performance of dis-

tributed sensors.

(2) Better detection performance can be achieved by utilizing the mobile agent to selectively

migrate the nodes with more accurate local detection results.

2.5 Discussions

From the experiments, we can conclude that under the following conditions the mobile agent

computing paradigm performs better: when the number of nodes is large; when the ratio be-

tween data size and mobile agent size is large; when the overhead ratio between the data file

and the mobile agent is large. We also show that the mobile agent based classifier for target

detection in sensor networks has a better detection performance than the client/server based

classifier. Thus, problems in sensor networks, with their hundreds or even thousands of nodes,

58

and related high node-failure rates, unreliable communication links, and reduced bandwidths,

can be addressed very satisfactorily using the mobile agent computing paradigm.

2.6 A Mobile Agent Framework for CSIP

A mobile agent framework (MAF) suitable for CSIP in wireless sensor networks was devel-

oped by the University of Tennessee. The MAF is implemented in Python with interfaces to

C++ routines. The Python language is chosen for its ability of object-serialization, which was

used to generate the agent. The MAF was first implemented in an Intel machine environment,

then cross-compiled using the SH-
�

cross-compilers to generate an SH-
�

version. The Python

interpreter was also cross-compiled into SH-
�

version. The MAF can be used in various CSIP

applications, such as target classification, target localization and target tracking in battlefields.

The MAF consists of a mobile agent daemon or server that runs on each node and acts as a host

to the incoming mobile agent. The mobile-agent itself is a program that flies from one node

to another, collecting and integrating local results from each node. The agent is created when

an event is detected. Once a mobile agent daemon receives a mobile agent, the execution code

the mobile agent carries is executed to process the data locally and a partial integration result

is generated. The mobile agent then calls Direct Diffusion, which calls Sensoria RF modem

API to communicate with other nodes. Fig. 2.13 shows the stages in the implementation of the

MAF.

The MAF is useful in supporting CSIP in wireless sensor networks. Qi et al. [100] give a

detailed description of the use of MAF in target classification in wireless sensor networks. Each

sensor node senses interesting events and collects the corresponding signals. The signals are

then processed to extract a feature vector, which is then classified using the k-nearest-neighbor

(kNN) algorithm. Next, a confidence level for each class is generated by letting the � equal

to several different values in the kNN. Suppose there are � different targets (classes) in the

dataset. According to kNN, for each sample with unknown class, the algorithm looks into a

59

CSIP API (C++)

SWIG
Shared Libraries

MA Daemon − Python

Execution code
and partial result
Pickled/Unpickled

SWIG
Shared Libraries

Diffusion API (C++)

Sensoria RF modem API

CSIP API (C++)

SWIG
Shared Libraries

MA Daemon − Python

Execution code
and partial result
Pickled/Unpickled

SWIG
Shared Libraries

Diffusion API (C++)

Sensoria RF modem API

Figure 2.13: Implementation of MAF [76].

60

neighborhood of the unknown for � samples in the training set. If within that neighborhood,

more samples lie in class
�

than any other classes, the unknown sample is then assigned as

class
�
. The confidence level for each class (

�
) is calculated by �

) � � , where �
)

is the number

of training samples that belong to class
�

within the neighborhood, and � is the total number

of training samples in the neighborhood. A confidence range of each class is derived with its

lower bound equal to the smallest confidence level and the upper bound equal to the largest

confidence level of the class.

Fig. 2.14 illustrates the migration of a mobile agent in a distributed wireless sensor network

with � sensor nodes. Each sensor node has generated an confidence range (� �) for each class

using the algorithm described above, as shown in Fig. 2.14(a). First, the mobile agent is dis-

patched from node � and migrates to node � carrying � ��� in its buffer as in Figure 2.14(b).

When it arrives node � , it combines � � � with � � � and derives a partially integrated confi-

dence range � ��� � , which is shown in (c). Then the mobile agent is sent out again from node �

to node � carrying � � � � . When it arrives node � , it will calculate another partially integrated

confidence range � ��� ��� using � ��� � and � � � , as shown in Figure 2.14(d) and (e). If the

partially integrated confidence range satisfies the accuracy requirement, the migration can be

stopped immediately and the mobile agent is sent back to the processing center to generate the

final result. Otherwise, the mobile agent needs to continue its itinerary until the result reaching

an appropriate precision.

Several field demos (SITEX02, BAE Austin, BBN Waltham) are carried out as a part of the

DARPA SensIT project. In SITEX02 field demo, 70 nodes are deployed in a field of 150 � 200

m � . The 70 nodes are divided into several clusters based on their geographical locations. The

targets include AAV, Dragon Wagon (DW) and HMMWV. Each sensor node is equipped with

three types of sensing modalities, the passive infrared (PIR) sensor to detect the target, the mi-

crophone to collect acoustic signals, and the geophone to collect seismic signals. Once the PIR

61

Node 1

Node 3

Node 2

CR1
Class 1: [2/6, 10/15]
Class 2: [3/15, 3/6]
...

CR2
Class 1: [3/6, 4/5]
Class 2: [0, 5/15]

...

CR3
Class 1: [3/5, 10/12]
Class 2: [1/15, 2/8]

...

(a) Stage 1.

Node 1

Node 3

Node 2

Mobile agent
carries CR1

CR1
Class 1: [2/6, 10/15]
Class 2: [3/15, 3/6]
...

CR2
Class 1: [3/6, 4/5]
Class 2: [0, 5/15]

...

CR3
Class 1: [3/5, 10/12]
Class 2: [1/15, 2/8]

...

(b) Stage 2.

Node 1

Node 3

Node 2

Mobile agent
carries CR1

CR1
Class 1: [2/6, 10/15]
Class 2: [3/15, 3/6]
...

CR2
Class 1: [3/6, 4/5]
Class 2: [0, 5/15]

...

CR3
Class 1: [3/5, 10/12]
Class 2: [1/15, 2/8]

...

At node 2, MRI derives the
partially integrated CR12
Class 1: [3/6, 10/15]
Class 2: [3/15, 5/15]
...

(c) Stage 3.

Node 1

Node 3

Node 2

Mobile agent
carries CR12

CR1
Class 1: [2/6, 10/15]
Class 2: [3/15, 3/6]
...

CR2
Class 1: [3/6, 4/5]
Class 2: [0, 5/15]

...

CR3
Class 1: [3/5, 10/12]
Class 2: [1/15, 2/8]

...

(d) Stage 4.

Node 1

Node 3

Node 2

Mobile agent
carries CR12

CR1
Class 1: [2/6, 10/15]
Class 2: [3/15, 3/6]
...

CR2
Class 1: [3/6, 4/5]
Class 2: [0, 5/15]

...

CR3
Class 1: [3/5, 10/12]
Class 2: [1/15, 2/8]

...

At node 3, MRI derives the
partially integrated CR123
Class 1: [3/5, 10/15]
Class 2: [3/15, 2/8]
...

(e) Stage 5.

Figure 2.14: The usage of mobile agent in target classification [100].

62

sensor detects a target, both the acoustic and seismic signals are collected. The local classifi-

cation algorithm [101] analyzes the 1-second time-series data segments with a sampling rate of

512 Hz for acoustic signals and 256 Hz for seismic signals. The algorithm extracts 26 features

from the data segment, runs local signal processing algorithm, and generates a local classifica-

tion result. The mobile agents are then dispatched from dispatched from cluster head selected

within each cluster. Each mobile agent is 512 bytes. It carries a multi-resolution integration

algorithm, a partially integrated classification result, and a pre-defined itinerary. Once arrives

at a node, the mobile agent integrates the local processing results on that node with its partial

integration results. If the integrated result does not reach the desired accuracy requirement, the

mobile agent will continue migration, otherwise it will terminate migration and return to the

cluster head. The experimental results illustrated in [101] show that collaborative target clas-

sification supported by the mobile agent based paradigm can achieve very high classification

accuracy (96%) than that of the single sensor processing.

63

Chapter 3

Cluster-based Hybrid Computing

Paradigm

In the previous chapter, we discussed the computing paradigms in detail, including their model-

ing, performance evaluation and implementation. This chapter proposes a cluster-based hybrid

computing paradigm [142] that combines the advantages of both paradigms. Simulations show

the advantages of the hybrid paradigm over either the client/server-based or mobile-agent-based

paradigm.

3.1 Hybrid Computing Paradigm

From the seven experiments described in Chapter 2, we can conclude that the mobile agent

paradigm performs much better when the number of nodes is large. However, when the number

of nodes in a network is small, the mobile agent paradigm will suffer from longer network

latency because of its overhead. Therefore, the mobile agent paradigm is more suitable for

large networks while the client/server paradigm has advantages in small networks. Based on this

observation, we propose a cluster-based hybrid computing paradigm combining the advantages

64

of both computing paradigms. The idea is to divide the network into several clusters. Each

cluster has a cluster head managing several nodes. We design four schemes to perform the

hybrid computing.

Scheme A: The mobile agent paradigm is carried out within a cluster, while the client/server

model is adopted between cluster heads and the processing center, as shown in Fig. 3.1(a). The

cluster head dispatches a mobile agent, which will migrate to the nodes and process data on the

nodes within that cluster. After the mobile agent returns, the cluster head forms a partial result

and sends it to the processing center. In this scheme, we should restrict the number of clusters

so that the number of nodes within a cluster is large, but the number of cluster heads is small.

Thus we can make full use of the advantages of both the client/server paradigm and the mobile

agent paradigm.

Scheme B: The client/server paradigm is employed within a cluster. A mobile agent com-

puting paradigm is formed among the cluster heads and the processing center. The nodes within

a cluster send the local processing results directly to the cluster head, which will generate a par-

tial fusion result. After a certain period, a mobile agent is sent from the processing center to

integrate these results. Fig. 3.1(b) illustrates this scheme. We should choose this scheme when

the number of clusters is large, and the number of nodes within a cluster is relatively small.

Scheme C: The client/server paradigm is employed within a cluster, as while as among the

cluster heads and the processing center. The nodes within a cluster send the local processing

results directly to the cluster head, which will generate a partial fusion result and sends it to the

processing center. Fig. 3.1(c) illustrates this scheme.

Scheme D: The mobile agent paradigm is carried out within a cluster, and then the mo-

bile agent computing paradigm is formed among the cluster heads and the processing center.

Fig. 3.1(d) illustrates this scheme.

We name this new paradigm a cluster-based hybrid computing paradigm. We assume the

wireless sensor network has been clustered by certain clustering algorithms, like LEACH [60].

65

Processing Center

Cluster Head

Cluster Head

Cluster #2

Cluster #1

Sensor Node

Mobile Agent

(a) Scheme A.

Processing Center
 Cluster Head

Cluster Head

Cluster #2

Cluster #1

Sensor Node

Mobile Agent

(b) Scheme B.

Processing Center
 Cluster Head

Cluster Head

Cluster #2

Cluster #1

Sensor Node

(c) Scheme C.

Processing Center

Cluster Head

Cluster Head

Cluster #2

Cluster #1

Sensor Node

Mobile Agent

Mobile Agent

(d) Scheme D.

Figure 3.1: Different schemes in the cluster-based hybrid computing paradigm.

66

Given the cluster setups, different schemes can be chosen accordingly. We thus develop mathe-

matical models to quantitatively measure the performance of this paradigm.

The execution time model for scheme A of the hybrid paradigm is:

�
	�� ��� � �
��� ��������� � � � � � �
� � � ���

�� � � ��� � � � ��� � � � � ��� � � �
� �
 � (3.1)

where �
��� ��������� � and � ��� � � � ��� � are the transmission time spent within one cluster and between

clusters, respectively, and are obtained from simulation. � � � ��� is the number of nodes within

one cluster; � �	� � � �
� � is the number of clusters; � is the number of mobile agents a cluster head

dispatches. We set � to 1. The other parameters have the same meaning as in Eqs. 2.3 and 2.4.

Similarly, for scheme B, the execution time model is:

�
	
� ��� � �
��� � � � ��� � � � � � � ���
 � � � ��� � � � ��� � � � � � �
� ��� � � �
� �

�� (3.2)

For scheme C, the execution time model is:

�
	
� ��
 � �
��� ��������� � � � � � � ���
�� � � ��� ��������� � � � � ��� � � �
� �
 � (3.3)

For scheme D, the execution time model is:

�
	�� ��� � � ��� ��������� � � � � � �
� � � ���

 � � � ��� � � � ��� � � � � � �

� ��� � � �
� �

 � (3.4)

The energy model for scheme A is:

� 	�� ��� � � ��� � � ����� � � ��� � � � � ��� � ��
 ��� � �
� �
�
� � �
��
� � ��� � � ����� � � ��� � ��� � � �
� � ����� �
� �
�
� � �
 �

(3.5)

where ����� � � � ��� � and � ��� ��������� � are the total energy usage within one cluster and between clus-

ters, respectively. The other parameters are the same as in Eqs. 2.8 and 2.9.

67

For scheme B, it is:

��	�� ��� � ����� ��������� � � ��� � � � ��� ��� � �
� �
� � � �
 �
� � ��� ��������� � � ��� � � ��� � � �
� � � ��
 � � � �
� �
� � � �
 �

(3.6)

For scheme C, it is:

� 	�� ��
 � ����� � � � ��� � � ��� � � � ��� ��� � �
� �
� � � �
 �
� � ��� � � � ��� � � ��� � �	� � � �
� � ��� � �
� �
� � � �
 �

(3.7)

For scheme D, it is:

� 	�� ��� � � ��� � � � ��� � � ��� � � � � ��� � ��
 � � � �
� �
�
� � �
��
� � ��� � � � ��� � � ��� � � ��� � � �
� � � ��
 ����� �
� �
�
� � �
��

(3.8)

Based on the models derived above, we then compare the performance of the hybrid paradigm

with the client/server and mobile agent paradigms. We set the number of nodes � at 100. The

other parameters in the experiment are the same as in Table 2.1 and Table 2.2. The profiles of

the three metrics are shown in Fig. 3.2. In each subfigure, the x-axis indicates the number of

clusters for the hybrid paradigm or the number of mobile agents for the mobile agent paradigm.

So when � � � , the corresponding network configuration for the mobile agent paradigm is a

network with 5 mobile agents, and without clustering. The client/server paradigm is not affected

by the number of clusters, so we expect constant profiles as the number of clusters increases.

Notice that when there is only one cluster in a hybrid computing paradigm, scheme A and D

are actually the mobile agent paradigm with one mobile agent and scheme B and C reflect the

client/server paradigm.

From Fig. 3.2(a) we can observe that scheme A has the lowest execution time when � ��� � � �
� � �

� . This is when the network is configured to be suitable for the client/server paradigm among

the cluster heads. When 	 � � �	� � � �
� � � ��� , scheme C performs the best because now the

68

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of clusters

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

client/server based
mobile−agent−based
scheme A
scheme B
scheme C
scheme D

(a) � ��� vs. ����� .

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

Number of clusters

T
ot

al
 e

ne
rg

y
us

ua
ge

(J
ou

le
s)

client/server based
mobile−agent−based
scheme A
scheme B
scheme C
scheme D

(b) � ��� vs. � ��� .

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

180

200

Number of clusters

en
er

gy
*d

el
ay

client/server based
mobile−agent−based
scheme A
scheme B
scheme C
scheme D

(c) energy*delay.

Figure 3.2: The comparison of three computing paradigms.

69

number of clusters and the number of nodes within a cluster both suitable for the client/server

computing. After that, since now there are large number of cluster heads, scheme B is better

than other computing paradigms. For the energy metric, there is always one scheme of the hy-

brid computing that performs better than either the client/server or the mobile agent computing.

The energy*delay metric shows that among the four paradigms, scheme A performs the best

before � ��� � � �
� � � ��� and scheme B performs the best after � �	� � � �
� � � ��� .

In summary, we can see the cluster-based hybrid computing paradigm can be advantageous

to both client/server and mobile agent paradigms if we choose the proper scheme according

to network clustering conditions. Another observation is that the performance of the hybrid

paradigm change more dramatically than either the client/server or mobile agent paradigm.

This is because while for some network configurations, we can make full use of the advantages

of both the client/server and mobile agent paradigm, for some other configurations, we could

unfortunately inherit the disadvantages of both paradigms. An example of such an undesirable

situation is when the number of clusters is large for scheme A and the number of clusters is

small for scheme B.

