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Abstract
Drilling a borehole is a common method for extracting oil, gas, and natural resources

from beneath the surface of the earth. The main topic of this Thesis is the design of con-
trol algorithms for virtual reality based telerobotic system with haptic feedback that allows
for the remote control of the vertical drilling operation. The human operator controls the
vertical penetration velocity using PHANTOM Omni haptic device while simultaneously
receiving the haptic feedback from the locally implemented virtual environment. The vir-
tual environment is rendered as a virtual spring with stiffness updated based on the estimate
of the the stiffness of the rock currently being cut. Based on the existing mathematical
models of drill-string/drive systems and rock cutting/penetration process, a robust servo
controller is designed that guarantees tracking of the reference vertical penetration velocity
of the drill bit. A scheme for online estimation of the rock stiffness is implemented. Sim-
ulations of the proposed control and parameter estimation algorithms have been conducted
using MATLAB; consequently, the overall telerobotic drilling system with a human opera-
tor controlling the process using PHANTOM Omni haptic device is tested experimentally
where the drilling process is simulated in real time using Open Haptics toolkit.

Keywords: Teleoperation, Drilling Systems, Haptic Feedback, Controller Design
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Chapter 1

Introduction

1.1 Teleoperation and Drilling

Teleoperation is a general term that describes different technologies that allow human op-

erators to execute tasks in remote or hazardous environments. The word tele has Greek

origins and means at a distance; thus, as the name suggest, teleoperation provides the capa-

bility to operate at a remote location. The main components of a teleoperator system are the

master manipulator together with its local master controller, the communication channel,

and the slave manipulator with its local slave controller. The master manipulator (occa-

sionally comprising of a joystick or a stylus attached to the telerobotic device) is operated

by the human, and the slave manipulator interacts with the environment [8, 9]. Using the

master manipulator, the human operator generates a trajectory which is consequently exe-

cuted by the slave. In force reflecting teleoperator systems, the interaction forces between

the slave and the remote environment are reflected back to the motors of the master device;

the purpose of such a force reflection is to create a feeling of direct contact between the

human operator hand and the remote task.

The goal of this research is to design a telerobotic system for the drilling process. By

drilling a borehole, the natural resources such as oil, gas, gold and other minerals are ex-

tracted from beneath the surface of earth. Drilling is conducted by crushing the rocks with

1
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the help of a drill bit. The bit is used as a cutter which is attached through drillpipes and

scrapes the rock surface, while the drillstring assembly, which comprises of drillpipes and

the Bottom Hole Assembly (BHA), is rotated from the top. Conventional drilling has some

limitations. For instance, there is always a danger of oil spill followed by an explosion on

the drilling rig. Most of the time the drilling crew faces extreme temperatures and envi-

ronment that may be detrimental for their health. Also, in order to facilitate the drilling

process, significant man power must be deployed on the drilling site. This contributes to

huge expenses carried for the safety and service of the people living and working on both

onshore and offshore drilling sites.

Telerobotics for drilling well is a relatively novel idea, and it is a substantial endeavour

to automate one of the fundamental processes in the extraction of energy and resources.

As telerobotics is integrated with drilling, it can greatly decrease the number of people

working and monitoring operation on the site. This, in particular, can reduce the work site

hazards. Also, telerobotics can bring actual analysis of in-situ conditions (underground

drilling environment) in real time to the human operator that works remotely, where (s)he

will be able to determine the current drilling conditions and, in particular, promptly enforce

the change in vertical speed of penetration for drill bit in the oil well. Real-time control and

optimization of the drilling speed is crucial for today’s drilling industry, as it can reduce

time and immense cost associated with the drilling an oil well.

This research presented in this Thesis is an effort to transform a conventional mechan-

ical drilling system into a semi-automated and teleoperated system which can be operated

remotely. Although relatively simple, the analysis presented here provides substantial steps

and techniques that could be implemented in a drilling system. The theory is established

by combining together the mathematical models of drill-string/drive system and rock cut-

ting/penetration. Then, a robust servo controller is designed to eliminate the external dis-

turbances and track the desired (reference) trajectory for the vertical penetration velocity

of drill bit. The desired vertical velocity is generated using the PHANTOM Omni Haptic



Chapter 1. Introduction 3

device, where the vertical position of the stylus is translated into the magnitude of the refer-

ence vertical velocity for the drill bit. On the other hand, the haptic device interacts with a

virtual spring with stiffness updated based on the current estimate of the actual stiffness of

the rock. This allows the human operator to haptically feel the stiffness of the rock during

the drilling process. To obtain an estimate of the rock stiffness, an on-line estimator is also

designed.

The results obtained from this project may also potentially lead to applications to the

remote directional drilling. The potential applications of this research can further be ex-

panded to seafloor drilling/mining and extraterrestrial drilling.

1.2 Motivation and Relevant Applications

The motivation for the research work presented in this Thesis is gathered from numerous

projects and research articles in the literature on telerobotics as well as on drilling systems.

Conventional oil well drilling has made significant progress, and currently it is one of the

most automated processes in oil and gas industry. However, there are still some fundamen-

tal challenges associated with the drilling. One of the challenges is the choice of vertical

penetration velocity of the drillbit. For efficient drilling operation, this velocity must de-

pend upon the type of rock beds drilled. In particular, the velocity must be adjusted when

mechanical characteristics of a rock strata change. If the drilling operator haptically per-

ceives the changing rock stiffness in real time, this would allow for a quick adjustment of

the vertical drilling velocity. Directional drilling is another area which would benefit from

introduction of haptic feedback into the drilling operation. Often the borehole should make

a curve to reach oil reservoirs. In this type of drilling, it may be difficult to estimate the

actual position of the drillbit in real time, since the actual path of the borehole may vary

from its prescribed path. Therefore, it may be hard to predict the mechanical characteristics

of the rock formations. Again, introduction of haptic feedback would allow for the human

operator to feel the changes in mechanical characteristics of the rock and adjust the vertical
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velocity of penetration accordingly.

The potential application domain of this research is not limited to onshore/ offshore oil

well drilling, but the same principles can be applied, in particular, to differrent types of

mining robots. In the case of mineral excavation at significant depths, it is very difficult

to conduct the operations with human workforce. Mining robots provide a substitute for

human hand tools effort, in an attempt to drill small holes to put TNT for rock blasting.

However, until recent years, no technology has been implemented to excavate mines for

up to 10 Km deep. At these depths, the human support to monitor and control mining

robots diminishes due to extreme mountain rock pressure and temperatures, which makes it

relevant to apply the principles of teleoperation to the remote rock cutting and drilling [10].

Another developing area within the mining world is the seafloor mining. This has been

an area of great interest for many companies and researchers. Since the natural resources

are depleting fast on the land, new methods for building robots with tele-autonomy for

dredging and mining ocean are currently under development [11, 12]. The concepts of the

design of submersible seafloor dredging and mining robotic vehicles are described in [12,

13, 14]. These mobile robots are connected to the umbilical which serves as the link to the

surface platform. In this case, teleoperation can be performed over electrical and electronic

cables connected in parallel to umbilical cord. Thus, the time delay could be reduced

through wired communication medium. It is noteworthy here, that the design of these

cutters is similar to PDC drill bit cutter design for oil well drilling. Hence the core concept

of telerobotic drilling could be expended for these Aqua-mobile robots by importing their

models for cutting and implementing similar algorithm as used in this research.

Another relevant application of the telerobotic drilling is tele-surgery. The dynamical

models of dental surgical instruments are similar to those for rock cutting. The five degree

of freedom end-effector is adequate for conducting high speed drilling for cortical layer

gimleting and teleoperated insertions of screw in the vertebrae [15]. To further elaborate

this task, the surgeon performing the operation can control and position and orientation of

surgical instrument and can apply force to drill or screw and receiving the tissue or bone
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stiffness, as feedback, in real time. The similar approach could be formulated for dental

surgery, where the drilling is required to extract cavities from teeth and to crush unnecessary

tooth bone parts when it is required extract and/or install a new tooth.

Finally, the interplanetary exploration may also greatly benefit from development of

telerobotic drilling systems. Drilling the extraterrestrial terrain to discover and research the

minerals and composition beneath, is one of the basic tasks in space exploration [16]. This

could be made possible through the development of telerobotic and teleoperated drilling

systems [14, 16]. Using teleoperated mining systems, the cost and risk associated with

human deployment can be avoided.

1.3 Objectives of the Thesis

The main objectives of this work are as follows:

1) Design a control algorithm that guarantees the convergence of the vertical pene-

tration velocity of the drilling systems to its reference value. Since drilling action

comprises of two processes, which are rotational motion of the drillstring and the

vertical penetration of the drill bit, a robust servo controller should be designed

to track desired vertical velocity by controlling the rotational velocity of drill bit

and rejecting the torque-on-bit that is produced during the cutting action.

2) Design and evaluate an on-line parameter estimation algorithm for the unknown

parameter of the rock intrinsic specific energy, as well as the corresponding adap-

tive control system.

3) Design and experimentally evaluate a telerobotic drilling system with virtual

environment-based haptic feedback that allows the human operator to feel the

stiffness of the rock in contact with the drill bit.
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1.4 Contribution of the Thesis

The contribution of this Thesis can be summarized as follows:

1) A feedforward robust servo control law is designed that guarantees the fast con-

vergence of the drill bit rotational velocity to its reference value while rejecting

the measured disturbance of the torque-on-bit.

2) A cascaded control law is designed that guarantees the convergence of the vertical

penetration velocity to its reference value.

3) An on-line parameter estimation algorithm is designed that estimates the stiff-

ness (intrinsic specific energy) of the rock in contact with the drill bit. The corre-

sponding adaptive control system, where the parameter of actual intrinsic specific

energy is replaced with its estimate, is designed and simulated.

4) A teleoperated drilling system with haptic feedback is designed and evaluated,

where the drilling process is controlled by the human operator in real time using

the PHANTOM Omni Haptic device. The stiffness (intrinsic specific energy) of

the rock in contact with the drill bit is reflected to the human operator hand using

virtual spring with stiffness updated according to the current estimate of the actual

rock stiffness (intrinsic specific energy). Experimental results are presented that

demonstrate feasibility of the proposed approach.

1.5 Outline of the Thesis

The Thesis is organized as follows. Chapter 2 presents an introductory discussion of the

conventional drilling systems. It provides an overviews of the drilling structure, the rig,

and describes its basic components and assembly, such as the derrick, hoisting system,

rotational system, bottom hole assembly, etc. It also describes the types of drill bits and

associated assembly. Chapter 3 presents the mathematical models of the cutting and drilling
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processes. A literature survey of different models of drill string and drive system is given,

and the mathematical models of the drilling process are derived and subsequently used

for control design. Chapter 4 deals with the design of control algorithms for rotational

and translational motion of the drilling systems. The control algorithms designed allow

to achieve a desired rate of the vertical penetration, and extensive simulation results are

presented. Chapter 5 is devoted to the design and simulations of an on-line parameter

estimator of the intrinsic specific energy which is a parameter that describes the hardness

of the rock. Simulation results are presented in this Chapter in support of the theoretical

developments. In Chapter 6, the structure of a telerobotic drilling system is described

and the corresponding experimental results are presented. Finally, in Chapter 7, some

conclusions are given and possible future directions are formulated.

1.6 Conclusions

This Chapter presents a brief introduction to telerobotics and a conventional oil well drilling

system. A general idea of how the drilling operation can be controlled using a teleoperator

with haptic feedback is described. The motivation for this research along with relevant

applications are discussed. Objectives of this Thesis are formulated, and the contribution

is described.



Chapter 2

Drilling Rig: Mechanics and Operation

In this Chapter, the physical drilling system is described, including its major components,

sections and sub-sections. The history of drilling oil wells and refining dates back to the

9th century, when Arab and Persian chemists not just drilled oil but also set up distillation

laboratories. In the last few centuries, oil wells were drilled in different parts of the world.

The first commercial oil drilling in Ontario started in 1958 at Oil Springs. Over the years,

technology and methods have enhanced with the progress of science and modern systems

facilitated the drilling, and operational procedures were developed to bring more precision

to the drilling process.

Most of the modern day drilling technology is based on the rotary drilling [1]. Although

percussion hammer drilling is also used to drill first few meters of the bore-hole, however,

the rest of the operation is typically performed by rotary mechanics. In this chapter, we

will highlight some important features of the physical drilling plant starting from the top of

drilling rig and going down to the bottom of the bore-hole covering all the essential aspects

of it. Figure 2.1 shows the conventional oil well drilling rig with its major components.

8
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Figure 2.1: Layout of a drilling rig and its main components taken from [1]
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2.1 Drilling well structure

The four legged structure directly above the well is called derrick. It is typically made up of

steel columns coupled with grits and braces for strengthening. Derricks are rugged struc-

tures that can withstand high winds and can easily lift heavy loads (drill pipes). Derricks are

typically 24.5 to 57 meter tall, with the loading capability ranging from 39,000 to 631,000

Kg [2]. Derricks are used to support the hoisting system. The hoisting system plays a

crucial role in drilling. One of the key actions in drilling is to lift and drop the drillstring/

BHA load, down on the rock. This is needed in order to replace drill bit and/or bottom

hole assembly (BHA), add another drill pipe, or for the maintenance of drillstring. This

lifting and dropping action is performed using the hoisting assembly. Figure 2.2 shows the

linkage of rotary components of the drilling rig.

