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Abstract 
 

 

The research reviews the various methods, accurate and approximate, analytical and 

numerical, used for the analysis of beams that are subjected to dynamic loads.  A review 

of previous research is presented.  A detailed description of one of the methods, the 

Simplified Elastic Plastic Method (the SEP Method), a well-developed approximate 

method, is given.  A finite element model, built with the aid of the computer software 

ABAQUS, is described.  Results of 20 experiments made by others are provided and 

used as a benchmark for the finite element analysis. 

 

 

The methodology used for the validation of the ABAQUS Model and the SEP Method 

is to do, for various study cases, a comparison between the experimental results, those 

computed using the ABAQUS Model and those predicted using the SEP Method.  

Having validated the ABAQUS Model, it has been used as a benchmark with which to 

check the SEP Method.  Therefore, additional cases have been analysed using the 

ABAQUS Model in order to cover a more comprehensive range of variables. 

 

 

A good agreement has been found between the results.  The accuracy of the ABAQUS 

model and the conservatism of the SEP Method are shown.  A design procedure using 

the SEP Method has been developed.  Calibration factors are also proposed in order to 

reduce the conservatism in the SEP Method. 

 

 

The results and recommendations of the research can be employed in the defence 

industry, civil and structural engineering. 
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1.1     Introduction 

 

 

Dynamic Loads are time-dependent forces.  These forces are imposed on structures by 

either natural phenomena such as earthquakes and hurricanes or human activities such 

as explosions and machine vibrations.  Structures affected by dynamic forces can be as 

simple as a beam or a plate, or as complex as a high rise building or a power station.  In 

the analysis and design of these structures, the time-dependent inertial forces should be 

considered.  During its response to dynamic loads, a structure shows resistance to these 

loads in the form of internal forces some of which are related proportionally to the 

displacements (spring forces) and some to the velocities (damping forces).  These 

resistance forces are also time-dependent and should also be considered in the analysis. 

 

 

For many reasons, there has been a growing interest in the field of the dynamic analysis 

of structures in recent years.  The most important reasons are the observed failure of 

structures due to dynamic loads, such as earthquakes and explosions, and the increased 

awareness of the importance of designing structures that are more resistant to these 

kinds of loads.  Other reasons are the growth of knowledge in the fields of structural 

engineering, structural dynamics, strength of materials and stability, the increase in the 

use of high-strength materials and the development of numerical methods and of 

powerful computers which can apply these methods quickly and efficiently.  Also, these 

have led to the possibility of more accurate design and therefore to the development of 

structures that are larger, taller, more slender, less rigid, less material-consuming and 

hence more susceptive to dynamic loads as these structures generally tend to be more 

flexible and having longer natural periods.  These developments have highlighted the 

necessity of designing structures to bear the various dynamic effects. 

 

 

Even though a lot of structures under dynamic loading can properly be designed as if 

the loading was static, there are many important exceptions and it is very necessary that 

the structural engineer is able to decide which/when loads should be considered static 

and which/when they should be considered dynamic. 
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Actually, with the obvious exception of dead loads, all loads are dynamic in reality as 

they have to be applied to the structure in some way, and this would impose a time 

variation to these loads.  Nevertheless, if the load is applied in a manner in which its 

value increases slowly, it will have no dynamic effect and could be considered as static. 

 

 

However, the term “slowly” is not definite, and obviously the decision of whether to 

consider the load as static or dynamic is taken based on subjective standards.  It has 

been found that the natural period of the structure could be assumed to be the most 

important deciding factor.  When the loading is applied during a long period of time 

compared to this natural period, it could be treated as if it was a static loading.  The 

natural period, defined in loose terms, is the time taken by the structure to go through 

one cycle of free vibration. 

 

 

Examples of problems in which dynamic analysis should be executed are structures 

which vibrate due to earthquakes, structures affected by dynamic loads due to vibrating 

machines, structures subjected to impulsive forces from nearby explosions or tornadoes, 

and structures that carry moving loads like bridges. 

 

 

It is important to note that the dynamic analysis of structures consists mainly of the 

determination of the time history of displacements, from which other structural 

variables such as velocities, accelerations, internal stresses and support reactions could 

be calculated using directly applicable expressions.  Therefore, all governing equations 

of motion in the dynamic analysis are found in terms of the displacements, and the 

displacements are in their turns found from these equations. 

 

 

The governing equations of motion of the dynamic response of a structure are generally 

nonlinear partial differential equations that are very difficult to solve by mathematical 

methods.  However, recent developments in the area of the dynamic analysis and design 

of structures have enabled such analysis and design to be executed in a quick and 

practical manner.  Examples of these are the employment of simplifying assumptions 

and easy dynamic models, and of modern numerical and computational techniques. 
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The focus of this research work is on the dynamic response of structural members, in 

particular, beams.  These members are the basic components of larger more complex 

structures.  Therefore, it is very important to study their dynamic behaviour in the first 

instance in order to better clarify the dynamic characteristics of more complex 

structures. 

 

 

The dynamic response of a structure is nonlinear when the restoring forces are not 

proportional to the displacements.  This Thesis describes two kinds of nonlinearity 

which were included in the dynamic analysis. 

 

 

The first kind is geometric nonlinearity and that is when displacements are too large to 

ignore.  For example, if the transverse displacements of a beam are large then the axial 

internal force is large and the interaction between both is also significant.  Thus, the 

nonlinearity caused by this interaction is significant and should be considered in the 

analysis. 

 

 

The second kind is material nonlinearity and that is when the mechanical properties of 

the material change during the response, for example, when the stress is not 

proportional to the strain and thus Young’s modulus of elasticity E is not constant.  

Also, materials sensitive to strain rates, such as steel, are nonlinear as their mechanical 

properties, especially the yield stress, increase as the strain rate increases. 

 

 

The effect of plasticity the material would experience if subjected to dynamic loading 

which leads to stresses greater than the elastic limit has been included together with the 

effect of elasticity.  This is shown to be very important in the analysis and design of 

structural members because the maximum energy that the material can absorb by having 

plastic deformation is much greater than the maximum energy that can be absorbed if 

the material remains completely elastic.  This indicates that it is usually more expensive 

to design a structural member to act within its elastic capacity. 
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1.2     Objectives and Contribution of the Research 

 

 

One of the objectives of the research is to review the various methods used for the 

dynamic analysis of beams.  The methods investigated include both accurate and 

approximate methods.  In the more accurate methods, the beam is dealt with as a 

structure which has an infinite or very large number of degrees of freedom.  The 

governing equation of motion is a partial differential equation that can be solved either 

analytically or numerically.  In numerical methods, such as the finite element method, 

the structure is meshed and the time divided into intervals then finite summations and 

iterations are carried out to get the solution.  In approximate methods on the other hand, 

the beam is considered to have a finite small number of degrees of freedom and various 

simplifying assumptions are introduced.  The governing equation of motion thus 

becomes a matrix or single differential equation with its unknown(s) being function(s) 

of time only and which can be easily solved analytically or numerically. 

 

 

A further contribution of the research is to build a finite element model for beams which 

are subjected to dynamic loads, and then to validate the employment of this model in the 

dynamic analysis of beams so that it can also be used as an ‘accurate’ benchmark to 

compare with and validate other methods of dynamic analysis.  This numerical model 

has been built using the nonlinear finite element computer software ABAQUS provided 

by SIMULIA, Dassault Systèmes.  The validation process is carried out by making 

comparisons between the experimental results and those computed by ABAQUS. 

 

 

Also, the research aims to give a detailed description of one of the most well developed 

approximate methods of the dynamic analysis of beams, the Simplified Elastic Plastic 

Method (the SEP Method), and to validate the use of this method for the dynamic 

analysis of beams.  The validation process is conducted by making comparisons 
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between the experimental results, those computed by ABAQUS and the results 

calculated using the SEP Method. 

 

 

 

 

1.3     Justification for the Research and Applicability of its Outcomes 

 

 

The results, conclusions and recommendations of the research can be employed for the 

dynamic analysis of beams in structures in the following situations: 

 

a-  Structures subjected to impulsive loads due to, for example, blasts 

 

b-  Shields of military/civil tanks and vehicles against explosions 

 

c-  Structures subjected to dynamic loads due to human activities such as those 

due to vibrating working machines or those caused by moving vehicles, on 

bridges for example 

 

d- Structures subjected to dynamic loads due to natural phenomena such as 

wind, earthquakes, tornados, hurricanes or tsunami tidal waves 

 

 

 

 

1.4     Layout of Thesis 

 

 

In Chapter 2, a comprehensive literature review of current knowledge is provided.  It 

discusses the main theoretical principles of the dynamic analysis of structures from 

point masses to elementary members such as beams.  An explanation is given, with the 

governing equations of motion, of the different methods and techniques of analysing 

beams subjected to dynamic loads.  This includes a description of the analytical accurate 

method.  Also, a review of approximate methods is given.  An insight of the 
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phenomenon of strain rate sensitivity of certain materials as their mechanical properties 

are altered by dynamic, especially rapid, loading is also presented. 

 

 

Chapter 2 also provides a review of previous research that has been carried out with the 

relevant findings and conclusions.  It consists of a review of the numerous studies which 

include useful empirical formulae suggested for the fast dynamic analysis of beams, 

various approximate methods, both analytical and numerical, and the numerous finite 

element analyses carried out. 

 

 

In Chapter 3, an introduction to the nature of impulsive loads is presented.  In particular, 

one kind of this loading, the air blast of an explosion, is discussed.  The importance of 

including explosive loads in the dynamic analysis and design of structures is revealed.  

The computational equations used for simulating the blast wave pressure applied to the 

exposed surface of a structure are detailed.  Also, the principles of dynamic analysis and 

design of structures subjected to impulsive loads together with the various 

simplification techniques used in the simulation of these loads such as the pulse theorem 

are explained. 

 

 

Chapter 4 contains a detailed description of the Simplified Elastic Plastic Method (the 

SEP Method), an approximate method for the dynamic analysis of beams, the validation 

of which will be carried out in the Thesis.  It includes an introduction to the 

approximation assumptions made and an illustration of the analytical techniques used.  

All the steps and the procedures for the SEP Method with the various equations and 

relationships are given. 

 

 

Numerical methods, such as the Finite Element Method (FEM), are powerful methods 

which have shown to be accurate and efficient when used for structural analysis and 

design especially in the most difficult and complex situations in civil engineering.  The 

methods came to existence many decades ago and have been developed quite 

thoroughly over the years.  They have arisen due to the need to find the response of 

structures in particular cases, like dynamic loading, nonlinear behaviour and material 
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becoming plastic, which would prove to be extremely difficult if the classical methods 

were to be used, and due to the massive revolution in computer technology in recent 

years.  Chapter 5 provides a brief review of numerical methods including an overview 

of integration techniques and iteration formulae, a discussion of nonlinearity and an 

explanation of the finite element method with the various time-stepping schemes.  

These are followed by a detailed description of the ABAQUS finite element model built 

for the beams in the research and the validation of which was carried out and described 

later in the Thesis.  It includes information about the modelling of the material, dynamic 

loads, boundary conditions, details of the meshing, type and number of elements used, 

geometry, time step chosen for the analysis and numerical integration scheme 

employed. 

 

 

In Chapter 6, a detailed description of the experimental work carried out by Symonds 

and Jones (1972) is given.  This includes the test rig and instrumentation, the beam 

specimens tested and the explosive load applied to the beam in each experiment. 

 

 

Chapter 7 explains the methodology adopted to validate the analytical models described 

in the preceding Chapters.  Detailed information for the study cases considered, which 

consisted of beams loaded impulsively, is provided in this Chapter, this includes data 

for the geometry and dimensions of beams, the mechanical properties of the beam 

material and the different intensities of impulsive load applied to the beam. 

 

 

Chapter 7 also presents the values of the permanent lateral displacements of the beams 

of the study cases.  These include the results from the experiments, those computed 

using the ABAQUS Model and the results predicted using the SEP Method.  The results 

are discussed and compared in order to validate the ABAQUS Model and the SEP 

Method.  An important part of the comparison process presented is the calculated 

percentage difference between the two compared results.  Also, a design procedure 

developed for the SEP Method is described. 

 

 

Finally, in Chapter 8, conclusions from this investigation are drawn. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2 – Methods of Dynamic Analysis and Review of Previous 

Research 



 10 

2.1     Introduction 

 

 

The subject of dynamic analysis has not been yet studied to the extent where analytical 

accurate methods for solving complex structural problems, especially nonlinear, have 

been developed.  Instead, the provision of such methods has been limited to simple 

cases of linear structural dynamics.  The paramount reason behind this is the great 

analytical difficulty encountered in the development of such methods.  This has led to 

the substitution, adopted by many structural engineers, of the accurate dynamic analysis 

by an approximate dynamic, or even equivalent static, analysis.  However, the interest 

in this area of knowledge has considerably increased in recent years due to the rapid 

development of powerful computers and the continuous development of modern reliable 

experimental instrumentation which have provided invaluable help in the process of 

understanding such complex structural dynamic problems. 

 

 

This Chapter provides a broad overview of the dynamic analysis of beams.  It includes 

the main assumptions, the different methods of analysis and the governing equations of 

motion which will be used later in the Thesis.  Also, an insight into the phenomenon of 

strain rate sensitivity for certain materials when their mechanical properties are altered 

by dynamic, especially rapid, loading is presented. 

 

 

The methods used for the dynamic analysis can be placed into one of the following 

categories and which are presented in detail in the following text: 

 

1- Analytical accurate methods 

2- Approximate methods 

3- Numerical methods 

 

 

A summary of the relevant research that has been carried out is given in this Chapter 

together with the findings and the conclusions drawn from them.  This includes various 

investigations that cover one or more of the following issues: 
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1-  The empirical formulae that have been developed and could be used for the dynamic 

analysis of beams 

2-  The various approximate methods, both analytical and numerical 

3-  Finite element analysis 

 

 

 

 

2.2     Structures Modelled as a Single Degree of Freedom System 

 

 

2.2.1     Introduction 

 

 

Under dynamic conditions, finding the accurate analytical description of the behaviour 

of a structure has often proven to be a very difficult task, Paz (1991).  Only a few simple 

problems can be solved rigorously in closed form expressions.  In the case of 

complicated situations of structural dynamics, such as those involving complex dynamic 

loading, material properties or boundary conditions, many simplifications and 

assumptions might need to be made in order to substitute the structure by a much 

simpler approximate model which is easy to solve analytically but at the same time is 

still able to simulate the dynamic behaviour of this structure accurately enough to meet 

the requirements of both safety and economy.  This model represents the connection 

between the approximate results produced and the real structural situation by a symbolic 

idealization that satisfies all the assumptions suggested for this particular situation. 

 

 

The assumptions introduced to simplify complex dynamic problems can be placed into 

one of the following categories, Paz and Leigh (2004): 

 

1-  Geometric assumptions some of which include 

 

�  modelling beams, frames and trusses as structures that consist of one dimensional 

elements. 
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�  assuming plates, slabs and shells as two-dimensional elements of relatively small 

thicknesses. 

�  idealizing continuous systems by discrete models that are divided using different 

nodes assigned coordinate systems to measure their displacements. 

 

2-  Material assumptions: these deal with the properties of the materials of construction 

like isotropy or homogeneity, and those properties that describe the material 

behaviours such as linearity, elasticity, nonlinearity, plasticity, etc. 

 

3-  Loading assumptions examples of which are 

 

�  assuming concentrated forces to be applied at geometric points. 

�  considering forces to be applied instantaneously.  

�  simulating forces by constant, trigonometric or periodic time-history functions. 

 

 

The dynamics of the single degree of freedom model is reported widely in the literature, 

for example Biggs (1964), Warburton (1964), Major (1980), Vertes (1985), Clough and 

Penzien (1993) and Paz and Leigh (2004). 

 

 

 

 

2.2.2     Degrees of Freedom in Structural Dynamic Modelling 

 

 

A degree of freedom of a structure is defined as the ability of a point of the structure to 

change its position (to displace).  Thus, the total number of degrees of freedom of a 

structure is equal to the number of independent displacements possible in the structure, 

Biggs (1964).  These independent coordinates are necessary and sufficient to completely 

determine the position and shape (the displacements of all geometric points) of the 

whole structure at any time, Biggs (1964), Paz (1991) and Warburton (1964). 
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2.2.3     Modelling Structures as a Single Degree of Freedom System 

 

 

By definition, the number of degrees of freedom of a continuous system is infinite 

though they still need to be identified and this can sometimes be a very difficult task.  

However, analytical simulation usually limits them to a finite number and sometimes to 

a single degree of freedom only (the system of this case is called the simple mass-spring 

model) from which the infinite degrees of freedom of the continuous structure can be 

computed using direct relations or expressions derived from assumed shapes.  This 

reduction in the number of degrees of freedom is often adopted in order to accomplish 

that difficult task a lot easier and without actually too much reduction in the accuracy of 

the solution.  Examples of this are shown in figure 2.1 where structures having an 

infinite number of degrees of freedom have each been considered in simulation as a 

single degree of freedom system.  Figure 2.1a shows a plane frame, subjected to a 

dynamic horizontal concentrated force F(t), which has been modelled as having one 

degree of freedom which is the horizontal linear displacement x(t) of the top level of the 

frame.  A cantilever with a dynamic vertical concentrated force F(t) applied at its free 

end is presented in figure 2.1b where it has been simulated as a system of a single 

degree of freedom which is the vertical linear displacement y(t) of the free end of this 

cantilever.  Similarly, figure 2.1c shows a simply supported beam subjected to a 

dynamic vertical distributed pressure p(t).  The vertical linear displacement y(t) of the 

middle node of this beam is the single degree of freedom chosen in modelling. 

 

 

The single degree of freedom model described above is illustrated in figure 2.2a.  As 

shown, this model consists of the following components: 

 

1-  The mass m of the model measured in kg in this Thesis and which represents the 

inertial effect.  This mass has one degree of freedom y, measured in metres, which is 

a function of time t measured in seconds. 

2-  The spring attaching the mass of the model to its support, which has the stiffness 

value k measured in Newton/metre and representing the linearly elastic restoring 

forces of the structure simulated by this model. 
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3-  The excitation dynamic force F(t) applied on the mass of the model in the same 

direction as the single degree of freedom y of this model and which is a function of 

time, t.  This force is measured in Newtons. 

4-   The support of the model and which holds the mass by the spring. 

5-  The one dimensional reference frame of the model and which consists of the single 

axis o-y.  This y-axis has the same direction of the single degree of freedom y, stated 

above, of this model. 

 

 

 

 

2.2.4     General Governing Equation of Motion 

 

 

Figure 2.2b shows the free body diagram of the mass after being displaced by y at time 

t.  The forces acting upon the mass are F(t) the excitation force, ky the restoring force 

imposed by the spring assuming it is linearly elastic, and m y��  the inertial force of the 

mass where y��  is the second derivative of the displacement y with respect to time t 

representing the acceleration of the mass. 

 

 

By applying Newton’s second law of motion to the model shown in figure 2.2b, the 

following equation results: 

 

)(tFkyym =+��                                                                                                             (2.1) 

 

 

This equation is the general governing equation of motion of the single degree of 

freedom model.  It is obvious that this equation is a linear differential equation of 

second order and by solving it with the initial conditions for this model, which are the 

displacement 0y  and the velocity 0y�  = (dy / dt) t = 0 of the mass at the initial time t = 0, 

the unknown, which is the single degree of freedom displacement function y(t), can be 

found. 
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2.2.5     Governing Equation of Free Motion and its Solution 

 

 

When there is no excitation force applied to a vibrating structure, the motion is 

described as a free motion.  Thus, since F(t) = 0, the previous equation becomes: 

 

0=+ kyym ��                                                                                                                   (2.2) 

 

 

This is the governing equation of free motion for the single degree of freedom model; a 

homogeneous second order linear differential equation the solution of which is given by 

the harmonic function: 

 

t
y

tyy ω
ω

ω sincos 0
0

�
+=                                                                                            (2.3) 

 

where 0y  and 0y�  are the model initial conditions mentioned above and � is the natural 

frequency of free vibration of the model measured in radians/second.  It represents one 

of the most important dynamic characteristics of the structure being modelled and is 

given by: 

 

m
k=ω                                                                                                                        (2.4) 

 

 

Equation (2.3) fully describes the free vibration of the single degree of freedom model. 
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2.2.6     Natural Period of Vibration 

 

 

Equation (2.3) clearly indicates that the free vibration of the previous model is harmonic 

which means by definition that it is also periodic.  The period of this free vibration is 

called the natural period of the structure represented by this model.  It is a constant 

value and is measured in seconds.  The natural period represents another one of the most 

important dynamic characteristics of the structure being modelled and can be computed 

from the natural frequency � defined previously using the following equation: 

 

ω
π2=T                                                                                                                         (2.5) 

 

 

The natural period of a structure is a very useful and widely-used parameter in structural 

dynamic analysis and design.  Irvine (1986) has shown that the kinds of structures that 

can be simulated by a single degree of freedom model have natural periods that 

typically lie in the range 0.1 to 10 seconds.  The lower limit of this range would 

correspond for example to low-rise buildings, while the upper limit would correspond to 

some types of footbridges, slender high-rise buildings or long-span bridges (for example 

the famous Golden Gate Suspension Bridge has a fundamental natural period of about 

8.5 seconds).  Nevertheless, the dynamic criteria of static serviceability and comfort of 

users or pedestrians and which govern live-load deflections require the natural period of 

structures to be reasonably low.  This implies that the structural stiffness should be high 

and the mass associated with the dead weight of the structure should be low.  However, 

without special care being taken, these dual conditions can be mutually exclusive. 

 

 

Clough and Penzien (1993) and Jones (1989) have shown that the ratio between the 

excitation period of periodic dynamic forces or the duration of limited-time dynamic 

loading and the natural period of a structure plays a fundamental role in determining the 

dynamic behaviour of this structure from response spectra, in deciding whether or not to 

consider the finite-duration dynamic loading as impulsive as well as choosing the most 

suitable simulation for impulsive loading, and in deciding the most efficient method 
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(elasto-plastic, purely plastic …etc) to be employed in the dynamic analysis and design 

of the structure. 

 

 

 

 

2.2.7     Dynamic Load Factor (DLF) 

 

 

The Dynamic Load Factor (DLF) is defined as the number of times the static 

displacement yst the dynamic displacement (response) y is, where the former is the 

displacement of the structure under a static load equal to Fm, the maximum value of the 

dynamic load applied.  Hence: 

 

sty
y

DLF =                                                                                                                    (2.6) 

 

where 

 

k
F

y m
st =                                                                                                                       (2.7) 

 

 

If the dynamic load factor DLF is known, the response y can then be determined by: 

 

styDLFy .=                                                                                                                  (2.8) 

 

Therefore, the dynamic load factor multiplied by the static displacement actually 

represents the response of the structure. 
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2.2.8     Dynamic Response to Suddenly Applied Rectangular Load 

 

 

Figure 2.3a shows a suddenly applied dynamic load which is constant during its 

duration td.  This load is defined by: 

 

F(t) = Fm ,           0 � t � td  

                                                                                                                                      (2.9) 

F(t) = 0    ,                 t > td  

 

 

The constant value Fm is also the maximum value of the load.  For a structure initially at 

rest and in dimensionless terms, the dynamic response is given by: 

 

T
t

DLF π2cos1−=                         ,       0 � t � td  

                                                                                                                                    (2.10) 

T
t

T
t

T
t

DLF d ππ 2cos2cos −�
�

�
�
�

� −=  ,             t � td  

 

 

 

 

2.2.9     Dynamic Response to Suddenly Applied Triangular Load 

 

 

A linear applied dynamic load of a maximum value Fm initially which then decays with 

time until vanishing after a time td, the duration of the load, is presented in figure 2.3b.  

This load is defined by: 

 

��
�

�
��
�

�
−=

d
m t

t
FtF 1)(  ,             0 � t � td 

                                                                                                                                    (2.11) 

0)( =tF                   ,                   t � td 
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For a structure initially at rest and in dimensionless terms, the dynamic response is 

given by: 

 

dd t
t

T
t

T
t

T
t

DLF −+−=
π

π
π

2

2sin
2cos1                       ,     0 � t � td 

                                                                                                                                    (2.12) 
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2.3     Accurate Analytical Method of Dynamic Analysis of Beams (Distributed 

Properties) 

 

 

2.3.1     Introduction 

 

 

The accurate analytical methodology in structural dynamics has been presented in the 

previous section for single degree of freedom systems along with the governing 

differential equations of motion and their possible solutions.  This section provides a 

detailed explanation of this accurate method when used for the dynamic analysis of 

more complex structural systems, beams.  Beams are structural members that have, 

relatively, one long dimension (the length) and two short dimensions (the width and the 

height or the thickness).  They are important members that are often used as elementary 

parts of whole structures such as buildings and bridges. 

 

 

In fact, beams are continuous structural systems with distributed properties and which, 

consequently, have an infinite number of degrees of freedom.  This description of 
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beams is considered in the procedures for the accurate dynamic analysis of members.  

Therefore, the results obtained from this method provide an accurate description of the 

response of beams when subjected to dynamic loads.  A more detailed investigation of 

this methodology can be found in Timoshenko and Young (1955), Den Hartog (1956), 

Biggs (1964), Thomson (1966 and 1993), Clough and Penzien (1993), Paz and Leigh 

(2004) and Rao (2004). 

 

 

This section considers the dynamic theory of beams having distributed mass and 

stiffness for which the governing equations of motion are partial differential equations.  

The integration of these equations is generally more complicated than the solution of 

ordinary differential equations governing the dynamic response of single degree of 

freedom systems.  Due to this analytical complexity, the dynamic analysis of structures 

as systems of distributed properties has had limited use in practice.  However, the 

analysis, as continuous models, of some simple structures gives, without great effort, 

solutions which are very essential in assessing approximate methods based on discrete 

multiple or even single degree of freedom systems. 

 

 

 

 

2.3.2     General Governing Equation of Motion of Beams 

 

 

The treatment of beam flexure developed herein is based on the simple bending theory 

as it is commonly used for engineering purposes.  The method of analysis is known as 

the Bernoulli-Euler theory which assumes that a plane cross section of a beam remains 

plane during flexure. 

 

 

Figure 2.4 shows a beam of a uniform cross section, made from a homogeneous 

material and subjected to a general lateral distributed dynamic load p(x,t) per beam unit 

length.  � and E are respectively the mass density and the elasticity modulus of the beam 

material, while A and I are respectively the area and the second area moment of the 

beam cross section.  The dynamic response of the beam is represented by the lateral 
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displacement y(x,t), a function found from solving the governing equation of motion of 

the beam: 
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This equation is the Euler-Bernoulli beam equation, a partial differential equation of the 

fourth order applicable as long as the beam remains elastic.  It models the dynamic 

behaviour of the beam reasonably accurately.  However, solving this equation is 

difficult even though it is for a member which remains elastic.  If plasticity exists in the 

beam, it has not been possible to derive the governing equation. 

 

 

In the previous equation, only the flexural deflections are considered while the shear 

deflections and the rotatory inertia of the cross section are neglected.  The inclusion of 

both these effects in the differential equation of motion renders it more accurate but 

considerably increases its complexity.  Such an equation is known as the Timoshenko 

beam equation, first introduced by Timoshenko (1921).  Also, the Euler-Bernoulli 

equation does not include the effect of the axial force on the behaviour of the beam.  

The more accurate equation which includes such an effect and the Timoshenko equation 

are presented later. 

 

 

 

 

2.3.3     Governing Equation of Free Motion of Beams 

 

 

For free vibration, when p(x,t) = 0, the governing equation of Euler-Bernoulli becomes 

homogeneous: 
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Solving this equation, which is also difficult, while considering the boundary 

conditions, gives the natural frequencies and the shape functions of the normal modes of 

vibration of the beam. 