3.2 Discussions

In this chapter, we focused on the development of a new distributed computing paradigm for

CSIP in sensor networks. Based on the evaluations in Chapter 2, we presented a cluster-based

hybrid computing paradigm to combine the advantages of these two paradigms. There are four

schemes in this paradigm and we showed that they are advantageous to both the client/server

and mobile agent paradigms under different network clustering conditions, in terms of execution

time, energy usage, and energy*delay.

Problems in wireless sensor networks, with their hundreds or even thousands of nodes, and

related high node-failure rates, unreliable communication links, and reduced bandwidths, can be

addressed very satisfactorily using the cluster-based hybrid computing. This paradigm allows

70

energy efficient, high performance, scalable, and fault-tolerant solutions for collaborative signal

and information processing.

71

Chapter 4

Mobile Agent Planning for CSIP

As we discussed in Sec. 1.4, there are five important issues for CSIP in wireless sensor net-

works: dense deployment of sensor nodes, asynchronous property, energy efficiency, reliability

issue, and requirement of progressive accuracy. In order to facilitate collaborative processing

in WSNs, it is essential to deploy an efficient computing paradigm that supports collaboration

among sensors. The benefits of the mobile agent based computing in support of collabora-

tive processing in WSNs have been thoroughly studied in Chapter 2. Chapter 3 further pro-

posed a hybrid computing paradigm that utilized both client/server and mobile agent computing

paradigms. However, the biggest hurdle in practical deployment of the mobile-agent based

computing is the dynamic determination of mobile agent itinerary.

The mobile agent migration route, including the selection of nodes and the order of migra-

tion, determines the energy consumption, data fusion accuracy, mobile agent migration time,

and has a significant impact on the overall performance of the sensor network. In order to com-

bat the challenges raised by the WSN, low energy consumption, high fusion accuracy, and fewer

migration hops are always the main goals in designing mobile agent migration. The derivation

of a suitable mobile agent route needs to take into consideration the trade-offs between the

cost on energy consumption and migration and the benefit of high accuracy from fusion, since

72

although visiting more sensors improves the fusion accuracy, it also increases the communi-

cation and computing overheads. Moreover, in some applications such as target detection and

classification, it is critical to consider other factors that are application-specific. For example,

the spatial distance between the target and a sensor node is closely related to the signal energy

measured by the sensor node. The closer the target to the node, the stronger the signal energy.

The mobile agent would always gain more information if migrating to the nodes with stronger

signal energy.

In this chapter, we focus our discussion on determination of the mobile agent itinerary

with the objectives of reducing energy consumption and improving reliability of collaborative

processing in sensor networks. We refer to this problem as the Mobile Agent Planning (MAP)

problem. We first model both static and dynamic mobile agent migrations, then propose several

MAP algorithms for the mobile agent to determine a more efficient itinerary in terms of energy

consumption, time consumption and network lifetime.

4.1 Related Work

The MAP-related research can be divided into two categories, the Static Mobile Agent Planning

(SMAP) and the Dynamic Mobile Agent Planning (DMAP). The SMAP techniques make use

of current global network information and derive an efficient path of mobile agents at a central

processing center before dispatching the agents. In an environment as dynamic as the sensor

network, in which connections between nodes can be lost or the sensor node may be malfunc-

tioning, the SMAP techniques may not respond to the changes in real time. In the worst case,

an agent can be halted forever trying to move to the target node because of an unexpectedly

broken link along its itinerary. On the other hand, the DMAP techniques determine on the fly

the route at each stop of the migration of a mobile agent. It is designated to provide network

sensitivity with the ability to change the agent’s itinerary appropriately.

73

Some literature [58, 90] treats the problem of SMAP as a Traveling Salesman Problem

(TSP) or TSP variations such as the Vehicle Routing Problem (VRP) [52]. We make a distinction

between MAP and TSP problems based on studies done in [22] that TSP deals with the optimal

total routing cost with given travelers, whereas SMAP attempts to minimize the execution time

to complete an information retrieval task; and that mobile agents can visit any node more than

once, which is not the case in TSP.

Thus far, most research on MAP has been focused on information retrieval and data-mining.

For example, Moizumi et al. [90] explored how mobile agents can efficiently schedule the se-

quence of nodes to visit in order to minimize the total execution time until the desired infor-

mation is found. They discussed the SMAP problem from the probability point of view, where

� sites are given at which a certain task might be successfully performed. The probability of

success at each site is �) . They further used dynamic programming to evaluate an approximate

solution to the SMAP problem in polynomial time. Baek et al. [23] proposed an Agent Chain-

ing approach for information retrieval. It is a dynamic planning algorithm, called � -chaining to

adapt the fluctuation of network traffic.

Yang et al. [143] introduced the concept of an itinerary graph, which can not only describe

the migration semantics of the mobile agent, but also reflect the changes of software and hard-

ware environment where mobile agent resides. During its travel, the mobile agent equipped

with the itinerary graph can perceive the network changes and modify its migration path au-

tonomously.

In this section, we study the itinerary planning problem within the context of collaborative

processing where energy consumption is the major concern.

The difference between the mobile agent application in data fusion and information retrieval

is that a mobile agent in sensor data fusion provides progressive accuracy. A mobile agent

always carries a partially integrated result generated by nodes it already visited. As the mobile

agent migrates from node to node, the accuracy of the integrated result is constantly improved.

74

Therefore, the agent can return results and terminate its migration any time the integration

accuracy satisfies the overall requirement. This feature, on the other hand, also saves both

network bandwidth and computation time, since unnecessary node visits and agent migrations

are avoided. On the other hand, a mobile agent in information retrieval does not have the

progressive accuracy feature. Once it arrives at a node, it searches for the desired information.

If the information is found, it returns to the home node. If not, it has to migrate to the next node.

Qi et al. [100] gave a detailed description on the use of mobile agents in target classification

in wireless sensor networks. As the mobile agent migrates among the sensor nodes, the accuracy

of the result increases progressively. However, the route of the mobile agent is determined a

priori, which may deteriorate the performance of collaborative processing.

Wu et al. [138] proposed a semi-dynamic routing scheme using a two-level genetic algo-

rithm for data fusion in sensor networks. The processing element computes an initial optimal

route and then dispatches a mobile agent. If some events occur and affect the network topology,

the processing element is notified which triggers the recalculation of an optimal route. The

drawbacks of this algorithm is that in some situations, it is difficult to locate a mobile agent and

update the optimal route it carries. Moreover, the updated optimal route may become outdated

when the mobile agent receives it.

4.2 Mobile Agent Migration

In the mobile-agent-based computing, the data is processed locally. Mobile agents are dis-

patched from the processing element (PE) and expected to visit a subset of sensors to integrate

local processing results. The mobile agent computing paradigm supports collaborative signal

and information processing efficiently. It supports a wide range of applications, including dis-

tributed detection, classification, and monitoring. In such problems, although each individual

sensor does not have enough information to reach a decision, a number of sensor nodes jointly

may possess useful information for a sensing task. The goal of the mobile agent computing

75

is to migrate to a group of sensor nodes in a particular sequence, maximizing the information

extracted while keeping resource usage to a minimum. Without loss of generality, we use the

tracking problem as an example in this chapter. Although intuitively, the more sensors vis-

ited, the higher the accuracy achieved, it is important to select an appropriate route so that the

required accuracy level can be achieved with low energy consumption, while prolonging the

network lifetime.

4.2.1 Assumptions

Following assumptions are made about the sensors and sensor networks in the development of

the the mobile agent planning algorithms in this chapter:

� The acoustic amplitude sensors are used and they are omnidirectional.

� The location of the sensor nodes are known, with the use of the GPS system.

� The sensors are densely deployed and each sensor node has at least two neighbors.

� The resolution of the sensors should be larger than half of the interval of between neighbor

sensors.

� All sensors are calibrated.

� Sensors are deployed in a two-dimensional plane.

� All sensor nodes are synchronized.

� There is only one target in the field, and the target is moving slowly. The speed and the

direction of the target do not change abruptly.

� All nodes start with the same fixed amount of energy.

76

4.2.2 Symbols Used for Mobile Agent Migration

In order to facilitate the modeling of mobile agent migration, we elaborate the symbols used in

the context:

� � denotes the time. We consider discrete time ��� � � � � � � � ��� .

� ��� � � � � � � � denotes sensor index.

� �����
 the state of the event at time � . In target tracking applications, � ���
 is the location of

the moving object in a two-dimensional plane.

� � (: the position of sensor � .

��� (���
 : the measurement of sensor � at time � .
� � � � � � � ��� � : the desired accuracy level for a specific task.

���
 ����� � : current number of hops �
	 ��� � has.

� %'(
: the � th sensor node visited by the mobile agent ��	 ��� � , where � ��� �
�
�
� � �
 � , and

where
%��

is the PE.

��� (���
 : the information gain at a sensor
% (

at time � .
� � � ����� ��� � : the total information gain the agent �
	 ��� � carries so far, which is the summa-

tion of information gain at the sensor nodes the mobile agent migrates.

� � (&
: the energy consumption for the agent to move between nodes

% (
and

% &
, � ��� �

� �
�
�
� � � .

4.2.3 Evaluation Metrics for Mobile Agent Migration

In order to facilitate the evaluation of different mobile agent migration algorithms, some metrics

are necessary. We use three metrics in this dissertation, energy consumption, network lifetime,

and the number of hops.

77

The energy consumption is one of the most important metrics in wireless sensor networks

since sensor nodes are energy-constrained. The energy metric measures the total energy the

wireless sensor network consumes to finish a processing task. The mobile agent migration

process consists of the agent migrating from node to node, where each migration is called

a “hop”. The energy consumption for each hop is composed of three parts – mobile agent

transmission energy from node � to node � (
� (&

), agent overhead (such as agent creation,

sending, and receiving) and data processing energy on node � (
� (

). In this chapter, we assume
� (

is identical for all sensor nodes. The total energy consumption is the total energy used for

all hops to finish a task.

The network lifetime is defined as the time from node deployment to the time when the

first node is out of service due to energy depletion. It is also an important metric since it is

desirable to make the wireless sensor network function as long as possible. In order to prolong

the network lifetime, we need to balance the energy consumption among sensor nodes.

The number of hops metric reflects the time spent for the mobile agent to finish a task, and

thus another important metric for performance evaluation. In this section, we assume the time

used to transmit and receive an agent is the same for all nodes. Once the agent arrives at a sensor

node, it spends the same amount of time to process the data, and then the same amount of time

to decide the next sensor node to migrate to. Thus the number of hops is the only factor that

affects the total time used for mobile agent migration, and it is obviously desirable to reduce the

number of hops the agent needs to finish a task.

4.2.4 Sensing Model

The measurement made by a sensor node � at time � is modeled as follows [105]

� (���
��
�

� � ���
 	 � (� � (4.1)

78

Figure 4.1: Measurement on sensor k is inverse proportional to the square of the distance to the
target.

where
�

is the signal power emitted by the target, �����
 is the target location at time � , � (is the

location of sensor node � , and
� �����
 	 � (�

is the Euclidean distance between sensor node

� and the target at time � . The relationship between the target and the sensor measurement is

illustrated in Fig. 4.1.

4.2.5 Information Gain Model

To quantify the contribution of individual sensors to the success of its task, we introduce the

concept of information gain. For acoustic sensors, we note from Eq. 4.1 that at any time instant,

the measurement � (is related to the target position � ���
 only through
� �����
 	 � (� , the distance

from the target to the sensor node � . Thus, we use this distance as a good approximation to the

gain of useful information if the mobile agent migrates to the sensor node � . We model the

relationship between the information gain and the target distance using a zero mean Gaussian,

� (���
�� ��
�����

� ������
	���
�� ��� ���
��� � (4.2)

where � is the standard deviation, a parameter that determines how fast � (decreases when the

Euclidean distance between the node and the target increases, � (is the location of sensor node

� , and �� ���
 is the estimated target location calculated from the target localization algorithm

explained in Sec. 4.2.7.

79

Figure 4.2: Information contained in the beacon frame.

4.2.6 Beacon Frames

We use beacons to periodically exchange information among neighbor nodes. The structure of

the beacon frame is shown in Fig. 4.2, where � (consists of the x-coordinate and y-coordinate

location information of sensor � , � (���
 is the remaining energy of sensor � at time � , and � (���
 is

the measurement of sensor � at time � . Sensor node � periodically broadcasts the beacon frame

to its neighbors.

Beacons have the following functions:

(1) Provides location and measurement information from a neighbor node to facilitate the

execution of the target localization algorithm and the mobile agent migration algorithms.

(2) The beacon frame also serves as an indication of the aliveness of the neighbor nodes. If

a node does not receive the beacon frame from a particular neighbor for a certain period, then

that neighbor node is deemed as out of function and the mobile agent will avoid choosing that

node as the next hop.

4.2.7 Target Localization Algorithm

In order to facilitate the execution of the mobile agent migration algorithms, we need to estimate

the target location at a certain time � . Based on the sensing model, if we have the measurements

of the target at time � from two sensor nodes,

�) ���
 � ������� ��� � �	� � �� & ���
 � �� ���� ��� � ��
 � � �

80

Figure 4.3: Target localization using trilateration method.

then we have
�
������
�	 � & � �

�
�� ���
�	 �) � �

�
�) ���
� & ���
 (4.3)

where �) and � & are the positions of node
�

and � respectively, �) ���
 and � & ���
 are the measure-

ments on node
�

and � at time � , and �� ���
 is the estimated target location at time � . Eq. 4.3

generates a circle with the center of the circle being � ��
����
 � ��� � �	����� � � ���
�
 � ��� ��� � � ��� �

��

�
�
 � ��� � �	�

�
� � � ���

�
	� ��� ��� � � ���
 , and the

radius being
�

� � � �����
	� ����� � �	� � ��
 �
	
�
 � ��� ��� � � ��� 	 , where �) � and � & � are the x-coordinate of �) and � & , and �) �

and � & � are the y-coordinate of �) and � & , respectively.

In order to determine the target location, at least three measurements from different sensor

nodes are needed. This target localization method is called trilateration [92], which is illus-

trated in Fig. 4.3. Although this method is more sensitive to errors in sensing compared to other

target localization algorithms, such as sequential Bayesian estimation [82, 83, 152], it is com-

putationally simpler and no previous estimation is needed. Thus, we employ the trilateration

method as the target localization algorithm in this chapter.

81

Suppose node 1 receives beacon from node 2 and node 3, it can derive three circles indicat-

ing possible target positions based on Eq. 4.3. For example, it derives a circle (�
�
� � �) based on

information from node 2 and itself, a circle (� � � � �) from the information of node 3 and itself.

Ideally, there are two intersection points of these two circles, which indicate the possible target

position, which is

(� �
����� ���	� ��
 ��� � � � �� �

�

�
��	� ������� � � �� � � � � � � � � � �

� � ��
� � �

�
� � � � � � � � �

 � � �
�
,

� �
��� � ���	� ��
 ��� � � � �� �

�

�
��	� ������� � � �� � � � � � � � � � �

� � ��
� � �

�
� � � � � � � � �

 � � � �),

where �
��� � �

�
� �
�
� ��� � � � � � � � ���

�
�
� ��� ��� � � ��� is the x-coordinate of �

�
, �
�
� �

�
� �
�
�
� ��� � � �

�
� � � ���

�
�
� ��� ��� � � ��� is the y-coordinate

of �
�
, � �

� � ��� � ��� � ��� � � � � � � � ���
��� � ��� ��� � � ��� is the x-coordinate of � � , and � � � �

���
�
����� ��� � � �

�
� � � ���

����� ��� ��� � � ��� is the y-

coordinate of � � .

A third circle (� � � � �) derived from the information of node 2 and node 3 determines the

final intersection point of these three circles.

The above solution is for the ideal situation, where the three circles only have one intersec-

tion. We handle other situations of these three circles as well, as shown in Fig. 4.4.

A sensor node � receives the beacons from all its neighbors periodically. When a mobile

agent arrives at node � at time � , it utilizes the first two beacon frames sent from its neighbor

nodes and performs target localization algorithm described above. By using the location and

measurement information from itself and from two of its neighbors, the mobile agent at sensor

node � can estimate the target location at � , ������
 .

4.2.8 Procedure of Mobile Agent Migration

The procedure of the mobile agent migration can be stated in the following 3 steps:

Step 1. At time � � � , the sensor node that first detects the target becomes the processing

center and creates a mobile agent �
	 ��� � . Based on the beacons it receives at � � � , it derives

the target location at ��� � according to the target localization algorithm described in Sec. 4.2.7.

It calculates the information gain � � using Eq. 4.2 and initializes ��������� � � � . It then performs

82

(a) Three intersection points close to each other, es-
timated target location is at the center of the triangle
these three intersection points form.

