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Abstract 

Mobile robots could be used to search, find, and relocate objects in many types of 

manufacturing operations and environments. In this scenario, the target objects might 

reside with equal probability at any location in the environment and, therefore, the robot 

must navigate and search the whole area autonomously, and be equipped with specific 

sensors to detect objects. Novel challenges exist in developing a control system, which 

helps a mobile robot achieve such tasks, including constructing enhanced systems for 

navigation, and vision-based object recognition. The latter is important for undertaking 

the exploration task that requires an optimal object recognition technique. 

In this thesis, these challenges, for an indoor environment, were divided into three sub-

problems. In the first, the navigation task involved discovering an appropriate 

exploration path for the entire environment, with minimal sensing requirements. The 

Bug algorithm strategies were adapted for modelling the environment and implementing 

the exploration path. The second was a visual-search process, which consisted of 

employing appropriate image-processing techniques, and choosing a suitable viewpoint 

field for the camera. This study placed more emphasis on colour segmentation, template 

matching and Speeded-Up Robust Features (SURF) for object detection. The third 

problem was the relocating process, which involved using a robot’s gripper to grasp the 

detected, desired object and then move it to the assigned, final location. This also 

included approaching both the target and the delivery site, using a visual tracking 

technique. 

All codes were developed using C++ and C programming, and some libraries that 

included OpenCV and OpenSURF were utilized for image processing. Each control 

system function was tested both separately, and then in combination as a whole control 

program. The system performance was evaluated using two types of mobile robots: 

legged and wheeled. In this study, it was necessary to develop a wheeled search robot 

with a high performance processor. The experimental results demonstrated that the 

methodology used for the search robots was highly efficient provided the processor was 

adequate. It was concluded that it is possible to implement a navigation system within a 

minimum number of sensors if they are located and used effectively on the robot’s 
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body. The main challenge within a visual-search process is that the environmental 

conditions are difficult to control, because the search robot executes its tasks in dynamic 

environments. The additional challenges of scaling these small robots up to useful 

industrial capabilities were also explored.  
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Chapter 1           Introduction 

Mobile robots have been used in various applications including: manufacturing, mining, 

military operations and search and rescue missions. As such, the robot interacts with 

many tools and other types of equipment and therefore, must model its environment, 

control its motion and identify objects by using the navigation system and manage 

assigned tasks with its control system [1]. A robot’s navigation system controls three 

functions in real-time: path planning [2], self-localisation [3] and motion control [4, 5]. 

The first is the process of finding an optimal path for movement from the start point to 

the destination while avoiding obstacles. The second is the robot’s ability to determine 

its position and orientation within its environment. The third is the essential task of 

enabling the robot to operate in its environment [5]. The assigned tasks enable mobile 

robots to perform specific useful duties within its environment, such as grasping and 

relocating objects. 

There are many types of manufacturing operations and environments for which mobile 

robots can be used to search, find and relocate objects [1]. In this role, the robot 

explores its environment to learn the location of a specific object and then performs a 

useful task, such as moving the object to another place. Such robots will need enhanced 

systems for navigation and vision-based object recognition. The navigation system is 

important for generating a path that covers the entire environment and for locating the 

position of the robot within that environment. It must also identify all potential 

obstacles in order to select a suitable path towards the desired destination in real-time 

[6]. Vision-based object recognition is important for undertaking the exploration task; it 

involves using a vision sensor and employing an optimal object recognition technique.  

1.1 Problem Statement 

Recently, autonomous robots have been considered for service applications. Service 

robots can include intelligent wheelchairs or vacuum cleaners and medicine or food 

delivery robots. However, for search services, robots must recognise specific objects, 

which they may then be required to approach, grasp and relocate. Novel challenges exist 

in developing a control system that helps a mobile robot to navigate and search its 
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environment. These include constructing an optimal navigation system that enables the 

mobile robot to search the entire area, because the target might have an equal 

probability of being at any location. As the robot performs a visual search, the choice of 

an exploration strategy and vision-based object recognition technique is difficult. The 

search strategy that directs the robot to move to a search site and to relocate as required, 

involves selecting the vision sensor’s viewpoint. One aspect is the object detection 

process, which is challenging because the robot needs to navigate and place the object 

in the field of view. The robot also requires a vision system that employs some image 

analysis techniques, which are sensitive to environmental conditions, such as lighting, 

texture and background colour. In a classical path planning process, the robot is aware 

of the start and target locations. However, in a search robot application, the target 

position is unknown and therefore, the exploration path should cover the entire area and 

maximise the probability of detecting the target object. Lastly, the robot needs to 

manipulate the detected object by implementing specific task codes. 