Figure 2.2: Drilling rig complete rotating system taken from [2]
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2.2 Hoisting System

Hoisting system consists of crown block, traveling block, hook (swivel and kelly), hoisting

line and draw works. The crown block is mounted on the top of derrick and it supports the

pulley that is responsible for vertically moving the traveling block. Crown block is basi-

cally a pulley with the drive element being the hoisting line that runs over pulley through

the groove. The hoisting line or drilling line is a multi-strand braided steel wire, wounded

around fiber or steel core about 1 inch in diameter [2]. The hoisting line carries all the

weight of rotational assembly. On the other side, it is spooled around a revolving reel

called the draw works. The draw works consists of a steel frame and it is located on the

drilling floor. The draw works are controlled by the driller through a control pedal; they are

driven by the prime movers. Prime movers are DC-electrical or diesel engines that supply

power to the draw works.

Suspended below the crown block through the hoisting line is traveling block. It is also

called mobile hoisting block. Traveling block connects the hoisting system to the rotating

system which consists of swivel and kelly and goes down to rotary table and extends up to

the drill pipes. The hoisting system is shown in Figure 2.3.

2.3 Rotational System

The traveling block is connected with a hook which is also called the crane block [1].

Beneath the hook, there is swivel which is suspended by the bail of hook. While the load

of the drill pipes is held by the crown block and traveling block, the swivel allows the drill

pipes to rotate through their bearings. Underneath the swivel, there lies the most important

component of rotating system, which is the kelly. The kelly is attached to the rotary table.

It has four to six sides which enable it to get a firm grip with the rotary table and helps it to

rotate as the rotary table moves [2]. The rotary table is a fixed circular platform which is

located on the derrick floor. Rotary table is subjected to clockwise motion with the help of
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Figure 2.3: Hoisting System taken from [2]

prime movers.

Kelly is a heavy duty molybdenum steel pipe about 12 to 16 m long [2]. The kelly

is connected to the rotary table with the help of two different sets of bushings. The inner

bushing is called the kelly bushing. The kelly bushing makes a linkage with rotary table

through master bushings. Master bushings are attached directly to the rotary table. Thus,

the whole assembly of the kelly, the kelly bushing, the master bushing, and the rotary table

rotates as a single unit. The unit rotates in the clockwise direction if looked down from

the top of the derrick floor; thus, the whole drilling string moves in the same clockwise

direction. The kelly bushing also has rollers which allow for the vertical motion of the

kelly. Therefore, the hoisting system can lift and/or drop kelly/ drill pipes as the well is

bored. The smooth motion of kelly through kelly bushing also permits easy connection of

the drill pipes with the kelly. Figure 2.4 shows the rotary table along with the swivel and

the kelly.
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Figure 2.4: Rotary-table system with kelly and swivel taken from [1]

2.4 Drill Pipes

Kelly is always mounted on the top side of a drill string. The drill pipes typically have

length of about 10 meters. Thus, after every 10 meters of well bore drilled, another drill

pipe is attached to the kelly. American Petroleum Institute (API) describes three lengths

and five grades of strength for drill pipes. The drill pipes typically have outer diameter of 7

to 14 cm. Each pipe has tool joint connector side, which is thicker and bulkier, to connect

with the other pipes. The drill pipes are robust and resilient to wear and typically capable

of lasting for more than one drilling. Abrasion by formation is one of the common factor

which causes wear in pipes; it happens due to the mud flow through the pipes and pipe-

chemical interaction. Drill pipe wear produces drillstring waves which may contribute to

the slip-stick oscillations of the drillstring.
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2.5 Drillstring

The drillstring is the rudimentary part of the rotary system. Drillstring is the assembly

of rotating pipes which are responsible for transmitting rotation and weight to the bit and

bridge up a connection between the bottom hole tools. The brief discussion about bottom

hole tools will be presented below. The drillstring comprises of two main sections: the drill

pipes and the bottom hole assembly [1]. The drill pipes were described above. The bottom

hole assembly (BHA), on the other hand, is a combination of heavy weight pipes called

drill collars along with the mechanical and electrical accessories associated with them. The

components of a drillstring along with drill-pipes and BHA are shown in Figure 2.5.

Figure 2.5: Drillstring components taken from [1]
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2.6 Bottom Hole Assembly (BHA)

The main function of BHA is to apply weight on the drill bit. This weight is termed as

the weight on bit (WOB). The BHA is assembled with massive thick walled and strong

pipes called drill collars made up of heat treated alloy steel [2]. Drill collars put all the

weight of the drill string on the bottom, which allows to maintain steady vertical drilling.

Furthermore, breaking and kinking action should be avoided since they are detrimental for

the drill string. Drill pipes are linked with the drill collars through heavy-weight drill pipes

(HWDP). They have intermediate strength and weight, and are used to reduce the stress

between the drill pipes and the drill collars.

2.6.1 Bottom Hole Assembly Elements

Here, we briefly mention the function of mechanical devices and instruments installed

within BHA, as each of these elements performs a certain task while drilling a bore-well.

The stabilizer or (STAB) is used to to keep the drill string in the center of the bore-hole. It

is a pipe like element with blades that make a contact with the walls of the well. It also has

grooves to circulate the mud [2, 1]. In order to suppress the high amplitude axial vibra-

tions developed inside the drill string, the vibration dampener or shock absorber (SHOC)

are used, which utilize rubber, spring, or compressed gas to absorb vibrations. Mechanical

instrumented tools called subs are used between the drill collars as well as at the junction

of the drill bit and the drill collars. For instance, a bit sub is placed between the bit and the

drill collar, while crossover sub (XO) is used to make a connection between different collars

and also between the pipe and the collar. During the drilling process, it often occurs that

the drill bit sticks in the rock. In order to overcome this, the jammers (JAR) are used that

initiate hammer percussions to set the bit free. Also, the reamers or the hole openers are

the tools that use roller cones to enlarge or straighten the bore hole. Finally, the electronic

and magnetic equipments installed at the BHA are separated from each other and from the

external disturbances through non-magnetic collars (monel) which are used as jackets for
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these devices.

2.7 The Drill Bit

At the very end of drillstring lies the drill bit. The drill bit is responsible for cutting of rocks.

The cutting action is created by simultaneous actions of the weight on bit (WOB) which is

applied on the top of the bit through drill collars and of the torque which transmitted from

rotary table through drillstring. A small portion of the drilling energy may be also radiated

in form of seismic waves [1]. Different types of drill bits are available for various kind

of well drilling. Bits can be classified into several types and characteristics. International

Association of Drilling Contractors (AIDC) characterizes bits with three numbers, where

the first number describes the cutting face structure, the second designates the strength of

bit relating to the hardness of the formation to be drilled, and the third number describes

the unique mechanical design of the bit. The most commonly used types are roller-cone

or tricone bits and polycrystalline diamond compact (PDC) bits. Each of these types has

several sub classes with unique characteristics that allow to achieve certain parameters of

drilling. In general, they can be selected for different drilling jobs depending upon the

expected drilling rate performance, cost per unit depth, the bit life, etc [1]. The main

features and performance characteristics of the roller-cone and the polycrystalline diamond

compact bits are briefly described below.

2.7.1 Roller-Cone Bits

The roller-cone bit, also called tricone bit, has three rotating cones with chisel-like teeth

(supported by three legs made of heat treated steel alloy). It is designed to break the rocks

by indentions and gouging [1]. Roller-cone bits that are built for medium to harder rock

formations have teeth coated with tungsten carbide. The three cones rotate on sealed and

lubricated bearings [2]. The rock chips, which are produced while cutting and crushing the

rock, can be removed from the jets of mud derived from nozzles located between the cones.
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The mud circulation and cleansing of the crushed rock chunks is briefly described below.

The bit is provided with threads so that it can be connected upwards to the drill collar. The

roller-cone bits are usually used in exploration wells as these bits do not completely crush

and pulverize rock particles like PDC bits. The rock chunks yielded by roller-cone bit can

later be used for rock formation analysis [1].

2.7.2 Polycrystalline Diamond Compact (PDC) Bits

Polycristalline diamond compact (PDC) bits are also called fixed cutter bits as they are

formed with solid metal body without any moving parts. The PDC bit is equipped with

chisels that are sintered diamond cutters, and they are attached to tungsten carbide cylinder.

The use of diamond increases sharpness of the cutters, while tungsten carbide is resilient

to impacts and has high strength. The working temperatures for PDC bits are up to 350◦

C [1]. The PDC bits are more expensive than other types of bits, however, they are also

more durable, which makes them more economical overall.

The PDC bits have several other advantages over other bits. First, they have a relatively

simple cutting action which can therefore be modeled easily. The weight on bit (WOB) of

PDC bits is about 20-40 kN, which is smaller in comparison with other bits. The smaller

WOB decreases the vibrations of the drillstring. Because of fixed cutters and due to its

durability, the PDC bits drill faster than any other bits. Also, as there are no moving parts,

the chances of failure for the bit are reduced. Another big advantage of the PDC bits is that

less power is required for cutting and shearing action in comparison with the roller-cone

bits. The PDC bits are also lighter in comparison with the tricone bits, which allows for

easier deviation control in directional drilling well. The PDC bits, however, have some

shortcomings. For instance, PDC bits are not designed to withstand highly abrasive and

hard formations. When used for cutting harder formation, the life of PDC bits decreases

although fast penetration rates can still be achieved. Another feature of the PDC bits is their

“cutting and grinding” action, which demolishes all the rock pieces into sand. As a result,
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no rock samples could be obtained, which makes it difficult for the geologists to analyze

the rock bed formation. Still, PDC bits are by far the most widely used bits in the industry.

2.8 Circulating System

In order to clear away the rock cuttings produced by the bit cutting action, mud water is

circulated through the hole. This mud water or drilling mud is kept in tanks placed on the

drilling site, and it is pumped to circulate through the bore hole [2]. These pumps used

for mud water circulation are called mud hogs; they are driven by prime movers. The mud

flow is then sent to swivel through a rubber tube called mud hose. From the swivel, the

mud water flows down through drill pipes and drill collars and is subsequently ejected out

through the drill bit nozzles. In case of roller-cone bits, the nozzles are placed between

the cones. For PDC bits, the mud is ejected through the small holes called water-courses

located on the face of the bit. This mud when ejected with high pressure through the face

of the bit, takes away all the cutting chunks and rock formations from the bit whole cavity

and cleans up the hole. This results in smooth cutting of rock as there is no layer of crushed

rock particles or sand between the bit blades and the rock surface.

This mud water then flows back through the annular space between the well casing and

the rotating drillstring, after which it flows out through blowout preventer (BOP) and goes

to the mud return line [2]. As the mud flows on the return line, it goes through vibrating

nets made up of woven cloth and located in steel frames. These are called shale shakers.

The shale shakers act as filters to drilling mud separating the residual solids and coarse

sand particles from the mud water. After this filtration, the mud water is sent back to the

mud tanks where it is accumulated for another flow cycle.

The mud circulation has many advantages. In particular, the mud circulation reduces

the friction between the drill string and the well walls (well casings). The mud particles
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separated through shale shakers can provide valuable information about rock formations

to geologists. The drilling mud also acts as a cooling agent. The mud flows down to the

bottom and absorbs all the heat from drill collars, drill bit, and the bit rock cutting cavity.

Another significant role of the mud water is to prevent the collapse of the well. The mud

water flows through annular region between drillstring and well casings, and thus provides

a cushion to drill string. This avoids any bent in drill strings and also suppress casings

outward to obviate casing collapse. Finally, the pressure of the mud flow provides power

to the downhole motor, steerable systems (for directional drilling) and turbines located in

the bottom hole assembly.

2.9 Well Casing

In order to protect the walls of the well, metallic tubulars are inserted in the bore hole.

These tubulars are called casings; they are cemented from outer side with the walls of well.

Casings come with different diameter sizes and lengths. The outer or upper casings have

larger diameter, however, it becomes smaller as one moves down the well-bore. Thus, the

casings size is also reduced. The advantage of the casing is that the annular space between

casings and drill-pipes provide the clear way for mud water to go up. The top most casings

also support the weight of well head and the blow out preventers.

2.10 Conclusions

In this Chapter, the main components of the drilling system are described, and the purpose

of each component is explained. The next Chapter deals with the derivation of a mathemat-

ical model of the drilling system.



Chapter 3

Mathematical Models of Drilling and

Cutting

In this Chapter, different mathematical models of drilling rig structures described in the

literature are presented, and the drilling response of drag bits is investigated. The Chapter

is organized as follows. In Section 3.1, the mathematical models of the cutting process,

including the models of a blunt cutter and a drag bit are described. In Section 3.2, different

mathematical models of drillstrings and drive systems are presented. Finally, the equations

of vertical penetration for the drill bit are explained in Section 3.3.

3.1 The Cutting Process

Cutting and penetration through a solid media is one of the fundamental processes involved

in drilling. For this purpose, crushing the rocks with the help of drill bits is the most com-

mon and widely used method for creating a bore hole through various rock strata. Out of

many types of bits, the most extensively used type in drilling industry is called drag bit.