(b) Two intersection points close to each other on an
arc, estimated target location is at the center of the arc.

(c) Two intersection points close to each other and no
arc, estimated target location is the intersection point
that is closer to the third circle.

(d) No intersection point, estimated target location is
the center of the triangle formed by the centers of the
circles.

Figure 4.4: Possible conditions of trilateration.

83

Figure 4.5: Step 1: at � ��� .

one of the mobile agent migration algorithms described in Sec. 4.5 to decide the next sensor

node it needs to migrate to. The procedure is shown is Fig. 4.5.

Step 2. At time � , when a mobile agent arrives at a sensor node � , it first performs the target

localization algorithm to estimate the target location �� ���
 . Then it calculates the information

gain at current node � � (and updates ��������� ��� � ����� � � (. If ��������� is larger than a predefined

information gain level
� � � � � � , then go to Step 3. Otherwise, it determines a neighbor node that

it will migrate to by performing one of the mobile agent migration algorithms. Then go back to

Step 2 and change the current time ��� � � � . The procedure is shown is Fig. 4.6.

Step 3. Return to the processing center.

The mobile agent carries a data buffer which is shown in Fig. 4.7, where “Previous Tar-

get Location � ��� 	 ��
 ” is the estimated target location calculated from previous migration,

and ��������� ��� � ����� � �(�� � � (is the summation of the information gain from previously migrated

nodes.

84

Figure 4.6: Step 2: at time � .

Figure 4.7: Data space of the mobile agent. Previous target location ����� 	 ��
 is the estimated
target location from previous migration, ��������� ��� � is the summation of the information gain
from previously migrated nodes.

85

4.3 Static Mobile Agent Planning (SMAP) Modeling

The SMAP problem is in search of an order in which the sensor nodes are visited by the mobile

agent, namely, a permutation �
% �

�
%
� �
�
�
� �

%
� � . Each permutation is called a ��
�� � � ,

�
.

We employ a similar method used in [90] in our modeling. Formally, the SMAP is defined as

follows:

The Static Mobile Agent Planning Problem (SMAP) - There are �
� � nodes, � (, with

� � � �
� . Each node has a probability, � (� � , of being able to successfully complete

the agent’s task and an energy consumption
� (

required for the agent to process the data at � .

The energy consumption for the agent to move between nodes is given by
� (&

. SMAP is to

minimize the expected energy consumption and the expected time (in terms of the number of

hops) to successfully complete the task.

Without loss of generality, we make several assumptions to simplify the SMAP model.

(1) The target is static. Therefore, � (���
 remains a constant during the mobile agent migra-

tion process.

(2)
� (& � �

for all the migration steps.

(3)
� (� � for all sensor nodes.

The expected energy consumption to complete the task or visit all nodes in failure for a

route
� � �

% �
�
%
� �
�
�
� �

%
� � is:

��� � � � � � � ��� �
��
) �
�
�
)
�
�

�
& � � � � 	 � &
 � � � � � �) �

 �

��
& � � � � 	 � &
 � (4.4)

The equation can be explained as follows. The first site,
% �

, is always visited and consumes
�

amount of energy. Upon arrival, energy � must be spent regardless of success or failure. With

probability � � , the task is successfully completed and the agent can return to node � with energy

cost of another
�

. However, with probability � � 	 � �
 , i.e., the failure rate, the agent migrates

to node
%
� . The expected energy consumption used by the mobile agent moving from node

% �

86

to
%
� is � � 	 � �
 � . Similarly, the mobile agent consumes energy

�
to migrate from node

� 	 �
to node

�
, and then with probability �) , it succeeds at node

�
and return to node � consuming

energy
�

. So, the accumulated energy consumption at node
%)

is �
)
�
�

& � � � � 	 � &
 � � � � � �) �
 .
Finally, the last term arises when failure occurs at all nodes and the agent must return to the

originating node � with an energy consumption
�

.

Furthermore, the expected number of hops to complete the task or visit all nodes in failure,

for a route
� � �

% �
�
%
� �
�
�
� �

%
� � is:

�
 � � � � � � � �
��
) �
�
� � �

)
�
�

�
& � � � � 	 � &
 �)
 � � �

� ��

��
& � � � � 	 � &
 (4.5)

We use the following equation to model the probability of success:

� (� � 	
� �	� � � � ��� � 	 ��� � �) � � � (��

� ��� (4.6)

where � � ��� is the maximum information gain a sensor node can provide. �
 � is the total node

numbers the mobile agent has migrated through.

We then derive the following theorems.

Theorem 1 The Static Mobile Agent Planning Problem (SMAP) is NP-Complete.

Proof – We employ a similar strategy in [91] to start by showing that SMAP belongs to NP,

then further show that SMAP is NP Complete.

Given a route, R, we can verify if the expected energy consumption
� �

and the expected

number of hops �
 � � are smaller than or equal to � by using the formulae. This verification

can clearly be performed in polynomial time (� � � �
 steps). Thus, SMAP belongs to NP.

Next, we show that the Hamiltonian Cycle Problem, which is NP-Complete, can be reduced

to SMAP. A Hamiltonian Cycle for graph � � ��� � � � is a circuit that includes all the vertices

� . We define SMAP with probabilities strictly between 0 and 1 and

87

� (& � � & �
��� �� � ��� � ��� � �
� ��� � ��� �� � ,

so that
� (� � for any vertex on an edge in

�
and

� (& � � for any edge in
�

. We further

define

�
 � � �

��� �� �
 � � ��� � ��� � �
�
 � � � � ��� � ��� �� � .

so that the number of hops will not increase for the agent migrating on an edge in
�

. This

can be done in polynomial time. Then the graph � has a Hamiltonian cycle if and only if

the corresponding SMAP has a route with expected energy consumption and hop number of

0. To explain this, assume the graph � has a Hamiltonian cycle � . The corresponding route
�

in SMAP will have zero energy consumption and number of hops because all the energy

consumptions are 0 and the hop number is kept at zero. On the other hand, if the route
�

has energy consumption of zero and the number of hops of zero, the energy consumption and

the number of hops must all be 0 along this route by construction. Here we use the fact the

probabilities are strictly between 0 and 1 so that the only way for the route to be 0 is for the

energy consumption and the number of hops to be 0 along the route. Thus graph � has a

Hamiltonian cycle since all the edges in the route
�

have to belong to
�

by construction again.

Q.E.D.

Theorem 2 The optimal route for SMAP is attained in terms of energy consumption if the

nodes are visited in the decreasing order of � (, � � � �
�
�
� � � , that is, � � � �
�
� � � (� �
�
� � � � .

Proof – We employ a similar proof method in [91]. Consider the effect of switching the

order of two adjacent nodes on the route, say � and � � � . We call this new route as
���

. Only

the � th and � � � st terms are affected by the switch. The terms appearing before the � th term do

not contain anything involving � or � � � . Terms that follow the � � � st term, on the other hand,

all contain � � 	 � (
 � � 	 � (� �
 in the same way. Then the difference in the expected energy

88

consumption is:

��� 	 � � � � � � � � � � (�
 �
(
�
�

& � � � � 	 � &
 � � � � � � � (� � �
 �
(
& � � � � 	 � &

	 � � � � � � (� � �
 �
(
�
�

& � � � � 	 � &
 	 � � � � � � (�
 �
(
�
�

& � � � � 	 � &
 � � 	 � (� �

� � � � �
 �

(
�
�

& � � � � 	 � &
 � � (� � 	 � (

(4.7)

Since � (� � (� � , � is a better route with a smaller expected energy consumption.

This indicates that when the � th node on the route has a smaller probability than the � � �

��
 st node in making the agent complete its job, then we can decrease the expected energy

consumption by switching them.

From Eq. 4.6, we find that the probability of success on a sensor node is directly related to

the total information utility the mobile agent accumulates. The higher total information gain the

mobile agent carries, the more likely the agent will finish the task on the current sensor node

– thus the higher probability. So the optimal route for SMAP is the sequence with decreasing

information gain. Q.E.D.

Similarly, we have the following theorem:

Theorem 3 The optimal route for SMAP is attained in terms of the number of hops if the

nodes are visited in the decreasing order of � (, � � � �
�
�
� � � , that is, � � � �
�
� � � (� �
�
� � � � .

Proof – Consider the effect of switching the order of two adjacent nodes on the route, say �

and � � � . We call this new route as
� �

. Then the difference in the expected energy consumption

is:
�
 � � 	 �
 � � � � � �

(
�
�

& � � � � 	 � &
 � (� � � � ��
 �
(
& � � � � 	 � &
 � (� �

	 � �
(
�
�

& � � � � 	 � &
 � (� � 	 � � � ��
 �
(
�
�

& � � � � 	 � &
 � � 	 � (� �
 � (
� �

(
�
�

& � � � � 	 � &
 � � (� � 	 � (

(4.8)

Since � (� � (� � , � is a better route with a smaller expected number of hops.

89

This also indicates that when the � th node on the route has a smaller probability than the

� � � ��
 st node in making the agent complete its job, then we can decrease the expected energy

consumption by switching them.

Hence the optimal route is the sequence with decreasing probabilities or information gains,

so that the mobile agent can finish the task in fewer hops. Q.E.D.

Theorem 4 If � (� � for all sensor nodes, then the expected number of hops �
 � � ap-

proaches
�
� as the number of sensor nodes � increases.

Proof –

�
 � � � � � � ��� ���
�����	� � �) �

� �
� � �

)
�
�

& � � � � 	 � &

 � � � �
� ��
 � �& � � � � 	 �
�

� � �) � � � � � 	 �
 �
)
�
� � � ��� �
�

����� � �
� ��
 � �& � � � � 	 �

� � �� � � � � � � � �
�

 � �

�
�
�

(4.9)

This theorem shows that we need to improve the probability of success � on each sensor

node in order to reduce the number of hops for the mobile agent to finish the task.

4.4 Dynamic Mobile Agent Migration Modeling

The static mobile agent planning is a centralized algorithm that determines the route of the

mobile agent once for all. It may not be well suited for the distributed and dynamic natures of

the wireless sensor networks. A more desirable mobile agent planning algorithm should have a

distributed feature to dynamically determines the next sensor node the agent needs to migrate

on the fly. Then a major issue arises naturally – how to dynamically determine which node to

migrate in order to reduce energy and time consumptions, and thus prolong the lifetime of the

sensor network. In this section, we propose and model the Information-driven Dynamic Mobile

Agent Planning (IDMAP) problem.

90

The idea of the information-driven approach is proposed by Zhao et al. from PARC (Palo

Alto Research Center) [75, 152]. They introduce an information-theoretic definition of the

utility measure [152] and several heuristic approximations to the measure that prove to be prac-

tically useful, including covariance, Fischer information matrix, and Mahalanobis distance [38].

They then base the decision for sensor collaboration on information constraints as well as con-

straints on cost and resource consumption [152]. It is assumed that there is only one leader node

being active at any time and its task is to select and route tracking information to the next leader.

They formulate the problem of distributed tracking as a sequential Bayesian estimation problem,

and an information-driven sensor querying (IDSQ) framework is developed to select a sensor

which is likely to provide the greatest improvement to the estimation of target state at the low-

est cost of communication and computation [82]. They further extend the information-driven

method to data querying [38] and routing [83]. Wang et al. propose an entropy-based heuristic

for target localization, which is computationally more efficient than mutual-information-based

methods [132].

For the DMAP problem, the mobile agent needs to decide which neighbor sensor node to

migrate to. But among the available neighbor nodes, not all provide useful information that

improves the accuracy of the results. The task of the mobile agent planning is to select an

optimal subset and to decide on an optimal order of how to finish its task in an efficient way.

In the target tracking problem, we formulate the mobile agent’s selection of the next hop

as follows. The mobile agent on current node, essentially, seeks the sensor that would provide

the greatest amount of information gain, which is the most “informative” sensor among the

neighborhood � . Besides maximizing the information gain from the neighbor nodes, we also

need to reduce the energy consumption for the agent migration and prolong the lifetime of the

whole wireless sensor network. The final decision of the next hop for the mobile agent is a

combined consideration of gains and loses. We thus define a cost function � (& ���
 for mobile

91

agent migration from node
%*(

to a neighbor node
% &

at time moment � as:

� (& ���
 ��� �
� (&

�
� ���

��� � � � 	
� & ���
�
� ���

� � � 	 � 	 �
 � � � 	 � & ���

� � ���
 (4.10)

where
� (&

is the energy consumed to transfer the mobile agent from node
% (

to node
% &

, � & ���

is the available energy on node � at time � , and correspondingly,

�
� ��� is the maximum energy

consumption for the agent to migrate between two nodes, which is determined by the maximum

transmission range between two nodes. � � ��� is the maximum information gain that can be

provided by the sensor such that � & ���
 is normalized to be between 0 and 1, � � ��� is the initial

available energy on a sensor node, and we assume all nodes start with the same fixed amount

of energy. � ,
�

are the weights used to adjust the importance of these three components, and

� � � � � � � .
We can see that the cost function of DMAP consists of three parts, the energy consumption,

the information gain, and the remaining energy of a node. The energy consumption calculates

the amount of energy consumed for transmitting the mobile agent and we need to reduce this

part as much as possible in order to minimize the cost function. The second part is the infor-

mation gain by incorporating the measurement at the neighbor node. The mobile agent should

always try to migrate to a sensor node that provides more information so that more accurate

estimate about the target can be obtained and the number of nodes the mobile agent need to mi-

grate is reduced before reaching the desired accuracy for the successful completion of a certain

task. Moreover, the smaller number of nodes the agent migrates, the lower the cost. The third

part is related to normalized remaining energy on a neighboring node. In order to increase the

lifetime of the whole sensor network, the mobile agent should always choose the next sensor

node that has a higher level of available energy. The cost function takes all three factors into

consideration with parameters � and
�

controlling the weights of these three factors according

to different applications.

92

We formulate the energy consumption for transmitting the mobile agent from node
% (

to
% &

as
� (& � �

(&
� � ��� � � �
��� � � � � 	 ���
� 	 � � � (� & � � � � ��� � � � (4.11)

where �
(&

is the transmission power of a sensor node,
� � (� & � is the distance between sensor

node � and node � , � ��� � � � is the time spent to transmit the mobile agent, � � ���
�� � ����� � , � � , � �

are the antenna gain factors and are chosen to be 1,
	

is the signal wavelength, and � � � � 	 � �
� 	 is

the receiver threshold. The transmission power �
(&

can vary according to the distance between

the source node and the destination node, a major energy saving approach used in the new

generation Motes sensor node [42]. Since the size of a mobile agent is fixed during the whole

migration process, � ��� ����� remains a constant. From this equation, we see that
� � (� & �

is a major factor influencing
� (&

, which indicates that the mobile agent should migrate to a

neighboring node that is closer to the current node in order to reduce energy consumption.

We thus modify the the first component of the cost function by using the distance
� � (� & �

to indicate energy consumption over transmission, and the cost function becomes,

� (& ���
�� � �
� � (� & � �

� �� ���
��� ��� � 	

� & ���
�
� ���

� � � 	 � 	 �
 � � � 	 � & ���

� � ���
 � (4.12)

According to Eq. 4.2, the information gain is related to the distance between a sensor node

and the target, so the final cost function we employ is:

� (& ���
���� �
� � (� & � �

� �� ���
��� �

�
������
 	 � & � �

� � �� ���
� � � 	 � 	 �
 ��� � 	 � & ���

� � ���
 � (4.13)

where
�

�� ���
�	 � & � is the distance from node � to the estimated target location at time � , and

� ��� ��� is the maximum possible distance from a node to the target.

93

Figure 4.8: Mobile agent migration by optimizing an objective cost function.

Finally, the decision is

��� � �	� � � � �&���� � � �
� � (� & � �

� �� ���
��� �

�
������
 	 � & � �

� � �� ���
� � � 	 � 	 �
 ��� � 	 � & ���

� � ���
 � (4.14)

where �
(

is the set of neighbor nodes of node � , and node
% &

is the neighboring node of
% (

,

that is, a node which consumes less energy, senses a larger magnitude of target signal, while

having more available energy.

The cost function is a combined effect of information gain, energy consumption and remain-

ing energy. Fig. 4.8 shows a snapshot of a sensor node evaluating the cost function locally at a

certain time. The cost function’s iso-contours are shown as the set of concentric circles, with a

smaller radius representing smaller cost function value. Here we assume the remaining energy

on all sensor nodes are the same. Note that the node with minimum amount of cost value is

located between the current node (indicated by the solid circle) and the target, which indicates

the tradeoff between information gain and communication cost. Since the current node and the

94

target is constantly changing, Fig. 4.8 is only a snapshot of the cost function at a particular time,

and the cost function will dynamically change.