1.2 Research Questions 

 The problem statement identified the challenges in constructing a navigation 

system for an indoor search robot. Part of this research involves designing 

systems that are capable of overcoming the challenges. The general question 

is: How should a self-navigating mobile robot control system be designed? 

 Another aspect of the research is: How should the different types of sensors 

be integrated within the control system for the search robot? 

 The accuracy of a measurement system will dramatically rise if the robot is 

equipped with the high number of sensors.  However, this increases the 

robot’s price and leads to a more complex control system in its 

implementation [7].  Therefore, the number of sensors must be reduced 

without affecting the efficiency of the robot motion. The question is: How 

should a minimum number of sensors be attached on the robot’s body for 

autonomous navigation?    
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 Although there are many options, another important question is: How should 

vision technology be integrated with robot technology for autonomous 

navigation? (This investigation is expected to lead to an optimal mobile 

robot navigation system.) 

 Which algorithms should a mobile robot use to search and locate objects in 

the visual field? 

 How can a robot be enabled to perform its tasks in different terrains? (The 

research has the potential to identify limitations on the navigation system 

and path planning methods, due to terrain.) 

 Which custom-built instruments are needed for the robot’s navigation 

system, which is based on the vision system and range sensors, to optimally 

function in the intended simulation of an industrial environment? 

 The issue of scalability with regard to the size of the robot must be 

addressed, as in general, this issue has not received sufficient attention by 

researchers. Thus, this poses the question: Is the legged robot used in this 

research scalable for use in industrial tasks? 

 Whilst no large-scale robots will be designed in this project, the question to 

be addressed is: What are the theoretical challenges in scaling the model 

robots used to a size useful to industry? 

1.3 Aims and Significance 

The need for a completely autonomous mobile robot has stimulated considerable 

research on a navigation system technology. The aims of this research are:  

 To develop a mobile robotics system that is suitable for a search robot that 

works autonomously in unknown indoor static environments. 

 To develop an efficient way to identify the location of orientation of robot for an 

effective control mechanism. 
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 To find a suitable method for locating a minimum number of sensors on the 

robot’s body that is ideal for autonomous navigation.  

 To find a suitable image processing technique that is optimal for object detection 

within robot exploration applications. 

 To find the optimal exploration path that covers the entire environment for a 

search robot. 

 To find an ideal strategy for searching the designed environment. 

 To construct a motion control system that employs a camera and range and force 

sensors. 

1.4 Methodology 

The development task for the robot control system, to enable the robot to search for, 

find and relocate the target (object), is divided into three parts. First, the exploration 

(navigation) task includes finding a suitable exploration path that covers the entire 

environment with minimal sensing requirements and then constructing this path for the 

robots. Second, the visual-search task involves finding appropriate image processing 

algorithms that are suitable for object detection and then implementing and assessing 

them with the robots. This also includes rotating and then choosing a suitable viewpoint 

field for the camera. Third, the relocating task consists of using a robot’s gripper to 

grasp the detected desired object and move it to the assigned final location. The 

relocation process also involves approaching both the target and the delivery site, using 

a visual tracking technique.  

As mentioned above, one of the main objectives of this work is to address the 

theoretical challenges posed in scaling model robots to an industrially useful size. It 

would also be worth studying two types of mobile robots having two philosophies of 

locomotion configurations to identify limitations on the navigation system. Therefore, 

two types of mobile robot that have different software and electronic modules are used 

to test the functionality of the control system. First, an existing hexapod mobile robot is 

employed. The sensor platform for the robot is designed and constructed to enable the 
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robot to navigate within its environment. Second, the wheeled robot that is also 

designed and constructed as part of the project is used to validate the methodologies 

used. All codes implemented are written in C++ and C programming languages. The 

OpenCV and OpenSURF libraries are employed for image processing. Each control 

system function is tested separately and then in combination as a whole control 

program.  