In drilling, the term ”drag bit” is defined as a bit consisting of fixed cutter blades mounted

on the surface of the body of bit [3, 4, 17, 18, 19, 20]. In 1970s, the development of syn-

thetic polycrystalline diamond compact (PDC) bits embarked a new era for the design of

20
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different drag bit geometries. The PDC bits, which were described in some detail in the

previous chapter, are composed of thin layer of polycrystalline diamond material bonded

on tungsten carbide substrate. This composition gives PDC strenuous resistance against

wear during cutting and efficient shear strength for crushing the rocks [4].

The mathematical model of the drilling response for PDC bits was first described ex-

plicitly by Detournay et. al. [3]. The four quantities associated with the drilling action,

which are torque-on-bit T (with units of N ·m), weight-on-bit W (N), rate of vertical pene-

tration v (m
s ) , and the drill bit angular velocityω ( rad

s ), were related with the set of equations

in [3] and later revised in [4]. Detournay and Deforny in [3] interpreted the series of ex-

periments conducted by Glowka [17] on a single cutter at Sandia National Laboratories.

One of the significant conclusions made by Detounay and Deforny in [3] was that ”the bit

rock interaction is characterized by the coexistence of two processes: cutting of rock and

frictional contact underneath the cutters.” This was suggested previously by Fairhurst and

Lacabanne in [21] and was later also mentioned in [17, 18, 19]. Thus, the model of a

drag bit is constructed by developing the model of a single cutter through experiments and

consequent integration of several cutters into the model for a drag bit.

Most of the theory presented here is taken from the papers of Detournay and coau-

thors [3], [4]. At first, some of the basic formulae for cutting are defined. Later on, based

on these fundamental equations, a complete model for the drilling response of drag bits is

established.

3.1.1 The Model of A Blunt Cutter

A drag bit typically consists of several cutters. In this Section, the model of a single cutter

is examined. Later in Section 3.1.2, this single-cutter model is used to establish the model

of a drag bit by integrating the contributions of all the cutters. The equations for a blunt

cutter were established based on the results and observations obtained from the single cutter
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experiments conducted by Glowka [17]. The prominent observations made by Glowka are

that ”the two processes cutting and friction underneath the cutter, generally coexist during

motion of a cutter” and ”the cutting process is characterized by two constants ε and ζ, and

friction process by one parameter µ concludes that a linear constraint exists between the

drilling specific energy λ and drilling strength Σ for single cutter.”

According to the above observations, only the cutting force acts on a perfectly sharp

cutter; this force is defined by Fc. This cutting force has two components: surface (hori-

zontal) Fc
s and normal (vertical) Fc

n, they are defined as follows

Fc
s := εA, (3.1)

Fc
n := ζεA = ζFc

s . (3.2)

In equations (3.1) and (3.2), ε > 0 is a parameter called the intrinsic specific energy with

units of (Pa), which represents the amount of energy required to cut a unit volume of rock

with a perfectly sharp bit. This parameter essentially determines the stiffness of the rock.

Also, ζ > 0 is the ratio of the vertical force to the horizontal force between rock and cutter

contact surfaces. Typical values of ζ are in the range of [0.5-0.8] [4]. Also, A is the cross-

sectional area of the cut; more specifically, it is the cross-sectional area of the groove traced

by the cutter. It is described by Detournay in [3] that ”the horizontal and vertical forces on

the cutter averaged over a distance which is large with respect to the depth of cut, and are

proportional to the cross-sectional area A, of the cut”.

In the case of a blunt cutter, it was shown experimentally by Glowka [17] that, during

the cutting process, wear flat of the cutter is in contact with rock. This produces addi-

tional frictional force F f [3]. Similar to the cutting force, the frictional force F f has also

two components F f
s and F f

n , which act along the surface and in the normal direction, re-

spectively. The horizontal (surface) F f
s and the vertical (normal) F f

n components of the

frictional forces are related according to the following equation:

F f
s = µF f

n , (3.3)
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where µ > 0 is a coefficient of friction. The frictional coefficient can also be scaled accord-

ing to the formula µ = tan φ, as defined in [3, 4, 17], where φ is the internal frictional angle.

The model of a blunt cutter with different components of the cutting and friction forces is

illustrated in Figure 3.1 which is borrowed from [3].

Figure 3.1: Model of the blunt cutter as defined by Detournay in [3]

The total forces applied to the blunt cutter is the sum of the cutting forces Fc and the

frictional forces F f . Combining equations (3.1), (3.2), (3.3), one can derive the following

relation between the horizontal (surface) Fs = Fc
s + F f

s and the vertical (normal) Fn =

Fc
n + F f

n forces,

Fs = (1 − µζ)εA + µFn. (3.4)

The expressions for drilling specific energy Λ and drilling strength Σ for the single cutter

are defined as follows,

Λ :=
Fs

A
, (3.5)

Σ :=
Fn

A
, (3.6)

where, as before, Fs are the horizontal (surface) forces, Fn are the vertical (normal) forces,

and A is the cross-sectional area of the cutter. The drilling specific energy Λ and drilling

strength σ are not independent of each other; specifically, using the above equation (3.4),

one can show that the relation between Λ and σ for the case of blunt cutter is expressed by

the following equation,

Λ = Λ0 + µΣ, (3.7)



Chapter 3. MathematicalModels of Drilling and Cutting 24

where Λ0 = (1 − µζ)ε. Overall, the model of a blunt cutter is characterized by the cutting

and frictional forces that act on the cutting blade and wear flat of the cutter, respectively.

In the next subsection, the model of drag bit (PDC drill bit) is described. It is based on

the model of a single cutter described above, however, it is more complicated and depends

on a few extra parameters.

3.1.2 Drilling Action of a Drag Bit

A standard drill bit usually exhibits two kinds of motions: rotational along its axis of rota-

tion and vertical motion while penetrating through the rocks. As described in [4], in the

normal mode of operation of the drill bit, the bit rotational velocity ω is parallel to its axis

of rotation, and the penetration velocity v is directed vertically straight through the rocks.

Similarly, the weight-on-bit W acts in the vertical direction and the torque-on-bit T is ap-

plied in parallel to the direction of rotation of drill bit. The weight and torque acting on

a PDC bit are illustrated in Figire 3.2 taken from [4]. The variables v and ω are regarded

as kinematic variables, while the variables T & W are as dynamic variables in [4]. As

mentioned above, the processes of cutting and friction occur simultaneously while drilling;

consequently, the weight-on-bit W and the torque-on-bit T are decomposed into cutting

and frictional components, as follows

T = T c + T f , (3.8)

W = Wc + W f . (3.9)

The decomposition of torque-on-bit T and weight-on-bit W into cutting and frictional com-

ponents is shown in Figure 3.3 which is also borrowed from [4]. The direction of weight-

on-bit components Wc and W f is always vertically downwards, parallel to the direction of

motion of the drill bit; whereas the direction of torque components T c and T f is considered

parallel to the tangent of rotational motion of drill bit.

The cutting components of the weight-on-bit and torque-on-bit depend on the radius of

PDC drill bit a, intrinsic specific energy ε , the parameter ζ, and the depth of cut d. The
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Figure 3.2: Sketch of a drag bit (a) and equivalent two dimensional cutter showing two

forces torque and weight along with depth of cut d described by Detournay in [4]

Figure 3.3: Decomposition of torque and weight described by Detournay in [4]
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first three parameters are already defined in the previous section. The new parameter here

is the depth of cut d with units in m; however, typical values of d is within range of several

millimeters (mm). The depth of cut d plays significant role in the equations to follow that

describe the cutting components of torque-on-bit T and weight-on-bit W. The equations

for these two cutting components are as follows [4],

T c =
1
2

a2εd, (3.10)

Wc = aζεd. (3.11)

The frictional components of torque-on-bit T and weight-on-bit W are proportional to

each other; more specifically, they are related according to the formula

γ =
2T f

µaW f , (3.12)

where γ is a constant called bit constant. The bit constant γ depends on the dimensions

of the cutting blades and the arrangement of cutters on a bit. The value of γ is typically

greater than 1 [3, 4].

By rearranging equations (3.9), (3.11), (3.12), the expression for T f can be obtained as

follows

T f =
1
2

aµγW −
1
2

a2µγζεd. (3.13)

Equation (3.13) can in turn be rewritten in terms of W, T and d. This can be done by

first using equation (3.10) to obtain value for T c, and then using (3.8). This results in the

formula
2T
a

= (1 − µγζ)εda + µγW. (3.14)

Equation (3.14) describes the drilling response model of a drag bit. It is reminiscent of

the equation (3.4) which describes the response of PDC drag bit with a single cutter. In [3]

and later in [4], the above model (3.14) is also rewritten in terms of two other variables,

which are drilling specific energy E and drilling strength S . These variables are defined as

follows,

E :=
2T
a2d

, (3.15)
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S :=
W
ad
. (3.16)

Thus, the drilling specific energy E is a function of torque-on-bit T , while the drilling

strength S is a function of weight-on-bit W. Both E and S are inversely proportional to the

depth of cut d. Substituting E and S back in equation (3.14) yields the following equation,

E = E0 + µζS , (3.17)

where E0 := (1 − β)ε, and β := γµζ. Formula (3.17) can be interpreted as a linear equation

y = mx + c, where E is on vertical axis and S is on horizontal axis. The point E0 represents

the intercept of line with S whereas µγ represent the slope of line. This is illustrated in

Figure 3.4.

Figure 3.4: Schematic diagram of drilling specific energy E and drilling strength S by

Detournay in [3]

The drilling system’s efficiency is specified with parameter η which is defined as the

ratio between the intrinsic specific energy and the drilling specific energy [3],

η :=
ε

E
. (3.18)

Another way to describe the drilling efficiency is by using the ratio of E and S [3],

χ :=
E
S
, (3.19)
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The relationship between parameter χ and the drilling efficiency is described by the formula

η =
χ − µγ

(1 − β)χ
. (3.20)

By contemplating the E − S plot, a few other details are worth mentioning here. In

Figure 3.4, the dotted line (cutting locus) represents the response of a perfectly sharp bit

without any frictional force components. The S -intercept of the friction line is given by E0.

This means that, if β < 1 (which is a general case according to [3, 4]), then E0 is positive

on E axis. Since the dimentionless parameter ζ accounts for the cutting action, the line

with gradient ζ−1 is referred to as the cutting locus in [3].

The cutting line and the friction line intersect at the point (ζε, ε). This point corresponds

to an ideally sharp cutter where all the energy is dissipated into cutting action without any

frictional loses as explained in [4]. In reality, all the states of drilling are located to the

right of this point. Experiments with PDC bits in [3] showed that the drilling points (states)

lie either on the friction line or just above it.

Another important point to note from Figure 3.4 is the magnitude of the intrinsic spe-

cific energy ε. In [4], it was again experimentally proved that the magnitude of specific

drilling energy E is always greater than the intrinsic specific energy ε, which is why the

efficiency η = ε
E is always less than 1. This loss in efficiency is due to the frictional losses

during drilling.

3.2 Mathematical Models for Drilling Structure

So far, the cutting models of a PDC Drill bit have been briefly elaborated. Now, the rudi-

mentary components of the complete drilling system will be described. In order to de-

sign a controller which could implement and achieve desired vertical speed for drilling,

a mathematical model of the complete drilling system is required. In this Section, some

mathematical models of drilling found in the literature will be presented.
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3.2.1 Model of drillsting with drag bit by T. Richard, C. Germay, and

E. Detournay

The model of Richard et. al. model [5, 22] describes the drillstring (along with the rotary

mechanism at the top) with two degrees of freedom. Specifically, Richard et. al. [5, 22]

describes the rudimentary drilling model by taking into consideration the axial and tor-

sional motion of the drillstring (and the drill bit). This model describes the motion of the

drill string and the bottom whole assembly while taking into account the bit-rock inter-

action model which comprises of frictional and cutting processes. Before going into the

description of the equations of motions, the motion of drillstring and drill bit will be briefly

explained. Any conventional drilling system has two basic motions, vertical and rotational.

These two motions are generated when the bit makes contact with the rock and crushes

the rock with a rotational motion, slicing the rocks through its blades or cutters. Also, the

weight on bit applied from the top of drilling rig allows the bit to compress the surface of

rock generating a vertical motion. The governing equation for the motion of a drillstring

and drill bit presented in [5, 22] are as follows,

I
d2φ

dt2 + C(φ − φ0) = T0 − T (t
0φ,

t
0U), (3.21)

M
d2U
dt2 = W0 −W(t

0φ,
t
0U). (3.22)

The above differential equations describe the discrete model of drilling system character-

ized with two degree of freedom. In these equations, U and φ are the vertical and the

rotational positions of the drill bit, T and W are the torque-on-bit and the weight-on-bit,

respectively, M is equivalent point mass of drill string plus BHA bearing the units of (Kg),

I represents the moment of inertia of drillstring and BHA with units (kg · m2), and C rep-

resents the torsional stiffness of the structure with units ( Nm
rad ). The torque-on-bit T and the

weight-on-bit W are functions of all the previous values U and φ, that is, they depend upon

the history of t
0U and t

0φ. Furthermore, φ0, T0 and W0 are the steady state values associated

with the trivial solution found in [5, 22]. The parameters M, I, and C can be calculated
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according to the formulas

M = ρπ(r2
bo − r2

bi)Lb, I = ρJbLb +
1
3
ρJpLp, C =

GJp

Lp
, (3.23)

Jp =
π

2
(r4

po − r4
pi), Jb =

π

2
(r4

bo − r4
bi), (3.24)

where ρ is the density of the drill pipes and bottom hole assembly with the units of ( Kg
m3 ).

rpi(rbi), rpo(rbo), Lp(Lb), Jp(Jb) denote the inner radius with units (meter), outer radius with

units (meter), length with units in (meter) and polar moment of inertia with units in ( Nm2

rad )

or (kg.m2) for drill pipes and (bottom hole assembly), respectively.