 

 

For a fully fixed uniform beam of span 2l and rectangular cross section of width b and 

thickness h, the fundamental natural frequency of free vibration is given by: 

 

ρ
ω E

l
h
2

615.1=                                                                                                        (2.15) 

 

and thus the fundamental natural period of this beam, equation (2.5), is given by: 

 

Eh
l

T
ρ2

891.3=                                                                                                         (2.16) 

 

 

 

 

2.3.4     Equation of Motion Including the Axial Force Effect (Geometric 

Nonlinearity) 

 

 

When a beam has an axial force, the governing equation of its motion is affected by the 

presence of this force.  Including the axial force effect in the dynamic analysis of beams 

increases its accuracy.  Figure 2.5 shows a beam under a general dynamic load p(x,t) 

and having an axial force N.  The general governing equation of motion which takes 

into account the effect of this force is: 
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and the relevant governing equation of free motion is: 
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2.3.5     Equation of Motion Including the Effect of Shear and Rotatory Inertia 

(Timoshenko Equation) 

 

 

The applicability of the previous equations of motion is limited to structural dynamic 

problems where only flexure and translatory inertia are of dominant effect.  Therefore, it 

must be recognized that these equations do not provide a completely accurate 

description of beams behaviour under dynamic loading.  The reason is that these 

equations still do not consider the effect of wave travel which is the propagation of 

disturbance from the points of the dynamic load application along the length of the 

beam.  Instead, these equations imply effect of wave components with short 

wavelengths travelling along the beam with infinite velocities. 

 

 

Hughes and Speirs (1982) have shown that a disturbance wave starting from the 

application point of dynamic loading will in fact take a finite time to travel out to the 

beam supports and more time to return to the loading point.  Thus, the beam does not 

‘know’ its boundary conditions until sometime after application of the loading.  It 

follows that all beams, irrespective of boundary conditions, respond in the same manner 

until they ‘know’ their boundary conditions.  Therefore, if the dynamic loading is of 

relatively short duration, the behaviour of the beam during this short duration will be 

independent of its boundary conditions. 

 

 

A more accurate description of beam vibration was presented by Timoshenko (1921).  

This differential equation of motion allows additionally for the effect of shear and 

rotatory inertia: 
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in which s is a factor which accounts for the non uniform shear distribution across the 

cross section and depends on the shape of the cross section, and G is the shear modulus 

of elasticity.  Goldsmith (1960) has presented some of the many values of s which are 

0.667 and 0.750 for rectangular and circular cross sections, respectively. 

 

 

Equation (2.19) is very accurate and gives a more realistic description of wave travel.  

Goldsmith (1960) and Hughes and Speirs (1982) have shown using this equation that an 

impulsive disturbance involving both shear and moment will result in two wave trains: a 

shear wave train of velocity ρ/sG  and a moment wave train of velocity ρ/E .  

Furthermore, reflections of these waves at the beam supports will result in more wave 

trains, when the situation becomes more complicated. 

 

 

Both the Euler-Bernoulli equation (2.14) and the Timoshenko equation (2.19) can be 

solved for particular dynamic problems and the results compared to examine the effect 

of shear and rotatory inertia on response.  Hughes and Speirs (1982) proved that these 

effects become more significant as the number of vibration modes excited during the 

response increases.  Weaver et al. (1990) also reached to the same conclusion for natural 

frequencies of vibration.  They found that the contribution of the effect of shear and 

rotatory inertia on the natural frequency becomes more important as the order of the 

natural frequency (the vibration mode order) increases.  It was shown that the effect of 

shear on the frequency is 3.2 times larger than the effect of rotatory inertia, and they 

also estimated the maximum total contribution of both these effects on the frequency at 

about 1.7%. 
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2.4     Method of Approximate Dynamic Analysis of Beams (Discrete Properties) 

 

 

2.4.1     Introduction 

 

 

In the previous section, the theory for the accurate analysis of beams considering the 

stiffness and inertial properties as distributed has been presented.  This section describes 

the approximate analysis which assumes that the beam has discrete properties, that is, a 

multi degree of freedom system.  In this system, the properties are assigned to the nodes 

consistent with the static deflections of the beam.  The equations given herein will be 

used later in the Thesis.  More details of the approximate method can be found in Biggs 

(1964), Clough and Penzien (1993) and Paz and Leigh (2004). 

 

 

 

 

2.4.2     Displacement Vector 

 

 

Figure 2.6 shows a beam element of cross sectional second moment of area I and area 

A, length L and material modulus of elasticity E and mass density �.  The linear and 

angular nodal displacements 	1, 	2, 	3 and 	4 at both ends of the beam element are also 

shown.  The local displacement vector of the beam element can be written as: 
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The global displacement vector of the entire structure is referred to as {y} where each 

value y of this vector represents a nodal linear or rotational displacement (degree of 

freedom) of the structure. 

 



 26 

 

 

 

2.4.3     Shape Functions 

 

 

The shape function Ni(x) of a beam element represents the variation of its lateral 

displacement due to a nodal displacement 	i of its end equal to one unit while all other 

nodal displacements are maintained at zero.  From this definition, the shape functions of 

the beam element shown in figure 2.6 are given by the following equations: 
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The total lateral displacement y(x) of the beam element due to arbitrary nodal 

displacements 	1, 	2, 	3 and 	4 at both its ends can then be found using the previous 

shape functions and a superposition to give: 

 

44332211 )()()()()( δδδδ xNxNxNxNxy +++=                                                    (2.22) 
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2.4.4     Stiffness Matrix 

 

 

The stiffness coefficient kij of a beam element is the nodal force at and in the direction 

of the nodal displacement 	i due to a unit nodal displacement 	j while all other nodal 

displacements are maintained at zero.  From this definition, the stiffness coefficient kij 

can be determined using the relevant shape functions as follows: 

 

 �
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Using this equation, the local stiffness matrix of the beam element is: 
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The global stiffness matrix of the entire structure is referred to as [K] and is assembled 

from the local stiffness matrices of the elements that form the structure. 

 

 

 

 

2.4.5     Geometric Stiffness Matrix (Effect of Axial Forces) 

 

 

When axial forces in the beam are considered in addition to the flexural forces, the 

stiffness coefficients will be modified.  The modification to the stiffness coefficient kij is 

known as the geometric stiffness coefficient of the beam kGij which is defined as the 

nodal force, resulting from the axial forces in the beam, at and in the direction of the 

nodal displacement 	i due to a unit nodal displacement 	j while all other nodal 
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displacements are maintained at zero.  From this definition, the geometric stiffness 

coefficient kGij is given by: 

 

 ��
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where N(x) is the axial force at position x of the beam and Ni(x) and Nj(x) are the 

relevant shape functions of the beam.  The axial force is assumed to be positive when 

compressive. 

 

 

This coefficient represents the effect of geometric nonlinearity in the structure and from 

the previous equation the local geometric stiffness matrix of the beam element is: 
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The global geometric stiffness matrix of the entire structure is referred to as [KG]. 

 

 

 

 

2.4.6     Combined Stiffness Matrix 

 

 

The total stiffness of a beam is represented by the local and global combined stiffness 

matrices, [kc] and [Kc] respectively, which are given by: 

 

[kc] = [k] − [kG]                                                                                                          (2.27) 

 

[Kc] = [K] − [KG]                                                                                                       (2.28) 
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2.4.7     Mass Matrix 

 

 

It is possible to evaluate the coefficients in the mass matrix corresponding to the nodal 

displacements of a beam element by a procedure similar to the determination of element 

stiffness coefficients.  In this manner, the mass coefficient mij of a beam element is 

defined as the nodal force in direction i (direction of the displacement 	i) at one end of 

this beam due to a nodal acceleration in direction j ( jδ�� ) equal to one unit while all other 

nodal accelerations are maintained at zero.  From this definition, the mass coefficient 

mij is given by: 
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where Ni(x) and Nj(x) are the relevant shape functions of the beam. 

 

 

From the previous equation, the local mass matrix of the beam element is: 
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The global mass matrix of the entire structure is referred to as [M]. 
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2.4.8     Dynamic Load Vector 

 

 

Figure 2.6 shows the forces and moments r1(t), r2(t), r3(t) and r4(t) at the ends of the 

beam element (nodal element forces).  The local nodal force vector of the beam element 

can be written as: 
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When dynamic loads consist of only concentrated forces and moments applied to the 

nodes of discretization of the structure, the load vector can be written directly.  In 

general, however, loads can be applied to other points.  Loads may include distributed 

forces such as p(x,t) shown in figure 2.7.  In this case, resulting forces at the ends of the 

beam element are called the equivalent nodal element forces, re1(t), re2(t), re3(t) and re4(t) 

in figure 2.7, and form the local equivalent dynamic load vector of the beam element as 

follows: 
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The global equivalent dynamic load vector of the entire structure is referred to as 

{Fe(t)}. 

 

 

The equivalent nodal element force is given by: 
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where Ni(x) is the relevant shape function of the beam element. 

 

 

The other dynamic loads concentrated at the nodes of discretization of the entire 

structure form the global concentrated dynamic load vector {Fco(t)} which together with 

{Fe(t)}, the global dynamic load vector {F(t)} of the entire structure can be determined 

as follows: 

 

{F(t)} = {Fco(t)} − {Fe(t)}                                                                                          (2.34) 

 

 

 

 

2.4.9     Governing Equation of Motion 

 

 

As shown above, the distributed properties of the beam and its load in the approximate 

method of analysis are expressed in terms of discrete quantities at defined nodes.  The 

governing equations of motion as functions of these quantities are then established by 

imposing the conditions of dynamic equilibrium between the forces at the nodes.  In 

simulations where the effect of axial forces is neglected due to it being small, the 

differential matrix equation of motion is: 
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If the effect of axial forces is included, the equation of motion becomes: 
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For free vibrations, the governing equation excluding the axial forces effect is: 
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and including the axial forces effect is: 

 

}0{}]{[}]{[ =+ yKyM c��                                                                                              (2.38) 

 

 

By solving the equation of motion, the global displacement vector {y}, from which the 

local displacement vector {	} of each single element of the model can be known, is 

determined.  In practice, the solution can be accomplished easily by standard methods 

of analysis such as modal analysis with the assistance of computer software. 

 

 

 

 

2.4.10     Nodal Element Forces 

 

 

Once the nodal displacements {	} are found, the dynamic equilibrium condition for 

each element can be applied in order to calculate the local vector {r(t)} of nodal element 

forces as follows if the effect of axial forces is neglected: 

 

)}({}]{[}]{[)}({ trkmtr e++= δδ��                                                                               (2.39) 

 

and as follows when including the effect of axial forces: 
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2.5     Strain Rate Sensitivity of Materials in Dynamic Problems 

 

 

2.5.1     Introduction 

 

 

Some dynamic loads, especially impulsive ones such as shock and impact, can cause 

high strain rates in the materials they act upon, where the strain rate is defined as the 

rate of change of strain with time.  Most metals, especially steel, tend to exhibit 

enhanced mechanical properties at high rates of strain, due to dynamic loads, compared 

to their properties under static and quasi-static loading.  The stress strain curve is 

elevated as the strain rate increases such that the mechanical properties, such as the 

yield stress and the elasticity modulus, increase.  In such cases, the metal is described as 

a strain rate sensitive material. 

 

 

The phenomenon of strain rate sensitivity in materials has been investigated by many 

researchers including Cowper and Symonds (1957), Buchar, Bilek and Dusek (1986), 

Tinkler (1986) and Al-Hassani and Reid (1992).  It has been found that the behaviour of 

strain rate sensitive metals is very complex.  Therefore, several empirical formulae have 

been suggested in order to describe such behaviour as accurately as possible. 

 

 

 

 

2.5.2     Constitutive Law for Modelling Materials with Strain Rate Sensitivity 

 

 

Among the many formulae that represent strain rate sensitivity, the power law, which 

was experimentally derived by Cowper and Symonds (1957), is important and is one of 

the most widely used constitutive equations for modelling strain rate sensitive metals.  

This law assumes an increase in the yield stress and no change in the elasticity modulus 

and relates the dynamic yield stress 
yd, the strength of the material under dynamic 

loading, to the strain rate �˙ as follows: 
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where 

 


ys is the static yield stress, the strength of the material under static loading 

D is the multiplier of strain rate sensitivity of the material 

q is the exponent of strain rate sensitivity of the material 

 

D and q are constants, which are determined experimentally, for a particular material.  

For mild steel, these constants have been found to be approximately equal to 40 and 5 

respectively. 

 

 

The previous equation can be recast to give the dynamic yield stress directly as follows: 
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It can be seen that the yield stress is always greater under dynamic loading than static 

loading. 
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2.6     Review of Previous Research 

 

 

In the following, a survey of what has been done so far in the field of dynamic analysis 

of beams is presented.  This includes the studies made for the development of various 

methods, both analytical and numerical, to determine dynamic response of beams and 

their potential applications, shortcomings and limitations.  Also, several finite element 

models are discussed with the results of analysis.  Empirical formulae for beam 

dynamics derived from observations are given as well.  The literature review is 

presented in chronological order. 

 

 

It was recognized by the early researchers in the problem of a transversely vibrating 

beam that the bending effect was the single most important factor.  The Euler-Bernoulli 

beam model, named after Leonhard Euler, and Daniel and Jacob Bernoulli and which 

dates back to the 18th century, took this effect into account and was therefore the first 

‘accurate’ model to be introduced and the most widely used for dynamic analysis of 

beams.  However, the Euler-Bernoulli model had a deficiency in that it tended to 

slightly overestimate the natural frequencies of the vibrations of the beam.  This 

overestimation was exacerbated for the natural frequencies of the higher normal modes 

of vibration.  This frequency problem was shown by Strutt (1877), Timoshenko (1953), 

Timoshenko and Young (1955), Hughes and Speirs (1982) and Weaver et al. (1990). 

 

 

Strutt (1877) improved the Euler-Bernoulli model by including the effect of rotatory 

inertia of the beam.  This improvement partially corrected the overestimation of natural 

frequencies.  However, Strutt (1877) and some subsequent researchers, for example 

Davies (1937), found that the frequencies were still overestimated even when the 

rotatory inertia effect was included. 

 

 

However, a further improvement to the beam model made by Timoshenko (1921 and 

1922) did actually address the problem of frequency overestimation.  He proposed and 

discussed a beam model which added the effect of shear distortion as well as the effect 

of rotatory inertia to Euler-Bernoulli model.  This improved model, the Timoshenko 
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beam model, considerably increased the accuracy of the estimation of the natural 

frequencies and was therefore a major breakthrough in the analysis of high-frequency 

dynamic problems where the shear and rotatory effects could not be neglected. 

 

 

Den Hartog (1928) derived formulae for estimating the first and second natural 

frequencies of vibration of a part of a circular arc clamped at both its ends using the 

Rayleigh-Ritz approximate method and including the limiting case when the arc had a 

very small central angle and thus was considered as a straight beam.  It was found that 

the type of vibration, in which extension of the axial length occurred, under certain 

conditions had a lower natural frequency than any non-extensional type of vibration. 

 

 

Shanley (1947) adopted and clarified a greatly simplified statics model originally 

suggested by Ryder of the American Civil Aeronautics Authority, to analyse inelastic 

columns acting in bending with axial forces, and which was later successfully used to 

represent nonlinear elastic plastic beams including axial force effects, whether in statics 

or dynamics.  This model, the Ryder-Shanley Model, consisted of two infinitely rigid 

half beams connected with a hinge, which was a cell of negligible dimension compared 

to the beam length.  The hinge was formed from two elastic plastic flanges which 

carried axial load only.  Thus, the model had only one degree of freedom, the 

displacement of the hinge at the middle of the beam, eliminating the computational 

work of integration over the length of the beam.  Moreover, as the cross section at the 

hinge consisted of two axial flanges only, integration over the cross section of the beam 

was also eliminated.  Thus, it was found that the Ryder-Shanley model significantly 

simplified the complex problem of a beam, but represented the behaviour reasonably 

well and included most structural effects. 

 

 

Symonds (1953) studied the dynamic characteristics of plastic, simply supported 

uniform beams of rectangular cross sections undergoing large plastic deformations in 

bending due to high transverse middle-concentrated impulsive loads.  The 

approximations of the rigid plastic method, with two rigid halves of the beam and a 

plastic hinge in the middle, were adopted.  The governing equation of motion was 
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integrated numerically and the results were used to derive the following empirical 

formula for the permanent middle rotation �p of the beam: 
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where �, 
y, b, h, l, Fm and IF are respectively the mass density, yield stress of the 

material, width, thickness of the cross section, half span of the beam, maximum value 

and impulse of the load. 

 

 

Seiler, Cotter and Symonds (1956) analysed a uniform beam, made of a ductile material, 

subjected to impulsive loading.  The elastic and elastic-plastic motions were analysed 

under the assumption that plastic flow was confined to the critical cross-sections, and 

the final maximum deformations were compared with those computed from an analysis 

which neglected all elastic deformations, that was a rigid-plastic analysis.  The purpose 

was to provide further information which might help in estimating the range of validity 

of rigid-plastic analysis.  Whilst the elastic-plastic solution was more accurate, the rigid-

plastic analysis could be expected to give good results for intense dynamic loading 

where the energy absorbed by the beam in plastic deformations significantly exceeded 

the elastic strain energy of the beam.  For other cases, the elastic behaviour of the beam 

should not be ignored. 

 

 

Martin and Symonds (1966) examined the use of the elementary rigid-plastic method in 

the dynamic analysis of beams subjected to short duration high intensity loads 

(impulsive loads).  The method required that a suitable mode shape for beam vibrations 

be chosen first.  Thereafter, the deceleration was determined from the governing 

equation of motion and the initial mode velocity followed without further assumptions.  

The load range, over which the method is valid, was found to be upper bounded by the 

requirement that the deformations should not be so large that the geometry change 

effects became significant, and to be lower bounded by the requirement that the energy 

of disturbance dissipated should be very large compared to the maximum energy which 

could be absorbed elastically by the beam in order to justify neglecting the elastic 

behaviour in the analysis.  The importance of the elementary rigid-plastic method was 
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the ability to provide an estimation of major deformations caused by large dynamic 

loads simply and quickly, and the possibility to include effects normally neglected such 

as the finite deflections when necessary. 

 

 

Martin and Lee (1968) described a unified method of approximating the dynamic 

response of beams subjected to impulsive loading which included the elastic behaviour 

in addition to the plastic behaviour.  The rigid-plastic method was also discussed.  The 

methods were based on the solution uniqueness proved by Martin (1966) for such kinds 

of dynamic problems.  It was found that the elastic-plastic method successfully 

approximated the behaviour of an impulsively loaded beam more accurately than the 

rigid-plastic method. 

 

 

Kaneko (1975) investigated Timoshenko’s correction for shear in vibrating beams and a 

review of the studies of the shear coefficient in Timoshenko’s differential equation for 

flexural vibrations of beams was first provided.  Expressions of this coefficient 

previously proposed for circular and rectangular cross sections were tabulated, together 

with expressions previously overlooked and unknown, and compared with one another.  

It was pointed out that the expressions for the shear coefficient for both the circular and 

rectangular cross section which were previously proposed by Timoshenko (1922) were 

the best estimates at this stage of the relevant theories and experiments. 

 

 

An attempt to follow on the work of Timoshenko (1921) but for the plastic state was 

made by Jones and Gomes de Oliveira (1979) who included rotatory inertia and 

transverse shear in the dynamic analysis of beams undergoing plastic deformations 

rather than the elastic deformations considered by Timoshenko.  They presented a 

theoretical procedure to examine the influence of retaining the transverse shear force in 

the yield criterion and rotatory inertia on the dynamic plastic response of beams.  An 

exact rigid-plastic solution was derived for an impulsively loaded beam.  It transpired 

that rotatory inertia played a small, but not negligible, role on the dynamic behaviour of 

the beam.  Also, results from this investigation indicated that the greatest departure from 

an analysis which neglected rotatory inertia but retained the effect of bending moment 
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and transverse shear force in the yield condition was approximately 11% for the 

particular range of parameters considered. 

 

 

Lepik and Just (1983) developed a FORTRAN programme, DINOPT, which employed 

the method of mode form motion, for the automatic calculation of permanent 

deflections of rigid-plastic beams of rectangular cross-section under rectangular 

impulsive pressure loads.  The fitness and effectiveness of the programme was 

demonstrated by solving several examples.  It was also shown that the mode form 

solution, with nonmoving plastic hinges formed at the critical sections only, using this 

programme was cheaper computationally than and could be used to obtain reasonably 

accurate results instead of the complicated, but more accurate solution, with multiple 

travelling plastic hinges. 

 

 

An important investigation carried out by Symonds and Yu (1985) examined in detail 

the particular problem of short pulse loading on a pin-ended beam.  The elastic-plastic 

dynamic response was predicted by ABAQUS and a number of other well-known 

computer programmes including ANSYS, DYCAST, MARC, MENTOR, REPSIL, 

WHAMS and WRECKER.  The results for the time history of the displacement were 

plotted and compared.  The permanent displacement predicted by ABAQUS and some 

of the other programmes was found to be in the direction opposite to that of the load, 

which was seen as counterintuitive.  Analysis of a Shanley-type model of the same 

problem for a broader range of input values for the pulse, which included the above 

loading, was carried out and cases of this surprising behaviour were found.  In these 

cases, which occurred for a small number of very narrow ranges of pulses, the 

permanent displacement produced was opposite to the pulse direction.  An explanation 

was given that this might be due to plastic irreversibility and geometric nonlinearity. 

 

 

Also, the results showed vast discrepancies in the responses predicted by the different 

softwares, or even by the same software analysing slightly different models of the same 

problem, except for the first peak displacement, which represented the design range, 

where all predictions were found to be in an excellent agreement.  These discrepancies 
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indicated a strong sensitivity of the problem to both the physical modelling and 

computational procedures. 

 

 

Vaziri, Olson and Anderson (1987) presented the analysis of a rigid perfectly plastic 

rectangular beam with axially constrained ends subjected to a rectangular pressure pulse 

of finite duration, a blast load.  Closed form expressions were obtained for the 

maximum permanent deflection for both simply supported and clamped boundary 

conditions.  These expressions were valid for the full dynamic range from a pseudo-

static step load to high pressure impulsive loading.  The results indicated that the 

dynamic response was strongly influenced by geometry changes even for small 

deflections.  Finally, the response expressions were combined to form isoresponse 

relationships which when plotted formed isoresponse curves for direct engineering use. 

 

 

Jones (1989) presented a detailed explanation, with equations, of the rigid-plastic 

method for the dynamic analysis of beams, especially fully clamped homogenous 

slender beams of uniform rectangular cross sections and subjected to impulsive loads 

such as explosions.  He included extensive research done on the subject by him and 

other researchers.  It was found that for small displacements, bending dominated the 

dynamic behaviour of the beam where fully plastic bending hinges formed at the beam 

critical sections, the middle and end sections, while the beam segments between these 

hinges moved as rigid bodies.  The influence of finite, large displacements, geometric 

nonlinearity, was investigated also.  It was shown that axial tension became more 

significant in the beam as displacements increased while bending became less dominant 

as the fully plastic hinges went into pure axial tension plasticity with no bending and the 

beam transformed into a string.  The interaction between tension and bending at the 

fully plastic cross section for the hinges during the transitional stage was illustrated.  

The relation that represented this interaction in a rectangular cross section and its 

graphic depiction, the yield curve of the cross section, were presented. 

 

 

Benamar, Bennouna and White (1991) presented a method for calculating the nonlinear 

mode shapes and natural frequencies of fully clamped beams at large vibration 

amplitudes and compared their results with those of previous studies and of 
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experimental measurements.  First, the transverse displacement was assumed to be 

harmonic and was expanded in the form of a finite series of functions.  Then, the 

nonlinear deformation energy was expressed by taking into account the nonlinear terms 

due to the axial strain induced by large deflections.  A set of nonlinear algebraic 

equations, which reduced to the classical linear eigenvalue problem when nonlinear 

terms were neglected, was determined through Hamilton’s principle.  It was also shown 

that unless a condition was imposed on the contribution of one mode, the solution of 

this set led to the linear case.  Consequently, in order to obtain a numerical solution for 

the nonlinear problem in the neighbourhood of a given mode, the contribution of this 

mode was chosen and those of other modes were calculated.  In this work, the method 

was also applied to obtain the first three nonlinear mode shapes of clamped-clamped 

and simply supported beams.  The results obtained corresponding to the fundamental 

nonlinear mode shape were in good agreement with those of a previous theoretical and 

experimental study.  In particular, high values of beam curvatures were noticed near the 

clamps causing a highly nonlinear increase in bending strains with increasing 

deflections. 

 

 

Abhyankar, Hall II and Hanagud (1993) examined the utility of direct numerical 

solution procedures, such as finite difference or finite element methods, for partial 

differential equations in chaotic dynamics of beams.  They noted that in the past, 

procedures for solving such equations to detect chaos in beam behaviours had utilised 

Galerkin approximations which reduced the partial differential equations to a set of 

truncated nonlinear ordinary differential equations.  They demonstrated that a finite 

difference solution instead was actually equivalent to a Galerkin solution and that the 

finite difference method was more powerful in that it might be applied to problems for 

which the Galerkin approximations would be difficult, if not impossible to use.  In 

particular, a nonlinear partial differential equation which modelled a slender Euler-

Bernoulli beam in compression was solved to investigate chaotic motions under 

periodic transverse forcing.  The equation, cast as a system of first-order partial 

differential equations, was directly solved by an explicit finite difference scheme.  The 

numerical solutions were shown to be the same as the solutions of an ordinary 

differential equation approximating the first mode vibration of the buckled beam.  Then, 

rigid stops of a finite length, with which the beam collided during the motion, were 

incorporated into the model to demonstrate a problem in which the Galerkin procedure 
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was not applicable.  It was shown that the finite difference method could however be 

used to study this stop problem with prescribed restrictions over a selected subdomain 

of the beam.  Results obtained were briefly discussed.  The conclusion was that a more 

general solution technique applicable to problems in chaotic dynamics of beams had 

been introduced. 

 

 

Lepik (1994) discussed the problem of elastic-plastic dynamic response of fully 

clamped uniform beams and flat arches under transverse impulsive loading.  The 

equations of motion were integrated by Galerkin’s method with two degrees of freedom 

for deflections.  The possibility of chaotic behaviour exhibited by beams and arches 

impulsively loaded was investigated.  For this purpose, displacement time histories, 

phase portraits and power spectrum diagrams for different values of the initial velocity 

imposed by the impulsive loading were computed and put together for comparisons.  It 

was noticed that weak chaotic effects existed especially in the initial phase as to the 

long-term motion it usually changes to periodic vibrations of smaller amplitude.  Also, 

it was shown that for pulse loading of short duration the permanent deflection of the 

beam might be on the opposite direction of the acting load.  This phenomenon which 

was previously observed by other researchers such as Symonds and others was called 

the counterintuitive or anomalous behaviour.  In fact, the computations carried out in 

this work for uniform beams led to the same results previously found by Symonds and 

others using Shanley-type models for beams. 

 

 

Lewandowski (1994) presented a computational method for determining the backbone 

curves (the amplitude-frequency relations) of freely vibrating slender beams.  The beam 

response was expanded into a truncated Fourier series with respect to time.  The 

resulting non-linear eigenvalue problem was formulated using the variational approach 

and the finite element method and solved by the continuation method to obtain the non-

linear frequencies and modes of vibration.  Numerical results for various beams were 

obtained and compared with other published results, both exact and numerical, to 

demonstrate the accuracy and applicability of the method.  Also, some bifurcation 

points were found to exist on some beams backbone curves and were reported 

accordingly for the first time. 
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Houmat (1995) introduced a four-node Timoshenko beam finite element with variable 

degrees of freedom.  The element transverse displacement and rotation of the beam 

cross-section were each described by a cubic polynomial plus a variable number of 

trigonometric sine terms.  The polynomial terms were used to describe the transverse 

displacements and rotations of the beam cross-section at the element's four nodes while 

the sine terms were used to provide additional freedom to the interior of the element.  