1.5 Structure of the Thesis 

The next chapter comprises the background and a literature review. Chapter Three 

describes the hexapod mobile robot used in this work. Chapter Four presents the 

wheeled robot construction steps in detail. In Chapter Five, the implementation of the 

sensory platforms for both robots is explained. It also describes the process of following 

the exploration path in detail. Chapter Six demonstrates the object detection algorithms 

and presents the results. The viewpoint field of the camera is described in Chapter 

Seven, which also shows the combination of all codes and results. Chapter Eight 

summarises and discusses the presented work. Here, the ideas and possibilities for 

future research are also presented. 
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Chapter 2           Background and Literature Review 

2.1 Background 

The first industrial robot was developed and used in industry by General Motors in 

1961. Since then industrial robots have been widely used in manufacturing settings for 

performing various tasks; especially repetitive, heavy and hazardous processes. 

Typically, industrial robots are fixed and designed to work within a limited operating 

range. More recently, mobility has been added to industrial robots, which means the 

robot can perform the same tasks in different locations. In this scenario, industrial 

robots have to work autonomously and thus, they must be equipped with the required 

tools to allow them to explore their environment in order to carry out appropriate tasks. 

In 1969, a mobile robot (SHAKEY) was developed by Stanford University as the first 

robot that could control its mobility; in this case, to navigate through office buildings 

[8]. In subsequent decades, the design of mobile robots and their navigation systems 

underwent rapid development as more researchers joined this field [9]. Not surprisingly, 

‘The World Robotics Report produced by the United Nations Economic Commission 

for Europe predicts massive growth in the robot industry over the next decade’ [10]. 

2.1.1 Mobile Robot Mechanisms 

Mobile robots can be classified into three categories depending on their ground 

locomotion configuration: wheeled, legged and articulated [11]. Each type includes 

specific characteristics that make them appropriate for particular classes of applications. 

Typically, wheeled robots use rotational devices in their motion, such as wheels and 

tracks. They usually have simple mechanisms, a low total weight and are fast and 

efficient when they move on structured, regular surfaces. Therefore, they are utilised in 

almost all industrial applications. However, they are inefficient on very soft or rough 

surfaces, such as outdoor, unpaved terrains. For instance, the wheeled robot consumes 

high energy when it wants to move on an uneven surface or over a small obstacle [11]. 

Accordingly, the other two types of robots are needed because more than half of the 

Earth’s landmass is not accessible to existing wheeled and tracked vehicles [11, 12].  
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Characteristically, their biological counterparts have inspired the designs of legged and 

articulated robots. Legged robots [12] provide superior mobility in soft and unstructured 

terrains because they use discrete footholds. This consists only of point contacts with 

the ground for support and traction, whereas wheeled robots require a continuously 

supportive surface. However, they have some limitations, such as low speeds, complex 

control, high weight and large energy consumption. Articulated robots consist of several 

segments that are gathered and connected in such a way as to imitate a snake [13] or a 

centipede [14].  The main benefit of these types of construction is their ability to move 

along and across irregular terrains and narrow passages.  

2.1.2 Mobility and Autonomy 

Mobility is the ability of robots to move freely from one location to another in an 

environment to perform their tasks. If the movement is controlled remotely by an 

operator, the robot is called non-autonomous [3]. Conversely, the autonomous robot 

assesses its environment by using various sensors. The sensors’ measurements are 

employed to control the robot’s motion without any operator intervention other than for 

the provision of the assigned tasks.  

2.1.3 Robot Navigation 

Robot navigation is the ability of the autonomous mobile robot to plan its motion in 

real-time and to navigate safely from one place to another. The robust navigation 

process requires three aspects, namely: path planning, self-localisation and motion 

control. 

- Path planning is the process of finding an optimal path from a start point to the 

target location without any collisions [15]. 

- Localisation means that the robot estimates its position relative to specific 

objects within the environment [3].  