Assuming the friction effects are negligible, both variables T and W are proportional to

the depth of cut d, according to equations (3.10), (3.11). As it is illustrated in Figure 3.5,

the depth of cut d in [5, 22] is the thickness of rock ridge in front of the blade. It is assumed

that the drill bit has n number of identical blades, and the difference of angular positions

of these two successive blades is (2π
n ). In this case, d is the combined depth of cut of all n

blades in each revolution of drill bit, according to the formula

d := ndn, (3.25)

where dn is the depth of cut of each blade. The depth of cut for each blade in turn is defined

according to the formula

dn(t) := U(t) − U(t − tn), (3.26)

where U(t) and U(t − tn) are the vertical position of the drill bit at current time instant t

and some previous instant t − tn, respectively [5, 22]. The delay tn in the above formula

is exactly the time that is required for the drill bit to rotate by an angle 2π/n to achieve its

current angular position φ1(t); in other words, it also satisfies the following equation:

φ(t) − φ(t − tn) =
2π
n
. (3.27)
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Figure 3.5: (a) A simplified model of drillstring; (b) Section of the bottom hole profile

located between two successive blades; cited at [5]

3.2.2 Model of drillstring and drive system by M. Zamanian, S. Kha-

dem and M. Ghazavi

Based on similar mathematical principles, Zamanian, Khadem and Ghazavi [6] presented a

slightly modified model of drilling system. Specifically, the work [6] augments the model

of [5, 22] by considering the effects of moment of inertia of the rotary table and an active

damping system. The resulting model has two torsional degrees of freedom and one axial

degree of freedom.

Figure 3.6: The model of drillstring and drive system presented in [6]
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As it can be seen from the Figure 3.6 taken from [6], the model includes the rotary table

at the top with one torsional degree of freedom as well as the body of drillstring (Bottom

Hole Assembly) with one torsional and one axial degrees of freedom. At the top, this model

is equipped with an active damping system, comprising of the rotational spring ki and the

rotational damper kp. The active damping system is briefly described as “the electronic

feedback system that modifies the energy flow through the motor” [6]. The governing

equation of this model are given below,

JT
d2α

dt2 + kp

(
dα
dt
−Ωo

)
+ ki (α −Ωot) + k (α − φ) + c

(
dα
dt
−

dφ
dt

)
= 0, (3.28)

JB
d2φ

dt2 − k (α − φ) − c
(

dα
dt
−

dφ
dt

)
+ T = 0, (3.29)

M
d2U
dt2 = Ws −W − H0. (3.30)

In the above set of equations, the first two equations describe the torsional motion of the

rotary table and the BHA, while the third equation exhibits the vertical motion of the drill

bit. In (3.28)-(3.30), JT is the equivalent moment of inertia of the rotary table and the motor

with units ( N·m2

rad ) or (kg · m2), JB is the moment of inertia of BHA (kg · m2), M is the mass

of BHA (Kg), k is the torsional spring coefficient for BHA as described in Richard et. al.

model, and c is damping coefficient for BHA (drillstring). In [6], c is calculated as 4Lpc̄
3 ,

where c̄ is the damping of mud per unit length. Also, T and W are applied torque-on-bit and

weight-on-bit, H0 is the constant weight applied from the top of the rig to drillstring with

units (N), Ws is the submerged weight on the bit, α (rad) represents the angular position

of rotary table, φ (rad) denote the angular position of BHA (also drill bit). The angular

velocity of the rotary table is denoted by Ωo, while the angular velocity of BHA and the

drill bit is denoted by Ω; both have units of rad
s . Finally, U denotes the vertical position of

the drill bit.
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3.2.3 Mathematical model of drillstring and drive system by J. D.

Jansen and V. D. Steen

A complete model of the drilling system with associated electric drive is presented in [7].

This model describes the drillstring as a simple torsional pendulum, where the drill pipes

are represented as torsional springs and the BHA is described as a rigid body with inertia.

Similarly to the previously discussed models, the drillbit is driven by an electric motor,

where the torque is transmitted to the drillbit through drillstring. Figure 3.7 shows the

structure of the drilling rig presented in [7]. Here, the drive system consists of electric

motor with associated gearbox connected with the rotary table. The drill pipes are shown

as tubular suspensions with BHA at the bottom.

Figure 3.7: A simplified block diagram of oil well drillstring with surface mounted drive

system [7]

The model developed in [7] is essentially based on the following simplifying assump-

tions.

1. The borehole assembly and drill bits behave like rigid bodies.

2. The moment of inertia of drill pipe is considered to be small in comparison with

the moments of inertia of the borehole assembly and the rotary table and, therefore,
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neglected.

3. The nonzero time propagation of the torsional force disturbances along the drill-

string is neglected. The forces assume to propagate instantaneously along the drill-

string.

Figure 3.8 shows the drive system and the drill string with equivalent electro-mechanical

components. The DC motor is described by its equivalent inductance L with units (H) and

an equivalent resistance R with units (Ω). Also, Jm is the moment of inertia of the motor

with units ( N·m·s2

rad ), while the moments of inertia of the rotary table and the BHA are denoted

by Jr and J1, respectively, with units Nms2

rad . Also, c2 is the damping coefficient of the rotary

table, and c1 is the equivalent damping associated with BHA and the drill pipes; both have

units ( Nms
rad ). Coefficient k represents the equivalent torsional stiffness of the drill pipes ( Nm

rad ),

φ1 and φ2 with units (rad) denote the angular positions of the drillbit (along with BHA) and

the rotary table, respectively. Finally, Tb refers to torque with unit (Nm), and it represents

the torque on bit plus the frictional forces acting between drill pipes and well bore.

Under the above described assumptions, the whole drill string drive system consists of

three degrees of freedom and can be described by the following mathematical model. First,

the motion of the drill string is described by following equation

J1φ̈1 + c1φ̇1 + k(φ1 − φ2) − Tb = 0, (3.31)

Here, φ1 is the angular displacement of bit and drill collars (BHA), φ2 is the angular dis-

placement of the rotary table, J1 is the equivalent moment of inertia of the collars (BHA)

and the drill pipes, coefficient c1 represents equivalent viscous damping, k is the equivalent

torsional stiffness of the drill pipes, and Tb is a nonlinear function representing torque on

bit (TOB) and other frictional forces. The dynamics of the rotary table and drive system is

described by the following equation

J2φ̈2 + c2φ̇2 − k(φ1 − φ2) − nTm = 0, (3.32)

where J2 is combined moment of inertia of the rotary table and of the rotor of the electric

motorcoupled together with a gearbox that has 1 : n gear ratio, c2 is aggregated damping
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Figure 3.8: Representation of drillstring/drive system with mechanical and electrical com-

ponents [7]

of all the components of the drive system, and Tm is the motor torque. Finally, the electric

motor is described by the following equations

Lİ + RI + Vb − V = 0, Vb = Kφ̇3 = Knφ̇2, Tm = KI (3.33)

where I is the armature current, L is an equivalent armature inductance , R is an equivalent

armature resistance, Vb is the back emf, V is the armature voltage, φ̇3 is the rotor angular

velocity, and K is a constant that depends upon the motor characteristics.

By combining all the above equations, the complete drillstring/drive system can be

written in the following state space form,

φ̇1

ω̇1

φ̇2

ω̇2

İ


=



0 1 0 0 0
−k
J1

−c1
J1

k
J1

0 0

0 0 0 1 0
k
J2

0 −k
J2

−c2
J2

Kn
J2

0 0 0 −Kn
L

−R
L





φ1

ω1

φ2

ω2

I


+



0
−Tb
J1

0

0
V
L


. (3.34)
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Here, ω1 and ω2 are the angular velocities of the drill bit and the rotary table, respectively.

Equation (3.34) is valid when the drill bit rotational velocity is greater than zero, that is

ω1 > 0. In order to reduce the number of equations, a variable φ is introduced as the

difference of φ2 and φ1. In this case, the original system can be rewritten in the following

reduced state space form
ω̇1

φ̇

ω̇2

İ

 =


−c1
J1

k
J1

0 0

−1 0 1 0

0 −k
J2

−c2
J2

Kn
J2

0 0 −Kn
L

−R
L




ω1

φ

ω2

I

 +


−Tb
J1

0

0
V
L

 (3.35)

Equation (3.35) defines the reduced order model of the drillstring and drive system. The

model (3.35) is used for control design in the subsequent chapters.

3.3 Rock Cutting and Vertical Penetration Equations

In this Section, we describe the equation for the vertical penetration and relevant assump-

tions we used to concatenate this vertical motion with the previously discussed drillstring/drive

system. The the vertical motion of the drill bit is described by the following equation [6]

M
dv
dt

= Ws −W − H0 − K f v. (3.36)

Here, v is the vertical velocity of the drill bit, H0 is the constant upward force applied from

the top of drilling rig, Ws is the submerged weight of the drill string and Bottom Hole

Assembly (BHA). In this model we have assumed Ws and H0 to be constants and defined

their difference with another constant W0 such that W0 = Ws − H0. Also, W is the applied

weight on bit from the interaction of rock defined by equation (3.11), and K f > 0 is the

coefficient of viscous friction.

Formula (3.11) indicates that the applied weight on bit W is proportional to the depth

of cut d(t). Since a PDC bit has n blades, d(t) actually corresponds to the combined depth
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of cut of all n blades in each revolution of drill bit, according to the formula

d(t) := ndn(t), (3.37)

where dn(t) is the depth of cut of each blade which is defined by combination of formulas

(3.26) and (3.27).

Using the equations (3.26) and (3.27) for calculating d(t) would significantly compli-

cate the control design. In this work, we simplify this problem by assuming that both

the vertical and angular velocities change slowly; specifically, it is assumed that both

v(τ) ≡ U̇(τ) and ω1(τ) ≡ φ̇1(τ) are approximately constant during each period τ ∈ [t− tn, t].

Using this assumptions, the equations (3.26), (3.27) can be rewritten as follows

d(t) ≈ n · v(t) · tn, (3.38)

ω1(t) · tn ≈
2π
n
. (3.39)

Combining (3.38), (3.39), and assuming ω1(t) , 0, one gets the following approximate

expression for d(t),

d(t) ≈
2π · t(t)
ω1(t)

. (3.40)

The above formula has a singularity at ω1(t) = 0. To remove this singularity, note

that the drilling occurs when both ω1(t) > 0 and v(t) > 0. On the contrary, ω1(t) ≤ 0,

the drill bits do not cut the rock and therefore d(t) ≡ 0 in this case. Based on the above

considerations, one can approximately define the depth of cut according to the formula

d(t) ≈
2π · v(t)

max{ω1(t), ε0}
, (3.41)

where ε0 > 0 is sufficiently small positive constant. The formula (3.41) doesn’t have sin-

gularity at ω1(t) = 0; it will be occasionally used for calculations of d(t) instead of (3.40)

in the cases where avoiding singularity is important (in simulations, etc.).

3.4 Conclusion

Necessary background has been covered in this chapter regarding the fundamentals of rock

cutting, process of cutting through the drag bit, mathematical models of drillstring and drive
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system, and finally the vertical penetration analysis of drag bit. The mathematical models

used in this chapter constitute the foundation for our research and provide the necessary

analysis of different models of drillstring presented in numerous articles. In next chapter

these concepts are further analyzed to design controller to achieve desired vertical velocities

for rock cutting.



Chapter 4

Controller Design for Drilling System

This Chapter deals with control design for drilling system. The structure of this Chapter

is as follows. The general idea of the control approach used in this work is described in

Section 4.1. Section 4.2 describes the control algorithm for stabilization of the vertical

velocity, while Section 4.3 describes the robust servo controller that stabilizes the angular

velocity in the presence of measured disturbances. Simulation results are presented in

Section 4.4, and concluding remarks are given in Section 4.5.

4.1 Controller Design for Drillstring and Drive System

The block diagram of the overall drilling system is shown in Figure 4.1. As it can be

seen from this figure, the block diagram has a complex structure and consists of several

interconnected subsystems. Specifically, the vertical motion subsystem is described by

equation (3.36); the output of this subsystem is the vertical velocity of penetration v(t).