The total cost for a mobile agent ��	 ��� � to migrate is:

�
�� � � ��� �
� � � � � �
�

(� � �) �) ��� �
� � � � ��������� ��� � � ��� � �(�� � � (� � � � � � � ��� � �

(4.15)

where � is the set of nodes the mobile agent migrates and �
 � is the actual number of hops the

mobile agent migrates. For the collaborative processing, the mobile agent can achieve progres-

sive accuracy as it migrates and accumulates more information. Once it accumulates enough

information, the estimation to the event is accurate enough and the agent will terminate migra-

tion and return to the processing center. So, the number of hops the mobile agent migrates is a

random variable from 1 to the total number of nodes in one cluster and is determined by how

fast the agent can accumulate desirable amount of information. It is an important factor affect-

ing the total energy usage, network lifetime and execution time. The accuracy is determined

by the information gain accumulated by the mobile agent. The higher the information gain, the

higher accuracy the result will be. It is reasonable to choose a neighbor with higher information

gain, so that mobile agent can have fewer hops to reach the desired accuracy level.

4.5 Mobile Agent Planning Algorithms

Let �
� � represent a certain processing element with an identification � that is in charge of

the surveillance of a certain area. Let
� �
	 ��� � �
�
�
� � ��	 ��� ��� represent a group of � mobile

agents dispatched by �
� � . Without loss of generality, we assume that each ��	 ��� � visits the

same number of sensor nodes, denoted by � . We would like to choose an optimal itinerary

that consumes the least amount of resources (energy and time) in order to finish the collabora-

tive processing task. In order to do so, some information is needed for effective mobile agent

95

planning, including either the global information or the local information. The SMAP problem

needs the global information in order to generate the optimal itinerary. The global information

is a complete picture of the whole network. Such information is usually difficult to obtain in

WSNs, since each sensor node has a limited transmission range. Without collaborations with

other sensor nodes, it is very difficult for one sensor node to get the global information. The

local information, on the other hand, only contains information of those nodes that are within

the transmission range of one sensor node; it is thus a partial picture of the whole network. The

objective of DMAP is to achieve global optimization while utilizing local information.

A sensor node can obtain its local information by periodically sending an update message to

neighboring nodes or using the piggyback technique, that is, when a host needs to send a packet

to its neighboring host, it attaches its current information, such as current remaining energy,

current measurement, etc., along with the packet.

4.5.1 Information-driven Static Mobile Agent Planning (ISMAP)

We first propose an Information-driven Static Mobile Agent Planning (ISMAP) algorithm,

which utilizes the global information. Before �
� � sends out a mobile agent, it collects the

global information of the current network by communicating with all other nodes within its

monitoring territory, and derives a mobile agent itinerary based on Theorem 2 and Theorem 3.

Fig. 4.9 describes the procedure of the ISMAP.

Although a good itinerary can be achieved, the static itinerary planning has some drawbacks

that prevent it from being practically applied. First, since this approach utilizes the global

information, the transmission range of the sensor nodes has to be large enough in order for the

message to be delivered from the node to the PE within one hop. As a result, more energy would

be consumed on transmission. This approach is only suitable for a sensor network cluster of

small area. Second, since it is a static algorithm, the global information collected at the PE

96

Figure 4.9: Algorithm 1: Information-driven Static Mobile Agent Planning (ISMAP)

97

might not reflect changes occurred during agent migration. In a dynamic network with high

node failure rates or a moving target event, the static itinerary might not end up as optimal.

4.5.2 Information-driven Dynamic Mobile Agent Planning (IDMAP)

In order to combat the drawbacks of static mobile agent planning, we describe a dynamic mo-

bile agent planning algorithm IDMAP that determines the next hop of mobile agent on the

fly, according to the current network situation. Once the mobile agent arrives at a node, it

finds, among its unvisited and alive neighbors, the one with the smallest cost as calculated from

Eq. 4.12, such that a near-optimal itinerary can be determined. If all the neighbors have been

visited, it will migrate back to the sensor node where the agent was dispatched. The agent will

stop migration when the collaborative processing result it carries has reached the desired ac-

curacy level,
� �	� � � � ��� � , or when it is back to the processing center and there are no unvisited

neighbors.

Since each node periodically receives the beacon information from its neighbors, DMAP

algorithm always utilizes the updated local information in determining the next migration stop.

As only local information is needed, sensor nodes do not necessarily need a large transmission

range, and thus can reduce the energy consumption on transmission. Moreover, unlike the static

itinerary planning algorithm, which would fail the collaborative processing task if some link

along the mobile agent itinerary is broken, this dynamic algorithm can be informed about the

broken link by not receiving the beacons from some neighbor and thus bypass that broken link.

Therefore, the dynamic algorithm has a better fault-tolerance performance. The procedure of

DMAP algorithm is shown in Fig. 4.10.

4.5.3 Predictive Information-driven Dynamic Mobile Agent Planning (P-IDMAP)

In collaborative processing applications, the movement pattern of the target is an important

factor that affects the final fusion results. The dynamic algorithm does not consider the moving

98

Figure 4.10: Algorithm 2: Information-driven Dynamic Mobile Agent Planning (IDMAP)

99

(a) Mobile agent migration at time t. (b) Mobile agent migration at time t+1.

Figure 4.11: Effect of not using the target movement information.

direction of the target. In some situations, it may not be able to choose the best neighbor node

as the next hop if the target movement information is not considered. Fig. 4.11 shows one such

case. At a particular time � , as shown in Fig. 4.11(a), the mobile agent is on node 	 , which

has two equal-distance neighboring nodes � and � to migrate, that is, � � � � � �
 . At time � ,
when the mobile agent needs to make a decision for the next hop on node 	 , node � is closer to

the target than node � , thus we can assume the information gain on node � is larger than that

on node � , and the cost to migrate to node � is equal to that to node � . According to DMAP

algorithm, the mobile agent will migrate to node � . But when the mobile agent arrives at node

� , say at time � � � , the target has already moved away, say, to a position that is closer to node

� , as Figure 4.11(b) shows. Therefore, at time � � � , the measurement and information gain

on node � is less than those on node � , and the mobile agent will collect less information on

node � than on node � . A better algorithm is that the agent can predict the direction of the

target movement and migrate to the node that is more likely to provide more information when

the mobile agent arrives at that node.

In essence, the mobile agent migration should follow the movement of the target. We

call this new algorithm the Predictive Information-driven Dynamic Mobile Agent Planning (P-

IDMAP).

100

As in most cases in real situations, we assume the target dynamics are small, which means

the target does not change the direction and speed of movement abruptly. That is, within very

short time interval, the direction and the speed of the target can be deemed as constant. So, the

target changes between the time interval ��	 � to � , and � to � � � are the same:

����� � ��
 	 � ���
�� �����
 	 ����� 	 ��
 (4.16)

Eq. 4.16 requires the target location at previous moment ����� 	 ��
 and target location at the

current moment �����
 in order to predict the target location at future moment � ��� � ��
 . At time

� , the mobile agent on the current node � performs the target localization algorithm to calculate

�� ���
 , the estimated target location at time � . In addition, the mobile agent carries �� ����	 ��
 , the

estimated target location at � 	 � calculated from the previously migrated node. Then the mobile

agent predicts the target location at future time � � � by using:

������ � ��
�� � �� ���
�	 ������ 	 ��
 (4.17)

It then uses an updated cost function to evaluate the cost to its neighbor nodes and chooses

a neighbor node with the minimal cost function value to migrate to. The new cost function for

the P-IDMAP is

� (& ���
 ��� �
� � (� & � �

� �� ���
��� �

�
������ � ��
�	 � & � �

� � �� ���
� � � 	 � 	 �
 � � � 	 � & ���

� � ���
 (4.18)

where
�

�� ��� � ��
 	 � & � is the distance from node � to the predicted target location at time � � � .
Correspondingly, the decision of the next node to migrate to is

��� � �	� � � � �&���� � � �
� � (� & � �

� �� ���
��� �

�
������ � ��
�	 � & � �

� � �� ���
� � � 	 � 	 �
 ��� � 	 � & ���

� � ���
 (4.19)

101

Figure 4.12: Predictive Mobile Agent Migration. The black dots represent the estimated tar-
get location, the grey dots represent predicted target position, the dashed track represents the
predicted target movement.

where �
(

is the set of neighbor nodes of node � .

At time � � � , since the previous target location ������ 	 ��
 is unavailable, the mobile agent

performing P-IDMAP algorithm utilizes the same cost function as the IDMAP algorithm and

has the same procedure as IDMAP algorithm.

The mobile agent can migrate to a sensor node that is close to the predicted position of

the target, so that it can have a larger measurement and information gain when it arrives at the

node, which is the main idea of the predictive dynamic mobile agent planning algorithm. Of

course, this algorithm is also information-driven and considers the combination of the costs

of migration and information gains. The mobile agent migration procedure using P-IDMAP

algorithm is shown in Fig. 4.12. The solid line represents the real target movement and the

labels � � � � � � � represent the target position at discrete time moments. The black dots represent

the estimated target location after performing the target localization algorithm on the current

sensor node. The dashed line represents the predicted target movement, with the gray dots

representing predicted target position at discrete moments � � � � � � � and are calculated using the

current and the previous black dots.

102

The procedure of P-IDMAP algorithm is shown in Fig. 4.13.

4.6 Simulation and Algorithm Evaluation

Fig. 4.14 shows the mobile agent itineraries using different algorithms from Sec. 4.5. We use

target tracking as an application example for the collaborative signal and information process-

ing. Here, a vehicle moves through the sensor field from left to right. Circles represent sen-

sor nodes, and the solid circle represents processing center (PE), where the mobile agent is

dispatched. The numbers � � � � � � � under the target indicate the target locations at time index

� � � � � � � . Large dash circles represent the range of radio communication from each node. A

sensor node considers all the sensor nodes within its communication range when deciding the

next hop of migration. The numbers � � � � � � � under the sensor nodes represent the � th sensor

node on the mobile agent itinerary. Moreover, the mobile agent at time � is at node � .

The migration itinerary using the ISMAP algorithm is shown in Fig. 4.14(a). Since the

itinerary is decided at time � , the sensor nodes on the itinerary are the nodes close to the target

at time � . Thus, ISMAP is more suitable when the target is static or moves very slowly. The

migration itineraries using IDMAP and P-IDMAP are shown in Fig. 4.14(b) and Fig. 4.14(c)

respectively. We can see the mobile agent can follow the track using both algorithms, so the

mobile agent can obtain more information gain than the ISMAP algorithm. However, the av-

erage distance between the target to the current sensor node is larger using IDMAP than using

P-IDMAP, indicating that the mobile agent using the IDMAP algorithm cannot accumulate as

much information as the one using P-IDMAP.

We have developed a simulator in JAVA to evaluate the performance of these three algo-

rithms. We set up a basic network of 20 m � 20 m, where nodes are grid deployed as an array

with the same number of nodes in each row and column. Table 4.1 shows the parameters for the

basic network setup. The initial energy on all the nodes is 36 Joules. The transmission range

of each sensor node is 10 m for the dynamic algorithms and 30 m for the static algorithm. The

103

Figure 4.13: Algorithm 3: Predictive Information-driven Dynamic Mobile Agent Planning (P-
IDMAP)

104

(a) Algorithm 1: ISMAP.

(b) Algorithm 2: IDMAP.

(c) Algorithm 3: P-IDMAP.

Figure 4.14: The mobile agent migration using different algorithms.

105

Table 4.1: Related parameter setup for the basic network.

Network area 20 m by 20 m

Number of nodes 500

Node placement Grid

Sensing range 10 m

Target speed 20 m/s

Beacon interval 0.1 s

Simulation time 100 s

Desired information gain 18 units

Mobile agent size 800 bits

static algorithm needs longer transmission range in order to collect global information before

dispatching the mobile agent. All nodes within the transmission range are neighbors. Sensor

nodes broadcast a beacon frame every 0.1 s, which carries the current information of remaining

energy, target signal, etc., on that node. The target starts at the center of the surveillance area,

and moves toward the corner of the area along a straight line with a speed of � m/s. Once it

moves out of the area, it reverses its moving direction and continues moving. The sensing range

of a node is 10 m. Within this range, the sensor node can sense the event of the target movement

and have a measurement determined by Eq. 4.1. Outside of this range, the sensor node cannot

sense the event and the measurement is 0.

We design two experiments to evaluate the effects of different parameters on the algorithm’s

performance. These parameters include the target speed and the number of nodes. We use three

metrics: energy consumption, network lifetime, and number of hops for the evaluation. In

each experiment, we change one of the parameters of the basic network and keep all the others

unchanged.

106

4.6.1 The Effect of the Target Speed (�)

In this experiment, we keep the number of sensor nodes at 484 and change the target speed

� from 0.4 m/s to 50 m/s. The results are shown in Figure 4.15. From the total energy con-

sumption as shown in Figure 4.15(a), it can be observed that the IDMAP and the P-IDMAP

algorithms perform better than the static itinerary algorithm in most cases. Moreover, the P-

IDMAP consumes less energy than the IDMAP when the target speed is between 1.4 m/s and

42.5 m/s, a speed range that is typical for most target types. The reason for this is that it is more

difficult to predict the movement of the target when the speed is too slow or too fast. Moreover,

when the target speed is less than 0.1 m/s, the static itinerary algorithm performs a little better

than the other two, as in such cases, the sensor network is less dynamic and the static itinerary

algorithm can generate an optimal itinerary. Figure 4.15(b) and Figure 4.15(c) present similar

patterns in terms of network lifetime and the number of hops, that the P-IDMAP algorithm

performs better when the target moves within a certain range of speed.

4.6.2 The Effect of the Number of Nodes

In this experiment, we keep the target speed at 10 m/s and change the number of nodes from 49

to 1156. Since the area is fixed, the number of nodes is directly related to the node density –

the larger the sensor nodes, the higher the node density. The results are shown in Figure 4.16.

We can see that in most cases, the P-IDMAP performs the best in terms of energy consumption,

network lifetime, and the number of hops. When the number of nodes is less than ��� , however,

the static itinerary performs better than the other two with a smaller number of hops and longer

network lifetime, while the energy consumption is almost the same among the three planning

algorithms. The reason is that when the network density is too sparse, which is the case when

the node number is less than ��� , for the IDMAP and the P-IDMAP approaches there are too

few neighbors for the mobile agent to migrate. Once all the neighbors of a node have been

visited by the agent, it has to migrate back to the node already visited, which consumes energy

107

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

Target Speed (m/s)

E
ne

rg
y

C
om

su
m

pt
io

n
(J

ou
le

)

dynamic itinerary
predictive dynamic itinerary
static itinerary

(a) Energy consumption.

0 5 10 15 20 25 30 35 40 45 50
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

7

Target Speed (m/s)

N
et

w
or

k
Li

fe
tim

e
(s

)

dynamic itinerary
predictive dynamic itinerary
static itinerary

(b) Network lifetime.

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

Target Speed (m/s)

H
op

 N
um

be
r

dynamic itinerary
predictive dynamic itinerary
static itinerary

(c) The number of hops.

Figure 4.15: The effect of target speed.

108

0 200 400 600 800 1000 1200
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of Nodes

E
ne

rg
y

C
om

su
m

pt
io

n
(J

ou
le

)

dynamic itinerary
predictive dynamic itinerary
static itinerary

(a) Energy consumption.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

2.5
x 10

7

Number of Nodes

N
et

w
or

k
Li

fe
tim

e
(s

)

dynamic itinerary
predictive dynamic itinerary
static itinerary

(b) Network lifetime.

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

350

400

Number of Nodes

H
op

 N
um

be
r

dynamic itinerary
predictive dynamic itinerary
static itinerary

(c) The number of hops.

Figure 4.16: The effect of the number of nodes.

109

and wastes extra hops that do not contribute to the progressive increase of total information

gain. In another word, the local information it utilizes to decide the next hop is not sufficient.

The static itinerary, on the other hand, performs better because it can still utilize the global

information, and the transmission range of a node is large enough to dispatch the agent to any

other nodes in the area. Hence the mobile agent can take lesser number of hops to reach the

desired target signal level. When the node density is high enough, the mobile agent has more

neighbor nodes to migrate from the current node, and the IDMAP and the P-IDMAP approaches

begin to perform better than the static itinerary approach. We also observe from the performance

curves that the IDMAP and the P-IDMAP approaches are not greatly affected by node density,

as compared to the static itinerary approach.

