399 research outputs found

    A Telerobotic Drilling Control System with Haptic Feedback

    Get PDF
    Drilling a borehole is a common method for extracting oil, gas, and natural resources from beneath the surface of the earth. The main topic of this Thesis is the design of control algorithms for virtual reality based telerobotic system with haptic feedback that allows for the remote control of the vertical drilling operation. The human operator controls the vertical penetration velocity using PHANTOM Omni haptic device while simultaneously receiving the haptic feedback from the locally implemented virtual environment. The virtual environment is rendered as a virtual spring with stiffness updated based on the estimate of the the stiffness of the rock currently being cut. Based on the existing mathematical models of drill-string/drive systems and rock cutting/penetration process, a robust servo controller is designed that guarantees tracking of the reference vertical penetration velocity of the drill bit. A scheme for online estimation of the rock stiffness is implemented. Simulations of the proposed control and parameter estimation algorithms have been conducted using MATLAB; consequently, the overall telerobotic drilling system with a human operator controlling the process using PHANTOM Omni haptic device is tested experimentally where the drilling process is simulated in real time using Open Haptics toolkit

    Investigation of the use of meshfree methods for haptic thermal management of design and simulation of MEMS

    Get PDF
    This thesis presents a novel approach of using haptic sensing technology combined with virtual environment (VE) for the thermal management of Micro-Electro-Mechanical-Systems (MEMS) design. The goal is to reduce the development cycle by avoiding the costly iterative prototyping procedure. In this regard, we use haptic feedback with virtua lprototyping along with an immersing environment. We also aim to improve the productivity and capability of the designer to better grasp the phenomena operating at the micro-scale level, as well as to augment computational steering through haptic channels. To validate the concept of haptic thermal management, we have implemented a demonstrator with a user friendly interface which allows to intuitively "feel" the temperature field through our concept of haptic texturing. The temperature field in a simple MEMS component is modeled using finite element methods (FEM) or finite difference method (FDM) and the user is able to feel thermal expansion using a combination of different haptic feedback. In haptic application, the force rendering loop needs to be updated at a frequency of 1Khz in order to maintain continuity in the user perception. When using FEM or FDM for our three-dimensional model, the computational cost increases rapidly as the mesh size is reduced to ensure accuracy. Hence, it constrains the complexity of the physical model to approximate temperature or stress field solution. It would also be difficult to generate or refine the mesh in real time for CAD process. In order to circumvent the limitations due to the use of conventional mesh-based techniques and to avoid the bothersome task of generating and refining the mesh, we investigate the potential of meshfree methods in the context of our haptic application. We review and compare the different meshfree formulations against FEM mesh based technique. We have implemented the different methods for benchmarking thermal conduction and elastic problems. The main work of this thesis is to determine the relevance of the meshfree option in terms of flexibility of design and computational charge for haptic physical model