The subsystem that represents the rotational motion is described by equations (3.35); this

subsystem has one control input which is the armature voltage V(t) and one output which

is the angular velocity of the drill bits ω1(t). Both v(t) and ω1(t) are the inputs of the

nonlinear static block that represents the cutting process; this subsystem generates the depth

of cut d(t) according to equation (3.40). Both the torque-on-bit T and weight-on-bit W are

39
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Vertical Motion

Rotational Motion

Cutting 
Process

W = a⇣✏d

T =
1

2
a2✏d

d(t)

v(t)

!1(t)

V (t)

W (t)

T (t)

d(t)

d(t)

Figure 4.1: The block diagram of the drilling system

proportional to d; they are fed back to rotational motion and vertical motion subsystems,

respectively.

Our goal is to design a control system that maintains a desired rate of drilling. Specifi-

cally, we are looking for the control algorithm for the armature voltage V that would guar-

antee that the velocity of the vertical penetration v(t) tends asymptotically to an arbitrary

positive desired value vre f > 0. We start designing a control algorithm by considering the

equation of vertical motion (3.36) in some detail.

4.2 Control of the Vertical Motion of a Drill Bit

The vertical motion of the drilling system is described by equation (3.36). For convenience,

this equation is rewritten below in a slightly modified form, as follows

v̇ = −
K f

M
v −

(Ws − H0)
M

−
W
M
. (4.1)

Here, v acts as the state of this first order differential equation. M is the combined mass

of drill string and bottom hole assembly (BHA), Ws is the submerged weight of drill pipes

and BHA (The weight when the hook on kelly drive has zero upward force or when the
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complete load of drill string + BHA is resting on ground without upward pull), Ho is the

upward force applied by the hook or kelly from the top of rig, and K f > 0 is the coefficient

of viscous friction. In this differential equation, the weight on bit W is the input to the

system. It is dependent upon the depth of cut d, rock strength ε, ratio of drilling strength to

drilling specific energy ζ and radius of drill bit a.

In the right-hand side of equation (4.1), the first term is linear with respect to v, the

second term is constant which is defined by the parameters of the system, while the third

term is proportional to the weight-on-bit W. The idea of the controller developed in this

work is to somehow use the weight-on-bit W as the control input to the vertical motion

subsystem. More specifically, combining formulas (3.11) and (3.40), one get the following

expression for W,

W = aζε
2π
ω1

v, (4.2)

which essentially indicates that W is proportional to the vertical velocity v(t) and inversely

proportional to the angular velocity of the rotational motion ω1(t). Substituting the last

formula into (4.1), one gets

v̇ =
Ws − H0

M
−

1
M

(
aζε

2π
ω1

+ K f

)
v. (4.3)

The equation (4.3) is a linear differential equation with respect to v which, assumingω1 > 0,

has one stable equilibrium v = v0 defined by the formula

Ws − H0

M
−

1
M

(
aζε

2π
ω1

+ K f

)
v0 = 0. (4.4)

Solving the above equation with respect to v0, one gets

v0 =
Ws − H0(

aζε 2π
ω1

+ K f

) . (4.5)

The above equation (4.5) indicates that the location of the stable equilibrium v = v0 of the

vertical motion subsystem (4.1) can be controlled if one can control the rotational veloc-

ity ω1. Specifically, equation (4.5) defines one-to-one correspondence between ω1 from

the range (0,+∞) and v0 from the range
(
0, (Ws − H0)/K f

)
. In particular, for any given
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vre f ∈
(
0, (Ws − H0)/K f

)
, there exists an unique ωre f ∈ (0,+∞) such that if the angular

velocity satisfies ω1(t) ≡ ωre f , then vre f is a globally exponentially stable equilibrium of

the translational dynamics (4.1). For a given vre f ∈
(
0, (Ws − H0)/K f

)
, the corresponding

ωre f can be found using formula (4.5), as follows,

ωre f =
2πaζε(

(Ws−H0)
vre f

)
− K f

. (4.6)

Therefore, the control goal of stabilization of the vertical penetration velocity v(t) → vre f

can be achieved by designing a controller for rotational motion that guarantees a sufficiently

fast convergence of ω1(t) → ωre f . The design of such a controlled is presented in the next

section.

4.3 Stabilization of the angular velocity of the drilling sys-

tem

The rotational dynamics of the drilling system together with the electric drive are described

by equation (3.35), which is repeated below for convenience,
ω̇1

φ̇

ω̇2

İ

 =


−c1
J1

k
J1

0 0

−1 0 1 0

0 −k
J2

−c2
J2

Kn
J2

0 0 −Kn
L

−R
L




ω1

φ

ω2

I

 +


0

0

0
1
L

V +


−1
J1

0

0

0

Tb (4.7)

The above system has one control input which is the armature voltage of the electric drive

V and one disturbance input which is torque on bit Tb. Our objective in this section is to

design a control law for V which would track the reference angular velocity of the drill

ω1 → ωre f while rejecting the disturbance Tb.

4.3.1 Feedforward robust servo control with disturbance rejection

To solve the control problem formulated above, one can use the approach to feedforward

robust servo control problem presented in [23, 24]. Below, the above approach is presented
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in a simplified way which, however, serves our purpose well. Consider a linear time invari-

ant system of the form

ẋ = Ax + Bu + Dw,

y = Cx + Fu + Hw,
(4.8)

where x ∈ Rn is the state, u ∈ Rm is the control input, y ∈ Rp is the output, w ∈ Rr are the

disturbances, and A, B, C, D, F, and H are matrices of appropriate dimensions.

Consider a control problem described as follows. Suppose the disturbances w(t) are

measurable. Given a desired output signal yre f (t), design a control algorithm that guarantees

y(t)→ yre f (t) as t → +∞. This problem was addressed in [23, 24] in a very general setting.

In this work, a simple case is addressed where both yre f and w(t) are assumed to be constant

signals, yre f (t) ≡ yre f and w(t) ≡ wm. In this case, the following conditions are necessary

and sufficient for the existence of a linear time-invariant controller that solves the above

described problem:

i) The pair (A, B) is stabilizable, which means that

rank
[
B, AB, A2B, . . . An−1B

]
= n; (4.9)

ii)

rank

A B

C F

 = n + p. (4.10)

If the above two conditions hold (and only in this case), the linear time-invariant con-

troller that solves the above described problem is given according to the formula

u = Kx + G†yre f + G∗wm, (4.11)

where K ∈ Rn×n is the feedback gain matrix which is to be chosen such that A−BK is stable

and has the required dynamic properties,

G = −C (A − BK)−1 B, (4.12)

and

G∗ = G†C (A − BK)−1 D, (4.13)
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where G† is the Moore-Penrose pseudoinverse of the matrix G in (4.12), defined by the

formula

G† = GT
(
GGT

)−1
. (4.14)

4.3.2 Angular velocity stabilization

Here, the above described control approach is applied to the problem of stabilization of the

angular velocity of drilling. The equations (4.7), which describe the rotational dynamics

of a drilling system, can be rewritten in the form (4.8), where x :=
[
ω1 φ ω2 I

]T
∈ R4,

u := V ∈ R1, y := ω1 ∈ R
1, w := Tsl ∈ R

1, and the corresponding matrices are

A :=


−c1
J1

k
J1

0 0

−1 0 1 0

0 −k
J2

−c2
J2

Kn
J2

0 0 −Kn
L

−R
L

 , B =


0

0

0
1
L

 , D =


−1
J1

0

0

0

 , (4.15)

C =
[
1 0 0 0

]
, F =

[
0
]
, H =

[
0
]
. (4.16)

Our goal in this section is to design a controller that guarantees the convergence of the

angular velocity of the drill bits ω1(t) to a given constant reference value ωre f > 0 as

t → +∞ while suppressing the disturbances represented by the torque Tsl. Below, we

consider a drilling system that is described by the equations of the form (4.8) with matrices

A, B, C, D, F, and H given by (4.15), (4.16), and with specific values of the parameters

that are listed in Table 4.1. With these values, the matrices A, B, and D become

A :=


−0.1123 1.2647 0 0

−1 0 1 0

0 −0.2231 −0.2005 0.0204

0 0 −8640 −2

 , B =


0

0

0

200

 , D =


−0.0027

0

0

0

 ,
(4.17)

while C, F, and H are described by (4.16).
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Parameter Description Value Unit

J1 BHA + drill-string inertia 374 [kgm2]

J2 Rotary table + drive inertia 2120 [kgm2]

c1 BHA damping 42 [ Nms
rad ]

c2 Rotary table damping 425 [ Nms
rad ]

k Drill-string stiffness 473 [ Nm
rad ]

R Motor armature resistance 0.010 [ Ω]

L Motor armature inductance 0.005 [H]

K Motor constant 6 [V s]

n Combined gear ratio for bevel and gear box 7.2

a Drill bit radius 0.108 [m]

ζ Ratio of drilling strength to drilling specific energy 0.7

ε Intrinsic specific energy 60000 [ J
cm3 ]

M Mass of Drill string(28120 Kg) + BHA(25080 Kg) 53000 [kg]

Ws − H0
Submerged weight Ws

− Applied Weight from top of the Rig H0

100 or 1000 [N]

K f Viscous friction coefficient 20 [ Nm
rad ]

Table 4.1: Numerical Values for Drilling System Parameters
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For the above described system, the necessary and sufficient conditions for stabilization

(4.9), (4.10) are satisfied. Indeed, the stabilizability condition (4.9) is satisfied since

rank
[
B, AB, A2B, . . . An−1B

]
= rank


0 0 0 5.154273

0 0.000000 4.075472 −8.968

0 4.075 −8.968 −700.339

200 −400 −34412 146307

 = 4.

(4.18)

On the other hand, the rank condition (4.10) is also satisfied because

rank

A B

C F

 = rank



−0.112299 1.264706 0 0 0

−1 0 1 0 0

0 −0.223113 −0.200472 0.020377 0

0 0 −8640 −2 200

1 0 0 0 0


= 5.

(4.19)

Therefore, a controller of the form (4.11), (4.12), (4.13), (4.14) guarantees that the angular

velocity of the drill approach the reference angular velocity ω1 → ωre f as t → ∞, while

rejecting the disturbance Tb.

4.3.3 Controller design

The design of controller (4.11), (4.12), (4.13), (4.14) begins by choosing the desired lo-

cation of the closed-loop system’s poles. For the purpose of simulations in this and next

section, we consider two specific set of poles. The fist set, denoted by P1, is chosen as

follows:

P1 := [−10 − 2 + 2i − 2 − 2i − 4]. (4.20)

The set P1 consists of two real poles and two complex conjugate poles. On the other hand,

the set P2 contains only poles on the real axis, as follows

P2 = [−5.5 − 2 − 4.5 − 1] (4.21)
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The feedback gain matrix K1 such that the poles of A − BK1 are located according to P1 is

K1 = [32.24 57.45 − 19.41 0.0784]. (4.22)

The coefficients G∗, G† in (4.11) are calculated according to the formulas (4.12)-(4.14); the

results are

G∗1 = 0.123497, G
†

1 = 60.0844 (4.23)

On the other hand, the feedback matrix K2 such that the poles of A − BK2 are located

according to P2 is

K2 = [−5.167 16.943 − 30.62 0.0534] (4.24)

The corresponding coefficients G∗2, G†2 are

G∗2 = 0.037286 G
†

2 = 9.603682. (4.25)

The above control gains will be used in the simulations below.

4.4 Simulation Results

4.4.1 Stabilization of the angular velocity of the drilling

In this subsection, we will focus only on the stabilization of the rotational dynamics of

drillstring. Specifically, the controller (4.6), (4.11)-(4.14) is been implemented to guarantee

that the angular velocity of the drill bits ω1(t) converges to a desired rotational velocity

ω1re f , while the value of the vertical velocity Vout is kept fixed. In the simulations below,

the initial conditions of the system (4.7) are chosen as follows:

x(0) :=


ω1(0)

φ(0)

ω2(0)

I(0)

 =


2

0

2

0

 . (4.26)
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The simulation is conducted in MATLAB. The results of simulations are shown in Fig-

ures 4.2-4.9. Specifically, we consider four different values of reference angular velocities

equal to ω1re f = 10 rad/s, ω1re f = 20 rad/s, ω1re f = 30 rad/s, and ω1re f = 40 rad/s, re-

spectively. The results of simulations for ω1re f = 10 rad/s are shown in Figures 4.2, 4.3.

Specifically, Figure (4.2) shows the output rotational velocity of drillbit ω1(t) and the rotary

table velocity ω2, while Figure 4.3 demonstrates the behavior of the depth of cut d(t) and

the torque on bit Tb(t). The gain matrix is equal to K1.

Figures 4.4 and 4.5 correspond to ω1re f = 20 rad/s and the gain matrix K = K1. Fig-

ures 4.6 and 4.7 demonstrate the response of the system for ω1re f = 30 rad/s and the gain

matrix K = K2. Finally, Figures 4.8 and 4.9 shows the response for ω1re f = 40 rad/s and

the gain matrix K = K2. Overall, these simulation results demonstrate that, in all cases, the

designed controller guarantees convergence ω1(t)→ ω1re f for different values of ω1re f and

different control gains K, while suppressing the disturbance signal Tb.