The four nodal transverse displacements and rotations of the beam cross-section and the 

amplitudes of the trigonometric sine terms were used as generalized coordinates.  Inter-

element compatibility was achieved by matching the generalized coordinates at the 

element end nodes.  Numerical results of frequency calculations were given for slender 

beams with two different slenderness ratios.  Comparisons were made with exact 

Timoshenko beam solutions and with finite element solutions for the degenerate case 

with no trigonometric terms to represent an only-polynomial finite element.  It was 

found that using one or two variable order Timoshenko beam finite elements with a few 

trigonometric terms yielded a better accuracy with obviously fewer degrees of freedom 

for the entire model than using many only-polynomial Timoshenko beam finite 

elements. 

 

 

Lepik (1995) discussed the non-linear vibrations of a buckled beam under harmonic 

excitation.  The material of the beam was elastic-plastic with linear strain-hardening.  

The equations of motion were integrated by Galerkin’s method.  Also, in the elastic 

case, the Melnikov method was used for estimating the threshold transverse load at 

which chaotic motion could take place.  Chaotic motion of the beam was discussed as 

well in the range of elastic-plastic vibrations.  By carrying out computations for several 

values of the beam, material and load parameters, it was concluded that chaotic 

vibrations in the case of harmonic excitation were more common than for beams under 

pulse loading. 

 

 

Shi and Mei (1996) presented a finite element modal formulation in the time domain for 

the large amplitude free vibration of beams.  The non-linear modal equations of motion 

were derived using a simple and general procedure and accurate frequency-maximum 

deflection relations were obtained for the fundamental and higher non-linear modes.  
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The number of modes to be included in the analysis for accurate frequency results was 

determined depending on the percentage of participation from each mode.  Numerical 

examples on beams were given and results were compared with classical continuum 

analytical solutions of Galerkin’s method where a good agreement was found. 

 

 

Corn, Bouhaddi and Piranda (1997) proposed a new method for simply and 

systematically constructing finite Timoshenko beam elements.  The continuous model, 

which took into account both rotary inertia and transverse shear deformation, was 

presented as a tutorial review.  This model allowed certain vibratory phenomena 

characteristic of relatively short beams to be demonstrated.  The proposed method 

involved constructing a two-node finite element based on Guyan condensation that led 

to the results of classical formulations, but in a simple and systematic manner.  This 

element was verified with numerical and experimental tests.  The method was then 

generalized in order to obtain new improved three-node finite elements.  In addition to 

the fact that the technique proposed for constructing the finite elements had the 

advantage of being simple and systematic, the finite elements in this method themselves 

were found to yield results which were in good agreement with the continuous model, 

especially in the case of relatively short beams.  Moreover, it was shown that, for the 

two-node element, all choices of polynomial interpolations of order three or higher led 

necessarily to the same stiffness and mass element matrices.  However, for the three-

node element, the generalization of this method to higher order interpolations allowed 

elements which performed better to be obtained, provided that Guyan condensation was 

still employed. 

 

 

For the dynamic analysis of the problem of an elastic-plastic beam, Xu and Hasebe 

(1997) suggested a continuous fourth-order ordinary differential equation Shanley-type 

model.  A co-dimension three bifurcation problem and its simplified case, an incomplete 

co-dimension two bifurcation of a pair of pure imaginary eigenvalues and a simple zero 

eigenvalue were presented and analyzed, and the normal form analysis and the 

unfoldings of 2-jet and 4-jet cases of the incomplete normal forms were provided.  

Since elastic-plastic beam dynamics were of great non-linear complexity and the vector 

fields were multiple degeneracies, small differences of physical parameters caused 

dramatic essential changes of behaviour of the motion.  Through these results the rich 
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dynamical behaviours of the elastic-plastic beam, including the counterintuitive 

behaviour and its sensitivity to small parameters of this problem, were illustrated.  It 

was found that the continuous Shanley-type model was very suitable for analyzing the 

complicated dynamic behaviours of the problem of elastic-plastic beams and although 

the incomplete normal form which well described this beam dynamics problem had no 

separate singular point, its unfoldings still presented rich bifurcation phenomena and 

could be used to explain the interesting behaviours of the beam in this problem.  Also, it 

was emphasized that the dynamics of elastic-plastic systems and their strong 

nonlinearities of both materials and geometries were still a necessary research field. 

 

 

Han and Lu (1999) proposed an unconventional finite element technique for the 

elastoplastic dynamic analysis of beams called the space-time finite element method 

(STFEM) which was based on a unified space-time discretization approach.  A weak 

form of the governing equation which corresponds to the generalized law of 

conservation of impulse-momentum (the shock-momentum equation) was established, 

based on which STFEM equations were derived.  A family of linear temporal shape 

functions was studied, which for linear elasticity, the ensuing STFEM algorithm was 

equivalent to the Newmark algorithm with � = 0.5.  Rate-independent plasticity was 

incorporated into the model.  As a numerical example, a cantilever beam under shock 

loading was analyzed.  It was found that the STFEM formulation is inherently suitable 

for handling the evolution equations of plastic flow.  The results showed that the 

propagation of shock waves was drastically slowed down by the presence of plasticity.  

Also, because the plastic deformation tended to be localized in the vicinity of the 

impact, a full transient analysis was essential, in order to accurately determine the 

locations of the plastic hinges.  Furthermore, it was shown that damping reduced the 

amplitude of the vibration, but did not, in general, affect the evolution and distribution 

of the plastic deformations significantly.  Instead, it was the hardening parameter that 

played this role. 

 

 

Ribeiro and Petyt (1999) investigated the geometrically non-linear multi-harmonic free 

and steady-state forced vibrations of uniform, slender beams with rectangular solid 

cross section using the hierarchical finite-element method (HFEM) and the harmonic 

balance method (HBM).  The HFEM is a type of the p-version of the finite element 
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method (FEM) when the set of functions, corresponding to an approximation of lower 

order p, constitutes a subset of the set of functions corresponding to the approximation 

of order p+1.  The HBM was applied to study the effect of internal resonances in the 

non-linear vibration of beams.  Two cases for the end conditions of the beam were 

studied, both ends clamped or simply supported.  The beam analogue of von Kármán's 

non-linear strain–displacement relationships was employed and the middle plane in-

plane displacements were included in the model.  The equations of motion were 

developed by applying the principle of virtual work and were solved by a continuation 

method.  The ratios 1:3 and 1:5 for internal resonances were discovered and their 

consequences were discussed.  The convergence properties of the HFEM were 

analyzed. 

 

 

It was found that the internal resonances of order n exist if the ratio of the linear 

frequencies associated with the interacting different modes of vibration is approximately 

equal to n.  Therefore, when analyzing a certain mode of vibration and when the 

nonlinear natural frequency becomes a submultiple of another natural frequency, it was 

necessary to include another harmonic in the time series.  Below that point, the solution 

with only one harmonic produced data that was sufficiently accurate, as was confirmed 

by comparison with experimental results.  On the other hand, the coupling with higher 

order modes also implied that more degrees of freedom were necessary in the spatial 

model for accuracy.  Also, it was concluded that the non-linear mode shape changes 

with the amplitude and frequency of vibration because of two different causes. The first 

is the variation of the stiffness of the beam with the amplitude of vibration due to the 

axial forces.  In this case, the alteration in the non-linear mode shape is moderate.  The 

second cause of alteration is modal coupling.  If there is commensurability of natural 

frequencies and internal resonance occurs, then the non-linear vibration of the beam is 

defined by the sum of the coupled modes vibrating at commensurable frequencies, and 

the mode shape varies significantly during the period of vibration. 

 

 

When the HFEM model was favourably compared with FEM models presented in the 

literature, it was demonstrated that in order to achieve convergence the HFEM model 

required far fewer degrees of freedom (coarser mesh) than the h-version of the FEM 

models, the thing that significantly reduced the computational time.  This turned out to 
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be of great importance if one wanted to analyze higher order modes or when higher 

order modes coupled with lower order modes due to internal resonance, if several 

harmonics must be included in the time series or if a structure composed of several 

beams was to be studied. 

 

 

Pham (2000) analyzed the dynamic load-bearing capacity of elastic-plastic beams by the 

apparatus of shakedown theory.  The reduced kinematic formulation for bending beams, 

which was equivalently deduced from Koiter's kinematic theorem, combined with the 

plastic collapse method of hinge mechanisms were employed.  These analytical 

techniques appeared effective in solving practical beam problems especially beams 

subjected to quasiperiodic dynamic loading.  The safety limits on the quasiperiodic 

dynamic loads as well as the respective collapse mechanisms for a number of practical 

cases of beams were determined.  Also, some shakedown load amplitude-frequency 

diagrams that could serve various engineering design purposes were drawn. 

 

 

Yankelevsky and Karinski (2000) presented an approximate model to analyze the 

dynamic elasto-plastic small or large deformation response of beams under various 

symmetrical loading.  The present model extended the capabilities of the earlier model 

proposed by Yankelevsky and Boymel (1984) (which itself built on the analytical 

techniques and notes listed by Johnson (1972) for determining the response of beams 

subjected to impulsive loading), and considered the general symmetrical problem with 

loading along part of the beam.  In this model, the beam was composed of two rigid 

parts interconnected by a gap of zero width, thus yielding a triangular deflection shape.  

The gap was built of fibers having imaginary length which governed strains and stresses 

in the beam and was determined by requiring equal deflections in both the real and 

model beams.  This imaginary length was found to be almost constant in the elastic and 

in the elasto-plastic domains, but depended on the load distribution.  Comparisons of 

maximum deflections predicted using this simplified model with results of a more 

accurate finite element analysis were done and showed very good correspondence.  

Apart from the permanent displacement which might easily be measured from test, this 

model could also calculate the time history of the dynamic reactions, bending moment 

and membrane force, displacement and velocity and acceleration as well as stress and 

strain distributions in the mid-section of the beam. 
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McEwan, Wright, Cooper and Leung (2001) proposed a method for modelling large 

deflection beam response involving multiple vibration modes.  Significant savings in 

computational time could be obtained compared with the direct integration non-linear 

finite element method.  The deflections from a number of static non-linear finite 

element test cases were transformed into modal co-ordinates using the modes of the 

underlying linear system.  Regression analysis was then used to find the unknown 

coupled non-linear modal stiffness coefficients.  The inclusion of finite element derived 

modal masses and an arbitrary damping model completed the governing non-linear 

equations of motion.  The response of the beam to excitation of an arbitrary nature 

might then be found using time domain numerical integration of the reduced set of 

equations.  The work presented here actually extended upon the work of previous 

researchers to include non-linearly coupled multi-modal response.  The particular 

benefits of this approach were that no linearization is imposed and that almost any 

commercial finite element package might be employed without modification. 

 

 

The proposed method was applied to the case of a homogeneous isotropic beam.  Both 

fully simply supported and fully clamped boundary conditions were considered.  For the 

free vibration case, results were compared to those of previous researchers.  For the case 

of steady-state harmonic excitation, results were compared with the direct integration 

non-linear finite element method using ABAQUS.  In all cases, excellent agreement was 

obtained. 

 

 

Ribeiro (2001) analyzed the geometrically non-linear vibrations of beams by the 

Hierarchical Finite Element Method (HFEM) which is a p-version method.  Two main 

points were of interest.  The first was to compare polynomials, trigonometric functions 

and beam eigenfunctions as displacement shape functions for the beam hierarchical 

finite elements.  The second was to examine the suitability of the HFEM for the 

geometrically nonlinear dynamic analysis of beams in the time domain.  It was found 

that polynomials had in general more advantages than trigonometric functions and beam 

eigenfunctions as accuracy was achieved with a smaller number of degrees of freedom, 

continuity between elements was more guaranteed and the element matrices were 
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derived more quickly when polynomials were used.  Also, the HFEM was found to be 

an efficient tool for time domain analysis as it quickly provided the response even when 

involving several modes of vibration.  This was due to the small number of degrees of 

freedom required for fairly ‘accurate’ analysis by this method. 

 

 

Gerstmayr and Irschik (2003) presented a numerical strategy for flexural vibrations of 

elasto-plastic beams with rigid-body degrees-of-freedom.  Beams vibrating in the small-

strain regime were considered and special emphasis was laid upon the development of 

plastic zones.  An elasto-plastic beam performing plane rotatory motions about a fixed 

hinged end was used as example problem.  Emphasis was laid upon the coupling 

between the vibrations and the rigid body rotation of the pendulum.  Plastic strains were 

treated as eigenstrains acting in the elastic background (real) structure.  The formulation 

led to a non-linear system of differential algebraic equations (DAEs) which was solved 

by means of the Runge–Kutta midpoint rule illustrated by Thomson (1993).  A low 

dimension of this system was obtained by splitting the flexural vibrations into a quasi-

static and a dynamic part.  Plastic strains were computed by means of an iterative 

procedure tailored for the Runge–Kutta midpoint rule.  The numerical results 

demonstrated a decay of the vibration amplitude due to plasticity and the development 

of plastic zones.  Also, it was found that the pendulum approached a state of plastic 

shake-down after sufficient time.  In general, the newly derived numerical algorithm 

turned out to be efficient and robust and would serve as a starting point for an extension 

of the present formulation in the case of large deformations, and also for studies 

concerning elasto-plastic multibody systems. 

 

 

Ma, Liu, Zhao and Li (2005) investigated the dynamic instability of an elastic-plastic 

beam by employing a three-degree-of-freedom (3-DoF) Shanley-type beam model.  

Especially, asymmetrical instability induced by symmetrical load was discussed.  The 

asymmetrical instability was considered as a second-order buckling mode.  Four types 

of perturbations, i.e., geometrical misalignment, material property mismatch, 

unsymmetry of applied load and disturbance of boundary conditions, were introduced to 

activate the asymmetrical responses.  The asymmetrical response was characterized by a 

modal participation factor which corresponded to an asymmetrical mode shape.  The 

axial force over the beam model was assumed constant while the maximum axial force 
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experienced in the beam model increased with the increase of the transverse load.  

Phase plane trajectories and Poincaré map were used to illustrate the chaotic 

characteristics of the beam response.  Results showed that if the perturbations were 

small enough, the perturbation type had negligible influence on the critical load for the 

occurrence of the asymmetrical instability, which implied that the asymmetrical 

instability was an intrinsic feature of the beam system.  However, with the increase of 

the magnitude of perturbations, the influence of the asymmetrical vibration was 

expanded to a large range of the critical loading parameter.  Also, it was derived in this 

study that, similar to the column instability theory, the dynamic buckling of an elastic-

plastic beam under transverse load was also affected mainly by the axial compressive 

force.  However, the bending moment in the beam was well below the yielding bending 

moment. 

 

 

Calis, Laghrouche and Desmulliez (2007) proposed a nonlinear slender beam model for 

Micro-Electro-Mechanical-Systems (MEMS) structures used in haptic sensing 

technology that was based on Cosserat theory instead of the classical theory of 

elasticity.  The model was to be used for real-time simulation of these microstructures in 

a Virtual Reality Environment (VRE), enabling their virtual design, prototyping and 

manufacturing.  It also allows for microtesting including failure diagnosis and 

evaluation of process reliability.  To demonstrate the feasibility of the model, a 

cantilever microbeam and a bridge microbeam undergoing bending were simulated in 

real time in VRE.  Cosserat theory was used because it better represented stresses in the 

miniaturised components of Microtechnology, especially in the nonlinear spectrum.  

Also, the implementation of Cosserat theory led to a reduction in the complexity of the 

model thus increased its capability for real-time simulation, which is indispensable in 

Microtechnology.  Another significant benefit of the present work is that the proposed 

model can also be expected to be useful in Nanotechnology. 

 

 

Ece, Aydogdu and Taskin (2007) investigated the free vibration of an isotropic elastic 

beam with a variable cross-section.  The governing equation of motion was reduced to 

an ordinary differential equation in spatial coordinates for a family of cross-section 

geometries with exponentially varying width.  The analytical solutions of the vibration 

of the beam were obtained, using Euler-Bernoulli beam theory, for three different 
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boundary conditions, simply supported, fully clamped and free ends.  The natural 

frequencies and the mode shapes were determined for each set of boundary conditions.  

The results of this investigation showed that the non-uniformity in the cross-section 

influenced the natural frequencies and the mode shapes, and that the amplitude of 

vibrations was increased for widening beams while it was decreased for narrowing 

beams.  Also, it was found that the frequencies were independent from the exponential 

decrease or increase but the mode shapes were affected by the increase or decrease 

behaviour. 

 

 

Based on the work of Lloyd Smith and Sahlit (1991), Khan (2008) studied the dynamic 

behaviour of beams under extreme impulsive loads such as blast and gas explosion 

using the rigid-plastic method in which the dynamic analysis was treated as a Linear 

Complementarity Problem (LCP).  For this purpose, Lemke’s algorithm, which was 

characterized by a semi-definite matrix, was proposed and adapted for the solution of 

the LCP.  The capability of the LCP method was demonstrated by comparing the 

solutions with available theoretical plastic solutions in closed form to dynamic beam 

problems where plasticity resulted from bending deformations only.  Comparisons 

showed that the LCP solution had a tendency to converge on the theoretical solution 

with very small errors, less than 2%, for the particular range of parameters considered.  

Results from the LCP method were also compared with results from elasto-plastic 

simulations provided by the nonlinear structural analysis software ADAPTIC for 

problems in which the elastic stiffness was assumed to be very large in order to 

investigate the effect of ignoring the presence of even a small amount of elastic 

deformations on the accuracy of the rigid-plastic analysis.  It was found that neglecting 

elastic behaviour in the LCP analysis tended to give slightly different results despite the 

efforts made to ensure that the ratio of the total input energy imparted to the beam by 

the impulse to the maximum elastic strain energy the beam could store was high.  Due 

to its simple formulation, the LCP method was a very efficient tool for the dynamic 

analysis of beams.  However, it ignored the effects of axial force, which made it 

restricted to small displacement problems and thus implied the presence of some 

limitations on the maximum impulse that could be applied to a beam analysed using this 

method. 
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Chen and May (2009) investigated the dynamic response of reinforced concrete beams 

under a different type of impulsive loading, a high-mass  low-velocity impact.  A series 

of experimental studies which provided high-quality input data and results was 

described and used to validate a numerical model proposed for the beams.  Fourteen 2·7 

m and four 1·5 m span beams were tested under impact loads using a drop-weight 

facility.  Measurements included the transient impact load, the acceleration at various 

points on the beam and strains in the steel reinforcement.  Additionally, the impact 

events were recorded using a high-speed video camera operated at up to 4500 frames 

per second.  The local failure pattern of the beam under the impact zone was also 

examined by correlating the images of the progression of cracks, spalling and scabbing 

with the time history of the impact load.  In total, the work enabled a better 

understanding of the impact behaviour of reinforced concrete beams. 

 

 

Gupta, Babu, Janardhan and Rao (2009) investigated large amplitude free vibration 

analysis of uniform, slender and isotropic beams using a relatively simple finite element 

formulation, applicable to homogenous cubic nonlinear temporal equation (homogenous 

Duffing equation).  All possible boundary conditions where the von-Karman type 

nonlinearity was applicable and where the ends were axially immovable were 

considered.  The finite element formulation began with the assumption of simple 

harmonic motion and was subsequently corrected using the harmonic balance method 

and was general for the type of nonlinearity mentioned earlier.  The nonlinear stiffness 

matrix derived in the finite element formulation led to symmetric stiffness matrix as 

compared to other recent formulations in the literature.  Empirical formulae for the 

nonlinear to linear radian frequency ratios, for the boundary conditions considered, were 

presented using the least square fit from the solutions of the same obtained from the 

finite element analysis for various central amplitude ratios.  The numerical results 

attained using these empirical formulae compared very well with the results available 

from the literature for the classical boundary conditions such as the hinged–hinged, 

clamped–clamped and clamped–hinged beams.  For the beams with nonclassical 

boundary conditions such as the hinged–guided and clamped–guided, the numerical 

results obtained, apparently for the first time, were in line with the physics of the 

problem. 
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Rebeiro and van der Heijden (2009) developed a model based on a Timoshenko beam p-

version finite element to analyze forced vibrations of beams that are, simultaneously, 

elasto-plastic and geometrically nonlinear.  In the so-called p-version FEM, the 

accuracy of the approximation is improved by increasing the number of shape functions 

over the elements, unlike the case for the h-version FEM where simple elements are 

used.  The geometrical nonlinearity was represented by Von Kármán type strain–

displacement relations and the stress–strain relation was of the bilinear type, with mixed 

strain hardening.  The equations of motion were obtained using the principle of virtual 

work and were solved in the time domain by an implicit Newmark numerical method.  

The Von Mises yield criterion is employed and the flow theory of plasticity applied; if 

plastic flow is found at a point of the domain, the total plastic strain is determined by 

summation.  Numerical examples were carried out in order to demonstrate that the p-

version element here advocated has a number of advantages and to show the influence 

of the plastic and geometrically nonlinear terms on the oscillations of beams.  To 

investigate the robustness of the proposed approach, different parameters were tried in 

numerical tests and compared either with published data or with results computed using 

ANSYS.  The element and procedure here suggested appeared to be robust and able to 

provide accurate results.  The main advantages of the beam p-version, hierarchical, 

element were that it required fewer degrees of freedom than the h-version beam and 

shell elements, and provided a more detailed description of stress and strain fields than 

the h-version beam elements. 

 

 

Plasticity was found to occur in a thin beam (h/L = 0.01) vibrating with displacement 

amplitude around its thickness; in a thicker beam plasticity occurred at relatively lower 

amplitudes.  It was noted that the appearance of plasticity could significantly change the 

dynamic behaviour of beams.  In the first cycles of excitation, at the beginning of the 

transient phase, plastic zones that absorb energy developed and, therefore, the 

displacements could be significantly over predicted by models that solely consider 

geometrical nonlinearity.  Once the plastic strains were established they were permanent 

and obviously interfered in the beam dynamics; the way in which they did that would 

depend on the previous history of the motion and loading.  With a periodic load, the fact 

that the combined plasticity and geometrical nonlinearity changed the stiffness, and 

therefore the natural frequencies, might was significant in the dynamics of the beam. 
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When a material is loaded in tension and then compressed, as occurs in cyclic loading, 

the yield stress in compression can be smaller than the yield stress reached in tension.  

A similar behaviour occurs when the material is again subjected to tension, and so on.  

This phenomenon is known as the Bauschinger effect.  This effect on beam dynamics 

was also considered by Rebeiro and van der Heijden (2009) and a first assessment of it 

was made by carrying out tests on a thick beam.  In these tests, it was found that the 

Bauschinger effect led to smaller plastic strains but which changed more significantly 

and during more cycles than when the effect is neglected.  As a consequence, energy 

dissipation due to plastic work increased and smaller displacements, as well as smaller 

total strains and stresses, occurred. 

 

 

Yagci, Filiz, Romero and Ozdoganlar (2009) presented a spectral-Tchebychev 

technique for solving linear and nonlinear beam problems.  The technique used 

orthogonal Tchebychev polynomials as spatial basis functions, and applied Galerkin's 

method to obtain the spatially discretized equations of motion.  Unlike alternative 

techniques that required different admissible functions for each different set of 

boundary conditions, the spectral-Tchebychev technique incorporated the boundary 

conditions into the derivation, and thereby enabled the utilization of the solution for any 

linear boundary conditions without re-derivation.  Furthermore, the proposed technique 

produced symmetric system matrices for self-adjoint problems.  In this work, the 

spectral-Tchebychev solutions for Euler–Bernoulli and Timoshenko beams were 

derived.  The convergence and accuracy characteristics of the spectral-Tchebychev 

technique were studied by solving eigenvalue problems with different boundary 

conditions.  It was found that the convergence was exponential, and a small number of 

polynomials was sufficient to obtain machine-precision accuracy.  The application of 

the technique was demonstrated by solving: 1) eigenvalue problems for tapered 

Timoshenko beams with different boundary conditions, taper ratios and beam lengths; 

2) an Euler–Bernoulli beam problem with spatially and temporally varying forcing, 

elastic boundary and damping; 3) large-deflection (nonlinear) Euler–Bernoulli beam 

problems with different boundary conditions; and 4) a micro-beam problem with 

nonlinear electrostatic excitation. 
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The results obtained from the spectral-Tchebychev solutions were seen to be in 

excellent agreement with those presented in the literature.  Also, the spectral-

Tchebychev technique derived here was found to be a numerically efficient approximate 

solution which was fairly accurate and applicable to a wide range of linear, nonlinear, 

self-adjoint and nonself-adjoint beam problems.  Furthermore, this solution was suitable 

to be applied to beams with nonuniformly varying parameters and different boundary 

conditions without need for re-derivation. 

 

 

Kimberley, Lambros, Chasiotis, Pulskamp, Polcawich and Dubey (manuscript accepted 

2010) studied the dynamic response of microelectromechanical systems (MEMS) under 

impulsive loading.  Despite the lack of means to provide such extreme loading rates to 

these miniature devices, the increasing use of MEMS-based sensors and actuators in 

adverse environments, which include extreme strain rate loading, has motivated the 

investigation of the response of MEMS components under these conditions.  Micro Au 

(gold) fixed-fixed beams and cantilevers of uniform cross-section, the basic and most 

commonly used MEMS members, were subjected to impulsive loads of 40 ns in 

duration, which were generated by a high power pulsed laser in order to achieve 

acceleration levels on the order of 109 g.  This allowed for the response to be 

investigated at time scales that were of the order of wave transit times in the substrate 

and the microdevices.  Comparisons with companion finite element simulations were 

done in order to gain insight into the mechanisms responsible for impulsive 

deformations at the microscale.  The simulations investigated the effect of loading rate, 

boundary conditions, beam dimensions and material constitutive behaviour including 

strain rate dependence on the permanent deformed shape of the beam.  It was found that 

the contact and momentum transfer mechanisms were responsible for the large 

permanent beam displacements which were measured postmortem. 
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2.7     Conclusions 

 

 

Various methods of dynamic analysis of beams have been presented.  These methods 

differ from each other in terms of safety, material economy, cost of analysis and 

accuracy.  Numerous studies have shown that although some analytical methods provide 

results close to reality, they might be very expensive to run.  Also, due to the many 

assumptions serving to simplify accurate methods, it has been found that these methods 

often produce solutions which are not exact making the description ‘accurate’ just 

relative.  Therefore, simple approximate methods of analysis have been put into use due 

to their cheap running cost and fast outcomes.  However, as approximate methods 

reduce the confidence in the analysis results, accurate methods remain necessary in 

many structural situations when comparisons with trusted benchmarks are needed 

whether in practical design or for research purposes. 

 

 

This Chapter also provides an overview of the investigations that have been done over 

the past decades in order to offer an insight into the attempts made in the field of the 

dynamic analysis of beams.  This includes, in addition to some empirical formulae for 

fast primary calculations for example equation (2.43), various approximate methods 

both analytical and numerical that show good efficiency and reliability.  Also included 

are several finite element methods that have proven to provide highly accurate results at 

fairly low computational costs. 

 

 

For consideration of plastic strains and geometrical nonlinearity terms, several methods 

for dynamic analysis of beams were proposed such as the h-version of the FEM or the 

p-version of the FEM which includes the HFEM.  The HFEM has, amongst the other p-

version FEMs, the following advantages over the h-version of the FEM: 

 

1-  The HFEM's linear matrices possess the embedding property and the non-linear 

matrices of an approximation of lower order can be used in the derivation of the 

non-linear matrices of the improved approximation. 
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2-  Simple structures can be modeled accurately using just one element, or “super-

element”, thus there are no inter-element continuity requirements and the 

assemblage of the elements is avoided. 

 

3-  The HFEM tends to give accurate results with fewer degrees of freedom than the    

h-version of the FEM.  This is particularly true for smooth solutions since fine mesh 

generation is advantageous in the vicinity of singular points. 

 

As a consequence of these properties, the HFEM model of a structure potentially 

requires less time to be produced and to be solved than an h-version of the FEM's model 

of this structure for the same level of accuracy. 

