104 research outputs found

    Development of a synthetic phantom for the selection of optimal scanning parameters in CAD-CT colonography

    Get PDF
    The aim of this paper is to present the development of a synthetic phantom that can be used for the selection of optimal scanning parameters in computed tomography (CT) colonography. In this paper we attempt to evaluate the influence of the main scanning parameters including slice thickness, reconstruction interval, field of view, table speed and radiation dose on the overall performance of a computer aided detection (CAD)–CTC system. From these parameters the radiation dose received a special attention, as the major problem associated with CTC is the patient exposure to significant levels of ionising radiation. To examine the influence of the scanning parameters we performed 51 CT scans where the spread of scanning parameters was divided into seven different protocols. A large number of experimental tests were performed and the results analysed. The results show that automatic polyp detection is feasible even in cases when the CAD–CTC system was applied to low dose CT data acquired with the following protocol: 13 mAs/rotation with collimation of 1.5 mm × 16 mm, slice thickness of 3.0 mm, reconstruction interval of 1.5 mm, table speed of 30 mm per rotation. The CT phantom data acquired using this protocol was analysed by an automated CAD–CTC system and the experimental results indicate that our system identified all clinically significant polyps (i.e. larger than 5 mm)

    The use of 3D surface fitting for robust polyp detection and classification in CT colonography

    Get PDF
    In this paper we describe the development of a computationally efficient computer-aided detection (CAD) algorithm based on the evaluation of the surface morphology that is employed for the detection of colonic polyps in computed tomography (CT) colonography. Initial polyp candidate voxels were detected using the surface normal intersection values. These candidate voxels were clustered using the normal direction, convexity test, region growing and Gaussian distribution. The local colonic surface was classified as polyp or fold using a feature normalized nearest neighbor-hood classifier. The main merit of this paper is the methodology applied to select the robust features derived from the colon surface that have a high discriminative power for polyp/fold classification. The devised polyp detection scheme entails a low computational overhead (typically takes 2.20 minute per dataset) and shows 100% sensitivity for phantom polyps greater than 5mm. It also shows 100% sensitivity for real polyps larger than 10mm and 91.67% sensitivity for polyps between 5 to 10mm with an average of 4.5 false positives per dataset. The experimental data indicates that the proposed CAD polyp detection scheme outperforms other techniques that identify the polyps using features that sample the colon surface curvature especially when applied to low-dose datasets

    Validating Pareto Optimal Operation Parameters of Polyp Detection Algorithms for CT Colonography

    Get PDF
    We evaluated a Pareto front-based multi-objective evolutionary algorithm for optimizing our CT colonography (CTC) computer-aided detection (CAD) system. The system identifies colonic polyps based on curvature and volumetric based features, where a set of thresholds for these features was optimized by the evolutionary algorithm. We utilized a two-fold cross-validation (CV) method to test if the optimized thresholds can be generalized to new data sets. We performed the CV method on 133 patients; each patient had a prone and a supine scan. There were 103 colonoscopically confirmed polyps resulting in 188 positive detections in CTC reading from either the prone or the supine scan or both. In the two-fold CV, we randomly divided the 133 patients into two cohorts. Each cohort was used to obtain the Pareto front by a multi-objective genetic algorithm, where a set of optimized thresholds was applied on the test cohort to get test results. This process was repeated twice so that each cohort was used in the training and testing process once. We averaged the two training Pareto fronts as our final training Pareto front and averaged the test results from the two runs in the CV as our final test results. Our experiments demonstrated that the averaged testing results were close to the mean Pareto front determined from the training process. We conclude that the Pareto front-based algorithm appears to be generalizable to new test data

    A Robust and Fast System for CTC Computer-Aided Detection of Colorectal Lesions

    Get PDF
    We present a complete, end-to-end computer-aided detection (CAD) system for identifying lesions in the colon, imaged with computed tomography (CT). This system includes facilities for colon segmentation, candidate generation, feature analysis, and classification. The algorithms have been designed to offer robust performance to variation in image data and patient preparation. By utilizing efficient 2D and 3D processing, software optimizations, multi-threading, feature selection, and an optimized cascade classifier, the CAD system quickly determines a set of detection marks. The colon CAD system has been validated on the largest set of data to date, and demonstrates excellent performance, in terms of its high sensitivity, low false positive rate, and computational efficiency

    Performance and Evaluation in Computed Tomographic Colonography Screening for Colorectal Cancer