Figure 4.2: Response of the output angular velocity ω1(t) (top) and rotary table velocity

ω2(t) (bottom) for the desired velocity ω1re f = 10 rad/s and K = K1
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Figure 4.3: Torque on bit Tb(t) (top) and the depth of cut d(t) (bottom) for ω1re f = 10 rad/s

and K = K1

4.4.2 Stabilization of the vertical velocity of the drilling process

In this subsection, we present the results of simulations that deal with stabilization of the

vertical (penetration) velocity of the drilling process. The vertical motion of the drilling

system is described by equation (3.36 ), and it is interconnected with the rotational dynam-

ics (3.35) through nonlinear equation (3.40). Specific values of the parameters appearing in

these equations are given in Table 4.1. For a given reference velocity of the vertical penetra-

tion vre f > 0, the corresponding reference rotational velocity ωre f is calculated according to

the formula (4.6). The control system described above guarantees that the rotational veloc-

ity ω1(t) tracks ωre f , which in turn stabilizes the vertical penetration velocity v(t) converges

to vre f .

It is worth to notice that the equation (4.6) depends on the parameter ε > 0 which is

the intrinsic specific energy that is required to cut a unit volume of rock with perfectly

sharp bit. This parameter reflects the hardness of the media and is, generally speaking,
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Figure 4.4: Response of the output angular velocity ω1(t) (top) and rotary table velocity

ω2(t) (bottom) for ω1re f = 20 rad/s and K = K1

unknown beforehand. However, in this section, it is assumed that ε > 0 is known. The case

of unknown ε will be addressed below in Chapter 5 of this Thesis, where the parameter

estimation algorithm will be implemented.

Below, the simulation results are presented for the following three values of the refer-

ence vertical velocity vre f : 0.03 m/s, 0.05 m/s, and 0.08 m/s. Similarly to the simulations

presented above, two different set of feedback gains K = K1 and K = K2 are used which

are defined by (4.22), (4.24). We also use two different values of the weight applied on the

drillbit from the top W0 := Ws − H0, which are 100 N and 1000 N. The initial value of the

vertical velocity v(t) in all the simulations is v(0) = 0.02 m/s.

Figures 4.10 and 4.11 demonstrate the trajectories of the system for vre f = 0.03 m/s,

the feedback gains K = K1, and the applied weight W0 := Ws − H0 = 100 N. Specifically,

Figure 4.10 shows the trajectories of the vertical velocity v(t) and the rotational velocity

ω1(t). One can see that both v(t) and ω1(t) converge to their reference values, although

the rotational velocity converges faster. In Figure 4.10, on the other hand, the responses of
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Figure 4.5: Torque on bit Tb(t) (top) and the depth of cut d(t) (bottom) for ω1re f = 20 rad/s

and K = K1

torque-on-bit Tb(t) and depth of cut dcut(t) are shown. Figure 4.12 and 4.13 presents the

same processes for the case of vre f = 0.05 m/s, while in Figures 4.14 and 4.15, the same

processes are shown for vre f = 0.08 m/s and K = K2.

In Figures 4.16, 4.17, the responses of v(t), ω1(t), Tb(t) and dcut(t) are presented for the

case where vre f = 0.03 m/s and K = K1, however, the applied downward weight is increase

to W0 = Ws − H0 = 1000 N. This increase in weight results in much faster convergence

of v(t) to vre f . Figures 4.18 and 4.19 depict analogous response of the four mentioned

variables for the case vre f = 0.05(m/s). Again, a faster response time for v(t) is displayed.

Finally, Figures 4.20 and 4.21 presents the case where W0 = 1000 N, vre f = 0.08 m/s

and gains are K = K2. Overall, the simulation results confirm the validity of the proposed

method.
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Figure 4.6: Response of the output angular velocity ω1(t) (top) and rotary table velocity

ω2(t) (bottom) for ω1re f = 30 rad/s and K = K2

4.5 Conclusions

In this Chapter, the controller design for drilling system is presented. The proposed con-

troller has a cascaded structure, where the velocity of the vertical penetration is controlled

indirectly by stabilizing the rotational velocity while rejecting the disturbances in the form

of torque-on-bit. In particular, the controller presented assumes exact knowledge of all

parameters, including the value of intrinsic specific energy ε. In the next Chapter, this

requirement is removed by designing an on-line parameter estimation algorithm for ε.
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Figure 4.7: Torque on bit Tb(t) (top) and the depth of cut d(t) (bottom) for ω1re f = 30 rad/s

and K = K2

Figure 4.8: Response of the output angular velocity ω1(t) (top) and rotary table velocity

ω2(t) (bottom) for ω1re f = 40 rad/s and K = K2
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Figure 4.9: Torque on bit Tb(t) (top) and the depth of cut d(t) (bottom) for ω1re f = 40 rad/s

and K = K2

Figure 4.10: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when vre f = 0.03 m/s, gain K = K1 and applied weight W0 = 100 N
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Figure 4.11: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.03 m/s,

gain K = K1 and applied weight W0 = 100 N

Figure 4.12: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when vre f = 0.05 m/s, gain K = K1 and applied weight W0 = 100 N
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Figure 4.13: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.05 m/s,

gain K = K1 and applied weight W0 = 100 N

Figure 4.14: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when Vre f = 0.08 m/s, gain K = K2 and applied weight W0 = 100 N
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Figure 4.15: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.08 m/s,

gain K = K2 and applied weight W0 = 100 N

Figure 4.16: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when vre f = 0.03 m/s, gain K = K1 and applied weight W0 = 1000 N
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Figure 4.17: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.03 m/s,

gain K = K1 and applied weight W0 = 1000 N

Figure 4.18: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when vre f = 0.05 m/s, gain K = K1 and applied weight W0 = 1000 N
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Figure 4.19: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.05 m/s,

gain K = K1 and applied weight W0 = 1000 N

Figure 4.20: Response of output vertical velocity v(t) (top) and output angular velocity

ω1(t) (bottom) when vre f = 0.08 m/s, gain K = K2 and applied weight W0 = 1000 N
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Figure 4.21: Torque on bit Tb(t) (top) and depth of cut d(t) (bottom) when vre f = 0.08 m/s,

gain K = K2 and applied weight W0 = 1000 N



Chapter 5

Rock Stiffness Estimation and the

Design of Adaptive Controller

In the controller design for drilling system presented in Chapter 4, it was assumed that the

“hardness” of the rock, represented by the intrinsic specific energy ε, is constant and exactly

known. This knowledge of ε was used explicitly in the controller design, in particular, in

formula (4.6). In practical geological drilling, however, the hardness of different layers of

rock lying underneath the surface can be different and usually is not exactly known before-

hand. More specifically, different characteristics of the rock, such as hardness, density and

porosity, typically remain constant through each layer, but differs from layer to layer. This

geological phenomenon of multiple rock layers, also called rock strata, with various hard-

ness and other characteristics, has some significant consequences for drilling. In particular,

when the drilling tool encounters the variation in the stiffness of the rock, it may result in

change of the penetration rate as well as slip-stick oscillations. In practice, the drilling crew

at the rig monitors such changes in the penetration rate. Once the change is detected, the

crew, with the support of geologists, who approximately determine the strength of the layer

at the contact, either increases or decreases the rotational velocity of the drill bit in order to

maintain the desired rate of drilling.

On the other hand, control engineers and scientists frequently deal with the problem

61
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of designing a controller without a priori knowledge of the exact values of one or more

parameters involved in the process. Often, the processes can be robustly controlled without

the actual knowledge of some of the parameters. In other cases, the unknown parameters

can be identified using specially designed estimators. In this Chapter, a simple on-line

estimator of the rock intrinsic specific energy ε is designed, and the resulting estimate is

then used in the controller for for drilling system.

The structure of this Chapter is as follows. The design principles of simple on-line

parameter estimators are reviewed in Section 5.1. In Section 5.2, an on-line parameter

estimator for the intrinsic specific energy ε is designed. Simulation results of an adap-

tive control system, where the actual value of ε is substituted by its on-line estimate, are

presented in Section 5.3. Finally, some brief conclusions are given in Section 5.4.

5.1 Online Parameter Estimator: Design Principles

If the structure of the plant’s model is known, then with the help of model parameters the

output of the plant can be obtained. However as it is discussed in the start of the chapter

that not always the parameters of the plant are present. Hence the designers of control sys-

tems rely upon the outputs and inputs of model to evaluate the unknown parameters. If the

missing parameters are constant with time then they could be easily evaluated with time

and frequency domain techniques and the process is called off-line parameter estimation.

If however the unknown plant parameters are changing with respect to time, then frequent

values of inputs and outputs are monitored to constantly update the unknown plant param-

eter. This process or scheme for observing and updating the unknown parameter for the

plant model is called on-line parameter estimation [25].

Consider a plant with a single unknown parameter θ∗ which is described by a simple

algebraic expression of the form

y(t) = θ∗u(t), (5.1)

where the input u(t) and the output y(t) are assumed to be measured [25]. Our goal is to
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obtain an estimate θ(t) which would converge to θ∗. For this purpose, we first generate a

predicted value of the output ŷ(t), according to the formula

ŷ(t) = θ(t)u(t), (5.2)

where θ(t) is the current value of the estimate. The error between the estimated output and

actual plant output

ε1(t) := y(t) − ŷ(t) = y(t) − θ(t)u(t) (5.3)

is called the estimation error or prediction error [25]. By rearranging the above equation

and considering the fact that ε1 is dependent on the parameter estimation error θ̃ = θ − θ∗,

we get

ε1 = θ∗u − θu = −θ̃u (5.4)

Now, the differential equation that gives an estimate of θ∗ can be obtained by mini-

mizing a given cost functional with respect to θ(t). In one of the simplest cases, such a

functional has a form

J(θ) =
ε2

1

2
=

(y − θu)2

2
. (5.5)

Minimization of the above functional with respect to θ can be achieved using the gradi-

ent or Newton’s method. Application of the gradient method to minimization of the cost

functional J(θ) leads to the following differential equation

θ̇ = −γ 5 J(θ) = γ(y − θu)u = γε1u, θ(0) = θ0, (5.6)

where γ > 0 is the estimator gain. It can be shown [25] that the above parameter adjustment

law (5.6) guarantees that θ(t) → θ∗ as t → +∞ if u(u) is persistently exciting which is to

say that there exist α0 > 0, T0 > 0 such that the inequality

t+T0∫
t

u2(τ)dτ ≥ α0T0 (5.7)

holds for all t. In particular, u(t) is persistently exciting if u2(t) ≥ α0 for all t.

In the next Section, the above described method will be applied to the design of an

estimator for the intrinsic specific energy ε.
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5.2 Online Parameter Estimation for the Intrinsic Specific

Energy ε

During the cutting process, the torque-on-bit Tb is produced by bit rock interaction, accord-

ing to the formula

T =
1
2

a2εd, (5.8)

where a is the radius of drill bit, d is the depth of cut, and ε > 0 is the intrinsic specific

energy. The intrinsic specific energy ε > 0 depends on the properties of the media and

typically unknown beforehand. However, since the torque on bit Tb(t) can typically be

measured with advanced transducers located in the bottom hole assembly [26], a > 0 is

constant and known, and d(t) can be calculated according to the formula (3.40), one can use

the method described in the previous section to design an on-line estimation scheme for ε.

Specifically, considering 1
2a2d(t) as the input and torque-on-bit Tb as the measured output,

one can follow the procedure described in the previous section to design an estimator for an

unknown parameter ε. The predicted torque-on-bit T̂b is defined according to the formula

T̂b(t) :=
1
2

a2ε̂d(t), (5.9)

where ε̂(t) is the current estimate of actual rock strength ε. The algorithm for online esti-

mation of the intrinsic specific energy ε has a form

˙̂ε = γ0(Tb − T̂b)
1
2

a2d, (5.10)

where γ0 > 0 is an arbitrary gain.

A natural question regarding the algorithm (5.10) is does it guarantee the convergence

of the parameter estimate to the true value of the parameter ε; mathematically, is ε̂(t) → ε

as t → +∞. As described in the above Section 5.1, the convergence can be guaranteed

if the “input” signal 1
2a2d(t) is persistently exciting. Since d(t) is the depth of cut, we see

that, during normal cutting process, d(t) ≥ d0 > 0, which results in persistent excitation

of the input 1
2a2d(t). The parameter convergence ε̂(t) → ε, therefore, is guaranteed during
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normal cutting process. This is also confirmed by the simulation results presented below.

It is also worth noting that drilling is a slow process, and the stiffness of the rock strata

do not change instantly. Usually while drilling, the operators encounter hundreds of feet

of rock bed with same stiffness. Therefore, ε can be consider as approximately constant

during cutting process, which makes the above described method for parameter estimation

applicable in this case.

The obtained estimate of the rock strength ε̂ is then used in the control algorithm.

Specifically, in the original formulation of the control algorithm, for a given reference

vertical velocity vre f , the reference rotational velocity ωre f is calculated according to the

formula (4.6), which depends on the parameter ε. In case ε is unknown, it is substituted by

its estimate ε̂(t) obtained above. The new formula for ωre f has the form

ωre f :=
2πaζε̂(

(Ws−H0)
vre f

)
− K f

. (5.11)

The rest of the controller in this case remains unchanged. The obtained estimate of the

rock stiffness ε̂ will also be used to update the stiffness of the virtual spring in the haptic

teleoperator drilling system described below in Chapter 6.