 

 

Among the different approximate methods of dynamic analysis, the rigid plastic method 

has been one of the most widely used methods due to its simplicity, accuracy and above 

all its applicability for a wide range of problems including some very complex ones 

such as those that include nonlinearity, whether geometric or in the material.  However, 

this method ignores the presence of elasticity in the material.  Thus, plastic 

deformations must be present and much larger than elastic deformations in order for this 

method to give any accurate results, and this means that the energy imparted by the 

dynamic load should be many times larger than the beam elastic capacity of energy 

absorption.  Otherwise, the rigid plastic method would have a great disadvantage.  

Therefore, there has been a need to develop other methods that include the effect of 

elasticity while remaining as convenient, the thing that has led to introducing the elastic 

plastic methods, such as the one presented in Chapter 4 and well investigated 

throughout this Thesis, which are more accurate and suitable for a wider spectrum of 

situations like those where elasticity should be taken into account. 

 

 

The dynamic behaviour of elastic-plastic beams can be very complicated especially with 

the presence of nonlinearity, whether geometric or in the material, in the dynamic 

system.  Some of the evidence of this complexity are the different predictions that 

different computer codes give for the deflection response after the first deflection peak, 

which include some counterintuitive responses, and the sensitivity of the problem to 

both the physical parameters and the computational technique used. 
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Figure 2.1: Various examples of structures modelled as having a single degree of 

freedom 

 

 

 

 

 
 

Figure 2.2: (a) Single degree of freedom model. (b) Free body diagram of this model 
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Figure 2.3: (a) Rectangular dynamic load. (b) Triangular dynamic load 

 

 

 

 

 

 

 

 
 

Figure 2.4: Beam under general dynamic load 
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Figure 2.5: Axial force effect in beam dynamics 

 

 

 

 

 

 

 

 
 

Figure 2.6: Beam element with its nodal displacements and forces 
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Figure 2.7: Equivalent nodal forces of beam element 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 – Impulsive Loads 
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3.1     Introduction 

 

 

In this Chapter, an introduction to the nature of impulsive loads is presented.  In 

particular, one kind of these loads, the air blast of an explosion, is discussed.  The 

importance of including explosive loads in the dynamic analysis and design of 

structures is revealed.  The computational equations used for simulating the blast wave 

pressure applied to the exposed surface of a structure are detailed.  Also, the principles 

of dynamic analysis and design of structures subjected to impulsive loads together with 

the various simplification techniques used in the simulation of these loads such as the 

pulse theorem are explained. 

 

 

An impulsive load is a dynamic load that is applied very rapidly and maintained for a 

very short duration, less than one tenth of the fundamental natural period of the 

structure to which it is applied.  In this case, the impulse, which is the time integral of 

pressure, is the dominant characteristic of loading. 

 

 

 

 

3.2     Explosions as Source of Dynamic Loading 

 

 

3.2.1     Introduction 

 

 

Explosions produce one of the most common impulsive dynamic loads that structures 

could be subjected to.  An explosion, or detonation, causes fast supersonic pressure 

waves called shock waves which are generated from a location called the centre of 

explosion.  The waves propagate with a front like a sphere and reflect in the local 

medium around the centre.  Thus, the medium is named the propagation medium.  Also, 

an explosion causes an increase in the volume of the propagation medium, a release of 

various kinds of energies and high temperature.  Figure 3.1 shows an example of 

explosions.  More detailed information about explosions can be found in Baker, Cox, 
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Westine, Kulesz and Strehlow (1983), Bangash (1993), Bartknecht (1981, 1989), 

Lalanne (2002) and Wearne (1999). 

 

 

 

 

3.2.2     Types of Explosions 

 

 

Explosions are of various types and happen in different ways and from different 

sources.  The most common type of explosions is the chemical explosion which is a fast 

chemical oxidation reaction that produces a large amount of hot gas.  Examples of 

chemical explosives are gunpowder, ammonium nitrate fertilizer, guncotton 

(nitrocellulose), dynamite (stabilized nitroglycerin), natural gas (methane), petrol, etc.  

A second type of explosions is the nuclear reaction examples of which are atomic bomb 

and fusion bomb.  Another type of explosions is the BLEVE, standing for Boiling 

Liquid Expanding Vapour Explosion, which happens when a container full of 

pressurized boiling liquid and hot vapour is ruptured causing the liquid and vapour to 

escape rapidly.  Also, there are explosions that arise from natural causes.  One example 

of this type of explosions is a volcano.  This occurs when some magma that contains 

much dissolved gas rises from the depths of the earth.  While the magma is rising, the 

pressure on it reduces and that allows the gas to bubble out resulting in a volcanic 

explosion.  Another example of natural explosions is an Earth impact.  This happens 

when a large cosmic body, such as an asteroid, travelling at a high velocity collides with 

planet Earth causing an enormous destructive explosion that could make life vanish 

from the face of the planet. 

 

 

 

 

3.2.3     Examples of Explosion Incidents in the Past 

 

 

Structures could be exposed to any of the explosions mentioned above.  For example, a 

gas explosion could happen in a domestic building, which has gas supply, because of a 
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faulty boiler, leakage in pipes, lack of maintenance, human mistake, etc.  Such an 

explosion took place in 1968 at the Ronan Point multi storey Building in Newham, East 

London and resulted in the complete collapse of one of its corners as shown in figure 

3.2.  Also, structures could be subjected to explosions due to terrorist attacks such as the 

one launched in 1995 by a booby-trapped truck on the Alfred P. Murrah Federal 

Building in Oklahoma City, figures 3.3a and b, where the severe damage induced to one 

of the key transfer beams in the building façade at the third floor above the open 

pedestrian plaza caused its failure, and thus resulted in the partial progressive collapse 

of the building as several columns were borne by this crucial beam, Wearne (1999). 

 

 

 

 

3.3     Explosive Loads in Structural Design 

 

 

3.3.1     Principle of Design 

 

 

It is not practical to design all structures to resist all possible destructive forces because 

people would end up living and working in buildings like fortresses and bunkers.  

Instead, the structures vulnerability to destructive forces and potential threats should be 

assessed.  What should then be made is a balance between the robustness and safety of 

the building on one side, its serviceability and architectural beauty on another side, and 

its cost on a third side as depicted in figure 3.4, a balance between using more and 

stronger and thicker structural elements and using heavy and expensive construction 

materials on one side, and providing more open spaces and more windows and using 

light and cheap construction materials on another side, a balance, in the general case, 

between the concern of the structural engineer, the concern of the architect, and the 

concern of the owner. 
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3.3.2     Occurrence vs. Loss Cost and Importance of Including Explosions in Design 

 

 

For each of several kinds of potential hazardous accidents that could happen to 

structures, the yearly occurrence measured in number of incidents and the yearly loss 

cost in dollars due to the damage incurred by the accident, both as percentages of the 

total of all kind accidents, have been presented for comparison in a chart made by IRIS, 

the Industrial Risk Insurers Society, and shown in figure 3.5.  The percentage yearly 

occurrence and the percentage yearly loss cost are presented in blue and red, 

respectively.  Also, the yearly data actually represent the average of a 3-year period.  

The chart reveals a distinctive case for the explosion hazard where the occurrence is 

very low while the loss cost is very high, actually the highest among all hazards, 

indicating the importance of considering explosive loads in the design of vulnerable 

structures. 

 

 

For illustration purpose, DIC perils in figure 3.5 refer to those covered by the DIC, 

Difference In Conditions, policy of business insurance, large industrial or commercial 

risks beyond those covered by standard insurance policies like earthquakes, floods, 

landslides and collapses.  Sprinkler leakage hazard refers to damage to property due to 

untimely discharge of extinguisher from automatic fire sprinkler systems. 

 

 

 

 

3.3.3     Design Criteria and Requirements 

 

 

Designing structures against explosions consists of considering the following: 

 

1. reduction of severity of injuries including those resulting from physical hazards 

2. rescue facilitation 

3. repair expedition 

4. acceleration of the speed of return to full operation. 
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3.3.4     Explosion Hazards 

 

 

Hazards during and post an explosion include: 

 

1. direct bodily harm from air blast 

2. flying and falling debris 

3. broken glass 

4. smoke and fire 

5. power loss 

6. communications breakdown 

7. blocked exits and trapping 

8. partial or total collapse of structure especially progressive. 

 

 

 

 

3.4     Surface Pressure of Blast 

 

 

3.4.1     Introduction 

 

 

An explosion detonated on the surface of the ground affects a structure by both ground 

shock waves and air blast waves.  These two kinds of waves arrive at the structure at 

different times because wave speeds in the air and in the ground are different.  The 

ground shock acts first on the structure while the air blast has a greater effect on the 

structure (figure 3.3b) because, for the ground shock, the ground absorbs some of the 

explosion energy and damps the shock wave.  Therefore, structural engineers are 

concerned more about the air blast in the analysis and design of structures.  However, 

the time lag between the two waves could be very short and both waves would then 

affect the structure simultaneously, and that could sometimes result in the ground shock 
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wave magnifying the effect of the air blast wave especially when both waves are in 

resonance, having the same frequency, length and phase.  Information about explosion 

waves, blast waves in particular, are given in the references introduced earlier in this 

chapter and also by Wu and Hao (2003). 

 

 

 

 

3.4.2     Time History and Spatial Distribution of Blast Surface Pressure 

 

 

The air blast applies pressure to the exposed surfaces of the structure.  This pressure at 

any point of these surfaces is related to a number of variables.  Among these variables 

are the distance of the point from the centre of the explosion, the strength of the 

explosion and of course the time. 

 

 

Figure 3.6 presents the typical relation between the surface pressure ps, resulting from 

the air blast, and time.  The air blast wave reaches the surface at a time ta after the 

explosion, the arrival time, and then t is set to 0.  The pressure then begins to build up 

on the surface.  Assuming that positive pressure is compression and negative pressure is 

tension, the blast surface pressure predicted by this typical constitutive model starts 

from zero and increases, as compression, linearly until reaching the maximum value pso, 

the peak pressure, at t = tr which is called the pressure-rising time.  Thereafter, it decays 

exponentially until reaching zero after a time td, the pressure-decreasing time, starting 

from t = tr.  It then continues to decay, as tension now, exponentially until reaching a 

minimum value, the maximum tension.  After that, it increases again, exponentially and 

while remaining tensile, diminishing gradually but not vanishing according to this 

constitutive model. 

 

 

In reality however, the surface pressure will eventually vanish at a finite time tov, the 

duration of blast pressure application, where ov stands for overall. 
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In order to provide values for the various parameters shown in figure 3.6, a lot of 

experiments were conducted.  The results of these experiments led to the proposal of 

some empirical best-fitted-curve relations for these parameters.  A set of such relations 

was presented by Wu and Hao (2003) and is used in this research and given below. 

 

 

If R is the distance in meters between the explosion centre and the considered point on 

the structure exposed surface, Q is the weight of the TNT explosive in kilograms, ca is 

the speed of sound in the air, in meters per second, which is equal to 340 m/s, and t+ is 

the duration of application of the blast compressive pressure, then the following 

equations apply at the considered point: 
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where a  is the decrease rate constant and is determined by the following equations: 
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3.5     Simplification of Spatial Distribution and Time History of Blast Pressure 

 

 

3.5.1     Simplification of Spatial Distribution 

 

 

Due to the high speed of the blast wave, the exposed surface, if it is relatively small, can 

be assumed to be subjected to a uniform blast pressure over its entire area.  Thus, the 

blast pressure becomes a function of time only ps (t) instead of a function of time and 
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space ps (x,y,t), where (x,y) is the coordinates of any point on the exposed surface with 

reference to a local coordinate system. 

 

 

 

 

3.5.2     Simplification of Time History 

 

 

Referring back to the previous section and figure 3.6, the momentum imparted to the 

structure through its exposed surface by the negative pressure is usually very small and 

can often be neglected and the blast is assumed to generate compression wave only. 

 

 

The first shape one would propose to simplify the curve of the blast pressure time 

history ps (t) is the triangular shape where the pressure starts from zero and rises linearly 

to the peak pressure pso and then falls linearly to zero again. 

 

 

In a study of the dynamic response of several structural elements exposed to blast, Na 

and Librescu (2001) found that the blast pressure applied to the surface of the element 

reached the peak value very quickly.  In other words, the rise time tr was very short.  

That is one of the reasons why loads generated by the air blast of explosions are 

considered to be impulsive and sometimes called pulses.  Therefore, the blast pressure 

can be assumed to jump to the peak value instantly at the start, and if the triangular 

representation was adopted for the time history of the blast pressure this pressure starts 

suddenly from the peak value and falls linearly to zero.  In this case, the triangle of the 

pressure time history is right angled.  This shape of dynamic loading and its effect on 

response were investigated in Chapter 2. 

 

 

An alternative more convenient simplification of the blast pressure time history is to 

assume that the pressure jumps instantly to the peak value at the start as above but 

remains constant thereafter for a while and then falls suddenly to zero.  In this case, the 

time history of the blast pressure is represented by a rectangle as shown in figure 3.7 
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where ps is the constant pressure and tov is the duration of its application.  The 

rectangular shape of dynamic loading was also discussed in Chapter 2. 

 

 

For the rectangular representation, tov is assumed to remain the same and ps can then be 

calculated, vice versa, or a suitable value is given to one of them and the other can then 

be calculated.  Calculation of the unknown is by using the principle of impulse 

conservation which is: 

 

originalsimplified II =                                                                                                          (3.13) 

 

where I is the impulse imparted by the blast pressure while the subscript refers to the 

representation of the pressure time history. 

 

 

The above impulses are given by: 

 

ovssimplified tpI =                                                                                                            (3.14) 

 

=
overall

soriginal dttpI )(                                                                                                    (3.15) 

 

where overall under the integration symbol means that the integration is done over the 

overall duration of the pressure. 

 

 

The substitution of equations (3.14) and (3.15) into equation (3.13) gives: 

 

=
overall

sovs dttptp )(                                                                                                       (3.16) 

 

 

The last equation is used to calculate the unknown ps or tov and is interpreted as the area 

under the curve depicting the time history of pressure is the same for both models, the 

simplified and the original. 
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3.6     The Initial Velocity and the Pulse Theorem 

 

 

Once the pressure of the blast is applied to the surface of a structure, it responds by 

deforming and starts to gain velocity.  By the end of the blast pressure duration tov, the 

structure would have absorbed its total momentum and have a velocity of a certain 

value, say V0.  As the blast pressure is an impulsive load, its duration tov is very short 

compared to the fundamental natural period of the structure.  Thus, the velocity V0 can 

be considered as a uniform initial velocity which the structure attains instantly at the 

start time t = 0, with zero initial displacements, which substitutes for the blast pressure. 

 

 

The uniform initial velocity field of the structure above represents the only parameter of 

loading substituting for the blast pressure and can be determined using the principle of 

impulse conservation which says: 

 

blastinitial II =                                                                                                                (3.17) 

 

where Iinitial is the initial impulse of the structure while Iblast is the impulse imparted by 

the blast pressure. 

 

 

Where m is the mass of the structure, the initial impulse is given by: 

 

0mVI initial =                                                                                                                (3.18) 

 

 

If Aexpo is the area of the structure surface exposed to the blast, the blast impulse is: 

 

ovsoblast tpAI exp=                                                                                                         (3.19) 
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Substituting equations (3.18) and (3.19) in equation (3.17) gives: 

 

ovsoblast tpAImV exp0 ==                                                                                             (3.20) 

 

 

From last equation, the uniform initial velocity is found as follows: 

 

m

tpA

m
I

V ovsoblast exp
0 ==                                                                                               (3.21) 

 

 

The last equation represents the basic idea behind the pulse theorem where the impulse 

of blast becomes the dominant characteristic of loading. 

 

 

 

 

3.7     Blast Loading of Beams 

 

 

If a beam of a rectangular solid cross section is subjected to blast, as the one shown in 

figure 3.8, the resulting pressure can be represented by a field of uniform initial velocity 

V0.  If the beam has a span of 2l, a width of b, a thickness of h and a material mass 

density of � and from equation (3.21), the initial velocity is given by: 

 

h
tp

lbh
tlbp

V ovsovs

ρρ
==

2
2

0                                                                                                 (3.22) 
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3.8     Conclusion 

 

 

Impulsive loads, generated by the blast from explosions in particular, along with their 

effect on structural design have been discussed.  Detailed equations of the blast pressure 

and the techniques used to simplify them including the pulse theorem have been given.  

The central role of the impulse and the initial velocity in the characterization of blast 

loading and in the dynamic analysis has also been explained. 
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Figure 3.1: Petrol explosions simulating bomb drops at an air show, after PD Photo 
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Figure 3.2: The Ronan Point Building after the gas explosion of 1968, taken from 

Macleod (2005) 
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Figure 3.3a: Damage to the Alfred P. Murrah Federal Building in Oklahoma City 1995, 

after AP the Associated Press 
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Figure 3.3b: Computerized simulation of blast wave as it shattered the glazed façade of 

the Alfred P. Murrah Federal Building, after Wearne 1999 
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Figure 3.4: Depiction of the trinal balance between robustness, serviceability and cost 
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Figure 3.5: Percentage yearly occurrence and loss cost of various hazards, after IRIS the 

Industrial Risk Insurers Society 

 

 

 

 

 
 

Figure 3.6: Typical time history of blast surface pressure 
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Figure 3.7: Simplification of blast pressure time history to rectangular shape 

 

 

 

 

 

 

 
Figure 3.8:  a. Beam subjected to blast.  b. Cross section of beam 

ps , V0 

h 

b l 

a b 

l 

t 

ps (t) 

0 

ps 

tov 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4 – The SEP Method 
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4.1     Introduction 

 

 

As previously discussed in Chapter 2, the difficulty of applying the accurate method for 

the dynamic analysis of beams has led researchers to propose approximate methods.  

The basic idea is that instead of dealing with the beam as an infinite degree of freedom 

dynamic system, which is governed by a differential equation of an unknown variable y 

that is a function of the coordinate x and time t, the beam is considered as a dynamic 

system having a finite number, for example two or even one, of degrees of freedom. 

 

 

Symonds (1980a and b) has developed an efficient method for the dynamic analysis of 

beams called the Simplified Elastic Plastic Method (the SEP Method) which has given 

promising results when checked for accuracy and safety.  This Chapter gives a detailed 

description of this method and includes an introduction to the theoretical assumptions 

made and an explanation of the analytical techniques used.  In addition, the steps and 

the procedures for this method along with their various equations and relationships are 

detailed.  This discussion assumes the general case of loading which is enough to cause 

plastic strains in the beam so the member exhibits both elastic and plastic behaviours. 

 

 

In this method, the behaviour of the beam is considered to be modelled in a number of 

discrete stages which are described later. 

 

 

 

 

4.2     Main Assumptions 

 

 

The main assumption in this method is that the beam can be considered as a single 

degree of freedom system.  This degree of freedom is the displacement “ a ” at a chosen 

point x  of the beam.  This displacement is a function of time only ( )(ta ). 

 

 



 85 

Also, it is assumed that as the beam vibrates it takes an assumed shape which is constant 

through time in each stage of the response.  This shape is expressed as a shape function 

in x , )(xφ . 

 

 

The displacement ),( txy  of any point x  of the beam at any time t  is then given by the 

relation: 

 

)()(),( taxtxy φ=                                                                                                    (4.1) 

 

 

At xx = : 

 

1)( =xφ                                                                                                                      (4.2) 

 

which leads to: 

 

)()(1)()(),( tatataxtxy =∗== φ                                                                               (4.3) 

 

 

This single degree of freedom system is called the equivalent SDOF system which is 

governed by a differential equation of the unknown variable “ a ” which is, in this case, 

a function of time t  only.  Using this differential equation and depending on the initial 

conditions of the beam (the displacement and velocity), the degree of freedom )(ta  can 

be found, and because )(xφ  is assumed so it is known then ),( txy  can be identified 

from equation (4.1).  This solution of ),( txy  is a mode form solution, that is why this 

method is described as a mode simulation technique or as a mode form method. 

 

 

In reality, when a beam is subjected to a large dynamic load, it goes through a number 

of stages.  At the beginning, when the deformations are small and the stresses are less 

than the yield stress, the beam is fully elastic.  Thereafter, the deformations increase and 

the stresses increase and in some sections they reach the yield stress so the beam is 

elastic plastic in these sections.  These increments continue until that all the stresses in 
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some sections reach the yield stress so the beam is fully plastic in these sections.  So in 

reality there is not a separation between elastic and plastic stages but they interfere with 

each other.  A main idea in the SEP method is that it assumes that a cross-section of the 

beam is either fully elastic or fully plastic.  Thus, the simplified method assumes an 

artificial separation between the elastic and the plastic stages. 

 

 

This method assumes different mode form solutions (different shape functions) for the 

beam during the different stages.  This causes discontinuity at the time that separates 

two succeeding stages.  So if the solution of the first stage is known the conditions (the 

displacements and the velocities) at the end of this first stage, which is also the 

beginning of the next second stage, can be found.  Even though, these conditions cannot 

just be simply used as direct initial conditions for the second stage. 

 

 

To find these direct initial conditions, other assumptions need to be employed.  To find 

the initial velocity particularly, a special advanced technique called the “�0 minimum” 

device is used.  These assumptions and this device help to overcome the discontinuity 

between the two successive different mode form stages and to connect them together. 

 

 

 

 

4.3     Analytical Techniques 

 

 

4.3.1     Introduction 

 

 

If two successive stages are considered, the mode form solution during the first one can 

be determined by the following relation: 

 

)()(),( 111 taxtxy φ=                                                                                                      (4.4) 

 

and the solution during the second stage by: 
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)()(),( 222 taxtxy φ=                                                                                                      (4.5) 

 

where )(1 ta  and )(2 ta  are the displacements of the point x  of the beam during the first 

and second stages, respectively.  )(1 xφ  and )(2 xφ  are respectively the shape functions 

of the beam for the first and second stages and they are not identical. 

 

 

If t0 is assumed to be the time when the first stage terminates and the next one begins, 

then at t = t0: 

 

1001 )( ata =                                                                                                                     (4.6) 

 

1001 )( ata �� =                                                                                                                     (4.7) 

 

 

Thus, from equation (4.4): 

 

10101101 )()()(),( axtaxtxy φφ ==                                                                                     (4.8) 

 

10101101 )()()(),( axtaxtxy ��� φφ ==                                                                                  (4.9) 

 

These last two functions are assumed to be known. 

 

 

Also, at t = t0: 

 

2002 )( ata =                                                                                                                 (4.10) 

 

2002 )( ata �� =                                                                                                                 (4.11) 

 

 

Therefore, from equation (4.5): 
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20202202 )()()(),( axtaxtxy φφ ==                                                                                  (4.12) 

 

20202202 )()()(),( axtaxtxy ��� φφ ==                                                                                (4.13) 

 

In the last two equations, all values are known except 20a , 20a�  which are the initial 

conditions of the second stage that need to be identified. 

 

 

 

 

4.3.2     Determination of 20a  and 20a�  

 

 

It can be clearly seen that the equality 202101 )()( axax φφ =  cannot be achieved with any 

value of 20a  as )(1 xφ  and )(2 xφ  are not identical.  So there is an inevitable 

discontinuity.  However, this discontinuity can be accepted and 20a  is assumed to be: 

 

1020 aa =                                                                                                                      (4.14) 

 

 

Also, it is obvious that the equality 202101 )()( axax �� φφ =  cannot be always true for any 

value of 20a� .  Therefore, another discontinuity cannot be evitable.  However, the 

discontinuity is accepted and 20a�  can be determined by making use of a special 

analytical tool developed for this purpose; the “�0 minimum” device. 

 

 

So to summarise, at the interface of the two stages 1020 aa =  but 1020 aa �� ≠ . 
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4.3.3     The �0 Minimum Device 

 

 

The best way to connect the two velocity fields 101 )( ax �φ  and 202 )( ax �φ  of the two 

successive stages is by trying to conserve, as much as possible, the kinetic energy and 

the translational momentum of the beam between the two stages at the separation time 

t0.  The most suitable technique to achieve the “as much as possible” conservation is the 

“�0 minimum” device which represents the minimum of the mean of the difference 

squares at t = t0.  The mean of the difference squares at t = t0, �0, is given by: 

 

 −=∆=∆
L

dxaaa 2
2021012000 )(

2
1

)( ��� φφρ                                                                   (4.15) 

 

where L is the whole length of the beam, and ρ  is the mass per unit length of the beam 

material. 

 

 

It can be noted from the last equation that �0 is a function of only the one unknown 

which is 20a� .  From this, the desired value of 20a�  would be that which makes �0 

minimum, that is, the value which satisfies the following condition: 

 

0
20

0 =∆
ad

d
�                                                                                                                      (4.16) 

 

 

If 20a�  satisfies the last equation then �0 would be minimum and it can be shown that 

this value is given by: 

 

102
2

21

20 a
dx

dx
a

L

L
��




=

φ

φφ
                                                                                                   (4.17) 

 

 

 



 90 

 

4.3.4     Summary 

 

 

After determining 20a  and 20a� , they are used as direct initial conditions in the next stage 

for )(2 ta  by which, along with using the differential equation of )(2 ta , the function 

)(2 ta  can be completely determined and then used in its turn to determine the general 

response function ),(2 txy  during the second stage. 

 

 

 

 

4.4     Steps and Procedures of the SEP Method 

 

 

4.4.1     Introduction 

 

 

To illustrate the SEP Method, the case of a fully clamped beam subjected to an 

impulsive dynamic load, as shown in figure 4.1, is discussed. 

 

 

The mechanical properties of the beam material are: 

 

The mass density � 

Young’s modulus of elasticity E 

The yield stress 
y  

 

 

The dimensions of the beam are illustrated in figure 4.1.  The second moment of area of 

the cross section of the beam is I. 
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At the start time t = 0, there is no deformation in the beam and it is assumed to be at 

rest. 

 

 

The impulsive dynamic load per unit length of the beam is given by: 

 

p(t) = p0     for     t � t0  

p(t) = 0       for     t > t0                                                                                               (4.18) 

 

where t0, the duration of the load, is very small compared to the fundamental natural 

period of the beam and thus the load is impulsive. 

 

 

During the response, the beam goes through a number of stages depending on the state 

of the material (elastic or plastic).  During each stage, the beam has a unique shape 

function.  These stages are explained and their differential equations of motion are given 

in the following with the aid of figure 4.6. 

 

 

 

 

4.4.2     Stage I – Fully Elastic 

 

 

The first stage of the response of the beam is when it remains fully elastic.  The 

response for the beam during this stage can be written in the following mode form 

expression: 

 

)()(),( taxtxy φ=                                                                                                      (4.19) 

 

where, as shown in figure 4.2, )(ta  is the displacement at the midpoint of the beam and 

)(xφ  is the modal shape function of the beam during the first stage and is given by: 
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                              lx ≤≤0                                              (4.20) 

 

 

It should be noted that the value of the shape function at the mid point of the beam is 

1)( =lφ . 

 

 

Because the duration of application t0 for the distributed impulsive load p0 is short, this 

load can be conveniently substituted by a field of initial velocity V0 of the beam, as 

illustrated in figure 4.3, where the scalar momentum (pulse) of the beam resulting from 

this velocity field V0 is equal to the scalar momentum (pulse) of the beam resulting 

from the distributed load p0, that is: 

 

000 )2()2( Vlbhtlp ρ=                                                                                                (4.21) 

 

 

bh
tp

V
ρ

00
0 =�

                                                                                                             (4.22) 

 

 

V0 is the value that should be assigned to the initial velocity of the beam. 

 

 

In this case of impulsive load substitution, there would be no external forces of 

excitation acting on the beam.  Therefore, the differential equation of motion of the 

beam during this stage becomes an equation of free vibration.  Applying the 

approximate method detailed in Chapter 2 for the dynamic analysis of beams using the 

shape function determined above, the equation of motion is given by: 

 

012
420
156

3 =+ a
l
EI

abhl ��ρ                                                                                         (4.23) 
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A similar equation was reported by Symonds but it was not correct as it lacked few 

variables and thus it was not dimensionally compatible.  This is corrected here. 