    Real-time simulation of surgery by Proper Generalized Decomposition techniques

    Get PDF
    La simulación quirúrgica por ordenador en tiempo real se ha convertido en una alternativa muy atractiva a los simuladores quirúrgicos tradicionales. Entre otras ventajas, los simuladores por ordenador consiguen ahorros importantes de tiempo y de costes de mantenimiento, y permiten que los estudiantes practiquen sus habilidades quirúrgicas en un entorno seguro tantas veces como sea necesario. Sin embargo, a pesar de las capacidades de los ordenadores actuales, la cirugía computacional sigue siendo un campo de investigación exigente. Uno de sus mayores retos es la alta velocidad a la que se tienen que resolver complejos problemas de mecánica de medios continuos para que los interfaces hápticos puedan proporcionar un sentido del tacto realista (en general, se necesitan velocidades de respuesta de 500-1000 Hz).Esta tesis presenta algunos métodos numéricos novedosos para la simulación interactiva de dos procedimientos quirúrgicos habituales: el corte y el rasgado (o desgarro) de tejidos blandos. El marco común de los métodos presentados es el uso de la Descomposición Propia Generalizada (PGD en inglés) para la generación de vademécums computacionales, esto es, metasoluciones generales de problemas paramétricos de altas dimensiones que se pueden evaluar a velocidades de respuesta compatibles con entornos hápticos.En el caso del corte, los vademécums computacionales se utilizan de forma conjunta con técnicas basadas en XFEM, mientras que la carga de cálculo se distribuye entre una etapa off-line (previa a la ejecución interactiva) y otra on-line (en tiempo de ejecución). Durante la fase off-line, para el órgano en cuestión se precalculan tanto un vademécum computacional para cualquier posición de una carga, como los desplazamientos producidos por un conjunto de cortes. Así, durante la etapa on-line, los resultados precalculados se combinan de la forma más adecuada para obtener en tiempo real la respuesta a las acciones dirigidas por el usuario. En cuanto al rasgado, a partir de una ecuación paramétrica basada en mecánica del daño continuo, se obtiene un vademécum computacional. La complejidad del modelo se reduce mediante técnicas de Descomposición Ortogonal Propia (POD en inglés), y el vademécum se incorpora a una formulación incremental explícita que se puede interpretar como una especie de integrador temporal.A modo de ejemplo, el método para el corte se aplica a la simulación de un procedimiento quirúrgico refractivo de la córnea conocido como queratotomía radial, mientras que el método para el rasgado se centra en la simulación de la colecistectomía laparoscópica (la extirpación de la vesícula biliar mediante laparoscopia). En ambos casos, los métodos implementados ofrecen excelentes resultados en términos de velocidades de respuesta y producen simulaciones muy realistas desde los puntos de vista visual y háptico.The real-time computer-based simulation of surgery has proven to be an appealing alternative to traditional surgical simulators. Amongst other advantages, computer-based simulators provide considerable savings on time and maintenance costs, and allow trainees to practice their surgical skills in a safe environment as often as necessary. However, in spite of the current computer capabilities, computational surgery continues to be a challenging field of research. One of its major issues is the high speed at which complex problems in continuum mechanics have to be solved so that haptic interfaces can render a realistic sense of touch (generally, feedback rates of 500–1 000 Hz are required). This thesis introduces some novel numerical methods for the interactive simulation of two usual surgical procedures: cutting and tearing of soft tissues. The common framework of the presented methods is the use of the Proper Generalised Decomposition (PGD) for the generation of computational vademecums, i. e. general meta-solutions of parametric high-dimensional problems that can be evaluated at feedback rates compatible with haptic environments. In the case of cutting, computational vademecums are used jointly with XFEM-based techniques, and the computing workload is distributed into an off-line and an on-line stage. During the off-line stage, both a computational vademecum for any position of a load and the displacements produced by a set of cuts are pre-computed for the organ under consideration. Thus, during the on-line stage, the pre-computed results are properly combined together to obtain in real-time the response to the actions driven by the user. Concerning tearing, a computational vademecum is obtained from a parametric equation based on continuum damage mechanics. The complexity of the model is reduced by Proper Orthogonal Decomposition (POD) techniques, and the vademecum is incorporated into an explicit incremental formulation that can be viewed as a sort of time integrator. By way of example, the cutting method is applied to the simulation of a corneal refractive surgical procedure known as radial keratotomy, whereas the tearing method focuses on the simulation of laparoscopic cholecystectomy (i. e. the removal of the gallbladder). In both cases, the implemented methods offer excellent performances in terms of feedback rates, and produce.<br /

    Dynamic structural analysis of beams

    Get PDF
    The research reviews the various methods, accurate and approximate, analytical and numerical, used for the analysis of beams that are subjected to dynamic loads. A review of previous research is presented. A detailed description of one of the methods, the Simplified Elastic Plastic Method (the SEP Method), a well-developed approximate method, is given. A finite element model, built with the aid of the computer software ABAQUS, is described. Results of 20 experiments made by others are provided and used as a benchmark for the finite element analysis. The methodology used for the validation of the ABAQUS Model and the SEP Method is to do, for various study cases, a comparison between the experimental results, those computed using the ABAQUS Model and those predicted using the SEP Method. Having validated the ABAQUS Model, it has been used as a benchmark with which to check the SEP Method. Therefore, additional cases have been analysed using the ABAQUS Model in order to cover a more comprehensive range of variables. A good agreement has been found between the results. The accuracy of the ABAQUS model and the conservatism of the SEP Method are shown. A design procedure using the SEP Method has been developed. Calibration factors are also proposed in order to reduce the conservatism in the SEP Method. The results and recommendations of the research can be employed in the defence industry, civil and structural engineering