5.3 Simulation Results

In this section, the results of simulations of the drilling control system with intrinsic specific

energy estimator are presented. The simulations are carried out using MATLAB, where the

simulation program is similar to the one developed for tracking of the reference vertical

velocity vre f in the previous Section, with the difference that the algorithm for the intrinsic

specific energy estimation (5.10) is added, and the estimate ε̂ is used in the calculation of

the reference angular velocity according to the formula (5.11).

In these simulations, the performance of the system was evaluated for different values of

actual intrinsic specific energy ε, different gains γ0 and different values of applied weight

W0 := Ws − H0. In all the simulations presented below, the initial condition for vertical
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velocity is v(0) = 0.001 m/s. The integration step for each simulation is equal to 0.005 s.

The feedback gain matrix is chosen K = K1, where K1 is defined by (4.22). All other initial

conditions and parameter values are same as those used in Chapter 4.

Figures 5.1 and 5.2 show the response of the vertical penetration velocity v(t), the in-

trinsic specific energy estimate ε̂, the torque-on-bit Tb(t), the predicted value of the torque-

on-bit T̂b(t), and the rotational velocity ω1(t) for the case where the applied weight on bit

W0 = 5000 N, intrinsic specific energy ε or rock stiffness ε = 20 MPa, and and the de-

sired vertical velocity vre f is set to 0.005 m/s. The estimator gain for the estimator is set to

γ0 = 5 · 109. The plots shows that v(t) converges to vre f in less than 8 sec whereas the the

estimate ε̂ converges to the actual value of ε in less than 4 sec. Similarly, the convergence

of T̂b(t) to Tb(t), along with the response of ω1(t) and d(t) is displayed in Figure 5.2.

Figures 5.3 and 5.4 show the output responses of described parameters where W0 =

2500 N and the desired vertical velocity vre f is set to 0.01 m/s. It can be clearly seen that

by reducing the applied weight on drill string W0, the output value of v(t) and ε̂ approaches

their reference values in about 12 sec. Reducing W0 results in that ω1re f increases, the

steady-state value of Tb(t) drops to around 200 N, and the steady-state value of d(t) is also

dropped to less than 2 mm. On the other hand, Figures 5.5 and 5.8 demonstrate the response

of the system with the same parameters except the intrinsic specific energy ε is reduced to

5 MPa. This results in decreased convergence time for v(t) and ε̂(t). The steady state value

of rotational velocity ω1(t) is also decreased to under 10 rad/s, and steady state value of the

depth of cut d(t) is increased to 6.5 mm. The steady-state value of Tb(t) remains unchanged.

Figures 5.7 and 5.8 present the output response for the case where the estimator gain

is dropped 10 times to γ0 = 5 · 108. The rest of the parameters are the same as in the last

simulation except the intrinsic specific energy is set to ε = 10 MPa. The resulting response

is predictably characterized by much slower convergence, which takes about 25 sec for v(t)

and ε̂(t) to approach their steady-state values.

Figures 5.9, 5.10, 5.11, and 5.12 correspond to two sets of simulations where the applied

weight on the drillbit is increased to W0 = 5000 N. In Figures 5.9 and 5.10, the parameters
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are ε = 60 MPa and γ0 = 5 ·109. Figures 5.11 and 5.12 correspond to the case where ε = 20

MPa and γ0 = 1 · 108.

Overall, simulation results presented show that the control system with intrinsic spe-

cific energy estimation demonstrate good stability and performance characteristics for a

wide range of the parameters. In particular, in every case considered, the vertical veloc-

ity converges to the desired value, and the estimate of the intrinsic specific energy ε̂(t)

converges to an actual value of ε.

Figure 5.1: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 5000 N, ε = 20 MPa, and γ0 = 5 · 109.
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Figure 5.2: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 5000 N, ε = 20

MPa, and γ0 = 5 · 109.
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Figure 5.3: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 2500 N, ε = 20 MPa, and γ0 = 5 · 109.
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Figure 5.4: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 2500 N, ε = 20

MPa, and γ0 = 5 · 109
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Figure 5.5: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 2500 N, ε = 5 MPa, and γ0 = 5 · 109.
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Figure 5.6: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 2500 N, ε = 5

MPa, and γ0 = 5 · 109
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Figure 5.7: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 2500 N, ε = 10 MPa, and γ0 = 5 · 108.
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Figure 5.8: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 2500 N,, ε = 10

MPa, and γ0 = 5 · 108
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Figure 5.9: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 2500 N, ε = 60 MPa, and γ0 = 5 · 109
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Figure 5.10: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 2500 N, ε = 60

MPa, and γ0 = 5 · 109
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Figure 5.11: Response of the vertical velocity v(t) (top) and the intrinsic specific energy

estimate ε̂(t) (bottom) for W0 = 2500 N, ε = 20 MPa, and γ0 = 108
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Figure 5.12: Response of rotational velocity ω1(t) (top), torque-on-bit Tb(t) vs. estimated

torque-on-bit T̂b(t) (middle), and the depth of cut d(t) (bottom) for W0 = 2500 N, ε = 20

MPa, and γ0 = 108



Chapter 5. Rock Stiffness Estimation and the Design of Adaptive Controller 79

5.4 Conclusions

In this Chapter, a simple on-line algorithm for estimation of the intrinsic specific energy ε

is designed. The estimate ε̂(t) of ε is then substituted into the control algorithm designed

in the previous Chapter, and the resulting adaptive control system is evaluated through

simulations. The estimate ε̂(t) will be used below to update the stiffness of the virtual envi-

ronment, thus providing the human operator with haptic feedback that reflects the stiffness

of the rock cut.



Chapter 6

Telerobotic Drilling System with Haptic

Feedback

The goal of this Chapter is to design and experimentally test a telerobotic drilling system

with haptic feedback. This Chapter is organized as follows. Definitions of haptics and

a haptic device are given in Section 6.1. The general structure of the telerobotic drilling

system with haptic feedback is presented in Section 6.2. In Section 6.3, the experimental

setup is described, while the experimental results are presented in Section 6.4. Conclusions

are given in Section 6.5.

6.1 Haptics and Haptic Devices

Haptics can be defined as the physical or virtual interaction through touch sensation for the

purpose of perception and manipulation of objects [27]. The interactions can be between

human hand and real object; or robot end-effector and real object; and either human hand

or robot end-effector with virtual object [27]. In particular, haptics is used to create virtual

interactions with virtual reality environments, where they can simulate real or imaginary

scenes with which an operator can interact and perceive the effects of their actions in real

time [28, 27]. Consequently, haptics provides kinaesthetic clues of the physical features

80
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of virtual or real remote environment.

A haptic device is a system that generates an output which could be perceived hapti-

cally [29]. A haptic device, which is also referred as a haptic interface, typically exhibits

the properties of a small robot that exchanges mechanical energy with a user [27]. In this

Thesis, the experiments are conducted using PHANTOM Omni haptic device, a product

from SensAble Technologies Inc., which is shown in Figure 6.1. The PHANTOM Omni is

equipped with pen-like handle for positioning in three dimensional space. The device has

6 degrees-of-freedom position sensing and provides 3 degrees-of-freedom force feedback.

Figure 6.1: The PHANTOM Omni haptic device (from http://www.sensable.com/)

6.2 Structure of the Telerobotic Drilling System with Hap-

tic Feedback

The structure of a telerobotic drilling system with haptic feedback is shown in Figure 6.2. In

this system, the human operator controls the drilling process using a haptic device. Specif-

ically, the position of an end-effector of the haptic device defines the reference vertical

velocity of the drilling. The reference vertical velocity is then transmitted to the drilling

control system, designed in Chapters 4 and 5, which stabilizes the actual vertical penetra-

tion velocity to the level equal to the reference vertical velocity. On the other hand, an
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estimate of the intrinsic specific energy ε(t), which is generated on-line by an estimator

described in Chapter 5, is sent back to the haptic device. The end-effector of the haptic

device interacts with a virtual spring of variable stiffness; the stiffness of this virtual spring

is updated in real time proportionally to the current estimate of the intrinsic specific energy

ε(t). Thus, the telerobotic drilling system provides haptic feedback to the human operator

which creates an intuitive feeling of the hardness of the remotely drilled material.

Estimator

Controller

Virtual Stiffness 

Haptic Device J1

J2

L

R

✏̂ !1

!2

c1

c2

k

1 : n

Tb

vref

Figure 6.2: The structure of a telerobotic drilling system

6.3 Experimental Setup

In this Section, the implementation of a complete algorithm for telerobotic drilling with

haptic feedback is described. The algorithm is implemented using the PHANTOM Omni

Haptic device. The PHANTOM Omni Haptic device is designed for kinematic interaction

with the virtual or real environment while providing the kinesthetic feedback to the oper-

ator. In this project, the drilling process is simulated in real time using Microsoft Visual

C++. Hence, a virtual environment is designed that, in particular, simulates the bit-rock

interaction as the drill bit penetrates through the rock. PHANTOM Omni Haptic device is

used here to generate a desired rate of vertical penetration for the drilling system and also
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to reflect back the haptic information that exhibits the intrinsic specific energy or stiffness

of the rock that is drilled.

The experimental setup consists of PC based on Intel Pentium 4 processor with op-

erational frequency of 1GHz and RAM of 1GB, and a PHANTOM Omni Haptic device

manufactured by Sensable Technologies Inc. The PHANTOM Omni Haptic device is con-

nected with the PC through Firewire port. The device has six degrees of freedom and is

equipped with a pen-based stylus. The workspace of PHANTOM Omni Haptic device has

dimensions of 160 mm × 120 mm × 70 mm in x, y, and z directions respectively. In order

to interact with the real-time software simulations, the PHANTOM device uses the Open-

Haptics Toolkit, which is implemented using Microsoft Visual C++. The human operator

uses the haptic device to i) generate a desired vertical velocity vre f (t) which is used as an

input to the drilling control system, and ii) to haptically perceive the stiffness ε of the rock

layers. The control objective is to maintain the desired velocity of the vertical penetration

regardless of the stiffness of the rock.

Since the conventional oil well drilling is conducted in the vertical (normal to the

ground) direction, it is natural for the human operator to assign the desired velocity vre f (t)

by controlling the position of the end-effector of the PHANTOM device along its y-axis.

More specifically, a specific distal range along y-axis is assigned to each desired vertical ve-

locity. The number of levels designated to y-axis for stylus is determined by the number of

different reference vertical velocities that are adopted in the program. In our experiments,

the boundaries of these levels are chosen as follows,

ys := [0, 80, 0];

y1 := [0, 60, 0];

y2 := [0, 40, 0];

y3 := [0, 25, 0];

y4 := [0, 10, 0];
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ye := [0, 1, 0].

Once the boundary positions for each distal range on y − axiz of stylus are determined, the

corresponding desired vertical velocities vre f (t) for each level are defined below:

vre f (t) = 0.001 m/s when the position of stylus yn(t) is ≥ ys.

vre f (t) = 0.003 m/s when the position of stylus yn(t) is ≤ ys and ≥ y1.

vre f (t) = 0.005 m/s when the position of stylus yn(t) is ≤ y1 and ≥ y2.

vre f (t) = 0.008 m/s when the position of stylus yn(t) is ≤ y2 and ≥ y3.

vre f (t) = 0.01 m/s when the position of stylus yn(t) is ≤ y3 and ≥ y4.

vre f (t) = 0.015 m/s when the position of stylus yn(t) is ≤ y4 and ≥ ye.

vre f (t) = 0.018 m/s when the position of stylus yn(t) is ≤ ye.

As it can be seen from the above chart, the first level is activated once the device is

initialized and the program starts to run. Therefore, in our experiments, the minimum

desired vertical velocity is equal to 0.001 m/s. This velocity is enforced until the stylus is

moved down to the next level (distal range) on the y-axis. The desired reference velocity

increases or decreases as the stylus is vertically pulled up and down, crossing from one

distal range to another.

Another important function of the haptic device is to allow the human operator to feel

the stiffness of the rocks. As explained above, this is achieved by updating the stiffness

of the virtual spring proportionally to the current estimate of the rock stiffness (intrinsic

specific energy ε̂(t)). Since it is not possible to project and feel directly the large range

of magnitudes of the intrinsic specific energy, the value of the intrinsic specific energy is
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scaled down before updating the stiffness of the virtual spring. Specifically, the coefficient

of proportionality between the estimate of the intrinsic specific energy (with units of Pas-

cals) and the stiffness of the virtual spring (with units of is N/m) is set in our experiments

equal to 10−7. The feedback force Fest(t) due to the virtual spring is therefore calculated

according to the formula

Fest(t) = 10−7 · ε̂(t) · yn(t), (6.1)

where yn(t) is the vertical position of the stylus, and ε̂(t) is the current estimate of the

intrinsic specific energy.

6.4 Experimental Results

In this Section, the experimental results are presented. The experiments are performed

in order to confirm the applicability of the system designed, as well as to evaluate the

performance of the robust servo controller, the online parameter estimator, and the force

feedback displayed by the haptic device. Five different experiments have been conducted

where the drill bit velocity is been controlled through the haptic device. In all experiments

presented here, the applied weight W0 = 5000 N, and the rest of the parameters are same

as those used in Chapter 5.