 

 

The direct initial conditions for this stage at the midpoint of the beam are 10a  and 10a�  

for the displacement and velocity, respectively.  The value of the initial displacement is: 

 

010 =a                                                                                                                         (4.24) 

 

 

The initial velocity of this stage 10a�  on the other hand can be determined from the 

original initial velocity of the beam V0 by making use of the “�0 minimum” device 

which can analytically connect the two discontinuous fields of initial velocity of the 

beam; the original field and the field for the assumed first stage.  Upon substitution in 

equations (4.15), (4.16) and (4.17), the result is: 

 

010 346.1 Va =�                                                                                                               (4.25) 

 

 

The solution of the last differential equation considering these initial conditions is given 

by: 

 

taa ω
ω

sin
1

10 �
�

�
�
�

�= �

                                                                                                    (4.26) 

 

where 
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�

�
��
�

�
��
�

�
��
�

�= 4

2
2

13
35

l
hE

ρ
ω

                                                                                                   (4.27) 

 

 

The beam response during the first stage is now determined.  This stage actually 

terminates at the time when the beam starts to yield and the second stage starts.  If the 

termination time is assumed to be t1 and because the separation between the elastic first 
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stage and the plastic second stage is artificial, as stated previously, t1 depends on the 

assumption.  Many ways can be suggested in order to estimate t1.  One of these is to find 

out the time history of the absolute value of the elastic bending moment at the critical 

sections of the beam (the maximum value of the bending moment whether positive or 

negative) Mc(t) and then determine the time when this value becomes equal to the fully 

plastic pure bending moment Mp of the cross section of the beam.  This time would be a 

good estimation of t1. 

 

 

The time history of the critical bending moment of the beam is given by: 

 

),0(),()( tMtlMtM c ==                                                                                      (4.28) 

 

where M(l,t) and M(0,t) are respectively the bending moments at the time t at the mid 

span x = l and at the support x = 0 of the beam (the critical sections) which are 

determined from the beam bending relationship M = -EI y`̀. 

 

 

The fully plastic bending moment is given by: 

 

4

2bh
M yp σ=                                                                                                             (4.29) 

 

 

Finally, to determine t1, the following equation needs to be solved for t: 

 

pc MtM =)(                                                                                                                (4.30) 
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4.4.3     Stage II – Fully Plastic Pure Bending 

 

 

At the second stage of the beam response, plastic hinges form at the critical cross 

sections of the beam.  Thus, each half of the beam can be assumed to move as a rigid 

bar during this stage with fully plastic hinges formed at both ends of this bar (at the ends 

and the midpoint of the beam), as shown in figure 4.4.  At each of these hinges, there is 

a bending moment which is equal to Mp. 

 

 

The beam response during this stage is given by: 

 

)()(),( taxtxy φ=                                                                                                      (4.31) 

 

where )(xφ , the beam modal shape function for the second stage, is: 

 

l
x

x =)(φ
                              lx ≤≤0                                                                      (4.32) 

 

 

The last relation shows that the value of the shape function at the mid point of the beam 

is 1)( =lφ . 

 

 

The differential equation of the beam during this stage is of uniformly decelerated 

motion and is given by: 

 

2

6

bhl

M
a p

ρ
−=��                                                                                                                (4.33) 

 

 

Substituting the value of Mp in the last equation gives: 
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22
3

l

h
a y

ρ
σ

−=��                                                                                                                (4.34) 

 

 

21a  and 21a�  are assumed to represent the initial displacement and velocity, respectively, 

for this second stage at time t = t1, while 11a  and 11a�  are assumed to represent the same 

quantities at the same time but for the first stage and which can be calculated from its 

equations at t = t1.  As the shape functions of the beam motion for the first and second 

stages are different, there are discontinuities in both the displacement and velocity fields 

of the beam, at the time t1 that separates these stages.  21a  can be determined from 11a  

as follows: 

 

1121 aa =                                                                                                                     (4.35) 

 

and 21a�  can be determined from 11a� , by using the “�0 minimum” technique, as follows: 

 

1121 050.1 aa �� =                                                                                                              (4.36) 

 

 

After determining the initial conditions 21a  and 21a� , the solution of the last differential 

equation is found from the following relation: 

 

( ) ( )2
1212121 4

3
tt

l

h
ttaaa y −−−+=

ρ
σ

�                                                                           (4.37) 

 

 

Hence, the beam response during the second stage is found.  This stage terminates at a 

time t2 when the deformation of the beam reaches values large enough that the axial 

tension in the beam becomes significant and plasticity spreads throughout the beam, and 

all the stresses are at yield and tensile so that instead of the plastic bending moment Mp 

there is a fully plastic pure axial tension Np at all the cross sections of the beam.  The 

deformation at which this occurs is assumed to be given by: 
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ha =                                                                                                                          (4.38) 

 

where h is the depth of the beam.  Solving equation (4.38) for t gives the termination 

time t2. 

 

 

 

 

4.4.4     Stage III – Fully Plastic Pure Axial Tension 

 

 

This stage, figure 4.5, is characterized by pure internal axial tension without any 

bending moment at all cross sections of the beam equal to the fully plastic tension Np 

which is given by: 

 

bhN yp σ=                                                                                                                 (4.39) 

 

Thus, the beam in this stage is at its maximum capacity of resistance. 

 

 

The response of the beam for this stage is: 

 

)()(),( taxtxy φ=                                                                                                      (4.40) 

 

where )(xφ  is the shape function in the third stage and is given by: 

 

�
�

�
�
�

� ⋅=
l
x

x
2

sin)(
πφ

                              lx ≤≤0                                                       (4.41) 

 

where it can be seen that at the beam mid span 1
2

sin)( == πφ l . 
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In this stage, the differential equation of the beam motion is the equation of free 

vibration of a cable, that is: 

 

yNybh p ′′=��ρ                                                                                                           (4.42) 

 

where  ˝  indicates to the second derivative with respect to the position coordinate x. 

 

 

Substituting Np and y and then )(xφ  into equation (4.42) yields after removing shared 

terms: 

 

0
4 2

2

=+ a
l

a yσπρ ��                                                                                                  (4.43) 

 

 

At the time t = t2, the displacement and velocity are respectively 32a  and 32a�  for this 

stage representing its initial conditions, and 22a  and 22a�  for the previous stage 

calculated from its equations.  32a  and 32a�  are found from 22a  and 22a�  by the following 

relations: 

 

haa == 2232                                                                                                              (4.44) 

 

22232

8
aa ��

π
=

                                                                                                            (4.45) 

 

where the “�0 minimum” device is employed to get the second one as the fields are 

discontinuous between the third and second stages, as with the previous stages. 

 

 

After determining the initial conditions 32a  and 32a� , the solution of the differential 

equation of motion is given as: 

 

)(sin)(cos 2
32

232 tt
a

ttaa −+−= ω
ω

ω
�

                                                             (4.46) 
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where 

 

2

2
2

4 l
y

ρ
σπω =                                                                                                            (4.47) 

 

 

The beam response during the third stage is now known.  This stage terminates at the 

time tf at which the motion of the beam reverses direction when reaching to the 

maximum amplitude of displacement.  At this point, the beam stops gaining more 

plastic deformation and its velocity becomes zero, that is: 

 

0=a�                                                                                                                         (4.48) 

 

 

Solving the last equation for t gives tf which is also called the final time of response.  

The maximum displacement of the beam amax is then determined from: 

 

amax = a (tf)                                                                                                                 (4.49) 

 

 

 

 

4.4.5     Stage IV – Elastic Recovery 

 

 

In this stage, which is the final one, the beam moves back while keeping the plastic 

strains it has previously gained as residual permanent deformation, and goes into an 

elastic vibration about the position where it only has the plastic permanent deformation.  

This position is called the residual permanent position or the rest position of the beam.  

With the passage of time, this elastic vibration will finally be damped out leaving just 

the permanent displacements in the beam which will then be at rest, and at the beam 

midpoint then the permanent displacement is given the notation ap. 
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The maximum displacement amax of the beam consists of two components: the elastic 

displacement a11 previously calculated at the end of the elastic first stage and the plastic 

permanent displacement ap.  Thus, ap can actually be found from the following relation: 

 

ap = amax – a11                                                                                                             (4.50) 

 

 

In the last equation, a11 represents the elastic recovery of the beam during this stage. 

 

 

 

 

4.5     Conclusion 

 

 

The SEP Method is an efficient practical tool for analysis which provides solutions in 

mode form to the beam dynamic problem even when it is necessary to include those 

effects that are difficult to consider in the accurate method such as nonlinearity, 

plasticity or the effect of axial force. 
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Figure 4.1: (a) The beam and the load.  (b) The cross-section of the beam.  (c) The load 

time-history. 

 

 

 

 

 

 

 
 

Figure 4.2: The beam during stage I 
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Figure 4.3: Substitution of the distributed impulsive load p0 by the velocity field V0  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.4: The beam during stage II 
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Figure 4.5: Stage III of the beam response 

 

 

 

 

 

 

 

 
 

Figure 4.6: An illustrative graph showing the successive stages of the SEP Method 
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Chapter 5 – Finite Element Modelling and Numerical Analysis 
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5.1     Introduction 

 

 

The analytical accurate method of dynamic analysis presented in Chapter 2 serves to 

formulate structural problems in terms of partial differential equations.  Solving such 

equations is very expensive in terms of effort and time while engineers cannot devote 

long hours to it when each new problem arises.  Also, the method is unable to model 

anything other than simple shapes, boundary conditions, loads, etc.  Therefore, there is a 

need for other methods which are also accurate and can model complex problems and 

whose solutions can be obtained at a reasonable cost.  Numerical methods, such as the 

finite element method, have shown to satisfy those requirements in addition to their 

potency for programming on computer. 

 

 

This Chapter presents a survey of various numerical methods used in the solution of 

dynamic problems.  These included the numerical integration of a differential equation 

of a dynamic motion, for linear and nonlinear problems.  The finite element method is 

also presented with various time stepping techniques.  Last, a finite element model of 

ABAQUS, used in the analysis of a fully clamped beam subjected to a uniformly 

distributed impulsive load, is presented. 

 

 

The finite element method was first introduced by Turner, Clough, Martin and Topp 

(1956) when it was suggested that triangular plane stress elements could be used to 

model the skin of delta wings in the airplanes of the Boeing Company.  However, the 

term ‘finite element’ was coined by Ray W. Clough in 1960.  In this method, 

conventional engineering structures which are of continuous nature can be modelled as 

an assemblage of structural elements interconnected at a number of discrete nodes.  

Therefore, structures in this method are considered as having a finite number of degrees 

of freedom which are the displacements of these nodes.  If the force-displacement 

relationships for the individual finite elements are known, it is possible to derive the 

properties and determine the behaviour of the entire structure by using the various well-

known techniques of structural analysis. 
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The finite element method has been developed enormously.  It began as a numerical 

method for stress analysis and is still widely used for this purpose.  Also, it has become 

useful in many other areas such as heat conduction, seepage flow, fluid dynamics and 

electric and magnetic fields.  One of the main factors that have been behind the wide 

spread of this method is the massive revolution in computer technology in recent years.  

Therefore, it has been a significant area of research.  Reviews of the method are given 

by, for example, Cook (1995), Cook, Malkus and Plesha (1989), Smith and Griffiths 

(1988) and Zienkiewicz and Taylor (1989 and 1991). 

 

 

 

 

5.2     Numerical Methods of Dynamic Analysis 

 

 

5.2.1     Introduction 

 

 

Numerical methods are found to be accurate enough for the solution of most dynamic 

structural problems.  In fact, some numerical methods can be exact in certain situations 

such as structures subjected to excitation forces described by functions of linear 

segments, when linear approximation is used in the method.  In some of these methods, 

the process of numerical solution requires for convenience that the excitation function 

be calculated at equal time intervals �t, then the excitation function during each interval 

can be estimated by various interpolations, for example linear interpolation, between the 

points separating the intervals.  Thus, the time duration of the excitation, including a 

suitable extension of time after cessation of the excitation, is divided into N equal time 

intervals of duration �t. 

 

 

In the numerical method of linear interpolation, the response, for each time interval �t, 

is determined from the initial conditions at the beginning of the interval and the linear 

excitation during the interval.  The initial conditions are, in this case, the displacement 

and velocity at the end of the preceding time interval. 
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Some numerical methods are more sophisticated than the method above.  Griffiths and 

Smith (1991) provide a broader explanation of the various methods of numerical 

analysis. 

 

 

 

 

5.2.2     Numerical Integration of the Differential Equation of Motion 

 

 

For a single degree of freedom model subjected to a general excitation force F(t), the 

force can be approximated by a piecewise linear function, during each time interval �t, 

as follows: 
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in which 

 

tit i ∆= .                                                                                                                         (5.2) 

 

for equal intervals of time �t and i = 1, 2, 3, … , N. 

 

 

Then, the differential equation of motion would be as follows: 
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The solution y can be expressed as the sum of the complementary solution yc for which 

the right-hand side of this equation is set equal to zero, and the particular solution yp, 

that is: 
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pc yyy +=                                                                                                                   (5.4) 

 

 

The complementary solution is given in general by: 

 

)(sin)(cos iiiic ttDttCy −+−= ωω                                                                           (5.5) 

 

 

The particular solution takes the same form of the excitation function, that is: 

 

)( iiip ttABy −+=                                                                                                       (5.6) 

 

which, upon substitution into the differential equation of motion, gives: 
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Establishing the identity of terms between the left-hand and right-hand sides of the last 

equation, that is, between the constant terms and the terms with a factor (t – ti) and then 

solving the resulting equations, Ai and Bi are determined as follows: 

 

tk
FF

A ii
i ∆

−
= +1                                                                                                               (5.8) 

 

and 

 

k
F

B i
i =                                                                                                                         (5.9) 

 

 

From the preceding equations, the total solution y can be rewritten as follows: 

 

)()(sin)(cos iiiiiii ttABttDttCy −++−+−= ωω                                                 (5.10) 
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The velocity is then given by the derivative of the last equation as: 

 

iiiii AttCttDy +−−−= )(sin)(cos ωωωω�                                                               (5.11) 

 

 

The constant of integration Ci and Di can be determined from the initial conditions of 

the system.  These include the displacement yi and the velocity iy�  at the beginning of 

the current time interval �t, that is, at time ti.  By introducing these initial conditions 

into the previous equations of displacement and velocity and solving for the constants Ci 

and Di in the resulting relations yields: 

 

iii ByC −=                                                                                                                (5.12) 

 

and 

 

ω
ii

i

Ay
D

−
=

�
                                                                                                              (5.13) 

 

 

The evaluation of equations (5.10) and (5.11) at the end of the current time interval, that 

is, at time ti+1 = ti + �t results in the displacement yi+1 and the velocity 1+iy�  at the end of 

the interval as follows: 

 

tABtDtCy iiiii ∆++∆+∆=+ ωω sincos1                                                                  (5.14) 

 

and 

 

iiii AtCtDy +∆−∆=+ ωωωω sincos1�                                                                        (5.15) 

 

 

Finally, the acceleration at time ti+1 is obtained by substituting yi+1 and 1+iy�  from the last 

two equations into the differential equation (5.3) at time t = ti+1.  Namely: 
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( )111

1
+++ −= iii kyF

m
y��                                                                                                  (5.16) 

 

 

 

The substitution of the coefficients Ai, Bi, Ci and Di previously determined into 

equations (5.14) and (5.15) results in the following formulae to calculate the 

displacement, velocity and acceleration at time t = ti+1: 

 

 

143211 ++ +++= iiiii FNFNyNyNy �                                                                           (5.17) 

 

187651 ++ +++= iiiii FNFNyNyNy ��                                                                           (5.18) 

 

110191 +++ += iii FNyNy��                                                                                                (5.19) 

 

 

where the coefficients N1, N2, N3, N4, N5, N6, N7, N8, N9 and N10 are given by the 

following expressions: 
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tN ∆−= ωω sin5                                                                                                         (5.24) 

 

 

tN ∆= ωcos6                                                                                                              (5.25) 
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2

9 ω−=N                                                                                                                    (5.28) 

 

 

m
N

1
10 =                                                                                                                      (5.29) 

 

 

 

Equations (5.17), (5.18) and (5.19) are recurrence formulas to calculate, respectively, 

the displacement, velocity and acceleration at the next time step ti+1 from the previously 

calculated values for these quantities at the preceding time step ti.  Because these 

recurrence formulae are exact, the only restriction in selecting the length of the time 

step �t is that it allows a close approximation to the excitation function and that equally 

spaced time intervals do not miss the peaks of this function.  This numerical procedure 

is highly efficient due to the fact that the coefficients N1, N2, N3, N4, N5, N6, N7, N8, N9 

and N10 need to be calculated only once. 
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5.3     Nonlinearity in Structural Dynamics 

 

 

5.3.1     Introduction 

 

 

For linear dynamic problems, structures are represented by models in which the 

restoring forces are proportional to the displacements.  Therefore, the governing 

equations of motion of structures for such dynamic problems are, as shown in Chapter 2 

and in the previous Section, linear, second order ordinary differential equations with 

constant coefficients.  Solving such equations has been shown to be relatively simple for 

particular excitation functions such as harmonic functions.  Furthermore, general 

solutions of these equations always exist for any kind of forcing functions and can be 

found numerically by the method described in the previous section. 

 

 

However, there are physical situations for which this linear model does not adequately 

represent the dynamic characteristics of the structure.  Instead, the dynamic analysis in 

such cases requires the introduction of a nonlinear model in which the spring forces do 

not remain proportional to the displacements.  Consequently, the resulting equations of 

motion are no longer linear and their closed form solutions are generally not possible 

and therefore require numerical procedures.  A more detailed theoretical investigation of 

nonlinearity in structural dynamics can be found in Worden and Tomlinson (2001). 

 

 

 

 

5.3.2     Nonlinear Modelling 

 

 

The dynamic equilibrium of a system is established by equating the inertial force FI(t) 

and the spring force FS(t) to the external force F(t).  This, at time t, results in the 

following equation: 
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)()()( tFtFtF SI =+                                                                                                    (5.30) 

 

 

The inertial force is ymtFI ��=)( .  Consider the case when the spring force is not 

necessarily proportional to the displacement y by the factor k but is a function of the 

displacement, )(yFS , equation (5.30) becomes: 

 

)()( tFyFym S =+��                                                                                                      (5.31) 

 

 

Equation (5.31) is the nonlinear differential equation of motion of the structure.  Hence, 

at time ti, the beginning of the time step �t chosen for the analysis, this equation results 

in: 

 

iiSi FFym =+��                                                                                                             (5.32) 

 

 

At the end of the time step, ti+1 = ti + �t, the equation of motion gives: 

 

111 +++ =+ iiSi FFym ��                                                                                                      (5.33) 

 

 

Subtracting equation (5.33) from equation (5.32) results in the difference equation of 

motion in terms of increments, namely: 

 

iiSi FFym ∆=∆+∆ ��                                                                                                      (5.34) 

 

where iy��∆ , iSF∆  and iF∆  are respectively the incremental acceleration, incremental 

spring force and incremental external force and are given by the following relations: 

 

iii yyy ������ −=∆ +1                                                                                                             (5.35) 
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SiSiSi FFF −=∆ +1                                                                                                         (5.36) 

 

iii FFF −=∆ +1                                                                                                            (5.37) 

 

 

The stiffness coefficient ki of the time step is defined as the current value of the spring 

force per unit displacement which may be taken as the slope of the tangent of the 

nonlinear  spring force – displacement function FS(y) at the initiation of the current time 

step �t, or as the slope of the secant line for the interval �t.  The value of this 

coefficient is assumed to remain constant during the current increment of time �t. 

 

 

From the previous discussion, it can be concluded that the incremental spring force is 

proportional to the incremental displacement, even though the spring force itself is not 

necessarily proportional to the corresponding displacement.  Therefore: 

 

iiSi ykF ∆=∆                                                                                                                (5.38) 

 

where �yi refers to the incremental displacement and is defined by the following 

relationship: 

 

iii yyy −=∆ +1                                                                                                             (5.39) 

 

 

Substituting equation (5.38) into equation (5.34) finally gives the incremental governing 

equation of motion of the structure, that is: 

 

iiii Fykym ∆=∆+∆ ��                                                                                                     (5.40) 
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5.3.3     Numerical Evaluation of Nonlinear Solutions 

 

 

Among the many methods available for the solution of the nonlinear equation of 

motion, probably one of the most effective is the step-by-step integration method.  In 

this method, the response is evaluated at successive increments �t of time, usually taken 

as equal lengths of time for computational convenience.  At the beginning of each 

interval, the condition of dynamic equilibrium is established.  Then, the response for the 

time increment �t is evaluated based on the assumption that the stiffness coefficient ki 

remains constant during the interval �t.  However, the nonlinear characteristics of this 

coefficient are considered in the numerical analysis by re-evaluating this coefficient at 

the beginning of each time increment.  The response is then obtained progressively 

using the displacement and velocity calculated at the end of each time interval as the 

initial conditions for the next time step. 

 

 

In nonlinear numerical methods, the dynamic coefficients generally vary over the 

successive time intervals.  Therefore, the nonlinear behaviour of the structure is actually 

composed of a sequence of responses of systems with changing dynamic characteristics.  

Also, it is obvious that the assumption of constant mass is unnecessary as it could just as 

well be represented by another changing coefficient. 

 

 

There are many procedures available for performing the step-by-step integration of the 

incremental equation of motion.  Two of the most popular methods are the constant 

acceleration method and the linear acceleration method.  As the names of these methods 

imply, in the first method the acceleration is assumed to remain constant during the time 

interval �t, while in the second method the acceleration is assumed to vary linearly 

during the interval.  The constant acceleration method is cheaper to run but less accurate 

compared to the linear acceleration method for the same value of the time increment.  In 

the following, the two methods are presented. 
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5.3.4     Constant Acceleration Step-by-Step Integration Technique 

 

 

In the constant acceleration method, it is assumed that acceleration remains constant for 

the time step between times ti and ti+1 = ti + �t.  The value of the constant acceleration 

during the interval �t is taken as the average of the values of the acceleration iy��  at the 

initiation of the time step and 1+iy�� , the acceleration at the end of the time step.  Thus, 

the acceleration )(ty��  at any time t during the time interval �t is given by: 

 

( )12
1

)( ++= ii yyty ������                                                                                                      (5.41) 

 

 

Integration of this equation twice with respect to time between the limits ti and t results 

in: 
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and 
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The evaluation of equations (5.42) and (5.43) at the end of the time step ti+1 = ti + �t 

results in: 
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and 
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Moving the first term in the right-hand side of each of the last two equations to the left-

hand side gives: 

 

( )12 ++∆=∆ iii yy
t
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and 
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4 ++∆+∆=∆ iiii yy
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where iy∆  is the incremental displacement defined by equation (5.39) and iy�∆  is the 

incremental velocity defined by: 

 

iii yyy ��� −=∆ +1                                                                                                             (5.48) 

 

 

To use the incremental displacement in the analysis, equation (5.47) is solved for 1+iy��  

and substituted into equation (5.46) to obtain: 
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and 
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Also, substitution of 1+iy��  from equation (5.49) into equation (5.35) gives: 
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Substituting iy��∆  from the last equation into the incremental equation of motion results 

in: 
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The last equation is then solved for the incremental displacement as follows: 
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where kei is the effective stiffness and is given by: 
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and �Fei is the effective incremental force determined as follows: 
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From equation (5.53), �yi can be determined and from which iy�∆  and iy��∆  can be 

calculated from equations (5.50) and (5.51).  Thus, the displacement and the velocity at 

the end of the current time step can be found from the following relations: 

 

iii yyy ∆+=+1                                                                                                             (5.56) 

 

and 

 

iii yyy ��� ∆+=+1                                                                                                             (5.57) 
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The acceleration at the end of the time step is calculated directly from the nonlinear 

differential equation of motion, rather than using equation (5.49) or equation (5.35), as 

follows: 

 

( )111
1

+++ −= iSii FF
m

y��                                                                                                  (5.58) 

 

where FS i+1 is the restoring force evaluated at time ti+1 from the following relation using 

the value determined above of the displacement yi+1: 

 

)( 11 ++ = iSiS yFF                                                                                                          (5.59) 

 

 

After the displacement, velocity and acceleration have been determined at time           

ti+1 = ti + �t, the procedure is repeated to calculate these quantities at the end of the next 

time step ti+2 = ti+1 + �t, and the process is continued to any desired final value of time. 

 

 

 

 

5.3.5     Linear Acceleration Step-by-Step Integration Technique 

 

 

In the linear acceleration method, it is assumed that the acceleration may be expressed 

by a linear function of time during the time interval �t.  In this type of analysis, the 

structural properties of the dynamic system such as the stiffness coefficient ki may 

include any form of nonlinearity.  Thus, it is not necessary for the restoring force to be 

only a function of the displacement.  The only restriction in the analysis is that these 

properties are evaluated at an instant of time ti and then assumed to remain constant 

during the increment of time �t.  When the acceleration is assumed to be a linear 

function of time for the interval between ti and ti+1, it may be expressed as: 
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Integrating the last equation twice with respect to time between the limits ti and t yields: 

 

( ) ( )2

2
1

)( i
i

iii tt
t
y

ttyyty −
∆
∆

+−+=
��

����                                                                           (5.61) 

 

and 
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The evaluation of the last two equations at the end of the time step ti+1 = ti + �t results 

in: 
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Moving the first term in the right-hand side of each of the last two equations to the left-

hand side gives: 
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To use the incremental displacement as the basic variable in the analysis, the last 

equation is solved for iy��∆  and then substituted into equation (5.65) to obtain: 

 

iiii yy
t

y
t

y ����� 3
66

2 −
∆

−∆
∆

=∆                                                                                        (5.67) 
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Substituting iy��∆  from equation (5.67) into the incremental equation of motion results 

in: 
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The last equation is then solved for the incremental displacement as follows: 
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where kei is the effective stiffness and is given by: 
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and �Fei is the effective incremental force determined as follows: 
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From equation (5.70), �yi can be determined and then iy�∆  and iy��∆  can be calculated 

from equations (5.68) and (5.67).  Thus, the displacement and the velocity at the end of 

the current time step can be found from the following relationships: 

 

iii yyy ∆+=+1                                                                                                             (5.73) 

 

and 

 

iii yyy ��� ∆+=+1                                                                                                             (5.74) 

 

 

The acceleration at the end of the time step is calculated directly from the nonlinear 

differential equation of motion, rather than using equation (5.35), as follows: 
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where FS i+1 is the restoring force evaluated at time ti+1 from the following relation using 

the value determined above of the displacement yi+1: 

 

)( 11 ++ = iSiS yFF                                                                                                          (5.76) 

 

 

After the displacement, velocity and acceleration have been determined at time           

ti+1 = ti + �t, the application of the previously outlined iterative formulae is repeated to 

calculate these quantities at the end of the next time step ti+2 = ti+1 + �t, and the process 

is continued to any desired final value of time. 
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5.3.6     Accuracy of the Recurrence Formulae and Selection of the Time Step 

 

 

The previous numerical procedures involve two kinds of approximations.  First, the 

acceleration is assumed either to remain constant or to vary linearly during the time 

increment �t.  Second, the nonlinear stiffness properties of the structure are evaluated at 

the initiation of each time step and assumed to remain constant during the time 

increment.  In general, these two assumptions introduce errors that are small if the 

chosen time step is short.  However, these errors tend to accumulate from step to step.  

This accumulation of errors can be avoided by imposing the total dynamic equilibrium 

condition in the analysis at the end of each time step.  This can be accomplished by 

calculating the acceleration at the end of each time step using, as shown previously, the 

nonlinear differential equation of motion in which the displacement and velocity as well 

as the restoring and external forces are calculated at the end of that time step. 