    Get PDF
    Each year over 20,000 people die from colorectal cancer (CRC). However, despite causing the second highest number of cancer deaths, CRC is not only curable if detected early but can be prevented by population screening. The detection and removal of pre-malignant polyps in the colon prevents cancer from ever developing. As such, screening of the at-risk population (those over 45-50 years) confers protection against CRC incidence and mortality. Although the principles and benefit of screening are well established, the adequate provision of screening is a complex process requiring robust healthcare infrastructure, evidence-based quality assurance and resources. The success of any screening programme is dependent on the accuracy of the screening investigations deployed and sufficiently high uptake by the target population. In England, the Bowel Cancer Screening Programme (BCSP) delivers screening via initial stool testing to triage patients for the endoscopic procedure, colonoscopy, or the radiological investigation CT colonography (CTC) in some patients. There has been considerable investment in colonoscopy accreditation processes which contribute to high quality services, suitable access for patients and a competent endoscopy workforce. The performance of colonoscopists in the BCSP is tightly monitored and regulated; however, the same is not true for CTC. Comparatively, there has been little investment in CTC services, and in fact there is no mandatory accreditation or centralised training. Instead, CTC reporting radiologists must learn ad hoc on the job, or at self-funded commercial workshops. This inevitably leads to variability in quality and expertise, inequity in service provision, and could negatively impact patient outcomes. To address this disparity and develop evidence-based training, one must determine what factors affect the performance of CTC reporting radiologists, what CTC training is necessary, and what training works. This thesis investigates these topics and is structured as follows: Section A reviews the background literature, describing the public health burden of CRC and the role of screening. Aspects of CTC screening and its role in the BCSP are explored. The importance of performance monitoring and value of accreditation are examined and the disparity between CTC, colonoscopy and other imaging-based screening programmes is discussed. Section B expands on radiologist performance by determining the post-imaging CRC (or interval cancer) rate through systematic review and meta-analysis. Factors contributing to the interval cancer rate are evaluated, and an observational study assessing factors affecting CTC accuracy is presented. The impact of CTC training is assessed via a structured review and best principles for training delivery are discussed. Section C presents a multicentre, cluster-randomised control trial developed from the data and understanding described in Sections A and B. Section D summarises the thesis and discusses future recommendations and research

    Automatic colonic polyp detection using curvature analysis for standard and low dose CT data

    Get PDF
    Colon cancer is the second leading cause of cancer related deaths in the developed nations. Early detection and removal of colorectal polyps via screening is the most effective way to reduce colorectal cancer (CRC) mortality. Computed Tomography Colonography (CTC) or Virtual Colonoscopy (VC) is a rapidly evolving non-invasive technique and the medical community view this medical procedure as an alternative to the standard colonoscopy for the detection of colonic polyps. In CTC the first step for automatic polyp detection for 3D visualization of the colon structure and automatic polyp detection addresses the segmentation of the colon lumen. The segmentation of colon lumen is far from a trivial task as in practice many datasets are collapsed due to incorrect patient preparation or blockages caused by residual water/materials left in the colon. In this thesis a robust multi-stage technique for automatic segmentation of the colon is proposed tha t maximally uses the anatomical model of a generic colon. In this regard, the colon is reconstructed using volume by length analysis, orientation, length, end points, geometrical position in the volumetric data, and gradient of the centreline of each candidate air region detected in the CT data. The proposed method was validated using a total of 151 standard dose (lOOmAs) and 13 low-dose (13mAs-40mAs) datasets and the collapsed colon surface detection was always higher than 95% with an average of 1.58% extra colonic surface inclusion. The second major step of automated CTC attempts the identification of colorectal polyps. In this thesis a robust method for polyp detection based on surface curvature analysis has been developed and evaluated. The convexity of the segmented colon surface is sampled using the surface normal intersection, Hough transform, 3D histogram, Gaussian distribution, convexity constraint and 3D region growing. For each polyp candidate surface the morphological and statistical features are extracted and the candidate surface is classified as a polyp/fold structure using a Feature Normalized Nearest Neighbourhood classifier. The devised polyp detection scheme entails a low computational overhead (typically takes 3.60 minute per dataset) and shows 100% sensitivity for polyps larger than 10mm, 92% sensitivity for polyps in the range 5 to 10mm and 64.28% sensitivity for polyp smaller than 5mm. The developed technique returns in average 4.01 false positives per dataset. The patient exposure to ionising radiation is the major concern in using CTC as a mass screening technique for colonic polyp detection. A reduction of the radiation dose will increase the level of noise during the acquisition process and as a result the quality of the CT d a ta is degraded. To fully investigate the effect of the low-dose radiation on the performance of automated polyp detection, a phantom has been developed and scanned using different radiation doses. The phantom polyps have realistic shapes (sessile, pedunculated, and flat) and sizes (3 to 20mm) and were designed to closely approximate the real polyps encountered in clinical CT data. Automatic polyp detection shows 100% sensitivity for polyps larger than 10mm and shows 95% sensitivity for polyps in the range 5 to 10mm. The developed method was applied to CT data acquired at radiation doses between 13 to 40mAs and the experimental results indicate th a t robust polyp detection can be obtained even at radiation doses as low as 13mAs

    Computer-aided detection of polyps in CT colonography

    Get PDF
    Master'sMASTER OF ENGINEERIN
    corecore