In our experiments, we have attempted to simulate a real drilling case scenario. The

composition, characteristics, and types (which all contribute to the intrinsic specific energy

or stiffness (strength)) of various rock strata vary at different geographical locations. Sim-

ilarly, these characteristics vary at different depths during drilling. In our experiments, we

have have used multiple values for ε(t) ranging from 4 MPa to 60 MPa. The runtime for

each experiment is about 100 sec.

Six graphs are plotted for each experiment. The first graph shows the values of the

intrinsic specific energy ε(t) and its estimate ε̂(t). The changes in the magnitude of the in-

trinsic specific energy occur during the course of program when the drill bit crosses certain

depth levels. The plot of the force Fest(t) felt by the human operator is shown in second
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graph. Third plot shows the vertical penetration velocity vout(t) together with its reference

vre f (t). Fourth graph shows the output rotational velocity ω1(t) and the reference rotational

velocity ω1d(t) of the drill bit. The torque-on-bit Tb(t) and its estimated (predicted) value

T̂b(t) are shown in the fifth plot. Finally, sixth plot shows the depth of cut dcut(t) response.

In every experiment, three layers of rocks with different intrinsic specific energy ε are

simulated. In the first experiment, the top layer has the stiffness of 5 MPa and its thickness

is 20 cm from the surface. The second layer has a stiffness value of 12 MPa and lies

between 20 cm and 30 cm from the surface (total thickness is 10 cm). The third layer starts

at the depth of 30 cm and continues downward. It has a stiffness value of 20 MPa. The

experiment is performed with the estimator gain γ0 = 109. Figure 6.3 shows the actual

and the estimated intrinsic specific energies (rock stiffness) ε(t) and its estimate ε̂(t) on

the top graph, and the reflected force Fest(t) on the bottom graph. Due to high gain value

for estimator, ε̂(t) quickly tracks ε(t) for all three layers as the drill bit progressed cutting

through these layers. Figure 6.4 shows the vertical velocity vout(t) and the reference vertical

velocity vre f (t) on the top graph, and the reference rotational velocity ω1d(t) and the actual

drill bit rotational velocityω1(t) at the bottom graph. Lastly, Figure 6.5 shows the behaviour

of the actual torque-on-bit Tb(t) and the estimated torque T̂b(t), along with depth of cut

dcut(t). These plots shows that the system is stable and demonstrates good performance; in

particular, all the output variables track their desired (reference) trajectories.

The results of the second experiment are displayed by Figures 6.6, 6.7, and 6.8. In this

experiment, the boundaries of rock layers are kept same as in the first experiment but the

values of the intrinsic specific energy for these rock layers have been modified. Starting

from the ground, the first layer has the stiffness ε = 12 MPa. The second layer has high

stiffness value equal to 20 MPa, however, the stiffness of the third layer is decreased to

5 MPa. This increment and decrement in stiffness of the corresponding rock layers is

been tracked by the estimated stiffness ε̂(t); the corresponding plot are shown in Figure 6.6

along with the reflected force Fest(t). Figure 6.7 shows the graph of output velocity vout(t)

that tracks reference vertical velocity vre f (t), along with the rotational velocities ω1d(t) and



Chapter 6. Telerobotic Drilling System with Haptic Feedback 87

ω1(t). Figure 6.8 shows the response of the actual and the estimated torques-on-bit, as all

as the depth of cut dcut(t). All figures demonstrates stability and good performance of the

drilling control system; in particular, zero steady state errors are achieved for all tracking

variables.

In the third experiment, the estimator gain is increased to γ0 = 5 · 109. To monitor

and validate the performance of the on-line stiffness parameter estimator and the robust

servo controller when vre f (t) is varied using haptic device, the depth of the rock layers and

their corresponding stiffness values have been altered in this experiment. For the first rock

layer, ε is set to 20 MPa. It is increased to 40 MPa for the second layer, which now lies

between 20 cm and 40 cm from the surface. Finally, for the third layer, ε is increased

to 60 MPa. Figure 6.9 shows the graphs of ε(t), ε̂(t) and Fest(t). Figure 6.10 shows the

response of vre f (t) and vout(t) on the top graph, and the responses of ω1d(t) and ω1(t) on the

bottom graph, respectively. The response of T̂b(t) and Tb(t) along with dcut(t) are shown in

Figure 6.11.

In the fourth experiment, the estimator gain γ0 is significantly reduced to 5 · 108. For

simplicity, the depths of the three rock layers are kept similar to the ones defined in the

third experiment, however, the stiffness values for these layers have been altered. The first

layer now has stiffness equal to 4 MPa, it increases to 10 MPa for the second layer, and is

further elevated to 18 MPa for the third layer. It can be seen from Figure 6.12 that, because

of the lower estimator gain γ0, the convergence of the estimated stiffness ε̂(t) to its actual

value ε(t) becomes slower. The corresponding response of Fest(t) is also displayed in this

figure. Figure 6.13 shows the response of vre f (t) and vout(t) on the top graph, and ω1d(t) and

ω1(t) on the bottom graph, respectively. Similarly, the response of T̂b(t) and Tb(t) along

with dcut(t) are portrayed in Figure 6.14.

Finally, Figures 6.15, 6.16, and 6.17 demonstrate the output plots for experiment num-

ber five. Here, the estimator gain γ0 is set equal to 8 · 108. The stiffness of the top rock

layer ε is 4 MPa for distance equal to 30 cm from the surface. Then it is raised to 20 MPa

for the second layer which is located between 30 cm and 50 cm from the surface. Finally,
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for the third rock layer, ε is decreased to 8 MPa. when the drill bit crosses 50 cm beneath

the surface. All the responses are shown in Figures 6.15, 6.16, and 6.17.

Overall, the above described experiments demonstrate stability and good performance

of the designed telerobotic drilling system with haptic feedback, for a range of parameters

and control gains. The description of the experimental results can be concluded with a few

observations. First, the response of the on-line stiffness estimator depends strongly upon

the gain γ0. It is observed that higher γ0 corresponds to faster estimator response resulting

in better tracking of vre f (t) by vout(t). Second, the torque-on-bit Tb(t) is maintained at the

value of about 400 N·m. This could be because of the type and the design characteristics of

the drill bit. Third, the depth of cut dcut(t) typically depends upon the rock stiffness ε. The

higher the rock stiffness, the lower is the magnitude of dcut(t).

6.5 Conclusions

In this Chapter, the structure of telerobotic drilling system with haptic feedback is de-

scribed. Next, the experimental setup for this research is discussed in detail. Experimental

results are presented in form of graphs, and relevant description is provided along with

some conclusions.
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Figure 6.3: Experiment 1: Actual stiffness ε(t) vs. the estimated stiffness ε̂(t) (top); the

reflected force Fest(t) (bottom)

.
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Figure 6.4: Experiment 1: Output vertical velocity vout(t) vs. reference vertical velocity

vre f (t) (top); output rotational velocity of the drill bit ω1(t) vs. reference rotational velocity

ω1d(t) (bottom)
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Figure 6.5: Experiment 1: Torque-on-bit Tb(t) vs. estimated torque-on-bit T̂b(t) (top graph);

depth of cut dcut(t) (bottom graph)
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Figure 6.6: Experiment 2: Actual stiffness ε(t) vs. estimated stiffness ε̂(t) (top); reflected

force Fest(t) (bottom)
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Figure 6.7: Experiment 2: Output vertical velocity vout(t) vs. reference vertical velocity

vre f (t) (top); output rotational velocity of the drill bit ω1(t) vs. reference rotational velocity

ω1d(t) (bottom)
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Figure 6.8: Experiment 2: Torque-on-bit Tb(t) vs. estimated torque-on-bit T̂b(t) (top); depth

of cut dcut(t) (bottom)
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Figure 6.9: Experiment 3: Actual stiffness ε(t) vs. estimated stiffness ε̂(t) (top); reflected

force Fest(t) (bottom)
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Figure 6.10: Experiment 3:Output vertical velocity vout(t) vs. reference vertical velocity

vre f (t) (top); output rotational velocity of the drill bit ω1(t) vs. reference rotational velocity

ω1d(t) (bottom)
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Figure 6.11: Experiment 3: Torque-on-bit Tb(t) vs. estimated torque-on-bit T̂b(t) (top);

depth of cut dcut(t) (bottom)
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Figure 6.12: Experiment 4: Actual stiffness ε(t) vs. estimated stiffness ε̂(t) (top); reflected

force Fest(t) (bottom)
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Figure 6.13: Experiment 4: Output vertical velocity vout(t) vs. reference vertical velocity

vre f (t) (top); output rotational velocity of the drill bit ω1(t) vs. reference rotational velocity

ω1d(t) (bottom)
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Figure 6.14: Experiment 4: Torque-on-bit Tb(t) vs. estimated torque-on-bit T̂b(t) (top);

depth of cut dcut(t) (bottom)
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Figure 6.15: Experiment 5: Actual stiffness ε(t) vs. estimated stiffness ε̂(t) (top); reflected

force Fest(t) (bottom)
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Figure 6.16: Experiment 5: Output vertical velocity vout(t) vs. reference vertical velocity

vre f (t) (top); output rotational velocity of the drill bit ω1(t) vs. reference rotational velocity

ω1d(t) (bottom)
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Figure 6.17: Experiment 5: Torque-on-bit Tb(t) vs. estimated torque-on-bit T̂b(t) (top);

depth of cut dcut(t) (bottom)



Chapter 7

Conclusions

7.1 Thesis Overview

The research presented in this Thesis deals with application of some concepts of teler-

obotics to a conventional oil well drilling process. After considering mathematical models

of the drilling process, a control algorithm was designed that guarantee the convergence

of the vertical penetration velocity to an arbitrary reference value. The control algorithm

has a cascaded structure, where the velocity of vertical penetration is controlled indirectly

through stabilization of the rotational motion of the drill bit. In order to guarantee the con-

vergence of the angular velocity to a desired value in the presence of disturbances in the

form of torque-on-bit, a robust servo controller was designed. However, the design of such

controller depends on the parameter of environment called the intrinsic specific energy,

which is generally unknown beforehand. To solve this issue, an on-line parameter estima-

tor was designed that provides an estimate of the intrinsic specific energy. This estimate

is substituted for the actual value of the parameter in the control algorithm, and the corre-

sponding adaptive control system is evaluated through simulations. Finally, a telerobotic

drilling system with haptic feedback is designed and verified through experiments. The

haptic feedback for the human operator is provided by creating a virtual spring that inter-

acts with the haptic device; the stiffness of the spring is adjusted in real time depending

104
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on the current estimate of the intrinsic specific energy. Experiments are conducted using

PHANTOM Omni Haptic device, where the drilling process model is implemented in C++

environment, and the haptic feedback is provided to the human operator.

Below, the most significant results of this Thesis are outlined.

• The design of robust controller that guarantees asymptotic tracking of a reference

rotational velocity ωre f (t) by the output rotational velocity of the drill bit ω1(t) while

rejecting the measured disturbances Tb(t) is presented in Section 4.3. Simulation

results are presented that confirm the stability and performance of the designed con-

troller. In particular, Figures 4.2, 4.4, 4.6 and 4.8 demonstrate stability and per-

formance of the designed controller for different values of the gains K and constant

desired velocity ωre f .

• Based on the robust servo control algorithm described above, the controller for ver-

tical velocity stabilization is designed that guarantees the convergence of the vertical

drillbit velocity vout(t) to its desired value vre f . The design of this controller is de-

scribed in Section 4.2. Section 4.4 presents results of simulations that demonstrate

stability and performance of the designed algorithm for different values of the refer-

ence velocity vre f , different gains K, and different values of the applied weight-on-bit

W0.

• In Chapter 5, an on-line parameter estimator for the intrinsic specific energy parame-

ter ε is designed. This estimate is then used in the above described robust controller,

and the stability and performance of the resulting adaptive control system is demon-

strated through simulations. The corresponding simulation results are presented in

Section 5.3. In particular, Figures 5.1, 5.3, 5.5, 5.7, 5.9 and 5.11 demonstrate how

the response of the output vertical velocity of drill bit depends upon the estimate of

the intrinsic specific energy.

• Based on the controllers described above, a telerobotic control system for remote

drilling is designed that provides haptic feedback to the user. The structure of the
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telerobotic system is described in Section 6.2. Extensive experimental results are

presented in Section 6.4, that demonstrate stability and good performance of the

designed system in different drilling scenarios.

7.2 Future Work

Some possible directions for future research are as follows.

• A telerobotic drilling system includes a communication link between master and

slave. However, this research does not address the issue of communication delay

while performing the experiments. Thus, it is reasonable to include fixed or vari-

able communication delay between the virtual and remote models of drilling when

conducting experiments.

• The model used in this thesis corresponds to the vertical drilling rig. In recent years,

horizontal drilling is developed, which is a new method of drilling where the drill bit

makes an angular bore hole rather than the straight conventional well bore. Thus, the

control of angular or semi-horizontal drilling could be addressed.

• This research deals with the remote cutting (drilling) action of rocks and vertical

penetration of drill bit. The same ideas can potentially be applied to seafloor drilling,

as well as other applications. In these cases, the control design can be modified

depending upon the model of the mechanical cutter and the environment.
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