66,817 research outputs found

    Moving-baseline localization for mobile wireless sensor networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2009.Includes bibliographical references (leaves 93-98).The moving-baseline localization (MBL) problem arises when a group of nodes moves through an environment in which no external coordinate reference is available. When group members cannot see or hear one another directly, each node must employ local sensing and inter-device communication to infer the spatial relationship and motion of all other nodes with respect to itself. We consider a setting in which nodes move with piecewise-linear velocities in the plane, and any node can exchange noisy range estimates with certain sufficiently nearby nodes. We develop a distributed solution to the MBL problem in the plane, in which each node performs robust hyperbola fitting, trilateration with velocity constraints, and subgraph alignment to arrive at a globally consistent view of the network expressed in its own "rest frame." Changes in any node's motion cause deviations between observed and predicted ranges at nearby nodes, triggering revision of the trajectory estimates computed by all nodes. We implement and analyze our algorithm in a simulation informed by the characteristics of a commercially available ultra-wideband (UWB) radio, and show that recovering node trajectories, rather than just locations, requires substantially less computation at each node. Finally, we quantify the minimum ranging rate and local network density required for the method's successful operation.by Jun-geun Park.S.M

    Range-only benthic Rover localization off the central California coast

    Get PDF
    Nowadays, the use of autonomous vehicles for ocean research has increased, since these vehicles have a better cost/performance ratio than crewed vessels or oceanographic ships. For example, autonomous surface vehicles can be used to localize underwater targets. This paper describes a mission to find a crawling robot - Benthic Rover - on the abyssal plain in the north eastern Pacific, using single-beacon localization from onboard a Wave Glider autonomous surface vehicle. While the Wave Glider is moving around the surface in the target zone, it takes ranges between the target and itself using acoustic modems. With these ranges it can compute the target location, as a Long Baseline (LBL) system. The benefit of this approach is the reduction of cost and complexity relative to deployment of a traditional shipboard LBL system. Additionally, this is a mobile system, and can cover long distances, and can geolocate multiple targets over a large area.Postprint (author's final draft

    Spatio-temporal Video Re-localization by Warp LSTM

    Full text link
    The need for efficiently finding the video content a user wants is increasing because of the erupting of user-generated videos on the Web. Existing keyword-based or content-based video retrieval methods usually determine what occurs in a video but not when and where. In this paper, we make an answer to the question of when and where by formulating a new task, namely spatio-temporal video re-localization. Specifically, given a query video and a reference video, spatio-temporal video re-localization aims to localize tubelets in the reference video such that the tubelets semantically correspond to the query. To accurately localize the desired tubelets in the reference video, we propose a novel warp LSTM network, which propagates the spatio-temporal information for a long period and thereby captures the corresponding long-term dependencies. Another issue for spatio-temporal video re-localization is the lack of properly labeled video datasets. Therefore, we reorganize the videos in the AVA dataset to form a new dataset for spatio-temporal video re-localization research. Extensive experimental results show that the proposed model achieves superior performances over the designed baselines on the spatio-temporal video re-localization task

    Localization under consistent assumptions over dynamics

    Full text link
    Accurate maps are a prerequisite for virtually all autonomous vehicle tasks. Most state-of-the-art maps assume a static world, and therefore dynamic objects are filtered out of the measurements. However, this division ignores movable but non-moving, i.e. semi-static, objects, which are usually recorded in the map and treated as static objects, violating the static world assumption, causing error in the localization. In this paper, we present a method for modeling moving and movable objects for matching the map and the measurements consistently. This reduces the error resulting from inconsistent categorization and treatment of non-static measurements. A semantic segmentation network is used to categorize the measurements into static and semi-static classes, and a background subtraction-based filtering method is used to remove dynamic measurements. Experimental comparison against a state-of-the-art baseline solution using real-world data from Oxford Radar RobotCar data set shows that consistent assumptions over dynamics increase localization accuracy.Comment: Submitted to IEEE-ICRA-202
    • …
    corecore