658 research outputs found

    Movement Speed Models of Natural Grasp and Release Used for an Industrial Robot Equipped with a Gripper

    Get PDF
    Abstract. In this paper, movement speed models of a robotic manipulator are presented according to the mode of operation of the human hand, when it wants to grasp and release an object. In order to develop the models, measurements on a human agent were required regarding the movement coordinates of his hand. The movement patterns have been approximated on the intervals, using first and second degree functions. The speeds were obtained by deriving these functions. The models obtained are generally presented; for their implementation in models applied for a certain robot, specific changes from case to case have to be made

    Autonomous Mechanical Assembly on the Space Shuttle: An Overview

    Get PDF
    The space shuttle will be equipped with a pair of 50 ft. manipulators used to handle payloads and to perform mechanical assembly operations. Although current plans call for these manipulators to be operated by a human teleoperator. The possibility of using results from robotics and machine intelligence to automate this shuttle assembly system was investigated. The major components of an autonomous mechanical assembly system are examined, along with the technology base upon which they depend. The state of the art in advanced automation is also assessed

    Actuation Technologies for Soft Robot Grippers and Manipulators: A Review

    Get PDF
    Purpose of Review The new paradigm of soft robotics has been widely developed in the international robotics community. These robots being soft can be used in applications where delicate yet effective interaction is necessary. Soft grippers and manipulators are important, and their actuation is a fundamental area of study. The main purpose of this work is to provide readers with fast references to actuation technologies for soft robotic grippers in relation to their intended application. Recent Findings The authors have surveyed recent findings on actuation technologies for soft grippers. They presented six major kinds of technologies which are either used independently for actuation or in combination, e.g., pneumatic actuation combined with electro-adhesion, for certain applications. Summary A review on the latest actuation technologies for soft grippers and manipulators is presented. Readers will get a guide on the various methods of technology utilization based on the application

    Basic set of behaviours for programming assembly robots

    Get PDF
    We know from the well established Church-Turing thesis that any computer program­ming language needs just a limited set of commands in order to perform any computable process. However, programming in these terms is so very inconvenient that a larger set of machine codes need to be introduced and on top of these higher programming languages are erected.In Assembly Robotics we could theoretically formulate any assembly task, in terms of moves. Nevertheless, it is as tedious and error prone to program assemblies at this low level as it would be to program a computer by using just Turing Machine commands.An interesting survey carried out in the beginning of the nineties showed that the most common assembly operations in manufacturing industry cluster in just seven classes. Since the research conducted in this thesis is developed within the behaviour-based assembly paradigm which views every assembly task as the external manifestation of the execution of a behavioural module, we wonder whether there exists a limited and ergonomical set of elementary modules with which to program at least 80% of the most common operations.IIn order to investigate such a problem, we set a project in which, taking into account the statistics of the aforementioned survey, we analyze the experimental behavioural decomposition of three significant assembly tasks (two similar benchmarks, the STRASS assembly, and a family of torches). From these three we establish a basic set of such modules.The three test assemblies with which we ran the experiments can not possibly exhaust ah the manufacturing assembly tasks occurring in industry, nor can the results gathered or the speculations made represent a theoretical proof of the existence of the basic set. They simply show that it is possible to formulate different assembly tasks in terms of a small set of about 10 modules, which may be regarded as an embryo of a basic set of elementary modules.Comparing this set with Kondoleon’s tasks and with Balch’s general-purpose robot routines, we observed that ours was general enough to represent 80% of the most com­mon manufacturing assembly tasks and ergonomical enough to be easily used by human operators or automatic planners. A final discussion shows that it would be possible to base an assembly programming language on this kind of set of basic behavioural modules

    Investigation on the mobile robot navigation in an unknown environment

    Get PDF
    Mobile robots could be used to search, find, and relocate objects in many types of manufacturing operations and environments. In this scenario, the target objects might reside with equal probability at any location in the environment and, therefore, the robot must navigate and search the whole area autonomously, and be equipped with specific sensors to detect objects. Novel challenges exist in developing a control system, which helps a mobile robot achieve such tasks, including constructing enhanced systems for navigation, and vision-based object recognition. The latter is important for undertaking the exploration task that requires an optimal object recognition technique. In this thesis, these challenges, for an indoor environment, were divided into three sub-problems. In the first, the navigation task involved discovering an appropriate exploration path for the entire environment, with minimal sensing requirements. The Bug algorithm strategies were adapted for modelling the environment and implementing the exploration path. The second was a visual-search process, which consisted of employing appropriate image-processing techniques, and choosing a suitable viewpoint field for the camera. This study placed more emphasis on colour segmentation, template matching and Speeded-Up Robust Features (SURF) for object detection. The third problem was the relocating process, which involved using a robot’s gripper to grasp the detected, desired object and then move it to the assigned, final location. This also included approaching both the target and the delivery site, using a visual tracking technique. All codes were developed using C++ and C programming, and some libraries that included OpenCV and OpenSURF were utilized for image processing. Each control system function was tested both separately, and then in combination as a whole control program. The system performance was evaluated using two types of mobile robots: legged and wheeled. In this study, it was necessary to develop a wheeled search robot with a high performance processor. The experimental results demonstrated that the methodology used for the search robots was highly efficient provided the processor was adequate. It was concluded that it is possible to implement a navigation system within a minimum number of sensors if they are located and used effectively on the robot’s body. The main challenge within a visual-search process is that the environmental conditions are difficult to control, because the search robot executes its tasks in dynamic environments. The additional challenges of scaling these small robots up to useful industrial capabilities were also explored