4.7 Conclusion

This chapter focused on the discussion of three mobile agent itinerary planning algorithms in

wireless sensor networks. In specific, it evaluated the performance of the ISMAP, IDMAP,

and P-IDMAP planning algorithms. We first presented the mathematical models for both the

static mobile agent planning and the dynamic mobile agent planning as optimization problems.

We then designed several experiments to investigate the effect of different parameters on the

performance of the algorithms. We showed, through simulation, that the ISMAP algorithm is

more suitable for static or low-speed target, or sparse networks, while the P-IDMAP algorithm

is suitable for a wide range of conditions. The P-IDMAP algorithm has overall advantages over

other algorithms in terms of energy consumption, network lifetime, and the number of hops. It

provides an energy-efficient, near-optimal, and fault-tolerant itinerary solution for collaborative

processing in wireless sensor networks.

110

Chapter 5

Decentralized Reactive Clustering

(DRC) in Collaborative Processing

In Chapter 3, a cluster-based hybrid computing paradigm was proposed, which combines the

advantages of both the client/server and the mobile agent paradigms, by dividing the wireless

sensor network into several clusters. Experiments show that the cluster-based hybrid computing

paradigm can always be advantageous to both the client/server and the mobile agent paradigms

if a proper scheme can be chosen according to the network clustering conditions. The key

issue in this hybrid computing paradigm is how to cluster the network and which computing

paradigm to choose accordingly. Moreover, in Chapter 4, the sensor nodes periodically receive

the beacons from neighbor nodes, which contains information of the neighbor nodes, includ-

ing remaining energy, current information gain, current transmission power, etc. The beacon

serves as an indication of the connection of the wireless link and is used by the mobile agent to

determine the next sensor node it needs to migrate to. Thus, an underlying protocol is needed

in order to facilitate the migration of the mobile agent. In this chapter, a new clustering pro-

tocol called DRC is developed [141] to facilitate collaborative processing in wireless sensor

111

networks, which is designed specifically for the event-driven CSIP applications. This protocol

is also used for periodically sending beacons to guide the mobile agent migration.

5.1 Motivation

Collaborative processing applications include collaborative detection, classification and track-

ing of targets, active sensor querying, etc. If the events do not occur frequently, then from an

energy conservation point of view, the wireless sensor network should usually stay at the mon-

itoring state, that is, the sensor node should mostly stay in the sleep mode. When an event is

detected, the node wakes up its processor to collect and analyze the data. The radio, which is

normally turned off, is only waked up if the processor decides that the information needs to be

forwarded to other nodes. Since the sensors have limited sensing capability and computing re-

sources, collaboration among sensor nodes is important in order to compensate for each others’

limitations. Because the sensor network is usually deployed in a very large scale, collaboration

has to be done locally. In addition, data correlation is the strongest among nodes that are close

to each other. Therefore, the use of a clustering infrastructure would improve the effectiveness

of collaboration, where sensors within a certain neighborhood form a cluster and a cluster head

is automatically selected. Communications only occur between sensors within the same cluster

or between cluster heads.

Clustering techniques can aid in reducing energy consumption [61] and combating large

scalability. The essential operation in clustering is to select a set of sensor nodes as cluster

heads and cluster the rest of the nodes with these cluster heads. Cluster heads are responsible

for the nodes within their clusters and communicate with each other and with the processing

center on behalf of their clusters.

To the best of the author’s knowledge, previous clustering protocols are all proactive, which

means that the clusters are formed in advance. Fig. 5.1(a) illustrates an example of proactive

clustering. In order to save energy consumption, all sensor nodes are put into the sleep mode,

112

(a) Proactive clustering. (b) Reactive clustering.

Figure 5.1: Comparison of proactive and reactive clusterings.

and only the nodes that sense the event wake up and participate the collaborative processing. As

can be seen from Fig. 5.1(a), the proactive clustering may cause energy inefficiency and may

not be suitable for collaborative processing because a node may have to communicate with a

cluster head far away from the phenomena. So we present a decentralized reactive clustering

(DRC). It has two unique characteristics.

First, DRC is a reactive clustering algorithm, which means that the clustering procedure

is invoked only by events. Initially, the sensor nodes all enter the sleep mode in order to save

energy. In the case of an event, the sensing units on the nodes within a certain range of the

event detect it and wake up the transceiver and processing units. The awakened nodes then

execute the DRC protocol and form clusters locally. Each node can be aware of other nodes in

its communication range by listening to the communication channel, since the wireless channel

is a broadcast medium. Fig. 5.1(b) shows an example of reactive clustering. We can see that

the transmission distances to reach the cluster head are much less than those using proactive

clustering.

113

Second, DRC employs power-control techniques to lower the energy consumption. From

[112], we know the receiving power is a constant, while the transmission power can be ad-

justed. The higher the transmission power, the longer the transmission range, and the more

energy consumed. To communicate between two nodes, the most energy-efficient situation is

when the transmission power is high enough to just reach the receiving node, so that the trans-

mission power will not be wasted. DRC achieves this goal by taking advantages of the power

control techniques [128]. That is, the radio transmission power can be adjusted so as to control

the communication range and the topology of the network accordingly. There exist several ra-

dios that can transmit with several discrete power levels, including SINCGARS [12], Rockwell

WINS [17], etc. DRC can adjust the transmission power and form clusters according to the

information exchanged between neighboring nodes.

Many clustering algorithms have been proposed in the past [20, 24, 36, 80, 109], but to our

knowledge, none of these algorithms aim at energy efficiency in the sensor network. Most of

these algorithms are heuristic and aim at generating the minimum number of clusters such that a

node in any cluster is at the most � hops away from the cluster head. Recently, many clustering

protocols have been proposed for sensor networks and ad hoc networks. We discuss some of

these protocols in more detail.

In [37], the authors proposed a clustering algorithm that aims at maximizing the lifetime

of the network by determining optimal cluster size and optimal assignment of nodes to cluster

heads. They assume that the number of cluster heads and the location of the cluster heads are

known a priori, which is not possible in all scenarios. Moreover the algorithm requires each

node to know the complete topology of the network, which is generally not possible in the

context of large sensor networks.

The Weighted Clustering Algorithm (WCA) [34] elects a node as a cluster head based on

the number of neighbors, transmission power, battery life, and mobility rate of the node. The

114

algorithm also restricts the number of nodes in a cluster so that the performance of the MAC

protocol is not degraded.

The Hybrid Energy-Efficient Distributed clustering (HEED) [148] periodically selects clus-

ter heads according to a hybrid of their residual energy and a secondary parameter, such as

node proximity to its neighbors or node degree. HEED does not make any assumptions about

the distribution or density of nodes, or node capabilities. A careful selection of the secondary

clustering parameter can balance load among cluster heads and distribute the cluster heads well.

The HEED protocol terminates in a constant number of iterations, independent of the network

diameter, but it only generates 1-hop clusters, which may be suitable only for networks with a

small number of nodes.

The Distributed Clustering Algorithm (DCA) uses weights associated with nodes to elect

cluster heads [26]. These weights are generic and can be defined based on the application.

It elects the node that has the highest weight among its 1-hop neighbors as the cluster head.

The DCA algorithm is suitable for networks in which nodes are static or moving at a very

low speed. The Distributed and Mobility-Adaptive Clustering Algorithm (DMAC) modifies the

DCA algorithm to allow node mobility during or after the cluster set-up phase [25]. However,

both algorithms generate 1-hop clusters, require synchronized clocks and have a complexity of

� � �
 . This makes them suitable only for networks with a small number of nodes.

SPAN [35] and GAF [139] are geographic-topology based protocols that utilize location

information to eliminate unnecessary links. In GAF, geographic location is assumed to be avail-

able based on a positioning system such as GPS, while SPAN infers this information through

broadcast messages and routing updates. However, the position of the nodes in practice is usu-

ally difficult or costly to know.

LEACH [60] is an energy-efficient clustering protocol in wireless sensor networks. It uti-

lizes randomized rotation of cluster heads to evenly distribute the energy load among sensors in

115

the network and achieves dynamic clustering by choosing a cluster head that requires the mini-

mum communication energy to each node within the cluster. The algorithm is run periodically,

and the probability of becoming a cluster head for each period is chosen to ensure that every

node becomes a cluster head at least once within � � � rounds, where � is the desired percent-

age of cluster heads. This ensures that none of the sensors are overloaded because of the added

responsibility of being a cluster head. However, all the nodes need to be time-synchronized

first, which by itself is a challenging task. DRC does not need time-synchronize all the nodes.

LEACH allows only 1-hop clusters to be formed, which might lead to a large number of clus-

ters. Moreover, LEACH is designed for data-aggregation applications, where data collected

from different sources are combined and aggregated through a network hierarchy and finally

reach the processing sensor. In these kinds of applications, all nodes need to participate in the

cluster formation process, whether there is an event or not.

CMLDA [40] is a data-collection algorithm that focuses on how to find an efficient manner

in which the data should be collected from all the sensors and transmitted to the base station,

such that the system lifetime is maximized. It uses clusters to maximize the system lifetime and

demonstrates that the lifetime of a schedule given by the CMLDA heuristic is always within

10% of the optimal fractional solution. While CMLDA only considers system lifetime, DRC

also considers energy usage.

Estrin et al. presented a new multi-level localized clustering method as part of the direct

diffusion protocol in [45]. In their algorithm, they associate sensors at a particular transmission

power level with a radius. The radius specifies the number of physical hops that a sensor’s

advertisements will travel. By increasing the hop number, the sensors can increase the trans-

mission range and thus find a proper cluster head to form clusters. Their approach includes

three key steps: advertisement period, wait period, and promotion period. All sensors start off

at level 0, periodically sending out advertisements to sensors that can be reached within a cer-

tain number of hops. Sensors also start a wait timer afterward to make sure the advertisements

116

have been propagated. At the end of the wait period, the sensors then start a promotion timer

if they do not have a parent. The promotion timer is set to be inversely proportional to the

sensors remaining energy and the number of other sensors from whom level 0 advertisements

were received. When the promotion timer expires, a sensor promotes itself to a higher level if

no parent is found and starts sending periodic advertisements at that level of radius. However,

this clustering protocol does not consider events occurring in wireless sensor networks and so is

a proactive protocol. After forming the clusters, a node may have to communicate with a cluster

head far away from phenomena, which is not energy efficient.

5.2 Detail Descriptions of DRC

DRC achieves three objectives: First, it is reactive. It saves energy by only waking up the nodes

that detect the event, while other nodes can still stay in the sleep mode. Second, it uses power-

control techniques to minimize the transmission power used for communication between two

nodes. Third, it is a localized clustering protocol that via simple local node interactions achieves

a desired global objective. The advantages of a localized protocol also lies in its good scalability

and robustness, which are particularly important to wireless sensor networks [45].

The operation of DRC begins with a post-deployment phase, followed by a cluster forming

phase which is when the clusters are constructed, then an intra-cluster data processing phase,

and finally a cluster head to processing center phase. We assume there is no inter-cluster data

transmission after clusters are formed.

A sensor node executing the DRC protocol must stay in one of the following states, which

can be differentiated using the node-coloring approach [41]:

1. Gray: Unclustered node.

2. Black: Cluster head.

3. White: Participating nodes within a cluster.

117

Figure 5.2: Message format.

DRC uses several messages to exchange information among nodes. Each message is 15

bytes long with 7 fields, as shown in Fig. 5.2.

� “TYPE” indicates the type of the message which can be REQUEST, REPLY, JOIN, JOIN-

FORWARD, BEACON, CHANGE-PHASE and SLEEP. REQUEST is the message sent

out by an unclustered node to form a cluster; REPLY is the message replying the RE-

QUEST; JOIN is the message indicating the sending node wants to join an existing

cluster; JOIN-FORWARD is used to forward a JOIN message to the cluster head; The

CHANGE-PHASE message is to change the phase of DRC; and SLEEP is a message to

put the receiving nodes into the sleep mode.

� “Power Level” is the transmission power the node currently uses. We assume by using

the highest power level, every node can reach the processing center.

� “Destination ID” is the destination node identification and we use all 1’s to indicate broad-

casting.

� “Source ID” is the identification of the current node.

� “Cluster ID” is the identification of the cluster head the current node belongs to and we

use all 0’s to indicate that the current node is unclustered.

� “Energy” is the amount of remaining energy of the node.

� “Measurement” is the target signal measured by the current node at current moment.

118

Figure 5.3: Neighbor table.

Figure 5.4: Routing table.

� “Position” is the sensor node’s position.

Each node maintains two tables: a neighbor table and a routing table. The neighbor table,

as shown in Fig. 5.3, stores the neighboring node information. The neighbor table is periodi-

cally updated after the node receives BEACON message, which contains the most up-to-date

information of the neighbor node. The neighbor table will be used by the upper layer when the

mobile agent needs to decide which node it should migrate to. The routing table, as in Fig. 5.4,

is a table that stores the neighbors’ node ID via which the node can send message to the cluster

head.

For the cluster head, besides these two tables, DRC also has a participation table recording

information of the participating nodes in the cluster and via which node the cluster head can

send message to these nodes; see Fig. 5.5.

5.2.1 Post-Deployment Phase

we assume the node deployment is random. At this stage, all nodes turn off their radios and

put the CPUs into the “sleep” mode, with only the sensor left functioning. All the nodes are

assigned color Gray (unclustered).

119

Figure 5.5: Participation table.

5.2.2 Cluster Forming Phase

When an event occurs (e.g. a target moves inside the sensor field), the nodes within a certain

range of that event will detect it and begin to collect data. In the meanwhile, they will wake up

their radio and CPU. The initial transmission power is set to the lowest level of the � available

power levels. These nodes will wait for � � amount of time before they can send out a broadcast

message to form clusters. The reason for this is to wait for an incoming message which would

make the broadcast message unnecessary. According to [47], radio transmission takes the most

power and the nodes with less energy should avoid excessive transmissions. During this period,

the nodes can receive messages, such as REQUEST, REPLY, and JOIN, but cannot send a

message. We model the � � on node x using a zero mean Gaussian:

� � � ��
��� �

� �
� ��
��� � (5.1)

where ��� is the available energy on node � and � is the standard deviation, a parameter deter-

mines how fast ��� decreases when ��� increases. In other words, the waiting time � � is related to

the remaining energy of the current node in a Gaussian sense in that the nodes with more avail-

able energy will send out messages earlier than those with less energy and thus are more likely

to become cluster heads. Using this relation can save the energy consumption of the nodes with

less available energy and meet our requirement of prolonging the network lifetime in wireless

sensor networks.

120

If a node does not receive any message before � � expires, it will broadcast a REQUEST

message, and start another timer � � �) � . � � �) � is the waiting time before retransmission and it

is the same on all nodes. If no message is received before � � �) � expires, it will increase its

transmission power to the next available level and broadcast the REQUEST message again.

The transmission range of that node will be increased accordingly when the transmission power

increases. We assume a node can transmit with m discrete power levels, with � � being the

largest level. If the node reaches the � � level but still cannot receive any message from other

nodes, it will elect itself as the cluster head.

There may be a situation that both node A and B send out REQUEST messages simultane-

ously and both receive the REQUEST message sent from the other. The cluster head election

procedure will ensure that both node A and B will choose the same cluster head and join the

same cluster. The procedure proposed is described here: The node first compares its available

energy with the “Energy” field in the received REQUEST message and chooses the bigger one

as the cluster head. If they are the same, it then compares each others’ “Information Gain” value

and chooses the larger one as the cluster head.

Assume node A broadcasts a message to a group of nodes within its transmission range and

also assume node B is one of them, then there are totally four different scenarios we need to

consider:

� Scenario 1: Both A and B are unclustered and node A initializes the process by sending

out the REQUEST message.

� Scenario 2: Node A is clustered but node B unclustered. Node A sends out REPLY or

JOIN message and node B overhears the message.

� Scenario 3: Node A is unclustered and node B clustered. Node A initializes the process

by sending out a REQUEST message.

� Scenario 4: Both node A and B are clustered.

121

Figure 5.6: Scenario 1: Both nodes A and B are unclustered.

Scenario 1: Both nodes A and B are unclustered. (see Fig. 5.6). In this case, after an initial

negotiation explained below, both nodes will assign themselves to the same cluster. The cluster

head will be chosen as the node with the most remaining energy.