 

 

Special care has to be given to the task of choosing the proper time step �t for the 

numerical analysis.  The accuracy of the step-by-step integration method depends upon 

the magnitude of the time increment selected.  The following factors should be 

considered in the selection of �t: 

 

1-  The smallest natural period excited of the structure 

 

2-  The rate of variation of the excitation function 

 

3- The complexity of the stiffness function and the functions of the other dynamic 

properties of the structure 

 

 

Practically, it has been found that to satisfy 1 above with sufficiently accurate results the 

time increment chosen should be no longer than one tenth of the smallest natural period 

excited of the structure.  The second consideration is that the time step should be small 

enough to represent properly the variation of the excitation function with respect to 

time.  The third point that should be taken into account is any abrupt change in the rate 

of variation of the stiffness function or of any other dynamic property function, for 
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example in the case of elastoplastic materials when the stiffness suddenly changes from 

linear elastic to a yielding plastic phase.  In these cases, to obtain the best accuracy, it is 

more appropriate to choose smaller time intervals in the neighbourhood of such drastic 

changes. 

 

 

 

 

5.4     Finite Element Method and Time Stepping Schemes 

 

 

5.4.1     Introduction 

 

 

The numerical methods of solving the differential equation of motion for single degree 

of freedom systems have been presented in the previous sections of this chapter.  The 

extension of these methods for the numerical analysis of structures modelled as multi 

degree of freedom systems using the finite element methods is described in this section. 

 

 

Over the past fifty years, the finite element method has been studied intensively and 

many numerical integration schemes have been developed for different types of 

physical problems.  However, researchers often do not agree on the choice of method 

for a given class of problems even though they tend to have the same preferences for 

certain kinds of engineering situations. 

 

 

In the following, a brief explanation of the different schemes for time-history finite 

element analysis is provided.  These include the Wilson-� method, Newmark-� method, 

and both the explicit and implicit algorithms of numerical integration.  More detailed 

information on the subject has been given by Wood (1990). 
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5.4.2     Governing Equation of Motion in Nonlinear Finite Element Analysis 

 

 

The governing equation of motion of structures modelled as multi degree of freedom 

nonlinear systems takes the form of a differential matrix equation as follows: 

 

[ ]{ } { }( ){ } ( ){ }tFyFyM S =+��                                                                                         (5.77) 

 

where 

 

[M] is the mass matrix of the structure 

 

{ }y , { }y��  and ( ){ }tF  are respectively the displacement, acceleration and dynamic load 

vectors of the structure 

 

{ }( ){ }yFS  is the stiffness restoring force vector of the structure which is a function of the 

displacement vector { }y . 

 

 

 

 

5.4.3     Wilson−�  Time Stepping Scheme 

 

 

The Wilson-� time stepping scheme is a modification, of the nonlinear step-by-step 

acceleration method presented in Section 5.3, in which the time step is multiplied by a 

factor necessary to render the method unconditionally stable, that is, numerical errors do 

not tend to accumulate during the integration process regardless of the magnitude 

selected for the time step.  This extension of the numerical method was introduced and 

developed by Wilson et al. (1973).  Without Wilson’s modification, the step-by-step 

acceleration method is only conditionally stable which means that in order to guarantee 

the numerical stability of the solution it may require very small time steps.  For some 

dynamic problems, this conditional time step can be so small as to make the solution 

impractical. 
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The basic assumption of the Wilson-� method is that the acceleration varies over the 

extended time increment �.�t where � is a factor greater than 1.  The value of this 

extension factor � should be determined to obtain optimum stability of the numerical 

process and accuracy of the solution.  It was shown by Wilson et al. (1973) that for 

38.1≥θ  the method becomes unconditionally stable. 

 

 

The Wilson-� method is similar to the step-by-step acceleration method, Section 5.3, 

except that the calculations are carried out for the extended time interval �.�t instead of 

the normal time interval �t.  After obtaining the incremental acceleration vector { }iy��∆̂  

for the extended time step from these calculations, the incremental acceleration vector 

{ }iy��∆  for the normal time step can then be determined by a simple linear interpolation 

as follows: 

 

{ } { }ii yy ���� ∆⋅=∆ ˆ1
θ

                                                                                                         (5.78) 

 

 

After finding { }iy��∆ , the process of numerical analysis can be continued in a similar way 

to before for the normal time interval in order to determine the displacement, velocity 

and acceleration vectors at the end of the normal time step and then moving to the next 

time step and so on. 

 

 

 

 

5.4.4     Newmark−�  Time Stepping Scheme 

 

 

The Newmark-� time stepping scheme is a generalization, of the step-by-step linear-

acceleration method, in which the acceleration is assumed to vary nonlinearly in time 

during each time step �t.  This method includes, in its formulation, several time-step 
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methods used for the numerical solution of linear and nonlinear equations.  It uses a 

parameter designated as �.  The method, as originally proposed by Newmark (1959), 

contained, in addition to �, a second parameter �.  Particular numerical values assigned 

to these parameters lead to well-known methods for the solution of the governing 

equation of motion such as the constant or linear acceleration methods.  These 

parameters actually replace the numerical coefficients 
6
1

 and 
2
1

 of the terms containing 

the incremental acceleration iy��∆  in equations (5.66) and (5.65), respectively. 

 

 

The Newmark equations are given by: 

 

{ } { } { }( ) tyyy iii ∆∆+=∆ ����� γ                                                                                             (5.79) 

 

and 

 

{ } { } { } { } 2

2
1

tyytyy iiii ∆�
�

�
�
�

� ∆++∆=∆ ����� β                                                                        (5.80) 

 

where �t, { }iy� , { }iy�� , { }iy∆ , { }iy�∆  and { }iy��∆  represent the constant time step, the 

velocity vector at the beginning of the current time step, the acceleration vector at the 

beginning of the current time step, the incremental displacement vector, the incremental 

velocity vector and the incremental acceleration vector, respectively. 

 

 

It has been found that for values of � other than 
2
1

, the method introduces an unwanted 

artificial damping in the system which is sometimes referred to as numerical damping.  

Therefore, � is generally set as 
2
1

 and the Newmark relations become: 

 

{ } { } { } { }iiii yy
t

y
t

y �����

βββ 2
111

2 −
∆

−∆
∆

=∆                                                                     (5.81) 

 

and 
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{ } { } { } { }iiii ytyy
t

y ���� ∆��
�

�
��
�

� −+−∆
∆

=∆
βββ 4
1

1
2
1

2
1

                                                         (5.82) 

 

 

In the implementation of the Newmark-� method, the process begins by selecting a 

numerical value for the parameter �.  Newmark has suggested a value in the range 

2
1

6
1 ≤≤ β .  It can be clearly seen from the previous equations that for 

6
1=β  the 

method is exactly equivalent to the linear acceleration method and is only conditionally 

stable. 

 

 

An important special case of the Newmark-� method is when 
4
1=β  for which the 

method becomes unconditionally stable while providing satisfactory accuracy and is 

exactly equivalent to the constant acceleration method. 

 

 

 

 

5.4.5     Explicit Integration Schemes 

 

 

The explicit method of numerical integration approximates the velocity and acceleration 

vectors by the following relations: 

 

{ } { } { }( )112
1

−+ −
∆

= iii yy
t

y�                                                                                           (5.83) 

 

and 

 

{ } { } { } { }( )112 2
1

−+ +−
∆

= iiii yyy
t

y��                                                                                (5.84) 
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in which �t is the time step chosen for the numerical analysis, while { }y , { }y�  and { }y��  

represent the displacement, velocity and acceleration vectors respectively, and the 

subscripts i, i+1 and i−1 indicate to the successive time instants at which these vectors 

are evaluated. 

 

 

The explicit method analyses the structure element by element and thus it is known for 

being computationally cheap.  However, one of its major disadvantages is that being 

conditionally stable means it requires very small time steps to ensure its numerical 

stability.  Therefore, the explicit method is more suitable for use in wave propagation 

analysis and for the solution of dynamic problems of short durations such as structures 

subjected to impulsive dynamic loads like impact or explosion. 

 

 

The condition of numerical stability in the explicit method is imposed upon the time 

step chosen for the analysis and is given by the following inequality: 

 

max

2
ω

≤∆t                                                                                                                   (5.85) 

 

where maxω  is the highest natural frequency of the model. 

 

 

 

 

5.4.6     Implicit Integration Schemes 

 

 

The velocity and acceleration vectors in the implicit method of numerical analysis are 

given by the following equations: 

 

{ } { } { }( ) { }iiii yyy
t

y �� −−
∆

= ++ 11

2
                                                                                   (5.86) 

 

and 
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{ } { } { }( ) { } { }iiiii yy
t

yy
t

y ����� −
∆

−−
∆

= ++
44

121                                                                   (5.87) 

 

 

The advantage of the implicit method of numerical integration is its unconditional 

stability which means that it is numerically stable regardless of the length chosen for the 

time step duration �t.  So, there is no restriction on the time step size other than that 

required for accuracy.  This method considers the structure as a whole during the 

analysis and therefore it is computationally expensive.  Consequently, the implicit 

method is more appropriately employed in the numerical analysis of dynamic problems 

of long durations such as structures subjected to, for example, wind loading or 

earthquakes. 

 

 

 

 

5.5     Finite Element Modelling and Analysis of Beams Using ABAQUS 

 

 

5.5.1     Introduction 

 

 

For simulating the beams investigated in the research, figure 5.1, a finite element model 

was built.  For this purpose, ABAQUS, a powerful software for nonlinear finite element 

simulation, was used.  The software was also used for the analysis of the model and 

visualization of results.  The ABAQUS Model is described in this Section. 

 

 

The beams modelled are fully clamped, of solid rectangular cross section, made from 

mild steel and subjected to uniformly distributed impulsive loads. 
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5.5.2     Description of the Model Geometry 

 

 

For the beam and the impulsive load applied to it transversely, a two dimensional 

modelling space was chosen.  The beam was modelled as a one dimensional deformable 

body. 

 

 

As the beam, its boundary conditions and dynamic load are symmetric and in order to 

reduce the cost and time of the analysis, only half of the beam was modelled. 

 

 

 

 

5.5.3     Strain Rate Sensitivity and Modelling of the Material 

 

 

As the dynamic loads applied to the beams described and studied in the Thesis can 

sometimes be very large, there is a need to include plasticity in the finite element 

analysis.  Also, because the beams are made of steel and due to the impulsive nature of 

the dynamic loads, strain rates in the beam can be very high to the extent that can alter 

the yield strength of the steel as it is a highly strain rate sensitive material as mentioned 

in Chapter 2. 

 

 

ABAQUS has an extensive set of material models that can simulate the behaviour of 

most typical engineering materials.  It also offers several constitutive models for the 

plastic analysis of strain rate sensitive metals including steel, ABAQUS vr.6.8 User’s 

Manuals (2008).  A convenient elasto-plastic steel model with isotropic hardening and 

defined power law for strain rate dependency was chosen for the material.  The 

numerical parameters of the power law, equation (2.41), were assigned the values for 

steel, that is, D = 40 and q = 5. 
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5.5.4     Boundary Conditions 

 

 

As half the beam only was modelled, the boundary conditions were modelled as fully 

fixed at the end of the beam and as a symmetric support at the middle of the beam. 

 

 

 

 

5.5.5     Modelling of Dynamic Loads 

 

 

As the dynamic load is uniform and impulsive, it was modelled as a predefined field of 

uniform initial translational velocity along the beam as shown in figure 5.1. 

 

 

 

 

5.5.6     The Numerical Integration Scheme Used in the Nonlinear Analysis 

 

 

Explicit schemes are computationally efficient for the dynamic analysis of structures 

with a relatively short response time.  Thus, an explicit scheme used in 

ABAQUS/Explicit Solver was chosen for the analysis of the beam as it is under 

impulsive loading and the precision of the calculation was set to double.  The explicit 

scheme was also a Newmark-� type scheme. 

 

 

ABAQUS/Explicit operates an explicit central-difference time integration rule where 

the acceleration is calculated at the start of the increment for time t and used to advance 

the velocity solution to time t+�t/2 and the displacement solution to time t+�t.  The 

dynamic equilibrium is then checked at the end of the increment t+�t, ABAQUS vr.6.8 

User’s Manuals (2008). 
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5.5.7     The Time Step Chosen for the Analysis 

 

 

ABAQUS can automatically estimate the most efficient size for the time increment and 

continuously adjust it during the analysis in terms of computational cost and numerical 

convergence, ABAQUS vr.6.8 User’s Manuals (2008).  The software was set to do that 

when analysing the beam model. 

 

 

 

 

5.5.8     Effect of Axial Forces and Geometric Nonlinearity 

 

 

Large deformations were included in the ABAQUS model.  In this case, elements are 

normally formulated in the initial configuration using the initial nodal positions.  Most 

elements however distort from their initial shapes as deformations increase.  With 

sufficiently large deformations, these elements may become so distorted that they are no 

longer suitable for use; for example, the volume of an element at an integration point 

may become negative.  In this situation, ABAQUS will issue a warning message 

indicating the problem and cut back the time increment before making further attempts 

to continue the solution. 

 

 

 

 

5.5.9     Type of Finite Elements and Meshing Techniques 

 

 

ABAQUS contains an extensive library of finite elements.  For beam problems, 

ABAQUS offers a wide range of beam elements including Euler-Bernoulli-type beams 

and with linear, quadratic or cubic interpolation formulation. 
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The model for this research was built using 3-node Euler-Bernoulli beam elements of 

quadratic geometric order, type B22, chosen from the ABAQUS library of explicit 

elements.  The utilisation of these beam elements allows for wave propagation in the 

analysis. 

 

 

For meshing the half symmetric beam in the model, one hundred elements were used.  

As found from the convergence studies carried out for the meshing, using this number 

of elements gave accurate results and was not very expensive computationally. 

 

 

 

 

5.6     Conclusions 

 

 

The solution of the differential equation of motion can be found using numerical 

methods.  In these methods, the forcing functions are approximated by segmental linear 

functions between defining points.  Based on this assumption and by choosing time 

steps that are small enough, the numerical integration is straight forward and the 

solution obtained can be reasonably accurate.  The response is calculated at each time 

increment for the conditions existing at the end of the preceding time interval which 

would be the initial conditions of the system for the new time interval and the action of 

the excitation applied during the time interval, which is assumed to be linear. 

 

 

There are many numerical methods for solution of nonlinear differential equations of 

motion.  The step-by-step acceleration method presented in this Chapter provides 

satisfactorily accurate results with recurrence calculations which can be performed on a 

computer.  However, these calculations are tedious and time consuming if they were to 

be run manually. 
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The finite element method is a powerful tool that is widely used for the static or 

dynamic analysis of structures especially with complex geometrical configurations, 

material properties or loading conditions, and which can be easily programmed for 

computers.  This numerical method has proven to be highly efficient in cost and time 

and has also shown at the same time very good accuracy and numerical stability in the 

solutions it provides.  When applied to solve dynamic problems particularly, the finite 

element method needs to include a suitable time stepping scheme adopted for the 

numerical integration such as the Wilson-�, the Newmark-�, the explicit or the implicit 

schemes. 

 

 

For the finite element modelling and analysis in this research, the ABAQUS suite of 

computer programmes was employed.  In particular, three were used; ABAQUS CAE 

for modelling, ABAQUS Explicit for the finite element analysis using the explicit 

method and ABAQUS Viewer to investigate the results. 
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Figure 5.1:  a. Model of beam subjected to impulsive load.  b. Cross section of beam 

V0 

h 

b l 

a b 

l 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6 – Symonds and Jones’ Experiments 
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6.1     Introduction 

 

 

In order to validate the methods presented in the previous chapters, a highly accurate 

benchmark to compare their results with is needed.  The experimental investigation of 

Symonds and Jones (1972) was used.  It consisted of twenty experiments done on five 

groups of steel beams with different thicknesses which were subjected to explosive 

loads of various intensities that were high enough to cause permanent plastic 

deformations in all the beams.  The initial momentum imparted to the beam and the 

permanent shape of the beam after each test were recorded. 

 

 

In this Chapter, a description of the Symonds and Jones’ experimental work, dealing 

with beams subjected to air blast of explosive loads, is presented.  The aim is to use the 

experimental results as benchmark tests. 

 

 

 

 

6.2     Test Rig 

 

 

6.2.1     Ballistic Pendulum 

 

 

Figure 6.1 illustrates the experimental arrangement for this investigation where the test 

rig is shown along with the accompanying instrumentation.  The main part of the test rig 

was the ballistic pendulum which consisted of an I beam hanged by string steel wires, a 

head welded to one of the I beam ends while holding the specimen being tested, and few 

ballasts resting on the I beam including one at the opposite side to that of the head to 

ensure stability for the I beam. 
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6.2.2     Experimental Instrumentation 

 

 

The accompanying instrumentation shown in figure 6.1 included a Minidet electrical 

detonator and a heat-sensitive paper.  The detonator had a leader coming from it 

towards the explosives at the specimen onto which it was firmly attached and was used 

to trigger the explosion by means of an electric blasting cap attached to its end.  The 

detonator was put a short distance away from the specimen and was protected from the 

explosion by a shield.  The heat-sensitive paper was located on the other side of the 

ballistic pendulum I beam to record the amplitude of its swing on the paper by a hot 

wire attached to the I beam. 

 

 

In order to measure the permanent plastic displacements of the beam specimen, the 

specimen was removed from the head of the ballistic pendulum after the test and was 

placed on a flat surface.  A slip gauge with 0.00001 m dial indicator was then used to 

measure the displacements relative to the ends of the specimen. 

 

 

 

 

6.2.3     Imparted Explosive Momentum 

 

 

The innovative experimental technique employed provided the ability to determine the 

momentum imparted to a test specimen due to explosion directly from the amplitude of 

the initial swing of the ballistic pendulum which was recorded on the heat-sensitive 

paper by a hot wire as they were related by the following equation: 

 

 

V0 = K �                                                                                                                       (6.1) 

 

 

where 
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V0 is the uniform initial velocity of the beam specimen due to the explosion 

 

� is the amplitude of the initial swing of the ballistic pendulum from its initial position 

due to the explosion 

 

K is a constant which was determined from the specimen and test rig data 

 

 

 

 

6.3     Experimental Specimens 

 

 

6.3.1     Introduction 

 

 

Each tested specimen was a fully clamped beam made from mild steel and subjected to 

uniformly distributed pressure to model the air blast of an explosion.  The specimen was 

held in place by the head of the ballistic pendulum. 

 

 

 

 

6.3.2     Details of Specimens and Head of the Ballistic Pendulum 

 

 

A detailed sketch of the specimen and the ballistic pendulum head with dimensions is 

shown in figure 6.2.  The specimen consisted of the beam being tested in between two 

enlarged ends that were part of it.  The enlargement of each end was of thickness c and 

the thickness of the beam was h, the width of the end, b, was the same as that of the 

beam.  The enlargement was to ensure rotational fixity of the beam ends.  The enlarged 

ends were attached to the specimen supports by steel bolts as well as case hardened 

serrated surfaces as first suggested by Nonaka (1967) who designed this gripping device 

to ensure axial fixity of the beam end by prohibiting it from slipping along the support 
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surface.  To ensure a high level of friction was exerted between the support surface and 

the specimen end, high tensile steel bolts were used in order to apply a large pressure on 

the surfaces.  As a result, the enlarged ends and the support serrated surfaces with the 

high-tensile steel bolts ensured fully clamped beam ends. 

 

 

The thickness of the enlarged end for the smallest two beam thicknesses was doubled 

for the larger beam thicknesses.  The length of the enlarged end was a little smaller than 

half of the beam span.  The above dimensions were to ensure that there was no rotation 

of the beam end. 

 

 

Each test beam, figure 6.3, had a solid rectangular cross section and the dimensions 

were: 

 

 

Half span l = 0.06367 m 

 

Span 2l = 0.12733 m 

 

Width b = 0.00954 m 

 

Thicknesses h = 0.0023 m, 0.0028 m, 0.0040 m, 0.0048 m and 0.0060 m 

 

 

 

 

6.3.3     Mechanical Properties of Specimen Material 

 

 

The specimens were made from mild steel which is a highly strain rate sensitive 

material.  The mild steel had the following mechanical properties: 

 

 

Mass density � = 7820 kg/m3  
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Young’s elasticity modulus E = 2.1*1011 N/m2  

 

Yield stress 
y = 210*106 N/m2  

 

Power law multiplier of strain rate sensitivity D = 40 

 

Power law exponent of strain rate sensitivity q = 5 

 

 

 

 

6.3.4     Sheet Explosives 

 

 

To apply the explosive load to the specimen, Du Pont Detasheet explosive was utilized.  

As shown in figure 6.2, the sheet explosive covered the entire top surface area of the 

specimen and underneath it a thin layer of neoprene, 0.00318 m thick, was spread in 

order to protect the specimen from spalling by the explosion.  Different numbers of 

layers of sheet explosive were applied to the specimen to vary the intensity of the 

explosive load. 

 

 

 

 

6.4     The Experiments 

 

 

In each experiment, an explosive load was applied to the beam specimen as shown in 

figure 6.3 where it is represented by the field of uniformly distributed initial velocity V0.  

The load was obtained by triggering the sheet explosives on the specimen using the 

Minidet electrical detonator, the displacement of the beam was measured and the 

velocity was determined with the aid of equation (6.1). 
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Table 6.1 lists the experiments done on the different beam specimens and the various 

intensities of loads applied.  Twenty specimens divided into five groups of different 

thicknesses were tested.  In all the experiments, the load had an intensity which was 

high enough to cause a permanent plastic displacement in the beam specimen which 

was in many of the tests up to several times the beam depth.  The recorded permanent 

displacements are also included in table 6.1. 

 

 

 

 

6.5     Conclusion 

 

 

The experimental work of Symonds and Jones was described in this Chapter.  Details of 

the test rig, specimens and experiments conducted on them were included.  These tests 

form a highly accurate benchmark that is used in the results comparison process 

presented in Chapter 7. 
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Table 6.1: The experiments and their results 

 

Experiment number Specimen thickness 

h 

m 

Explosive load V0  

 

m/s 

Permanent 

displacement ap 

m 

1 35.31 0.00749 

2 47.75 0.00889 

3 64.52 0.01265 

4 67.16 0.01516 

5 

0.0023 

72.19 0.01605 

6 32.13 0.00640 

7 38.25 0.00729 

8 49.91 0.01052 

9 

0.0028 

55.37 0.01105 

10 21.54 0.00340 

11 24.31 0.00445 

12 25.07 0.00427 

13 30.30 0.00607 

14 34.57 0.00724 

15 

0.0040 

41.61 0.00983 

16 21.69 0.00302 

17 27.94 0.00495 

18 30.25 0.00638 

19 

0.0048 

35.84 0.00701 

20 0.0060 13.87 0.00142 
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Figure 6.1: Test rig including ballistic pendulum and accompanying instrumentation 
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Figure 6.2: Specimen and head of ballistic pendulum 
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Figure 6.3: (a) Beam and its explosive load represented by an initial velocity field       

(b) Cross section of beam 
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Chapter 7 – Analysis, Results and Discussion 
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7.1     Introduction 

 

 

The dynamic behaviour of beams can be very complicated especially with the presence 

of nonlinearity.  Actually for the most complex dynamic analyses it may be necessary to 

include both material and geometric nonlinearities in a time history analysis.  In all but 

the simplest of cases this would involve the use of a numerical method such as the finite 

element method. 

 

 

However in design it may be possible to use simplified methods.  For example in many 

cases the effects of material and geometric nonlinearities can be ignored and an elastic 

analysis is carried out. 

 

 

In practice it might be best to carry out an analysis for dynamic problems which is 

elastic.  However, in certain conditions, the effect of elasticity in the response becomes 

very small and thus can be neglected in order to simplify the solution if the energy 

imparted by the dynamic load is many times larger than the elastic energy absorption of 

the structure.  In this case, a purely plastic dynamic analysis of the structure would 

suffice as the effect of plasticity is very significant because the plastic deformations are 

much larger than the elastic deformations. 

 

 

Among the different approximate methods for plastic dynamic analysis, the rigid plastic 

method has been one of the most commonly used methods due to its simplicity, 

accuracy and above all its applicability to a wide range of plastic problems.  Also, the 

rigid plastic method can be extended to include geometric nonlinearity and other forms 

of material nonlinearity such as nonlinear stress-strain relationship, strain hardening and 

strain rate sensitivity. 

 

 

However, there has been a need to improve the rigid-plastic method so it includes the 

effect of both elasticity and plasticity while remaining convenient to use.  This has led 

to introducing the elastic-plastic methods, such as the one presented in Chapter 4, which 
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are more accurate and allow for a wider spectrum of problems, for example those in 

which elasticity should be taken into account. 

 

 

The simplified elastic plastic, SEP, method presented in Chapter 4 is an efficient 

practical tool for analysis which provides relatively easy solutions in the mode form for 

the beam dynamic problem.  The method is able to include those effects that are 

difficult to consider in the analytical accurate methods, for example the Euler-Bernoulli 

analysis, such as material and geometric nonlinearity. 

 

 

The finite element analysis which was carried out using ABAQUS has been described 

in Chapter 5.  This, along with the SEP Method, was used for the dynamic analysis of 

beams similar to those tested under impulsive loads by Symonds and Jones (1972) 

which were presented in Chapter 6.  The results from the tests have been used as a 

benchmark for comparison with the results from the finite element analysis which are 

presented in this Chapter. 

 

 

Under certain conditions, in order to simplify the analysis, the dynamic load is 

converted into an initial velocity field.  The load can be replaced by an initial velocity if 

its duration is smaller than approximately one tenth of the fundamental natural period of 

the beam.  The analysis of beams under impulsive loads and the role of the impulse and 

the initial velocity in the modelling of these loads were discussed in Chapter 3. 

 

 

The validation of the finite element model and the simplified elastic plastic method has 

been carried out by comparing the results from the model/method with those of a 

benchmark whether analytical or experimental.  Through the comparison, the accuracy 

or the conservatism of the model/method has been investigated. 

 

 

The finite element model has been validated against the experimental results.  The 

validation is described in this Chapter.  Once the validation has been done, the finite 
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element model can then be used as an ‘accurate’ benchmark to validate other methods 

of dynamic analysis such as the SEP Method and to compare the results. 

 

 

The accuracy of the SEP Method for the dynamic analysis of beams is checked in this 

Chapter.  The checking is done by comparing the results from the SEP Method against 

those from ABAQUS as the benchmark.  Beams loaded impulsively, similar to those 

tested by Symonds and Jones (1972) but with a wider range of variables, have been 

analysed using ABAQUS.  The dimensions of the beams, mechanical properties of the 

material and intensities of impulsive loads are given in this Chapter. 

 

 

For the cases studied, the permanent displacements of the beam predicted using 

ABAQUS and the SEP Method, together with the available experimental results are 

given in this Chapter.  The results are compared and discussed.  Good agreement is 

found between the experimental results and ABAQUS.  The SEP Method is shown to be 

conservative when compared to ABAQUS.  The percentage differences between the 

various results are detailed in this Chapter and these provide guidance for proposing the 

calibration factors to improve the SEP Method. 

 

 

Finally, a design procedure using the SEP Method is developed in this Chapter.  The 

steps in the SEP Method, the determination of the fundamental natural period of the 

beam, checking the nature of the dynamic load whether impulsive or not, choosing the 

analysis path, then describing the various stages of the response until the determination 

of the displacement of the beam are discussed.  A flow chart for this design procedure 

with the equations used are given.  Recommendations for the possible applications of 

the SEP Method in practice, which establishes its engineering significance, are also 

presented. 
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7.2     Methodology 

 

 

 

7.2.1     Introduction 

 

 

This section explains the methodology adopted to validate the ABAQUS Model and 

then to check the accuracy of the SEP Method.  The methodology is built upon the 

concept of choosing an ‘accurate’ benchmark, whether experimental or analytical, and 

then making comparisons between this benchmark and results of the desired model.  By 

this methodology, both the safety and accuracy of the checked method can be assessed. 

 

 

A variable is defined, the percentage difference of the permanent displacement that 

represents the comparison process.  This variable can be used as an indicator of the level 

of safety and accuracy of the desired method. 