    Workshop on "Robotic assembly of 3D MEMS".

    No full text
    Proceedings of a workshop proposed in IEEE IROS'2007.The increase of MEMS' functionalities often requires the integration of various technologies used for mechanical, optical and electronic subsystems in order to achieve a unique system. These different technologies have usually process incompatibilities and the whole microsystem can not be obtained monolithically and then requires microassembly steps. Microassembly of MEMS based on micrometric components is one of the most promising approaches to achieve high-performance MEMS. Moreover, microassembly also permits to develop suitable MEMS packaging as well as 3D components although microfabrication technologies are usually able to create 2D and "2.5D" components. The study of microassembly methods is consequently a high stake for MEMS technologies growth. Two approaches are currently developped for microassembly: self-assembly and robotic microassembly. In the first one, the assembly is highly parallel but the efficiency and the flexibility still stay low. The robotic approach has the potential to reach precise and reliable assembly with high flexibility. The proposed workshop focuses on this second approach and will take a bearing of the corresponding microrobotic issues. Beyond the microfabrication technologies, performing MEMS microassembly requires, micromanipulation strategies, microworld dynamics and attachment technologies. The design and the fabrication of the microrobot end-effectors as well as the assembled micro-parts require the use of microfabrication technologies. Moreover new micromanipulation strategies are necessary to handle and position micro-parts with sufficiently high accuracy during assembly. The dynamic behaviour of micrometric objects has also to be studied and controlled. Finally, after positioning the micro-part, attachment technologies are necessary

    Advances in flexible manipulation through the application of AI-based techniques

    Get PDF
    282 p.Objektuak hartu eta uztea oinarrizko bi eragiketa dira ia edozein aplikazio robotikotan. Gaur egun, "pick and place" aplikazioetarako erabiltzen diren robot industrialek zeregin sinpleak eta errepikakorrak egiteko duten eraginkortasuna dute ezaugarri. Hala ere, sistema horiek oso zurrunak dira, erabat kontrolatutako inguruneetan lan egiten dute, eta oso kostu handia dakarte beste zeregin batzuk egiteko birprogramatzeak. Gaur egun, industria-ingurune desberdinetako zereginak daude (adibidez, logistika-ingurune batean eskaerak prestatzea), zeinak objektuak malgutasunez manipulatzea eskatzen duten, eta oraindik ezin izan dira automatizatu beren izaera dela-eta. Automatizazioa zailtzen duten botila-lepo nagusiak manipulatu beharreko objektuen aniztasuna, roboten trebetasun falta eta kontrolatu gabeko ingurune dinamikoen ziurgabetasuna dira.Adimen artifizialak (AA) gero eta paper garrantzitsuagoa betetzen du robotikaren barruan, robotei zeregin konplexuak betetzeko beharrezko adimena ematen baitie. Gainera, AAk benetako esperientzia erabiliz portaera konplexuak ikasteko aukera ematen du, programazioaren kostua nabarmen murriztuz. Objektuak manipulatzeko egungo sistema robotikoen mugak ikusita, lan honen helburu nagusia manipulazio-sistemen malgutasuna handitzea da AAn oinarritutako algoritmoak erabiliz, birprogramatu beharrik gabe ingurune dinamikoetara egokitzeko beharrezko gaitasunak emanez

    On the role of gestures in human-robot interaction

    Get PDF
    This thesis investigates the gestural interaction problem and in particular the usage of gestures for human-robot interaction. The lack of a clear definition of the problem statement and a common terminology resulted in a fragmented field of research where building upon prior work is rare. The scope of the research presented in this thesis, therefore, consists in laying the foundation to help the community to build a more homogeneous research field. The main contributions of this thesis are twofold: (i) a taxonomy to define gestures; and (ii) an ingegneristic definition of the gestural interaction problem. The contributions resulted is a schema to represent the existing literature in a more organic way, helping future researchers to identify existing technologies and applications, also thanks to an extensive literature review. Furthermore, the defined problem has been studied in two of its specialization: (i) direct control and (ii) teaching of a robotic manipulator, which leads to the development of technological solutions for gesture sensing, detection and classification, which can possibly be applied to other contexts
    • …
    corecore