Node A first fills out the REQUEST message with the current transmission power level,

node A’s ID, current cluster ID as 0 (unclustered), remaining energy on board, and the informa-

tion gain it measures. It then broadcasts this message.

Upon receiving this message, node B first compares its current transmission power with the

power level recorded in the message. If its power level is less than that in the message, it will

set its transmission power equal to the power level in the message in order to reach node A from

node B. Here, we assume that the fall-off of transmission strength is uniform and symmetric.

That is, if a sender uses a certain level of transmission power to reach a receiver, the receiver

can also use the same transmission power to reach the sender. If the node’s transmission power

is higher than that in the message, it will not lower its transmission power accordingly since

it still needs to reach its other neighbors. Node B then adds one entry in the neighbor table

describing node A’s information, such as the available energy and information gain. It will also

add one entry in the routing table indicating via which node the message can reach the cluster

head. If node B has a higher available energy, it will elect itself as the cluster head following

the cluster head election procedure described above. It then changes its color to either Black or

White accordingly. Based on the fact if node A is selected as cluster head or not, node B will

122

Figure 5.7: Scenario 2: Node A belongs to a cluster, node B is unclustered.

fill out a JOIN or REPLY message, indicating its own available energy, information gain, and

the cluster ID as the cluster head ID, and broadcast the message to A. If node B is selected as

the cluster head, it will add one entry of B’s participation table.

Once node A gets the message from B, it can modify its neighbor table accordingly. If node

B is chosen as the cluster head, node A will change its color to White and then broadcast a JOIN

message. All the nodes that choose node A as the cluster head will change their membership to

node B when receiving this message. Similarly, if node A is the cluster head, it will fill in the

participation table and change its color to Black.

Scenario 2: If node A belongs to a cluster, and node B is unclustered, node B will join the

cluster that node A belongs to, as Fig. 5.7 shows.

Node A uses the same procedure as described in Scenario 1 to broadcast the REPLY or

JOIN message except that now the cluster head area in the message is the cluster head ID.

For node B, after the same procedure to modify the neighbor table and the routing table, it

will broadcast a JOIN message.

When node A receives the JOIN message, it modifies it to a JOIN-FORWARD message

and sends it to the node in its routing table that routes to the cluster head. It is a point-to-point

transmission because node A need not broadcast the forwarding message.

Scenario 3: If node A is unclustered and node B belongs to a cluster, node A will join the

cluster that node B belongs to, as Fig. 5.8 shows.

123

Figure 5.8: Scenario 3: Node A unclustered, node B belongs to a cluster.

The request sending procedure for node A is exactly the same.

For node B, it will send a reply message back to A indicating its cluster ID. If node B is not

the cluster head, it also sends a JOIN-FORWARD message for node A by filling in the node ID

area as node A’s ID, and the destination node is the node in its routing table that goes back to

the cluster head. It is also a point-to-point transmission.

Once node A receives the REPLY message from node B, it will modify the neighbor table

and routing table accordingly.

Scenario 4: If node A and B belong to different clusters, node B will discard the message,

as Fig. 5.9 shows.

Since there is no inter-cluster data transmission in DRC, the nodes belonging to different

clusters will be “invisible” to each other. So node B will discard the message from node A, and

thus is “invisible” to node A.

Once selected as a cluster head, it waits for a certain amount of time (several seconds)

before sending all its members a CHANGE-PHASE message, indicating the end of the cluster-

forming phase. The cluster head keeps a participating table and it will add an entry when it

receives either a JOIN or JOIN-FORWARD message. After the cluster forming phase is ended,

the cluster enters the intra-cluster data processing phase, during which all the cluster forming

messages will be ignored.

124

Figure 5.9: Scenario 4: Node A and B belong to different clusters.

5.2.3 Intra-Cluster Data Processing Phase

Once the nodes receive the CHANGE-PHASE message, they will enter the intra-cluster data

processing phase. If the upper layer chooses the client/server computing paradigm, the nodes

will transmit their data to the cluster head. We use a contention -ased MAC protocol to avoid

the need for time synchronization. The cluster head will generate a partial result after receiving

the data from the nodes. The nodes continue to send out their data until no events are detected,

when they will go back to the sleep mode. If the upper layer chooses the mobile agent computing

paradigm, a mobile agent will be sent out from the cluster head and migrates within the cluster.

Once a sensor node receives the mobile agent, it will go back to the sleep mode. When the

mobile agent has a satisfying result or has no sensor nodes left to migrate to, it will return to the

cluster head. Once the cluster head generates the partial result, the intra-cluster data processing

phase ends and the cluster-head-to-processing-center phase begins. In order to indicate the

functionality of the sensor nodes and wireless links, and update the information on the neighbor

node, each sensor node periodically sends out BEACON message. Once a sensor node receives

a a BEACON message, it will update its neighbor table.

5.2.4 Cluster-Head-to-Processing Center Phase

In this phase, if the upper layer chooses the client/server computing paradigm, the cluster heads

will increase their transmission powers to the highest level and send the partial results to the

125

processing center. We also use a contention based MAC protocol to avoid collisions. Other-

wise, a mobile agent will be dispatched by the processing center to migrate among the cluster

heads. The cluster heads then go back to the sleep mode; this concludes the procedure of DRC.

Similarly, each cluster head periodically sends out a BEACON message to guide the migration

of the mobile agent.

Fig. 5.10 shows the clusters after running DRC when the nodes detect an acoustic event (a

target moving through the network with a speed of 20 m/s). The area of the wireless sensor

network is 100 m � 100 m. The black circles in the figure represent the cluster heads which

communicate with the processing center. The white circles represent member nodes in clusters.

The gray circles represent sleeping nodes. The dashed line represents the track of the target.

We can see that only those nodes that sense the event wake up and form the clusters. For

comparison, Fig. 5.11 shows a proactive clustering of the same wireless sensor network with

a transmission range of 15 m. There are much fewer connections than those in the predefined

clustering network. Fig. 5.12 shows the network clustering when another acoustic event occurs

with a different target movement. The clustering of the network adaptively changes according

to the events.

5.3 Performance Evaluation

Although DRC possesses a couple of advantages, there are some potential problems with DRC

as well. The DRC protocol causes overhead in forming the cluster. When the events are fre-

quent, the overhead may become dominant. Therefore, it is necessary to evaluate the perfor-

mance of DRC and compare it with other clustering protocols.

We have developed a simulator in JAVA to evaluate the performance of DRC. We also

implement the LEACH protocol [60] and a predefined fixed clustering protocol to compare

with DRC. DRC employs a power-control technique with 8 transmission power levels. The

other two protocols only have one transmission power level with a transmission range equal to

126

Figure 5.10: DRC clustering result after an event.

Figure 5.11: Predefined clusters.

127

Figure 5.12: DRC result after another event.

128

Table 5.1: Power consumption in different states.

Mode Power Consumption (mW)
Transmit 0.2355 - 52.981
Receive 10.50

Idle 10.36
Sleep 1.0

Table 5.2: Related parameter setup for the basic network.

No. of Nodes Sensing range Target speed
���

����� No. of Events Simulation time

100 20m 20m/s 0.1s 3 20s

75 m. The transmission power determines the transmission range by the following equation:

� � ��� � � � � 	 ���
� 	 � � (5.2)

where � � ���
�� � ����� � , � � , � � are the antenna gain factors and are chosen to be 1,

	
is the signal

wavelength and is chosen to be 0.325 m, � � � � 	 � �
� 	 is the receiver threshold and is set to be

2.52 � � � ��� W. we set 8 transmission power levels: �
� � � ��� � � � mW, which determines a

range of 5m, � � � ��� ����	 mW with a range of 15 m, etc. The maximum transmission power is

� � � � ����	 � � mW with a range of 75 m. A node can be at transmit, receive, idle or sleep modes.

The power consumption of each mode is listed in Table 5.1 according to [1].

We set up a basic network of 100 m � 100 m, where nodes can be randomly or uniformly

deployed. The processing center is placed at the center of the field. The maximum distance

between any nodes and the processing center is 70.7 m. Table 5.2 shows the parameters for the

basic network. The number of events is the number of events occurred during the simulation

time. The initial energy on all the nodes is 36 Joules, and the processing center does not have

an energy limitation.

129

Figure 5.13: The operation of the fixed clustering protocol.

We use two metrics to compare the performance of different clustering protocols: the en-

ergy consumption and network lifetime. The energy consumption is defined as the total energy

consumed by all the nodes in the wireless sensor network during the whole data processing pro-

cedure. The network lifetime is defined as the time from node deployment to the time when the

first node is out of function because of energy depletion (assume all nodes start with the same

fixed amount of energy).

For a fair comparison, we modified the LEACH protocol and added the reactive feature

such that the nodes are only waken up by events. Furthermore, all protocols employ a 2-level

client/server computing paradigm, where the nodes within a cluster will send the data they col-

lect to the cluster head and then go to the sleep mode. After receiving the data, the cluster head

will generate a partial result and then send it to the processing center. For the fixed clustering

protocol, we predefine a four-cluster network with a node transmission range of 75 m. This

protocol only needs to set up the clusters once at the beginning. After that, the nodes can either

participate in the data processing when there is an event or stay in the sleep mode. Fig. 5.13

shows the timeline of its operation. The LEACH and DRC protocols will dynamically change

their clusters. LEACH changes its clustering periodically, while DRC is driven by events. See

Fig. 5.14 for their operations.

130

Figure 5.14: The operation of the LEACH and DRC protocols.

We designed four experiments to evaluate the effect of different parameters on the protocol

performance. These parameters include the number of nodes, target speed, signal range (how

far away a target signal can be captured by a sensor), and the number of events. We used two

metrics: energy consumption and network lifetime for the evaluation. In each experiment, we

changed one of the parameters of the basic network and kept all the others unchanged.

5.3.1 Effect of the Node Density

In this experiment, we uniformly deploy different numbers of nodes in a 100 m � 100 m sensor

field. From Fig. 5.15(a) we can observe that the total energy consumption for all three protocols

increases as the node density increases. However, the fixed clustering protocol grows much

faster than the other two protocols. This is because the nodes within clusters have to commu-

nicate with the cluster head using the largest transmission power available as other nodes in the

cluster may be in the sleep state and cannot act as a router for the wake-up nodes. This will

consume more energy, especially at the time when the number of nodes is large and the nodes

are densely deployed in an area. We can also infer from the graph that the DRC always per-

forms better than LEACH, which shows the advantage of reactive clustering. In term of network

lifetime shown in Fig. 5.15(b), DRC exhibits the longest lifetime as compared to LEACH and

fixed clustering protocols.

131

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

10

20

30

40

50

60

70

Node density (Number/square meter)

E
ne

rg
y

U
sa

ge
 (

jo
ul

es
)

DRC
Leach
Fixed Clustering

(a) Total energy consumption.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

4

Node density (Number/square meter)

N
et

w
or

k
Li

fe
tim

e
(s

ec
on

ds
)

DRC
Leach
Fixed Clustering

(b) Network lifetime.

Figure 5.15: The effect of node density.

132

0 5 10 15 20 25 30
0

10

20

30

40

50

60

Target Speed

E
ne

rg
y

U
sa

ge
 (

jo
ul

es
)

DRC
Leach
Fixed Clustering

(a) Total energy consumption.

0 5 10 15 20 25 30
0

2000

4000

6000

8000

10000

12000

14000

16000

Target Speed

N
et

w
or

k
Li

fe
tim

e
(s

ec
on

ds
)

DRC
Leach
Fixed Clustering

(b) Network lifetime.

Figure 5.16: The effect of the target speed.

5.3.2 Effect of the Target Speed

In this experiment, we fix the node number at 100 and observe the effect of target speed on

the performance of different protocols. We expect a decrease of energy consumption as target

speed increases because the time that the nodes stay within the signal range of the target will

be shortened as the target speed increases. We can see from Fig. 5.16(a) that DRC always con-

sumes less energy than the other two protocols. Fig. 5.16(b) shows the lifetime of the network.

We observe, similarly, that the network lifetime increases as the target speed increases.

5.3.3 Effect of the Signal Range

In this experiment, we change the signal range of the target from 5 m to 30 m and keep all

the other parameters in the basic network unchanged. We observe from Fig. 5.17(a) that the

energy usage grows as the signal range increases. This is because more nodes will detect a

target and thus more node wake-ups. However, no matter how large the signal range is, DRC

always performs the best. For the same reason, we observe from Fig. 5.17(b) that the lifetime

133

5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

Signal Range

E
ne

rg
y

U
sa

ge
 (

jo
ul

es
)

DRC
Leach
Fixed Clustering

(a) Total energy consumption.

5 10 15 20 25 30
0

1

2

3

4

5

6
x 10

4

Signal Range

N
et

w
or

k
Li

fe
tim

e
(s

ec
on

ds
)

DRC
Leach
Fixed Clustering

(b) Network lifetime.

Figure 5.17: The effect of the signal range.

decreases steadily as the signal range increases, but DRC has a much longer lifetime than the

other two.

5.3.4 Effect of the Number of Events

In this experiment, we observe the effect of the number of events by changing it from 1 to 10

and keeping all the other parameters in the basic network unchanged. We find from Fig. 5.18(a)

that the energy usage grows as more events occur. This is because more events would cause

more nodes to wake up and thus consume more energy. As to the lifetime of the network, it will

decrease accordingly, as shown in Fig. 5.18(b).

5.4 Discussions

In order to combat the energy constraint problem of the sensor network, we propose a reactive

clustering method called Decentralized Reactive Clustering (DRC), which has several desirable

features: First, it is an event-driven protocol that forms clusters reactively. That is, only those

134

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Number of Events

E
ne

rg
y

U
sa

ge
 (

jo
ul

es
)

DRC
Leach
Fixed Clustering

(a) Total energy consumption.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Events

N
et

w
or

k
Li

fe
tim

e
(s

ec
on

ds
)

DRC
Leach
Fixed Clustering

(b) Network lifetime.

Figure 5.18: The effect of the number of events.

135

nodes close to phenomena take part in the clustering procedure while other nodes can still be

in the sleep mode. Thus the energy usage of the entire network can be reduced. Second, it

employs power control techniques to lower the energy usage. Several experiments have been

designed to compare the performance of DRC, LEACH, and the fixed clustering protocols in

terms of the energy consumption and network lifetime. A simulator was developed to evaluate

the performance and the simulation results show that DRC outperforms the other two protocols

and can greatly increase the energy efficiency and lifetime of the wireless sensor networks.

136

Chapter 6

Conclusions and Future Work

Previous chapters presented the author’s work on energy-efficient designs in wireless sensor

networks. This chapter summaries the contributions so far and discusses the directions of future

work.

6.1 Summary of Contributions

The original contributions of this work include modeling and performance evaluation of the

client/server and the mobile agent paradigm; the use of cluster-based computing model to com-

bine the advantages of both paradigms; the modeling and design of information driven mobile

agent planning problem; and the development of a new decentralized reactive cluster protocol

to support the cluster-based computing paradigm.

6.1.1 Modeling and Performance Evaluation of Distributed Computing Paradigms

In order to support the collaboration among sensor nodes, a proper computing paradigm has

to be developed that meets the requirements of CSIP in wireless sensor networks, such as en-

ergy efficiency, scalability, scalability, etc. We first present simulation models for both the

137

client/server paradigm and the mobile agent paradigm. The execution time, energy and en-

ergy*delay are used as metrics to measure the performance. Several experiments have been

designed to show the effect of different parameters on the performance of different paradigms.

Experimental results show that the mobile agent paradigm performs much better when the num-

ber of nodes is large while the client/server paradigm is advantageous when the number of

nodes is small. A mobile agent framework has been developed in Python and successfully

demonstrated in SensIT field demos for target classification and tracking.

6.1.2 Cluster-based Computing Paradigm

Based on the performance evaluation results, we further propose a cluster-based hybrid com-

puting paradigm to combine the advantages of these two paradigms. There are four schemes

in this paradigm and simulation results show that there is always one scheme which performs

better than either the client/server or the mobile agent paradigm. Thus, the cluster-based hybrid

computing provides an energy-efficient and high-performance solution to CSIP.

6.1.3 Mobile Agent Planning Modeling and Algorithms Design

The mobile agent migration route has a significant impact on the overall performance of the sen-

sor network. We refer to this problem as the Mobile Agent Planning (MAP) problem. The MAP-

related research can be divided into two branches, the Static Mobile Agent Planning (SMAP)

and the Dynamic Mobile Agent Planning (DMAP). We first model the SMAP problem and de-

rive the optimal itinerary for SMAP. Then we model the DMAP as an optimization problem.