    Novel Bidirectional Body - Machine Interface to Control Upper Limb Prosthesis

    Get PDF
    Objective. The journey of a bionic prosthetic user is characterized by the opportunities and limitations involved in adopting a device (the prosthesis) that should enable activities of daily living (ADL). Within this context, experiencing a bionic hand as a functional (and, possibly, embodied) limb constitutes the premise for mitigating the risk of its abandonment through the continuous use of the device. To achieve such a result, different aspects must be considered for making the artificial limb an effective support for carrying out ADLs. Among them, intuitive and robust control is fundamental to improving amputees’ quality of life using upper limb prostheses. Still, as artificial proprioception is essential to perceive the prosthesis movement without constant visual attention, a good control framework may not be enough to restore practical functionality to the limb. To overcome this, bidirectional communication between the user and the prosthesis has been recently introduced and is a requirement of utmost importance in developing prosthetic hands. Indeed, closing the control loop between the user and a prosthesis by providing artificial sensory feedback is a fundamental step towards the complete restoration of the lost sensory-motor functions. Within my PhD work, I proposed the development of a more controllable and sensitive human-like hand prosthesis, i.e., the Hannes prosthetic hand, to improve its usability and effectiveness. Approach. To achieve the objectives of this thesis work, I developed a modular and scalable software and firmware architecture to control the Hannes prosthetic multi-Degree of Freedom (DoF) system and to fit all users’ needs (hand aperture, wrist rotation, and wrist flexion in different combinations). On top of this, I developed several Pattern Recognition (PR) algorithms to translate electromyographic (EMG) activity into complex movements. However, stability and repeatability were still unmet requirements in multi-DoF upper limb systems; hence, I started by investigating different strategies to produce a more robust control. To do this, EMG signals were collected from trans-radial amputees using an array of up to six sensors placed over the skin. Secondly, I developed a vibrotactile system to implement haptic feedback to restore proprioception and create a bidirectional connection between the user and the prosthesis. Similarly, I implemented an object stiffness detection to restore tactile sensation able to connect the user with the external word. This closed-loop control between EMG and vibration feedback is essential to implementing a Bidirectional Body - Machine Interface to impact amputees’ daily life strongly. For each of these three activities: (i) implementation of robust pattern recognition control algorithms, (ii) restoration of proprioception, and (iii) restoration of the feeling of the grasped object's stiffness, I performed a study where data from healthy subjects and amputees was collected, in order to demonstrate the efficacy and usability of my implementations. In each study, I evaluated both the algorithms and the subjects’ ability to use the prosthesis by means of the F1Score parameter (offline) and the Target Achievement Control test-TAC (online). With this test, I analyzed the error rate, path efficiency, and time efficiency in completing different tasks. Main results. Among the several tested methods for Pattern Recognition, the Non-Linear Logistic Regression (NLR) resulted to be the best algorithm in terms of F1Score (99%, robustness), whereas the minimum number of electrodes needed for its functioning was determined to be 4 in the conducted offline analyses. Further, I demonstrated that its low computational burden allowed its implementation and integration on a microcontroller running at a sampling frequency of 300Hz (efficiency). Finally, the online implementation allowed the subject to simultaneously control the Hannes prosthesis DoFs, in a bioinspired and human-like way. In addition, I performed further tests with the same NLR-based control by endowing it with closed-loop proprioceptive feedback. In this scenario, the results achieved during the TAC test obtained an error rate of 15% and a path efficiency of 60% in experiments where no sources of information were available (no visual and no audio feedback). Such results demonstrated an improvement in the controllability of the system with an impact on user experience. Significance. The obtained results confirmed the hypothesis of improving robustness and efficiency of a prosthetic control thanks to of the implemented closed-loop approach. The bidirectional communication between the user and the prosthesis is capable to restore the loss of sensory functionality, with promising implications on direct translation in the clinical practice

    Haptic Guidance for Extended Range Telepresence

    Get PDF
    A novel navigation assistance for extended range telepresence is presented. The haptic information from the target environment is augmented with guidance commands to assist the user in reaching desired goals in the arbitrarily large target environment from the spatially restricted user environment. Furthermore, a semi-mobile haptic interface was developed, one whose lightweight design and setup configuration atop the user provide for an absolutely safe operation and high force display quality

    Proceedings of the Second PHANToM Users Group Workshop : October 19-22, 1997 : Endicott House, Dedham, MA, Massachusetts Institute of Technology, Cambridge, MA

    Get PDF
    "December, 1997." Cover title.Includes bibliographical references.Sponsored by SensAble Technologies, Inc., Cambridge, MA."[edited by J. Kennedy Salisbury and Mandayam A. Srinivasan]

    On the development of an efficient truly meshless discretization procedure in computational mechanics

    Get PDF
    Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 157-163).The objective of this thesis is to present an efficient and reliable meshless computational technique - the method of finite spheres - for the solution of boundary value problems on complex domains. This method is truly meshless in the sense that the approximation spaces are generated and the numerical integration is performed without a mesh. While the theory behind meshless techniques is rather straightforward, the generation of a computationally efficient scheme is quite difficult. Computational efficiency may be achieved by proper choice of the interpolation functions, effective ways of incorporating the essential boundary conditions and efficient and specialized numerical integration rules. The pure displacement formulation is observed to exhibit volumetric "locking" during incompressible (or nearly incompressible) analysis. A displacement/pressure mixed formulation is developed to overcome this problem. The stability and optimality of the mixed formulation are tested using numerical inf-sup tests for a variety of discretization schemes. Solutions to several example problems are presented showing the application of the method of finite spheres to problems in solid and fluid mechanics. A very specialized application of the technique to physically based real time medical simulations in multimodal virtual environments is also presented. In the current form of implementation, the method of finite spheres is about five times slower than the finite element techniques for problems in two-dimensional elastostatics.by Suvranu De.Sc.D

    On the development of an efficient truly meshless discretization procedure in computational mechanics

    Get PDF
    Supervised by Mandayam A. Srinivasan and Klaus-Jurgen Bathe.Also issued as Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001.Includes bibliographical references (leaves 157-163).by Suvranu De
    corecore