 

 

 

 

7.2.2     Percentage Difference of Permanent Displacement 

 

 

The percentage difference, �ap %, is the difference between two values of the 

permanent displacement, ap, calculated in different ways, for example by the analytical 

methods, the SEP Method and ABAQUS Model, or the results from the tests.  Thus,  

�ap % is defined as follows: 
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where ap1 and ap2 are the permanent displacements obtained from the less accurate way 

and the more accurate way, respectively. 
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The percentage difference is useful in the comparison between the two values of the 

variable where the value obtained from the more accurate way is considered a 

benchmark. 

 

 

The reason behind using the less accurate value as the value for which the difference is 

estimated as a percentage is that a designer would normally use the less accurate way, 

such as the SEP Method, to predict the sought variable as it is easier to use than the 

more accurate ways such as using ABAQUS or testing.  Predicting the value ap1 of the 

variable using the less accurate way, the designer can then use the percentage difference 

to calibrate this less accurate value by adding the difference to it in order to get the 

value ap2 of that variable predicted using the more accurate way, as shown in the 

following equation assuming that the value of ap1 will be available: 
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As the permanent displacement ap in this research is determined in three ways, the SEP 

Method, the ABAQUS Model and the experiments, there are three different permanent 

displacement percentage differences, �ap %.  Keeping in mind that the ABAQUS 

Model and the experiments can be used as benchmarks, the three percentage differences 

are: 

 

 

1.  �ap (AS) %  between ap (SEP) and ap (ABAQUS) as a benchmark 

 

2.  �ap (ES) %  between ap (SEP) and ap (Experiment) as a benchmark 

 

3.  �ap (EA) %  between ap (ABAQUS) and ap (Experiment) as a benchmark 

 

 

where they are respectively defined by the following: 
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Figure 7.1 illustrates the relationship between the sign and values of �ap % determined, 

and the nature and level of both safety and accuracy of the method of analysis, whether 

it is the SEP Method compared with either the ABAQUS Model (by the variable        

�ap (AS) %) or the experiments (by the variable �ap (ES) %), or the ABAQUS Model 

compared with the experiments (by the variable �ap (EA) %).  When �ap % is negative or 

zero the checked method is safe, while when �ap % is positive the method is unsafe.  

Also, when the value of �ap % decreases, the safety level of the method increases.  The 

accuracy of the method is related to the absolute value of �ap % regardless of its sign.  

So, when this absolute value decreases the accuracy increases, and when this value 

becomes zero the method is exact. 

 

 

 

 

7.2.3     Validation of the ABAQUS Model 

 

 

To validate the ABAQUS Model, the permanent displacement ap computed using this 

model is compared with that measured in the experiment and which is considered as an 

‘accurate’ benchmark. 
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Such validation serves two purposes the first of which is to determine the level of 

confidence in the ABAQUS Model when used for the dynamic analysis of beams.  The 

second purpose is to enable the ABAQUS Model to be used as an analytical benchmark 

for validating the solutions provided by the SEP Method in addition to using the 

experimental benchmark, especially for those study cases described in the next Section 

for which experiments have not been carried out. 

 

 

As part of the validation process, values of �ap (EA) % are determined to assess the level 

of safety and accuracy of the ABAQUS Model as this variable represents the percentage 

difference in the permanent displacement ap results given by ABAQUS compared to its 

results measured from the experiments which act as the benchmark.  Also, these 

percentage differences can be used for assessing the level of scatter in the experimental 

results. 

 

 

 

 

7.2.4     Validation of the SEP Method 

 

 

In order to validate the SEP Method, the predictions of the permanent displacement ap 

are compared with those predicted by the ABAQUS Model previously validated as an 

analytical benchmark, and also with the test results considered to be the experimental 

benchmark. 

 

 

As part of the validation process, values of �ap (AS) % and �ap (ES) % are determined to 

assess the level of safety and accuracy of the SEP Method in comparison to the two 

benchmarks, the ABAQUS Model and the experiments, respectively.  These percentage 

differences will assist in the proposal of suitable calibration factors for the SEP Method 

in order to increase its accuracy. 
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7.3     Data and Study Cases 

 

 

 

7.3.1     Introduction 

 

 

In this Section, detailed information for the cases considered is provided.  The cases 

which include the experimental results have also been extended in order to cover a 

wider range of impulsive load intensities than that covered in the tests.  The data 

consists of the geometry and dimensions of the beams, the mechanical properties of the 

material and the different intensities of the impulsive load applied. 

 

 

 

 

7.3.2     General Description 

 

 

As shown in figure 7.2, each case is a fully clamped mild steel beam and is subjected to 

a uniformly distributed impulsive load. 

 

 

 

 

7.3.3     Geometry and Dimensions of Beam 

 

 

The beam geometry is illustrated in figure 7.2, the cross section is solid and rectangular, 

and the dimensions are: 

Span, 2l = 0.12733 m 

Width, b = 0.00954 m 

Thicknesses, h = 0.0023 m, 0.0028 m, 0.0040 m, 0.0048 m or 0.0060 m 
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7.3.4     Mechanical Properties of Beam Material 

 

 

The beams are made from mild steel, which is a highly strain rate sensitive material.  

The mild steel has the following mechanical properties: 

Mass density, � = 7820 kg/m3  

Young’s elasticity modulus, E = 2.1*1011 N/m2  

Yield stress, 
y = 210*106 N/m2  

Power law multiplier of strain rate sensitivity, D = 40 

Power law exponent of strain rate sensitivity, q = 5 

 

 

 

 

7.3.5     Intensities of Impulsive Load 

 

 

The impulsive load applied to the beam is shown in figure 7.2 as a field of uniformly 

distributed initial velocity V0.  In all the experiments, this load had an intensity which 

was high enough to cause a permanent plastic displacement in the beam which was, in 

many experiments, up to several times the beam depth.  The initial velocity in the tests 

was in the range of 21 m/s to 73 m/s forcing the beam to reach the plastic third stage, 

except in the case of the thickest beam where the initial velocity was about 13 m/s, this 

beam only reached the plastic second stage.  Thus, these values do not cover the entire 

range of possible beam responses. 

 

 

In order to fill the gaps, a wide range of initial velocities up to 100 m/s was applied to 

the beams analysed using the SEP Method and the ABAQUS Model.  This velocity 

range therefore covered cases in which the beam responded elastically only, through to 

beams for which the response included all four stages, Chapter 4.  In total, about four 

hundred analyses for about two hundred cases were carried out using the SEP Method 

and the ABAQUS Model, including the experiments. 
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7.3.6     Summary 

 

 

The choice of cases to broaden the responses investigated experimentally has been 

discussed.  Details of the geometry and dimensions, the mechanical properties of 

material and the intensities of impulsive load have also been given. 
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7.4     Results 

 

 

 

7.4.1     Overview 

 

 

This section gives the values of the permanent displacement of the beam for the cases 

previously detailed.  These include the results from the experiments, those computed 

using the ABAQUS Model and the results calculated using the SEP Method.  These 

results are discussed and comparisons between them are made in order to validate the 

ABAQUS Model and the SEP Method.  An important part of the process has been to 

calculate the relative percentage difference between the two results and to discuss it in 

terms of figure 7.1. 

 

 

 

 

7.4.2     The Permanent Displacement ap  

 

 

In this section, the permanent displacements, ap, are presented, for each beam thickness 

h, as a function of the initial velocity V0, the impulsive loading intensity applied to the 

beam.  This relationship between ap and V0 is plotted and then discussed for three 

ranges of V0 which represent the range of velocities for the elastic first stage of the 

beam’s response, the range for the plastic second stage and the range for the plastic third 

stage. 

 

 

It should be recalled that if the permanent displacement predicted by the method being 

validated is greater than or equal to that of the benchmark the method is considered to 

be safe, while if it is smaller than the benchmark the method is unsafe.  Also, when both 

displacements are close to or equal to each other the method is considered to be 

accurate. 
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Figures 7.3 to 7.7 show the variation of ap, calculated by the SEP Method (ap (SEP)) and 

the ABAQUS Model (ap (ABAQUS)) and the experimental result (ap (Experiment)), against V0 

for the different thicknesses, h, of the beam.  Figures 7.8 to 7.10 shows the variation of 

ap against V0 for all the thicknesses when ap is calculated by the SEP Method, the 

ABAQUS Model or measured experimentally.  These results will be discussed in the 

following sections. 

 

 

 

 

7.4.3     The Permanent Displacement Percentage Difference �ap % 

 

 

In this section, values of �ap (AS) %, �ap (ES) % and �ap (EA) % are presented, for the 

different thicknesses of the beam, as a function of the initial velocity.  This relationship 

between the percentage difference and V0 is plotted and then discussed for the three 

ranges of V0 values mentioned earlier. 

 

 

Figures 7.11 to 7.15 show the variation of �ap (AS) %, �ap (ES) % and �ap (EA) % against 

V0 for different thicknesses of the beam.  Figures 7.16 to 7.18 show the variation of 

each difference independently against V0 for all the thicknesses.  These results will be 

discussed in the following sections. 
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7.5     Validation of the ABAQUS Model 

 

 

 

7.5.1     Introduction 

 

 

As described earlier, one of the objectives of this research was to develop and validate a 

finite element model, built using ABAQUS, for beams which are subjected to dynamic 

loads, particularly impulsive loads.  The intention was that once validated it could also 

be used as an ‘accurate’ benchmark to compare with and validate other methods of 

dynamic analysis.  The validation process is carried out by making comparisons 

between the experimental results and those computed by ABAQUS. 

 

 

 

 

7.5.2     Comparison of Results and Discussion 

 

 

Table 7.1 presents the experimental results and the results from the ABAQUS Model for 

the permanent displacement, ap, for each of the beams tested.  The ratio between the 

ABAQUS Model results and the experimental results is also provided. 

 

 

By comparing the permanent displacements from the tests and the ABAQUS Model for 

all the thicknesses, table 7.1 and figures 7.3a, 7.4a, 7.5a, 7.6a, 7.7a and b, it can be 

observed that they are always very close, and sometimes equal, to each other.  This 

shows clearly the ability of the ABAQUS Model to accurately predict the permanent 

displacement and thus it can be used as a benchmark. 

 

 

In order to get a better understanding of the accuracy of the ABAQUS Model compared 

to the experimental benchmark, a statistical analysis for the values of the ratio between 
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a result from the ABAQUS Model and the corresponding experimental result is given in 

table 7.1. 

 

 

The mean and the standard deviation for all the ratios are 1.043 and 0.105, respectively.  

The mean value which is close to one indicates that the ABAQUS Model is accurate on 

average, while the small value for the standard deviation indicates that the accuracy of 

the ABAQUS Model is consistent and the scatter in the experimental results is relatively 

small. 

 

 

The mean of the ratio is given for the group of tested beams for each thickness in table 

7.1.  Each group is discussed in turn in the following. 

 

 

Comparing ap (ABAQUS) with ap (Experiment) for the smallest thickness, h = 0.0023 m, table 

7.1 and figure 7.3a, it is observed that ap (ABAQUS) is greater than ap (Experiment) for four 

experiments, and is slightly smaller than ap (Experiment) for the fifth experiment where V0 = 

67.16 m/s, ap (ABAQUS) = 0.01513 m, ap (Experiment) = 0.01516 m and their ratio is 0.998.  

The mean for the result ratio for this thickness group is 1.077 which indicates that the 

ABAQUS Model is accurate and slightly overpredicts the permanent displacement.  

However, this overprediction is obviously insignificant and is likely due to the scatter in 

the experimental results. 

 

 

Comparing ap (ABAQUS) and ap (Experiment) for h = 0.0028 m, table 7.1 and figure 7.4a, it is 

seen that ap (ABAQUS) is always greater than ap (Experiment).  The mean for the result ratio for 

this thickness group is 1.082 thus the ABAQUS Model is accurate and slightly 

overpredicts the permanent displacement. 

 

 

However, comparing ap (ABAQUS) and ap (Experiment) for the two thicknesses h = 0.0040 m 

and h = 0.0048 m, table 7.1 and figures 7.5a and 7.6a, it is observed that ap (ABAQUS) is 

smaller than ap (Experiment) for three experiments for h = 0.0040 m and two experiments 

for h = 0.0048 m, while ap (ABAQUS) is greater than ap (Experiment) for the other three 
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experiments for h = 0.0040 m and the other two experiments for h = 0.0048 m.  The 

means for the result ratio for each group for these thicknesses are, respectively, 1.013 

and 1.044 and the ABAQUS Model is accurate and slightly overpredicts the permanent 

displacement. 

 

 

Finally, comparing ap (ABAQUS) and ap (Experiment) for h = 0.0060 m, table 7.1 and figures 

7.7a and b, shows that ap (ABAQUS) is smaller than ap (Experiment).  The mean for the result 

ratio for this thickness group is 0.887 which is close to one and the ABAQUS Model is 

accurate but slightly underpredicts the permanent displacement. 

 

 

As discussed above, the result ratios for the groups for the different thicknesses all show 

that the ABAQUS Model is able to predict the experimental results relatively 

accurately.  However, the slight differences, which indicate that the level of the 

agreement is slightly different for each thickness, are likely to be due to the scatter in 

the experimental results.  The experimental scatter might also be the reason for the 

ratios not being equal to one and thus the agreement not being exact. 

 

 

From the comparison between ap (ABAQUS) and ap (Experiment) an indication of how safe the 

ABAQUS Model as an analysis and design tool can be made.  As ap (ABAQUS) is not 

always greater than ap (Experiment), especially for the highest initial velocities V0 for the 

thicknesses h = 0.0023 m, 0.0040 m and 0.0048 m, table 7.1 and figures 7.3a, 7.5a and 

7.6a, which lay in the design range of the initial velocity where plasticity spreading 

reaches much so far through the body of the beam, it could indicate that the results of 

the ABAQUS Model need to be treated with a little caution when the Model is used for 

the design of beams.  However, because that is likely to be due to the scatter in the 

experimental results, the ABAQUS Model is actually satisfactory. 

 

 

If the predication of the ABAQUS Model were to be a benchmark for checking the 

accuracy and safety of the SEP Method, then from the comparison between ap (ABAQUS) 

and ap (Experiment) for all the thicknesses since ap (ABAQUS) is always very close to               
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ap (Experiment), it is concluded that the ABAQUS Model is a fairly accurate benchmark 

against which to compare the SEP Method. 

 

 

It is noted from figures 7.11a, 7.12a, 7.13a, 7.14a, 7.15a, b and 7.18 that �ap (EA) % can 

be negative or positive.  However, its value is always relatively small, up to about 20 %.  

This means that even though the experimental results are slightly scattered, the 

ABAQUS Model is able to predict them reasonably accurately. 

 

 

As shown in figure 7.18, the absolute value of �ap (EA) %, which represents the level of 

accuracy for the ABAQUS Model, is not simply related to V0.  This is likely due to the 

scatter in the experimental results. 

 

 

 

 

7.5.3     Discussion on the Percentage Difference 

 

 

Figure 7.18 presents the variation of �ap (EA) % for the ABAQUS Model prediction and 

the experimental results with V0 for the various thicknesses.  As expected with the 

experimental results, there is some scatter in the variation of �ap (EA) %. 

 

 

For h = 0.0023 m and 0.0028 m, the variation of �ap (EA) % and V0 is scattered as 

expected.  So, as V0 increases �ap (EA) % decreases, increases then decreases.  In 

numbers, �ap (EA) % is -3 %, -16 %, -13 %, 0 % then -1 % for the small thickness while 

it is -5 %, -11 %, -4 % then -9 % for the other thickness.  As seen, all the values are 

negative, except for experiment 4 with a zero hence an exact prediction for the 

experimental result by the ABAQUS Model. 

 

 

For h = 0.0040 m, the variation of �ap (EA) % and V0 is also scattered, but the difference 

between the case for this thickness and that for the smaller thicknesses above is that as 
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V0 increases �ap (EA) % increases.  However, there is an exception where �ap (EA) % 

decreases by 7 % between a couple of experiments, no 11 and 12 of V0 = 24.31 and 

25.07 m/s, respectively.  That is an expected consequence of the same exception seen in 

figure 7.5a for the ap (Experiment) variation.  Nonetheless, those exceptions could be due to 

the experimental scatter.  In numbers, �ap (EA) % is orderly -15 %, -3 %, -10 %, 4 %,     

6 % and 16 %.  As seen, the values are negative then positive. 

 

 

For h = 0.0048 m, the variation of �ap (EA) % and V0 is scattered and as V0 increases  

�ap (EA) % increases then decreases.  In numbers, �ap (EA) % is orderly -20 %, -5 %,      

13 % and 2 %.  As seen, the values are negative first then positive. 

 

 

However, for h = 0.0060 m, a single experiment was done, not enough to establish the 

variation of �ap (EA) % which has a single positive value of 13 %. 

 

 

In general, as seen in figure 7.18, the mean of �ap (EA) % tends to be negative and 

possibly the ABAQUS Model is relatively less capable of predicting the experimental 

results when the velocities are high and the thicknesses are low. 
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7.6     Validation of the SEP Method 

 

 

 

7.6.1     Introduction 

 

 

A further objective of this research was to discuss in detail one of the most developed 

approximate methods for the dynamic analysis of beams, the Simplified Elastic Plastic 

Method (the SEP Method) which has been described in Chapter 4, and to validate this 

method.  The validation process was conducted by making comparisons between the 

experimental results, the predictions of the ABAQUS Model and those of the SEP 

Method. 

 

 

 

 

7.6.2     Comparison of Results and Discussion 

 

 

The results are presented in figures 7.3-7.7 for the full range of the initial velocities V0.  

Figures 7.3b, 7.4b, 7.5c, 7.6c and 7.7c present the results for the lower velocities for all 

the thicknesses.  At the lower velocities, there is a narrow range at the commencement 

of the plastic behaviour and for which ap (SEP) is, unlike for the higher velocities, less 

than ap (ABAQUS).  This indicates that the SEP Method is not safe in this range.  

Fortunately, in practice, the design of the beams is likely to be such that they will have 

adequate strength to enable them to go beyond this range and into the second and third 

plastic stages, at which stage the SEP Method is safe. 

 

 

Outwith that narrow range, figures 7.3, 7.4, 7.5, 7.6 and 7.7, ap (SEP) is always more than 

ap (ABAQUS) for all the beam thicknesses.  This is an important result as it shows that the 

SEP Method is safe. 
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When ap (SEP) is compared with ap (Experiment), figures 7.3a, 7.4a, 7.5a and b, 7.6a and b, 

and 7.7a and b, it is seen that ap (SEP) is always greater than ap (Experiment) for all the 

thicknesses.  This confirms the conclusion above that the SEP Method is safe. 

 

 

The difference between ap (SEP) and ap (ABAQUS) increases as V0 increases and thus the 

conservatism of the SEP Method increases, as shown in figures 7.3-7.7.  The rate of 

change of the difference as V0 increases is higher in the second plastic stage than that in 

the third plastic stage. 

 

 

Figures 7.11a, b, 7.12a, b, 7.13a, b, 7.14a, b, 7.15a, b, 7.16a and b show that the 

percentage difference �ap (AS) % is always negative with a value of at least -20 % 

indicating that the SEP Method is safe. 

 

 

The absolute value of �ap (AS) % generally decreases as V0 increases indicating that the 

safety level, if defined as a percentage difference, of the SEP Method generally 

decreases, but still satisfactory though, as V0 increases. 

 

 

Figures 7.11a, 7.12a, 7.13a, 7.14a, 7.15a, b and 7.17 show that �ap (ES) % is always 

negative with a value of at least -20 % confirming the conclusion above that the SEP 

Method is safe. 

 

 

There is not a simple relationship between �ap (ES) % and V0, which represents the level 

of safety for the SEP Method.  This is likely to be due to the scatter expected in the 

experimental benchmark. 

 

 

Comparing �ap (AS) % and �ap (ES) % in figures 7.11a, 7.12a, 7.13a, 7.14a, 7.15a and b, it 

is noted that they are relatively close indicating that the safety level of the SEP Method 

does not vary much when a different benchmark is used, for example when using the 

ABAQUS Model instead of the experiments. 
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Also, comparing �ap (EA) % with �ap (AS) % and �ap (ES) % in the previous figures, the 

absolute value of �ap (EA) % is found to be smaller than the absolute values of �ap (AS) % 

and �ap (ES) % and relatively close to zero.  This indicates that the safety level of the 

ABAQUS Model is lower than the safety level of the SEP Method regardless of the 

benchmark.  However, the accuracy level of the ABAQUS Model is relatively high and 

higher than the accuracy level of the SEP Method no matter what the benchmark is.  

The accuracy of the ABAQUS Model in predicting the experimental results agrees with 

what was noted in the previous paragraph. 

 

 

In summary, the SEP Method is conservative and the ABAQUS Model is reasonably 

accurate.  Therefore, the SEP Method can be used with confidence in structural design 

and the ABAQUS Model can be confidently used to give accurate predictions in 

structural design and additionally for research purposes. 

 

 

 

 

7.6.3     Calibration Factors 

 

 

Figures 7.16a and b present the variation of �ap (AS) % for the SEP Method prediction 

and the ABAQUS Model prediction with V0 and h.  In the following, the variation is 

discussed for the second plastic stage and the third plastic stage separately as the 

variation is complex, particularly with h, and the curves have different characteristics in 

the second stage while the variation is simple and the curves have similar characteristics 

in the third stage. 

 

 

For the smallest thicknesses h = 0.0023 m and 0.0028 m in the second stage, the 

variation of �ap (AS) % and V0 is generally nonlinear.  �ap (AS) % decreases as V0 

increases until reaching a minimum.  For h = 0.0023 m, the minimum value is -57 % at 

V0 = 5 m/s and it is actually the minimum value for all the stages, a global minimum for 
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this thickness, and the point at which the SEP Method provides the safest prediction for 

all the stages.  For h = 0.0028 m, the minimum value is -56 % at the same V0 = 5 m/s, 

though it is not the global minimum for this thickness.  As V0 increases, �ap (AS) % 

increases until reaching a maximum then decreases to a minimum at the end of the 

second stage.  For h = 0.0023 m, the minimum value is -56 % at V0 = 6.51 m/s.  For h = 

0.0028 m, the minimum value is -57 % at V0 = 8.23 m/s and it is the global minimum 

for this thickness, the point at which the SEP Method prediction is the safest for all the 

stages. 

 

 

For h = 0.0040 m in the second stage, the variation of �ap (AS) % and V0 is generally 

nonlinear.  �ap (AS) % increases as V0 increases until reaching a maximum whose value 

is -55 % at V0 = 7 m/s.  As V0 increases further, �ap (AS) % decreases to a minimum at 

the end of the second stage with a value of -58 % at V0 = 12.21 m/s. 

 

 

For the largest thicknesses h = 0.0048 m and 0.0060 m in the second stage, the variation 

of �ap (AS) % and V0 is generally nonlinear.  �ap (AS) % increases as V0 increases until 

reaching a maximum whose value is, for these thicknesses respectively, -57 % and         

-58 % at V0 = 8 m/s and 10 m/s.  As V0 increases more, �ap (AS) % decreases to a 

minimum then increases to a maximum at the end of the second stage with a value of     

-59 % and -58 % at V0 = 14.80 m/s and 18.65 m/s, for the two thicknesses respectively. 

 

 

At the end of the second stage, it is noticeable that the �ap (AS) % curves have a sharp 

transition to the third stage depicted by a sharp turning point.  This discontinuity is due 

to that seen in the ap (SEP) curves. 

 

 

�ap (AS) % at the sharp curving point slightly varies as h varies.  It has the value of          

-56 %, -57 %, -58 %, -59 % and -58 % for h = 0.0023 m, 0.0028 m, 0.0040 m, 0.0048 m 

and 0.0060 m, respectively, so it slightly decreases then slightly increases as h 

increases.  As shown, the SEP Method safest prediction at the end of the second stage is 

for h = 0.0048 m. 
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V0 at the sharp transition increases as h increases.  This is due to the same relationship 

seen for the sharp transitions of the ap (SEP) curves. 

 

 

For the smallest thickness h = 0.0023 m in the third stage, the variation of �ap (AS) % and 

V0 is generally nonlinear.  As V0 increases, �ap (AS) % increases to a maximum whose 

value is -25 % at V0 = 40 m/s.  The maximum is global for all the stages for this 

thickness and the SEP Method provides the least safe prediction at this point, though it 

is still safe.  As V0 further increases, �ap (AS) % slightly decreases at a low decreasing 

rate until becoming constant with a horizontal curve and a value of -27 %. 

 

 

For the other thicknesses h = 0.0028 m, 0.0040 m, 0.0048 m and 0.0060 m in the third 

stage, the variation of �ap (AS) % and V0 is generally nonlinear.  As V0 increases,        

�ap (AS) % increases then remains constant with a horizontal curve and a value of -28 %, 

-31 %, -33 % and -35 %, respectively for the four thicknesses.  This value for each 

thickness is the global maximum for all the stages at which the SEP Method prediction 

is the least safe prediction, though it is still safe. 

 

 

The constant value of �ap (AS) % stated above is evidence of the consistency of the 

accuracy level for the SEP Method, determined in comparison with the ABAQUS 

Model prediction, in predicting beams response to high impulsive loads. 

 

 

As seen in figures 7.16a and b, the variation of �ap (AS) % and h in the second stage is 

complex.  As h increases from 0.0023 m to 0.0028 m, from 0.0023 m to 0.0040 m, from 

0.0028 m to 0.0040 m or from 0.0048 m to 0.0060 m, �ap (AS) % decreases, remains 

constant, increases, remains constant then decreases as V0 increases.  As h increases 

from 0.0023 m to 0.0048 m, from 0.0023 m to 0.0060 m, from 0.0028 m to 0.0048 m, 

from 0.0028 m to 0.0060 m, from 0.0040 m to 0.0048 m or from 0.0040 m to 0.0060 m, 

�ap (AS) % decreases indicating an increasingly safe prediction using the SEP Method. 
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The variation of �ap (AS) % and h in the third stage is simpler.  As h increases, �ap (AS) % 

decreases and the SEP Method becomes safer. 

 

 

In the third stage, the difference of �ap (AS) % for two values of h generally decreases 

then remains constant with the horizontal curves as V0 increases.  This indicates that the 

variation of the accuracy level for the SEP Method prediction of beams response to high 

impulsive loads, when the ABAQUS Model is the benchmark, due to a given variation 

of h is constant. 

 

 

Figure 7.17 presents the variation of �ap (ES) % for the SEP Method prediction and the 

experimental results with V0 for the various thicknesses.  As expected with the 

experimental results, there is scatter in the variation. 

 

 

For h = 0.0023 m and 0.0028 m and as V0 increases, �ap (ES) % decreases, increases then 

decreases.  In numbers, �ap (ES) % is -28 %, -38 %, -36 %, -26 % then -27 % for the 

small thickness and it is -33 %, -36 %, -30 % then -34 % for the other thickness. 

 

 

For h = 0.0040 m and as V0 increases, �ap (ES) % increases and the accuracy for the SEP 

Method improves.  However, there is an exception where �ap (ES) % decreases by 4 % 

between a couple of experiments, no 11 and 12 of V0 = 24.31 and 25.07 m/s, 

respectively.  That is an expected consequence of the same exception seen in figure 7.5a 

for the ap (Experiment) variation.  Nonetheless, those exceptions could be due to the 

experimental scatter.  In numbers, �ap (ES) % is orderly -47 %, -39 %, -43 %, -34 %,       

-31 % and -23 %. 

 

 

For h = 0.0048 m and as V0 increases, �ap (ES) % increases then decreases.  In numbers, 

�ap (ES) % is orderly -54 %, -42 %, -31 % and -36 %. 
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However, for h = 0.0060 m, a single experiment was done, not enough to establish the 

variation of �ap (ES) % which has a single value of -53 %. 