Based on the modeling, we propose three information driven mobile agent planning algorithms,

ISMAP, IDMAP, and P-IDMAP. The advantage of P-IDMAP is that the algorithm can predict

the movement of target for the next period of time and guide the mobile agent migration to fol-

low the movement of the target in order to maximize the information gain and in the meantime

minimize the energy consumption to prolong the lifetime of the sensor network. Three metrics,

138

energy consumption, network lifetime, and the number of hops, are employed to evaluate the

algorithms. Simulation results confirm the advantages of P-IDMAP algorithm for collaborative

signal processing in wireless sensor networks.

6.1.4 Decentralized Reactive Clustering

Since the sensor platforms are usually densely deployed in an environment of interest, which

induces a high level of redundancy, it is more efficient from an energy conservation point of

view if only a subset of these sensors stay active at a certain time. This way, the sensor network

can use its resources more effectively and last longer. Self-clustering is a good approach to

achieve this, in which sensor platforms within a certain neighborhood form a cluster and a

cluster head is automatically selected. Communications only occur between sensor platforms

within the same cluster or between cluster heads. The underlying clustering protocol should

also provide aids for CSIP using mobile agent computing paradigm and guide the migration of

the mobile agent. Previous clustering protocols are proactive, which may not be suitable for

the event-driven CSIP in sensor networks. We thus propose a decentralized reactive clustering

(DRC) protocol where the clustering procedure is initiated only when events are detected. It

uses power control technique to minimize energy usage in forming clusters. Simulation results

show considerable improvements over LEACH in energy conservation and network lifetime

using DRC.

6.2 Directions for Future Work

The ideas and contributions in this dissertation have a wide application to collaborative signal

and information processing in wireless sensor networks. Several interesting future research

directions are suggested here.

139

6.2.1 Cross-layer Optimization for CSIP in Wireless Sensor Networks

Since all layers of the protocol stack contribute to the energy consumption and delay for the

CSIP applications, an efficient CSIP system requires a joint design across all these layers as

well as the underlying hardware where the energy is actually expended [55]. Cross-layer design

is particularly important for wireless sensor networks, since the state of the physical medium

can significantly vary over time. Layers can exchange information to make more optimal usage

of the network. It is beneficial and feasible to further reduce the energy consumption of the

mobile agent migration utilizing the cross-layer protocol design and optimization.

6.2.2 Multi-Agent System for CSIP

In our mobile agent planning modeling and algorithm design, we only consider the case of single

mobile agent migration. It is a much complex problem for multi-agent migration. In multi-agent

systems, the mobile agent has the ability to be social and to interact with other mobile agents. In

order for agents to interact, they must possess the ability to communicate with other agents via

some common agent communication language (ACL). For the CSIP applications, mobile agents

need to cooperate with each other from time to time to exchange information, guide migration

itinerary, and pursue the common goal.

6.2.3 Strong Migration of Mobile Agent Framework

We have implemented a mobile agent hierarchy in Python and C++. During the mobile agent

migration process, only the executable code and member are migrated, and therefore only forms

a weak migration. It is desirable to have a strong migration mechanism, in which not only code

and the data member, but the execution environment need to be migrated as well. In order to

achieve strong migration, we need to design a method to migrate current stack and program

counter either at the source code level or at the byte code and interpreter level.

140

6.2.4 Distributed Data Mining in Wireless Sensor Networks Using Mobile Agents

One challenge of wireless sensor networks is it huge amount of data need to be processed. These

data are usually distributed in a diverse and geographically dispersed environment. It is essential

to find useful information and discover knowledge from these data. Data mining is a technology

that deals with the discovery of hidden knowledge, unexpected patterns and new rules from

large data set. However, current data mining systems are mainly centralized, not suitable for

the distributed environment, such as the sensor network. It is desirable have a mobile-agent

framework to facilitate distributed data mining, where mobile agents are dispatched from node

to node to perform distributed data mining algorithms. The advantages of the mobile-agent

based data mining system over the client/server-based data mining system will be studied in

terms of the energy consumption, network lifetime, and scalability and reliability.

6.3 Publication History

This dissertation appears in part in the following academic journals and conferences.

Book Chapters

� H. Qi, Y. Xu, P. T. Kuruganti (2004). “Chapter 41: The Mobile Agent Framework for

Collaborative Processing in Sensor Networks”, Distributed Sensor Networks, Editor: R.

Brooks, S. S. Iyengar, pages 783-800, CRC Press.

Refereed Journals

� Y. Xu, H. Qi (2004). “Distributed Computing Paradigms for Collaborative Signal and

Information Processing in Sensor Networks”, International Journal of Parallel and Dis-

tributed Computing, 64(8): 945-959, August.

141

� H. Qi, Y. Xu, and X. Wang (2003). “Mobile-agent-based collaborative signal and infor-

mation processing in sensor networks”, Proceedings of IEEE, Special Issue on Sensor

Networks and Applications, Volume: 91, Issue: 8, Pages: 1172 - 1183, August.

� H. Qi, P. T. Kuruganti, Y. Xu (2002). “Collaborative signal and information processing

hierarchy in distributed sensor networks”, Sensors Journal, 2(7): 270-285, July.

Conferences

� Y. Xu, H. Qi (2004). “Decentralized Reactive Clustering for Collaborative Processing in

Sensor Networks”, IEEE International Conference on Parallel and Distributed Systems

(ICPADS), pages 54-61, Newport Beach, USA, July.

� Y. Xu, H. Qi, P. T. Kuruganti (2003). “Computing Paradigms for Collaborative Process-

ing in Sensor Networks” IEEE 2003 Global Communications Conference (GLOBECOM)

, Volume: 6, Pages: 3531-3535, San Francisco, USA, December.

� Y. Xu, H. Qi (2002). “Performance evaluation of distributed computing paradigms in

mobile ad hoc sensor networks”, International Conference on Parallel and Distributed

Systems (ICPADS), pages 451-456, Taiwan, December.

142

Bibliography

143

Bibliography

[1] ASH transceiver’s designers guide. RF Monolithics, Inc. http://www.rfm.com.

[2] AVR 8-bit RISC CPU. Atmel Corporation. http://www.atmel.com/atmel/products/prod23.htm.

[3] http://www.controlled.com/pc104faq/pc104.

[4] http://www.isi.edu/scadds/pc104testbed.

[5] IVY - A sensor network infrastructure for the college of engineering. http://www-

bsac.eecs.berkeley.edu/projects/ivy/.

[6] � -adaptive multi-domain power aware sensors. http://www-

mtl.mit.edu/research/icsystems/uamps/research/overview.shtml.

[7] ObjectSpace Voyager. Recursion Software, Inc.

http://www.objectspace.com/products/prodVoyager.asp.

[8] Roc analysis: Web-based calculator for roc curves.

http://www.rad.jhmi.edu/jeng/javarad/roc/main.html.

[9] Sensor information technology. Defense Advanced Research Projects Agency.

http://www.darpa.mil/ito/research/sensit.

[10] SH-4 32-bit RISC CPU core family. SuperH, Inc.

http://www.superh.com/products/sh4.htm.

144

[11] The Spec node. University of California, Berkeley. http://www.jlhlabs.com/jhill cs/spec/.

[12] Talk II - SINCGARS multiservice communications procedures for the single-

channel ground and airborne radio system. http://www.fas.org/man/dod-

101/sys/land/docs/sincgars.pdf.

[13] TinyOs. University of California, Berkeley. http://webs.cs.berkeley.edu/tos/.

[14] WINSNG 2.0 user manual and API specification. Sensoria Corporation.

http://www.sensoria.com/.

[15] FIPA 1997 version 2.0 specifications. Available at http://www.fipa.org/spec/fipa97.html,

1997.

[16] J. Agre and L. Clare. An integrated architecture for cooperative sensing networks. IEEE

Computer Magazine, pages 106–108, May 2000.

[17] J. R. Agrea, L. P. Clarea, G. J. Pottieb, and N. P. Romanova. Development platform for

self-organizing wireless sensor networks. volume 3713, pages 257–268, 1999.

[18] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks. IEEE Communications Magazine, August 2002.

[19] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor networks:

a survey. Computer networks, 38:393–422, 2002.

[20] A. D. Amis, R. Prakash, T. H. P. Vuong, and D. T. Huynh. Max-min d-cluster formation

in wireless ad hoc networks. In Proceedings of IEEE INFOCOM, January 2000.

[21] H. Attias. Inferring parameters and structure of latent variable models by variational

Bayes. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-

gence, pages 21–30, 1999.

145

[22] J. Baek, G. Kim, and H. Yeom. Timed mobile agent planning for distributed information

retrieval. In Int’l Conference on Autonomous Agent, May 2001.

[23] J. Baek, J. H. Yeo, and H. Y. Yeom. Agent chaining: An approach to dynamic mobile

agent planning. In Proceedings of the 22nd International Conference on Distributed

Computing Systems, 2002.

[24] D. J. Baker and A. Ephremides. The architectural organization of a mobile radio network

via a distributed algorithm. IEEE Transactions on Communications, 29(11):1694–1701,

November 1981.

[25] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in multi-

hop wireless networks. In Proceedings of Vehicular Technology Conference,, volume 2,

pages 889–893, 1999.

[26] S. Basagni. Distributed clustering for ad hoc networks. In Proceedings of International

Symposium on Parallel Architectures, Algorithms and Networks, pages 310–315, June

1999.

[27] P. Bauer, M. Sichitiu, R. istepanian, and K.Premaratne. The mobile patient: Wireless

distributed sensor networks for patient monitoring and care. In Proceedings Of the First

Annual IEEE Conference on Information Technology Applications in Biomedicine, pages

17–21, 2000.

[28] J. Baumann, F. Hohl, K. Rothermel, and M. Straber. Mole - concepts of a mobile agent

system. World Wide Web, 1(3):123–137, 1998.

[29] L. Benini and G. DeMicheli. Dynamic Power Management: Design Techniques and CAD

Tools. Kluwer Academic Publishers, 1997.

146

[30] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, P. Huang, S. McCanne,

K. Varadhan amd Y. Xu, and H. Yu. Advances in network simulation. IEEE Computer,

33(5):59–67, May 2000.

[31] R. R. Brooks, C. Griffin, and D. S. Friedlander. Self-organized distributed sensor network

entity tracking. The International Journal of High Performance Computing Applications,

16(3):207–219, Fall 2002.

[32] D. Cerpa and D. Estrin. ASCENT:adaptive self-configuring sensor networks topologies.

In INFOCOM, 2002.

[33] A. P. Chandrakasan and R. W. Brodersen. Low Power CMOS Digital Design. Kluwer

Academic Publishers, 1996.

[34] M. Chatterjee, S. K. Das, and D. Turgut. WCA: A weighted clustering algorithm for

mobile ad hoc networks. Journal of Cluster Computing, Special issue on Mobile Ad hoc

Networking, (3):193–204, 2002.

[35] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris. Span: an energy-efficient coor-

dination algorithm for topology maintenance in ad hoc wireless networks. ACM Wireless

Networks Journal, September 2002.

[36] Y. P. Chen and A. L. Liestman. A zonal algorithm for clustering ad hoc networks. Inter-

national Journal of Foundations of Computer Science, 2003.

[37] C. F. Chiasserini, I. Chlamtac, P. Monti, and A. Nucci. Energy efficient design of wireless

ad hoc networks. In Proceedings of European Wireless, February 2002.

[38] M. Chu, H. Haussecker, and F. Zhao. Scalable information-driven sensor querying and

routing for ad hoc heterogeneous sensor networks. Technical report, Xerox Palo Alto

Research Center, 2001.

147

[39] A. D. Costa and A. M. Sayeed. Collaborative signal processing for distributed classifica-

tion in sensor networks. In The 2nd International Workshop on Information Processing

in Sensor Networks, Palo Alto, CA, April 2003.

[40] K. Dasgupta, K. Kalpakis, and P. Namjoshi. An efficient clustering–based heuristic for

data gathering and aggregation in sensor networks. In proceedings of IEEE Wireless

Communications and Networking Conference, 2003.

[41] B. Deb, S. Bhatnagar, and B. Nath. A topology discovery algorithm for sensor networks

with applications to network management. Technical Report DCS-TR-441, Rutgers Uni-

versity, May 2001.

[42] L. Doherty, B. A. Warneke, B. Boser, and K. S. J. Pister. Energy and performance

considerations for smart dust. International Journal of Parallel and Distributed Sensor

Networks, 4(3):121–133, Dec. 2001.

[43] J. Elson and D. Estrin. Wireless Sensor Networks, chapter Sensor Networks: A Bridge to

the Physical World, pages 1–20. Kluwer Academic Publishers, 2004.

[44] D. Estrin, R. Govindan, and J. Heidemann. Embedding the internet. ACM Communica-

tion, 43:38–41, May 2000.

[45] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In MobiCom, 1999.

[46] D. Estrin, A. Sayeed, and Srivastava. Tutorial on wireless sensor networks. In Mobicom,

2002.

[47] D. Estrin, A. Sayeed, and M. Srivastava. Mobicom 2002 tutorial: Wireless sensor net-

works. Mobicom 2002, 2002.

148

[48] T. Fawcett. Roc graphs: Notes and practical considerations for researchers. Technical

report, HP Laboratories, March 2004.

[49] T. Finin and R. Fritzson. KQML: A language and protocol for knowledge and informa-

tion exchange. In Proceedings of 19th International Distributed Artificial Intelligence

Workshop, pages 127–136, Seattle, USA, 1994.

[50] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. In

Symposium on Operating Systems Principles, pages 48–63, 1999.

[51] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding code mobility. IEEE Trans. on

Software Engineering, 24(5):342–361, 1998.

[52] M. Gendreau, G. Laporte, and J. Y. Potvin. Local Search in Combinatorial Optimizations,

chapter Vehicle routing: modern heuristics, pages 311–336. Wiley, 1997.

[53] C. Ghezzi and G. Vigna. Mobile code paradigms and technologies: a case study. In Pro-

ceedings of the First International Workshop on Mobile Agents, pages 39–49, Germany,

April 1997.

[54] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy aware clustering

in sensor networks. Sensors, (2):258–269, 2002.

[55] A. J. Goldsmith and S. B. Wicker. Design challenges for energy-constrained ad hoc

wireless networks. IEEE Wireless Communications Magazine, pages 8–27, Aug. 2002.

[56] R. S. Gray. Agent tcl: A transportable agent system. In Proceedings of the CIKM Work-

shop on Intelligent Information Agents, Fourth International Conference on Information

and Knowledge Management (CIKM 95), December 1995.

[57] L. J. Guibas. Sensing, tracking, and reasoning with relations. IEEE Signal Processing

Magazine, pages 73–85, March 2002.

149

[58] Gregory Gutin and A. P. Punnen, editors. The Traveling Salesman Problem and Its Vari-

ations. Kluwer Academic Publishers, 2002.

[59] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: are they a good idea?

Technical report, IBM Thomas J.Watson Research Center, March 1995.

[60] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient communi-

cation protocols for wireless microsensor networks. In Proc. Hawaiian Int’l Conf. on

Systems Science, 2000.

[61] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An application-specific pro-

tocol architecture for wireless microsensor networks. IEEE Transactions on Wireless

Communications, 1(4):660–670, October 2002.

[62] W. R. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information

dissemination in wireless sensor networks. In Mobicom, 1999.

[63] A. Helal, B. Haskell, J. L. Carter, R. Brice, D. Woelk, and M. Rusinkiewicz. Any Time,

Anywhere Computing. Kluwer Academic Publishers, 1999.

[64] B. E. Helvik and O. Wittner. Using the cross-entropy method to guide/govern mobile

agent’s path finding in networks. In Proceedings of 3rd International Workshop on Mo-

bile Agents for Telecommunication Applications, pages 255–268, August 2001.

[65] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture

directions for networked sensors. In Proceedings of the ninth international conference on

Architectural support for programming languages and operating systems, pages 93–104,

2000.

[66] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System ar-

chitecture directions for networked sensors. In Architectural Support for Programming

Languages and Operating Systems, pages 93–104, 2000.

150

[67] IEEE. Wireless medium access control (MAC) and physical layer (PHY) specification

for low rate wireless personal area networks (LR-WPANS). IEEE 802.15.4-2003, 2003.

[68] T. Illmann, F. Kargl, M. Weber, and T. Kruger. Migration in java: Problems, classification

and solutions. In Proceedings of the MAMA’00, Wollogong, Australia, December 2000.

[69] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable and

robust communication paradigm for sensor networks. In Proceedings of the Sixth Annual

International Conference on Mobile Computing and Networking, Boston, Massachusetts,

August 2000.

[70] C. Jaikaeo, C. Srisathapornphat, and C. Shen. Diagnosis of sensor networks. In IEEE

International Conference on Communications, Helsinki, Finland, June 2001.

[71] N. R. Jennings and M. R. Wooldridge. Agent Technology Foundations, Applications and

Markets. Springer-Verlag, 1998.

[72] D. Johansen, R. V. Renessea, and F. B. Schneider. Operating system support for mobile

agents. In Proceedings of the Fifth Workshop Hot Topics in Operating Systems (HotOS),

pages 42–45, Washington, USA, 1995.

[73] D. B. Johnson and D. A. Maltz. Mobile Computing. Kluwer Academic Publishers, 1996.

[74] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile networking

for smart dust. In ACM Mobicom, pages 271–278, Seattle, Washington, August 1999.

[75] S. Kumar, D. Shepherd, and F. Zhao. Collaborative signal and information processing in

micro-sensor networks. IEEE Signal Processing Magazine, 19(2):13–14, March 2002.

[76] P. T. Kuruganti. Development of mobile agent framework in wireless sensor networks for

multi-sensor collaborative processing. Master’s thesis, University of Tennessee, 2003.

151

[77] D. B. Lange and M. Oshima. Seven good reasons for mobile agents. Communications of

the ACM, 42(3):88–89, 1998.

[78] S. Lee, A. Ermedahl, S. L. Min, and N. Chang. Statistical derivation of an accurate energy

consumption model for embedded processors. Submitted to special issue on Power-

Aware Embedded Computing: The Role of Static, Dynamic, and Adaptive Techniques.

[79] D. Li, K. D. Wond, Y. H. Hu, and A. M. Sayeed. Detection, classification, and tracking

of targets. IEEE Signal Processing Magazine, 19(2):17–29, March 2002.

[80] C. R. Lin and M. Gerla. Adaptive clustering for mobile wireless networks. Journal on

Selected Areas in Communication, 15:1265–1275, September 1997.

[81] S. Lindsey and C. Raghavendra. Data gathering algorithms in sensor networks using

energy metrics. IEEE Transactions on Parallel and Distributed Systems, 13(9), Sep.

2002.

[82] J. Liu, J. Reich, and F. Zhao. Collaborative in-network processing for target tracking.

Journal on Applied Signal Processing, pages 378–391, March 2003.

[83] J. Liu, F. Zhao, and D. Petrovic. Information-directed routing in ad hoc sensor networks.

In WSNA ’03: Proceedings of the 2nd ACM international conference on Wireless sensor

networks and applications, pages 88–97, 2003.

[84] C. Lu, B. Blum, T. Abdelzaher, J. Stankovic, and T. He. RAP: A real-time communica-

tion architecture for large-scale wireless sensor networks. In Real-Time Technology and

Applications Symposium, September 2002.

[85] S. R. Madden, M. J. Franklin, J. M. Hellerstain, and W. Hong. TAG: a tiny aggrega-

tion service for ad-hoc sensor networks. In USENIX 5th Symp. Operating Syst. Design

Implementation, Boston, December 2002.

152

[86] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless sensor

network for habitat monitoring. In ACM International Workshop on Wireless Sensor

Networks and Applications, 2002.

[87] D. Milojicic. Trend wars - mobile agent applications. IEEE Concurrency, 7(3):80–90,

July 1999.

[88] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,

D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF: The

OMG mobile agent system interoperability facility. In In Proceedings of Mobile Agents,

Sept. 1998.

[89] R. Min, T. Furrer, and A. Chandrakasan. Dynamic voltage scaling techniques for dis-

tributed microsensor networks. In Proceedings of the IEEE Computer Society Annual

Workshop on VLSI, page 43, 2000.

[90] K. Moizumi and G. Cybenko. The traveling agent problem. Technical report, Dartmouth

College, Feb. 1998.

[91] K. Moizumi and G. Cybenko. The traveling agent problem. Mathematics of Control,

Signals and Systems, January 1998.

[92] D. Niculescu and B. Nath. Ad hoc positioning system (APS) using AoA. In IEEE

INFOCOM, pages 1734–1743, San Francisco, 2003.

[93] T. A. Pering, T. D. Burd, and R. W. Brodersen. The simulation and evaluation of dynamic

voltage scaling algorithms. In Proc. ISLPED, pages 76–81, 1998.

[94] G. P. Picco. Mobile agents: an introduction. Microprocessors and Microsystems, 25:65–

74, 2001.

153

[95] J. Polastre. Sensor network media access design. CS294-1 Fall 2003 Project Report,

2003.

[96] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Communications of

the ACM, 43(5):551–558, May 2000.

[97] J. G. Proakis and E. M. Sozer. Shallow water acoustic networks. IEEE Communications

Magazine, November 2001.

[98] H. Qi, S. S. Iyengar, and K. Chakrabarty. Multi-resolution data integration using mobile

agents in distributed sensor networks. IEEE Trans. on Syst., Man, and Cybern. Part C:

Applications and Reviews, 31(3):383–391, Aug. 2001.

[99] H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty. Multisensor data fusion in distributed

sensor networks using mobile agents. In Information Fusion, August 2001.

[100] H. Qi, X. Wang, S. S. Iyengar, and K. Chakrabarty. High performance sensor integra-

tion in distributed sensor networks using mobile agents. International Journal of High

Performance Computing Applications, 16(3):325–335, 2002.

[101] H. Qi, Y. Xu, and X. Wang. Mobile-agent-based collaborative signal and information

processing in sensor networks. Proceedings of the IEEE, Special Issue on Sensor Net-

works and Applications, 91(8):1172–1183, Aug. 2003.

[102] J. M. Rabaey, M. J. Ammer, J. L. Silva, and S. Roundy. PicoRadio supports ad hoc

ultra-low power wireless networking. IEEE Computer Magazine, 33:42–48, July 2000.

[103] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava. Energy-aware wireless

microsensor networks. IEEE Signal Processing Magazine, 19(2):40–50, March 2002.

[104] V. Raghunathan, P. Spanos, and M. Srivastava. Adaptive power-fidelity in energy aware

wireless embedded systems. In IEEE real time systems symposium, 2001.

154

[105] T. S. Rappaport. Wireless Communications: Principles and Practice. IEEE Press, 1996.

[106] S. Richardson and P. J. Green. On Bayesian analysis of mixtures with an unknown

number of components. Journal of the Royal Statistical Society, 59(4):731–758, 1997.

[107] S. Roberts and R. Everson, editors. Independent Component Analysis: Principles and

Practice. Cambridge University Press, 2001.

[108] S. J. Roberts. Independent component analysis: source assessment and separation. IEEE

Proceedings on Vision, Image, and Signal Processing, 145(3):149–154, 1998.

[109] A. Rosenstein, J. Li, and S. Y. Tong. MASH: The multicasting archie server hierarchy.

In ACM Computer Communication Review, 1997.

[110] K. N. Ross, R. D. Chaney, G. V. Cybenko, D. J. Burroughs, and A. S. Willsky. Mobile

agents in adaptive hierarchical bayesian networks for global awareness. Proceedings of

the IEEE International Conference on Systems, Man and Cybernetics, pages 2207–2212,

1998.

[111] J. Russell and M. Jacome. Software power estimation and optimization for high perfor-

mance, 32-bit embedded processors. In Proceedings of ICCD’98, Oct. 1998.

[112] A. Savvides, S. Park, and M. B. Srivastava. On modeling networks of wireless micro

sensors. In SIGMETRICS, June 2001.

[113] A. Savvides, M. Srivastava, L. Girod, and D. Estrin. Wireless Sensor Networks, chapter

Localization in Sensor Networks, pages 327–349. Kluwer Academic Publishers, 2004.

[114] C. Schurgers, V. Tsiatsis, and M. Srivastava. STEM: Topology management for energy-

efficient sensor networks. In Proceedings of the IEEE Aerospace Conference, 2002.

[115] J. R. Searle. Speed Acts. Cambridge University Press, Cambridge, UK, 1969.

155

[116] Sensoria Corporation. Sensoria’s Sensor Gateway Brochure.

[117] C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking architec-

ture and applications. IEEE Personal Communications, pages 166–179, August 2001.

[118] E. Shih, S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, and A. Chandrakasan. Physical

layer driven protocol and algorithm design fro energy-efficient wireless sensor networks.

In Seventh Annual ACM SIGMOBILE Conference on Mobile Computing and Network-

ing, July 2001.

[119] S. Singh and C. S. Raghavendra. PAMAS - power aware multi-access protocol with

signaling for ad hoc networks. ACM Computer Communication Review, July 1998.

[120] A. Sinha and A.P. Chandrakasan. Jouletrack: A web based tool for software energy

profiling. In Proc. Design Automation Conf., pages 220–225, 2001.

[121] A. Sinha, A. Wang, and A. P. Chandrakasan. Algorithmic transforms for efficient energy

scalable computation. In Proc. ISLPED, 2000.

[122] S. Slijepcevic and M. Potkonjak. Power efficient organization of wireless sensor net-

works. In IEEE International Conference on Communications, Helsinki, Finland, June

2001.

[123] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-organization of a

wireless sensor network. IEEE Personal Communications, 7(5):16–27, 2000.

[124] M. Srivastava, R. Muntz, and M. Potkonjak. Smart kindergarten: Sensor-based wireless

networks for smart developmental problem-solving environments. In Proceedings of

the ACM SIGMOBILE 7th Annual International Conference on Mobile Computing and

Networking, July 2001.

156

[125] F. Stann and J. Heidemann. RMST: Reliable data transport in sensor networks. In Pro-

ceedings of the First International Workshop on Sensor Net Protocols and Applications,

Anchorage, Alaska, USA, April 2003. IEEE.

[126] N. P. Sudmann. TACOMA - fundamental abstractions supporting agent computing in a

distributed environment. Technical report, Department of Computer Science, University

of Tromso, Norway, November 1996.

[127] T. Sundsted. An introduction to agents. Java World, June 1998.

[128] C. Tang, C. S. Raghavendra, and V. Prasanna. Energy efficient adaptation of multicast

protocols in power controlled wireless ad hoc networks. In 2002 International Sympo-

sium on Parallel Architectures, Algorithms and Networks (ISPAN ’02), May 2002.

[129] V. Tiwari, S. Malik, A. Wolfe, and M.T.C. Lee. Instruction level power analysis and

optimization of software. J. VLSI Signal Processing, 13(2):1–18, 1996.

[130] G. Pottie V. Ailawadhi. An energy efficient mac protocol for Hanets (short paper).

[131] A. Wang, S-H. Cho, C. G. Sodini, and A. P. Chandrakasan. Energy-efficient modulation

and MAC for asymmetric microsensor systems. In Proc. ISLPED, 2001.

[132] H. Wang, K. Yao, G. Pottie, and D. Estrin. Entropy-based sensor selection heuristic for

target localization. In IPSN’04: Proceedings of the third international symposium on

Information processing in sensor networks, pages 36–45. ACM Press, 2004.

[133] X. Wang. High accuracy distributed target detection and classification in sensor net-

works based on mobile agent framework. Phd dissertation, University of Tennessee,

December 2004.

[134] B. Warneke, B. Liebowitz, and K. S. J. Pister. Smart dust: Communicating with a cubic-

millimeter computer. IEEE Computer Magazine, pages 2–9, January 2001.

157

[135] M. Weiser. The computer for the 21st century.

http://www.ubiq.com/hypertext/weiser/SciAmDraft3.html.

[136] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concordia: An

infrastructure for collaborating mobile agents. Technical report, Mitsubishi Electric ITA,

Horizon Systems Laboratory, 1998.

[137] J. S. Wong and A. R. Mikler. Intelligent mobile agents in large distributed autonomous

cooperative systems. Journal of Systems and Software, 47(2):75–87, 1999.

[138] Q. Wu, N. Rao, J. Barhen, S. S. Iyengar, V. K. Vaishnavi, H. Qi, and K. Charkrabarty.

On computing mobile agent routes for data fusion in distributed sensor networks. IEEE

Transactions on Knowledge and Data Engineering, 16(6):740–753, June 2004.

[139] Y. Xu, J. Heidemann, and D. Estrin. Geography-informed energy conservation for ad

hoc routing. In Proceedings of the seventh annual international conference on Mobile

computing and networking, pages 70–84. ACM Press, 2001.

[140] Y. Xu and H. Qi. Performance evaluation of distributed computing paradigms in mobile

ad hoc sensor networks. In International Conference on Parallel and Distributed Systems

(ICPADS), pages 451–456, December 2002.

[141] Y. Xu and H. Qi. Decentralized reactive clustering for collaborative processing in sensor

networks. International Conference on Parallel and Distributed Systems(ICPADS), pages

54–61, July 2004.

[142] Y. Xu and H. Qi. Distributed computing paradigms for collaborative signal and infor-

mation processing in sensor networks. International Journal of Parallel and Distributed

Computing, 64(8):945–959, August 2004.

158

[143] B. Yang, D. Y. Liu, K. Yang, and S. S. Wang. Strategically migrating agents in itinerary

graph. In Proceedings of the Second International Conference on Machine Learning and

Cybernetics, November 2003.

[144] K. Yao, R. Hudson, C. Reed, D. Chen, and F. Lorenzelli. Blind beamforming on a

randomly distributed sensor array system. In Proceedings of IEEE JSAC, volume 18,

October 1998.

[145] F. Ye, A. Chen, S. Liu, and L. Zhang. A scalable solution to minimum cost forwarding in

large sensor networks. In Proceedings of Tenth International Conference on Computer

Communcations and Networks, pages 304–309, 2001.

[146] W. Ye, J. Heidemann, and Deborah Estrin. An energy-efficient mac protocol for wireless

sensor networks. In Proceedings of the 21st International Annual Joint Conference of

the IEEE Computer and Communications Societies (INFOCOM 2002), June 2002.

[147] S. Yi, P. Naldurg, and R. Kravets. Security-aware ad hoc routing for wireless networks.

Technical report, University of Illinois at Urbana-Champaign, 2001.

[148] O. Younis and S. Fahmy. Distributed clustering in ad-hoc sensor networks: A hybrid,

energy-efficient approach. In Proceedings of IEEE INFOCOM, March 2004.

[149] M. Youssef, M. Younis, and K. Arisha. A constrained shortest-path energy-aware routing

algorithm for wireless sensor networks. In Proceedings of the IEEE Wireless Communi-

cations and Networking Conference, March 2002.

[150] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: a library for parallel simulation of

large-scale wireless networks. In Proc. of the 12th workshop on Parallel and Distributed

Simulations (PADS ’98), pages 154–161, May 1998.

[151] X. Zeng, Y. Sun, and R. Shi. The code migration of mobile agents system. In Technology

of Object-Oriented Languages and Systems, page 181, Beijing, China, September 1998.

159

[152] F. Zhao, J. Shin, and J. Reich. Information-driven dynamic sensor collaboration. IEEE

Signal Processing Magazine, 19(2):61–72, March 2002.

[153] Y. Zou and K. Chakrabarty. Energy-aware target localization in wireless sensor net-

works. In Proceedings of IEEE International Conference on Pervasive Computing and

Communications, 2003.

160

Vita

Yingyue Xu was born in Shenyang, P. R. China. He received his BS and MS degrees in

Electrical Engineering from Tianjin University, China in 1999 and 2001 respectively. In 2001,

Yingyue enrolled into the doctoral program at the University of Tennessee in Electrical and

Computer Engineering. At the same time, he joined the Advanced Imaging and Collaborative

Information Processing group as a graduate research assistant where he completed his Doctor

of Philosophy degree in 2005. He had been working on a 4-year project MU-FASHION (Multi-

Resolution Data Fusion using Agent-Bearing Sensors in Hierarchically Organized Distributed

Sensor Networks) sponsored by Defense Advanced Research Projects Agency, through Sen-

sIT (Sensor Information Technology) Program. Besides that, he had also worked on various

projects related to ad hoc and sensor networks, such as vision-based mobile sensor platform

design, energy-efficient underwater sensor network (USN), etc. He also worked as an intern

to implement IEEE 802.15.4 MAC and Physical layer protocol. His major research areas are

wireless sensor networks, distributed signal/image processing, and mobile agent computing

paradigm in sensor networks.

161

	Energy Efficient Designs for Collaborative Signal and Information Processing inWireless Sensor Networks
	Recommended Citation

	tmp.1382128182.pdf.MWL8B