 

 

In general, as seen in figure 7.17, the mean of �ap (ES) %, which is negative, tends to 

increase and the SEP Method is possibly more accurate as the velocity increases and the 

thickness decreases. 
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7.7     Some Comments on the Permanent Displacement of the Beams 

 

 

 

7.7.1     The Permanent Displacement as Predicted by the ABAQUS Model 

 

 

A beam whose dynamic response is predicted using the ABAQUS Model does not go 

through the same distinct stages of response as predicted using the SEP Method with the 

exception of the initial elastic stage.  This is because the ABAQUS Model does not 

artificially separate the elastic state from the plastic state of the material and thus 

elasticity and plasticity can coexist simultaneously in the beam, and in the same cross 

section.  Thus, the ABAQUS Model simulates the problem more realistically. 

 

 

Figures 7.9a and b present the variation of ap (ABAQUS) with V0 and h.  As expected,       

ap (ABAQUS) increases as V0 increases when the beam is elasto plastic and ap (ABAQUS) is 

zero for the V0 values in the elastic stage which are below about 2 m/s. 

 

 

For V0 values from approximately 2 m/s to 20 m/s, the variation of ap (ABAQUS) and V0 is 

nonlinear for all the h values.  For V0 values above about 20 m/s, the variation is linear 

and parallel for all the h values.  This prediction from the ABAQUS Model, which is 

similar to that from the SEP Method, is an evidence for the linear response of the beam 

to high impulsive loads. 

 

 

The ap (ABAQUS) curves are smooth throughout the elasto plastic stage indicating that their 

equations, resulting from the ABAQUS analysis, are continuous.  This continuity can be 

observed in the equations of the finite element analysis used in ABAQUS and detailed 

in Chapter 5. 

 

 

Comparing the ap (ABAQUS) curves for the different thicknesses and the ap (SEP) curves, it is 

found that the two sets are slightly different.  This is due to the nature of the 
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assumptions, described in previous Chapters, for the SEP Method and those for the 

ABAQUS Model. 

 

 

As seen from figures 7.9a and b, ap (ABAQUS) decreases as h increases for a given V0, as 

expected, with an exception for h = 0.0023 m and 0.0028 m whose ap (ABAQUS) curves 

meet, coincide then separate for V0 between approximately 13 m/s and 24 m/s. 

 

 

The parallel straight ap (ABAQUS) lines for all the h values and high V0 values indicates 

that the rate of increase of the displacement is constant.  That is evidence of the 

independence of the rate of change of the displacement under high impulsive loads of 

the velocity and the thickness. 

 

 

A further conclusion from the parallelisation discussed above is that for high V0 values, 

the difference of ap (ABAQUS) for two values of h is constant.  The difference of ap (ABAQUS) 

is larger than that of ap (SEP) for the same values of h. 

 

 

In figure 7.9, the curves are close to each other and the variation of the permanent 

displacement predicted using the ABAQUS Model with the thickness is relatively 

small.  The reason for that is that the impulsive load increases as the thickness increases 

for a given initial velocity according to equation (3.22).  These increments of the 

thickness and the load would have contradicting effects on the permanent displacement, 

decreasing and increasing, respectively.  Also, the behaviour is mainly plastic and thus 

the prediction for elastic problems does not necessarily apply.  The approximate plastic 

analysis discussed in Section 7.7.3 explains the phenomenon. 
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7.7.2     The Permanent Displacement as Predicted by SEP Method 

 

 

Figures 7.8a and b present the variation of ap (SEP) for V0 and h.  For all the h values and 

as expected, ap (SEP) increases as V0 increases in the second and third plastic stages and 

ap (SEP) is zero for the V0 values in the elastic stage which are below about 3 m/s. 

 

 

In the second plastic stage, the variation of ap (SEP) and V0 is nonlinear representing the 

bending plasticity effect in the beam.  Thus, the rate of increase of ap (SEP) increases as 

V0 increases showing the increasing ductility the beam exhibits as plasticity spreads 

through when it becomes less stiff and gains extra displacement helping to resist the 

impulsive load and to absorb its imparted energy.  Thereafter, in the third plastic stage, 

the variation becomes linear, and parallel for V0 values above about 18 m/s, for all the h 

values representing the axial tension plasticity effect in the beam.  Thus, the rate of      

ap (SEP) increase stops increasing as V0 increases and becomes constant because the beam 

looses some ductility when moving to the third plastic stage, becomes stiffer and has 

smaller displacement when absorbing the energy of the impulsive load.  This prediction 

from the SEP Method is an evidence for the linearity of the beam response to high 

impulsive loads. 

 

 

The decrease in gradient discussed above is sudden.  Thus, the ap (SEP) curves have a 

sharp transition from the second plastic stage to the third plastic stage indicating that the 

assumptions in the analysis are different either side of this point, in other words, for the 

second stage and the third stage.  This discontinuity can be seen from the equations of 

the SEP Method detailed in Chapter 4. 

 

 

In the second plastic stage, the increasing ap (SEP) as V0 increases reaches a maximum at 

the sudden decrease in gradient, the end of the second stage.  The maximum value at the 

end of the second stage is greater for a greater h and happens also at a higher V0 causing 

the regular dislocation of ap (SEP) curves observed in figures 7.8a and 7.8b when h 

increases. 
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As seen from figures 7.8a and b, ap (SEP) decreases as h increases for a given V0 in the 

second plastic stage.  After that, in the third plastic stage, the variation reverses and      

ap (SEP) increases as h increases. 

 

 

The parallel straight ap (SEP) lines for all the h values and high V0 values indicates that 

the rate of increase of the displacement is constant.  That is evidence of the 

independence of the rate of change of the displacement under high impulsive loads of 

the velocity and the thickness. 

 

 

A further conclusion from the parallelisation discussed above is that for high V0 values, 

the difference of ap (SEP) for two values of h is constant. 

 

 

In figure 7.8, the curves are close to each other and the variation of the permanent 

displacement predicted using the SEP Method with the thickness is relatively small and 

in the third plastic stage increases as the thickness increases.  A similar phenomenon 

was predicted using the ABAQUS Model and that predicted using the SEP Method can 

be explained likewise. 

 

 

The ap (SEP) variation has many characteristics in common with the ap (ABAQUS) variation.  

Thus, the SEP Method prediction well compares with the benchmark, the ABAQUS 

Model prediction. 

 

 

 

 

 

 

 

 

 



 177 

7.7.3     The Permanent Displacement Measured Experimentally 

 

 

As for the ABAQUS Model, the response of the beam of the experiment does not go 

through the same distinct plastic stages of the SEP Method because in reality, elasticity 

would still be present when plasticity starts forming. 

 

 

Figure 7.10 presents the variation of ap (Experiment) with V0 and h.  For an h value and as 

expected, ap (Experiment) increases as V0 increases despite the scatter in the experimental 

results.  However, for h = 0.0060 m, a single experiment was done, not enough to 

establish the variation experimentally.  Also, for h = 0.0040 m, there is an exception 

where ap (Experiment) slightly decreases, by 4 %, for two experiments, no 11 and 12 of V0 = 

24.31 and 25.07 m/s and ap (Experiment) = 0.00445 and 0.00427 m, respectively.  

Nonetheless, that could be due to the experimental scatter. 

 

 

It is clear from figure 7.10 that a straight line could be fixed through all the slightly 

scattered experimental results with a fairly good correlation.  Thus, the variation of      

ap (Experiment) and V0 could possibly be linear and independent of h if the scatter was to 

virtually be removed.  That finding is compatible with the predictions of the ABAQUS 

Model and the SEP Method. 

 

 

An approximate analysis which considered only the plastic axial tension behaviour of 

the beam in the third stage was carried out by equating the external energy of the beam 

to its internal energy.  The displacement of the beam was given by 

 

0
y

p V



�
la =                                                                                                                 (7.6) 

 

 

As shown in equation (7.6), the approximate analysis above predicted that the 

displacement is related linearly to the velocity and independent of the thickness.  The 
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relationship is drawn in figure 7.20.  That prediction is in a good agreement with the 

experimental results and the predictions of the ABAQUS Model and the SEP Method. 

 

 

In figure 7.20, the ABAQUS Model prediction is also shown for comparison with the 

prediction from the above membrane analysis.  Although both predictions are linear in 

the plastic membrane stage, the ABAQUS Model prediction is lower.  That is mainly 

due to the inclusion of the strain rate sensitivity of the material in the ABAQUS 

analysis. 

 

 

The variation of ap (Experiment) has many characteristics in common with the variations of 

ap (ABAQUS) and ap (SEP).  Thus, the predictions of the ABAQUS Model and the SEP 

Method are in a good agreement with the experimental benchmark. 
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7.8     Practical Use of the SEP Method and its Engineering Significance 

 

 

In section 7.6 it was shown that the SEP Method is a suitable tool for simplified 

dynamic analysis.  The conditions which have to be satisfied for the application of the 

method are that the beam must have a rectangular cross section and fully fixed 

boundaries.  There is no restriction on the h/b ratio as Poisson’s ratio is ignored in the 

elastic analysis, nor on the h/l ratio as the axial force effect is included. 

 

 

In addition to beams, the SEP Method is suitable for other structural members, for 

example plates and slabs, which span predominantly in one direction.  Thus, the method 

could be used for the dynamic analysis of flat cladding to buildings. 

 

 

The SEP Method is mainly used for impulsive loads where their duration, td, is less than 

one tenth of the fundamental natural period, T, of vibration of the member.  In this case, 

the load is replaced by an initial velocity. 

 

 

The SEP Method can also be used for other dynamic loads of any variation and 

duration.  In this case, the actual load will be used under which the beam starts to move 

elastically in Stage I.  Thus, the elastic motion will be forced and its governing equation 

will be similar to the equation of free motion but with a forcing function on the right 

hand side.  The forcing function can be derived from equation (2.34) for the 

approximate method which has been explained in Chapter 2.  Once the beam starts to 

become plastic, the relevant steps of the SEP Method will be carried out as normal.  So, 

the governing equation of motion will be found from the dynamic equilibrium of the 

beam. 

 

 

In the prediction of the dynamic response, the SEP Method accounts for the elastic 

deformations and plastic deformations.  Thus, this method is more accurate than 

approximate methods which ignore elasticity, for example the rigid plastic method.  

Also, the SEP Method accounts for geometric nonlinearity and includes the effect of the 
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axial force in the third stage of response which involves plastic tensile membrane 

behaviour. 

 

 

Whilst all the tests and the relevant analyses described in the Thesis have been carried 

out on small scale specimens, it is envisaged that the procedures of the SEP Method can 

be applied to structures of any scale.  This can be done by the generalisation of the 

results presented in this Chapter. 

 

 

Cross sections other than rectangular cross sections could be analysed using the SEP 

Method, for example “I” sections, by taking into account the interaction between the 

internal bending moment M and the internal axial force N, and the second moment of 

area I and the area A.  This means a relationship between M and N for the particular 

cross section in the fully plastic state different from the relationship for the rectangular 

cross section would need to be used. 

 

 

Beams with boundary conditions other than full fixity, for example simply supported 

beams, can be analysed using the SEP Method by using suitable shape functions for the 

elastic stage and a suitable number of plastic hinges and possibly excluding the plastic 

tension stage from the response if there is no axial restraint. 

 

 

The SEP Method could be extended in order that it could be used for other members, for 

example cantilevers, plates and slabs, and for more complex structures, for example 

multi span beams, frames and three dimensional systems of interacting slabs and 

frames.  This would be done by making some amendments for the SEP Method, such as 

those described above, so that it would reasonably model the dynamic behaviour of 

these structures. 

 

 

As explained in Chapter 4, in the SEP Method the response of the beam is considered to 

consist of several distinct stages based on whether the beam material is elastic or plastic 

and on the resistance action dominating the behaviour of the beam whether it is bending 
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or axial tension.  In each stage, the beam takes a shape distinct to the stage.  If the 

dynamic load applied to the beam is high enough, the stages of the SEP Method are: 

 

1- Stage I – elastic deformation 

2- Stage II – plastic bending 

3- Stage III – plastic tension 

4- Stage IV – elastic recovery 

 

 

A flow chart that explains how the SEP Method can be used in practice is given in 

figure 7.19.  It shows the different successive steps of the SEP Method for a given beam 

and loading where T is the fundamental natural period of free vibration of the beam, 

given by equation (2.16) and td is the duration of the dynamic load. 

 

 

A full description of the SEP Method is given in Chapter 4.  What follows is a brief 

description of how it can be applied in practice. 

 

 

Initially, the duration of the dynamic load td has to be compared with the fundamental 

natural period of the beam, T.  If td is found to be smaller than or equal to T/10, then the 

dynamic load is impulsive and thus can be converted according to the pulse theorem 

presented in Chapter 3 to an initial velocity V0 using equation (3.22).  This initial 

velocity should be considered as the loading causing the beam to move elastically in 

Stage I.  In this case, the elastic motion is free and it is governed by equation (4.23) 

where the deformed shape of the symmetric beam half is assumed to be that of an 

unloaded fully fixed beam which is used in the approximate method explained in 

Chapter 2.  This shape is given by equation (4.20). 

 

 

Following Stage I, the beam motion starts to become plastic.  In Stage II, the beam 

behaves in bending with a plastic hinge in the middle dividing the beam into two rigid 

halves and a plastic hinge at each of the two boundaries, and the governing equation of 

motion is equation (4.34).  For this motion, the initial displacement is the displacement 

at the end of Stage I.  However, the initial velocity is not the same because the beam 
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takes a new deformed shape in Stage II.  To connect the two stages, the initial velocity 

of Stage II is determined from the velocity at the end of Stage I using the �0 minimum 

technique, equation (4.36). 

 

 

In Stage III, the beam behaves as a tendon in tension, which is plastic throughout, and 

the motion is governed by equation (4.43).  The initial conditions are found using the 

velocity and displacement from the end of Stage II in a similar way to that explained 

above. 

 

 

Finally, the beam recovers elastically in Stage IV until it comes to rest leaving only the 

permanent plastic deformations.  At this stage, the permanent displacement of the beam 

ap can be determined using equation (4.50). 

 

 

However, if td is larger than T/10, then the dynamic load is non-impulsive.  This load 

will then be that under which the beam starts to move elastically in Stage I.  In this case, 

the elastic motion is forced and its governing equation is similar to the equation of free 

motion but with a forcing function on the right hand side.  The forcing function can be 

derived from equation (2.34) for the approximate method which is explained in Chapter 

2.  Once the beam becomes plastic, the analysis moves to Stage II and is carried out as 

above using the displacement and the velocity in Stage II determined from these at the 

end of Stage I. 

 

 

Dimensionless graphs for various h/b and h/l ratios could be produced using the SEP 

Method for structural engineers to use in design.  However, further analysis for a 

broader range of values for the thickness h, the width b and the span 2l is required in 

order to verify whether the dimensionless graphs will remain the same for the same 

ratios. 

 

 

One important characteristic of the SEP Method is that it is conservative.  The main 

reason for this conservatism is the neglect of the strain rate sensitivity of the material in 
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the SEP Method.  This means that the yield strength in the SEP Method is smaller than 

in practice.  In the ABAQUS Model, and of course the experiments, strain rate effects 

are included. 

 

 

Although conservatism is an advantage for methods of structural analysis, the SEP 

Method can be too conservative which can lead to concerns over the economy of the 

SEP solutions.  Therefore, the calibration factors discussed previously can be used in 

order to reduce the conservatism. 

 

 

Because the calibration factors for the SEP Method, which are always negative 

reflecting its conservative nature, have a value greater than 20%, a single calibration 

factor can be proposed for the SEP Method that is 20%.  Such a correction would 

improve the SEP Method as it would remove most of the conservatism in the method 

and thus render it more economical and also more accurate. 
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7.9     Summary 

 

 

The finite element model which was built using ABAQUS has been validated against a 

number of experiments for beams loaded impulsively and carried out by Symonds and 

Jones (1972).  These beams have been analysed using the ABAQUS Model.  The 

permanent displacements obtained experimentally and predicted by the ABAQUS 

Model have then been given, compared and discussed.  Good agreement has been found 

between the experimental results and the ABAQUS Model prediction indicating that the 

ABAQUS Model is accurate. 

 

 

The ABAQUS Model has then been used, alongside the experiments, as a benchmark 

against which to test the SEP Method.  More cases of beams loaded impulsively, similar 

to those tested by Symonds and Jones (1972) but with a wider range of variables, have 

been analysed using the ABAQUS Model and the SEP Method.  The permanent 

displacements predicted by the ABAQUS Model and the SEP Method have been given, 

compared and discussed for all the cases including those of the experiments.  The 

experimental results have also been used in the comparison.  The SEP Method has been 

shown to be conservative. 

 

 

The percentage differences between the various results have been detailed and these 

have provided guidance for proposing the calibration factors to improve the SEP 

Method. 

 

 

A design procedure using the SEP Method has been developed.  The steps in the SEP 

Method which include the determination of the fundamental natural period of the beam, 

checking the nature of the dynamic load whether impulsive or not, choosing the analysis 

path, then describing the various stages of the response until the determination of the 

displacement of the beam have been discussed.  A flow chart for this design procedure, 

including the equations used, has been given.  Recommendations for the application of 

the SEP Method in practice have also been presented. 
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Table 7.1: Comparison of experimental and ABAQUS results 

 

Experiment 

number 

h 

m 

V0  

m/s 

ap(Experiment) 

m 

ap(ABAQUS) 

m 

ap(ABAQUS) 

ap(Experiment) 

Mean for each 

thickness 

1 35.31 0.00749 0.00770 1.028 

2 47.75 0.00889 0.01065 1.198 

3 64.52 0.01265 0.01453 1.149 

4 67.16 0.01516 0.01513 0.998 

5 

0.0023 

72.19 0.01605 0.01626 1.013 

1.077 

6 32.13 0.00640 0.00676 1.056 

7 38.25 0.00729 0.00823 1.129 

8 49.91 0.01052 0.01093 1.039 

9 

0.0028 

55.37 0.01105 0.01219 1.103 

1.082 

10 21.54 0.00340 0.00400 1.176 

11 24.31 0.00445 0.00458 1.029 

12 25.07 0.00427 0.00473 1.108 

13 30.30 0.00607 0.00585 0.964 

14 34.57 0.00724 0.00682 0.942 

15 

0.0040 

41.61 0.00983 0.00844 0.859 

1.013 

16 21.69 0.00302 0.00379 1.255 

17 27.94 0.00495 0.00522 1.055 

18 30.25 0.00638 0.00566 0.887 

19 

0.0048 

35.84 0.00701 0.00685 0.977 

1.044 

20 0.0060 13.87 0.00142 0.00126 0.887 0.887 

 

                                                                                Mean     1.043 

                                                          Standard Deviation     0.105 
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Figure 7.1: Relation between sign and value of �ap % and nature and level of both 

safety and accuracy 
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Figure 7.2: (a) Beam and its impulsive load represented by an initial velocity field      

(b) Cross section of beam 

V0 

h 

b = 0.00954 m l = 0.06367 m 

(a) (b) 

l = 0.06367 m 
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Figure 7.3a: ap for h=0.0023m, V0, 0-100m/s 
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Figure 7.3b: ap for h=0.0023m, V0, 0-10m/s 
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Figure 7.4a: ap for h=0.0028m, V0, 0-100m/s 
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Figure 7.4b: ap for h=0.0028m, V0, 0-14m/s 
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Figure 7.5a: ap for h=0.0040m, V0, 0-100m/s 
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Figure 7.5b: ap for h=0.0040m, V0, 0-22m/s 
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Figure 7.5c: ap for h=0.0040m, V0, 0-4m/s 
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Figure 7.6a: ap for h=0.0048m, V0, 0-100m/s 
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Figure 7.6b: ap for h=0.0048m, V0, 0-27m/s 
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Figure 7.6c: ap for h=0.0048m, V0, 0-4m/s 
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Figure 7.7a: ap for h=0.0060m, V0, 0-100m/s 
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Figure 7.7b: ap for h=0.0060m, V0, 0-35m/s 
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Figure 7.7c: ap for h=0.0060m, V0, 0-4m/s 
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Figure 7.8a: ap(SEP) for different thicknesses h(m), V0, 0-100m/s 
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Figure 7.8b: ap(SEP) for different thicknesses h(m), V0, 0-40m/s 
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Figure 7.9a: ap(ABAQUS) for different thicknesses h(m), V0, 0-100m/s 
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Figure 7.9b: ap(ABAQUS) for different thicknesses h(m), V0, 0-40m/s 
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Figure 7.10: ap(Experiment) for different thicknesses h(m) 
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Figure 7.11a: �ap% for h=0.0023m, V0, 0-100m/s 
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Figure 7.11b: �ap% for h=0.0023m, V0, 0-10m/s 
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Figure 7.12a: �ap% for h=0.0028m, V0, 0-100m/s 
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Figure 7.12b: �ap% for h=0.0028m, V0, 0-14m/s 
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Figure 7.13a: �ap% for h=0.0040m, V0, 0-100m/s 
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Figure 7.13b: �ap% for h=0.0040m, V0, 0-20m/s 
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Figure 7.14a: �ap% for h=0.0048m, V0, 0-100m/s 
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Figure 7.14b: �ap% for h=0.0048m, V0, 0-20m/s 
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Figure 7.15a: �ap% for h=0.0060m, V0, 0-100m/s 
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Figure 7.15b: �ap% for h=0.0060m, V0, 0-24m/s 
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Figure 7.16a: �ap(AS)% for different thicknesses h(m), V0, 0-100m/s 

 

 

 

 
Figure 7.16b: �ap(AS)% for different thicknesses h(m), V0, 0-20m/s 
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Figure 7.17: �ap(ES)% for different thicknesses h(m) 

 

 

 

 
Figure 7.18: �ap(EA)% between experiments and ABAQUS for different thicknesses 

h(m) 
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Figure 7.19: A flow chart for the successive procedures of the SEP Method, where the 

first number within the brackets indicates the chapter in which the equation was given 
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Figure 7.20: A comparison between the ABAQUS Model prediction and the membrane 

behaviour 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 8 – Conclusions 
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8.1     The Literature 

 

 

Various methods for the dynamic analysis of beams have been surveyed in Chapter 2.  

These methods differ from each other in terms of safety, material economy, cost of 

analysis and accuracy.  Numerous studies have shown that although some analytical 

methods provide results close to reality, they might be very expensive to run.  Also, due 

to the many assumptions embedded in so called accurate methods, it has been found that 

these methods often produce solutions which are not exact making the description 

‘accurate’ relative.  Simple approximate methods of analysis have been put into use due 

to their cheap running cost and fast outcomes.  However, as approximate methods 

reduce the confidence in the analysis results, ‘accurate’ methods remain necessary in 

many structural situations when comparisons with trusted benchmarks are needed 

whether in practical design or for research purposes. 

 

 

 

 

8.2     The Theory 

 

 

Among the various approximate methods of dynamic analysis, the rigid plastic method 

has been one of the most widely used methods due to its simplicity, accuracy and above 

all its applicability for a wide range of problems including some very complex ones 

such as those that also include geometric nonlinearity in addition to material 

nonlinearity.  However, this method ignores the presence of elasticity in the material.  

Thus, plastic deformations must be present and much larger than the elastic 

deformations in order for this method to give accurate results, and this means that the 

energy imparted by the dynamic load should be many times larger than the elastic 

energy capacity of the beam, otherwise, the rigid plastic method is not applicable.  

There has been also a need to develop methods that include the effect of elasticity while 

remaining convenient to use, this has led to the introduction of the elastic-plastic 

methods, such as the SEP Method presented in Chapter 4 and investigated for this 

Thesis, which are more accurate and suitable for those situations where elasticity should 

be taken into account. 
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The Simplified Elastic Plastic, SEP, Method is an efficient practical tool for analysis 

which provides solutions in mode form to the beam dynamic problem even when it is 

necessary to include those effects that are difficult to consider in ‘accurate’ analytical 

methods such as nonlinearity, both geometric and material. 

 

 

 

 

8.3     Finite Element Modelling and Time Stepping 

 

 

The nonlinear dynamic finite element modelling and analysis of the beams in the Thesis 

were carried out using ABAQUS.  The explicit time stepping scheme, which is included 

in ABAQUS/Explicit Solver, was used due to its computational efficiency for the beams 

as they were under impulsive loads and thus their responses have a relatively short 

duration. 

 

 

 

 

8.4     The ABAQUS Model 

 

 

In the ABAQUS analysis, strain rate sensitivity of the material and geometric 

nonlinearity were included.  The displacements of the beam predicted using the 

ABAQUS Model and measured from the experiments were very close, and sometimes 

equal, to each other.  That shows the accuracy of the ABAQUS Model and thus it was 

used as a benchmark against which the SEP Method was compared.  The ABAQUS 

Model can also be used for the design of beams. 

 

 

Both greater and smaller than one ratios between the displacements from the ABAQUS 

Model and the experiments were obtained.  However, the mean was close to one and the 
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standard deviation was small.  Thus, although the experimental results had some scatter, 

the ABAQUS Model predicted them fairly accurately. 

 

 

 

 

8.5     The SEP Method 

 

 

The SEP Method was applied for beams with rectangular cross sections and fully fixed 

boundaries.  According to the prediction of the SEP Method, the response of the beam 

consists, if the dynamic load is high enough, of four stages which are the elastic stage, 

the plastic bending stage, the plastic axial tension stage and the elastic recovery stage. 

 

 

In the SEP Method, strain rate sensitivity of the material was ignored.  The 

displacement of the beam predicted using the SEP Method was greater than that 

predicted using the ABAQUS Model or that measured from the experiments thus giving 

the important conclusion that the SEP Method is conservative. 

 

 

The percentage difference between the displacement from the SEP Method and that 

from whether the ABAQUS Model or the experiments was negative with a value of at 

least -20 %.  That shows the level of conservatism for the SEP Method. 

 

 

Studying the variation for the percentage difference between the displacement from the 

SEP Method and that from the ABAQUS Model showed that as the dynamic load 

increases, the conservatism of the SEP Method generally decreases and thus the Method 

becomes more accurate. 

 

 

The percentage differences can be used as calibration factors for the SEP Method and 

because they were always negative, reflecting the conservative nature of the SEP 

Method, and had a value of at least -20 %, a single calibration factor was proposed for 
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the SEP Method that was -20 %.  Such a correction would improve the SEP Method as 

it would remove most of the conservatism in the method and thus render it more 

economical and also more accurate. 

 

 

The level of conservatism in the SEP Method was not much different when the 

ABAQUS Model was used as the benchmark instead of the experiments. 

 

 

The ABAQUS Model was found to be more accurate than the SEP Method and that 

gives the ABAQUS Model an advantage over the SEP Method.  However, the SEP 

Method is cheaper to use. 

 

 

The SEP Method can be used with confidence in structural design and the ABAQUS 

Model can be confidently used to give accurate predictions in structural design and 

additionally for research purposes. 

 

 

 

 

8.6     The Design Procedure 

 

 

A design procedure using the SEP Method has been developed and is described in the 

Thesis.  The steps in the SEP Method which include the determination of the 

fundamental natural period of the beam, checking the nature of the dynamic load 

whether impulsive or not, choosing the analysis path, then describing the various stages 

of the response until the determination of the displacement of the beam have been 

discussed.  A flow chart for this design procedure, including the equations used, has 

been given.  Recommendations for the application of the SEP Method in practice have 

also been presented. 
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8.7     Recommendations for Future Research 

 

 

The SEP Method has been investigated for beams with rectangular cross sections and 

fully fixed boundaries.  Results from tests carried out on beams with certain dimensions 

have been used. 

 

 

Various cases have been analysed using ABAQUS and the SEP Method but no tests 

have been carried out for them.  Among those are the cases when the velocity is high 

and the thickness is low, and the cases of the highest thickness 0.0060m for which a 

single test only has been carried out.  Also, the SEP Method can be investigated for 

beams with a wider range of dimensions.  Therefore, more tests would be required.  

However, due to the difficulty and danger of having explosions in laboratories, that 

work is restricted to the specialised institutions. 

 

 

Strain rate sensitivity has been ignored in the SEP Method.  That can be included in 

future research to see its influence on the results. 

 

 

Further research can be carried out for beams with other cross sections and boundary 

conditions and for other members and more complex structures. 
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