- Motion control is the robot’s ability to transfer sensory information into accurate 

physical movement in a realistic world [16].  

The process of robot navigation is a complex, technological problem as it determines a 

robot’s autonomy and reliability in performing assigned tasks; it has been widely 
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researched since the 1970s [17]. Whilst many solutions and techniques have been 

proposed, the navigation problem remains challenging. This is not because of limited 

navigation algorithms but because of the requirement for robust and reliable methods to 

acquire and extract environmental information, which is then automatically related to 

the navigation map [18]. Negenborn [3] described a further three additional problems in 

robust robot navigation: limits in computational power (CPUs); difficulties in detecting 

and recognising objects; and complexities in obstacle avoidance.  

2.1.4 Examples of Application Areas 

Typically, mobile robots are developed to replace human beings in hazardous work or 

relatively inaccessible situations, such as: exploration of nuclear power plants [19], 

undersea areas [20] and space missions [21]. Another potential application is search and 

rescue for lost or injured people where the robot must explore the entire searched area. 

Such robots are typically controlled remotely by the rescue team [22]. Recently, 

autonomous robots have been considered for service applications. Service robots can 

include intelligent wheelchairs or vacuum cleaners and medicine or food delivery 

robots. However, for search services, robots must recognise specific objects, which they 

may then be required to approach, grasp and relocate. The target objects might occur 

with equal probability at any location in the environment; therefore, the robot must 

navigate and search the whole area autonomously and be equipped with specific sensors 

to detect the objects. The next section is a literature review on the required attributes of 

search robots. 

2.2 Literature Review 

The most important three aspects required of a mobile search robot are: navigation 

(exploration path), target finding and control of a vision sensor. The former is carefully 

planned to cover the robot’s entire environment while taking account of the visibility of 

the target and optimising both navigation time and collision avoidance [23]. The 

navigation system must help the robot approach and observe the target efficiently 

through optimal object recognition techniques; typically using vision sensors supported 



 

9 
 

by image processing techniques. The control of the vision sensor includes selection of 

the camera’s viewpoint.  

2.2.1 Navigation: the Exploration Path 

A search robot navigates in an environment that typically has a starting point, a target 

object and a number of obstacles of random shapes and sizes. As such, the starting point 

is known whereas the target position is unknown. The robot moves from the starting 

point with the objective of finding the target. The robot must find an obstacle-free, 

continuous path that covers the entire environment. It should also localise itself within 

the environment and be aware when the search process is accomplished. 

2.2.1.1 Navigation Strategy 

Navigation strategies differ depending on whether the environment is static (static 

obstacles) or dynamic (static and dynamic obstacles) [24]. Both categories can be 

subdivided into unknown and known environments. In the latter, information is 

provided on the location of obstacles before motion commences. Across the various 

environments, there are many navigation algorithms that address the robot navigation 

problem [17]. All navigation planning algorithms assume that the mobile robot has 

detailed knowledge of the start and target locations and thus, of the direction between 

them, so that it can find an optimal path between these two locations and avoid 

obstacles. Some algorithms require extra environmental information or even a 

comprehensive map. According to Zhu, et al. [25], navigation algorithms are classified 

into global and local planning. 

Global navigation planning 

The global navigation algorithms plan the robot’s path from the start to the goal by 

searching a graph that represents a map of the global environment. The environmental 

graph is constructed either off-line or on-line. In the former, the comprehensive map is 

initially loaded into the robot and then the navigation algorithm determines the optimal 

path before the robot commences its motion. For instance, Jan, et al. [15] presented 

some optimal path planning algorithms suitable for searching an environmental 
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workspace within an image. The view of the environment is divided into discrete cells, 

one of which is the robot. This method can be criticised for making use of a camera at a 

fixed position. Similarly, Huiying, et al. [26] combined the Voronoi diagram with the 

Dijkstra algorithm to easily find an optimal path for a robot. This off-line method 

assumes that the robot moves in a static environment and it has a precise motion system 

to satisfy the navigation conditions. These statements are unrealistic for the actual robot 

and therefore, this method is used rarely in robot navigation. 

Conversely, in the on-line technique, although the environmental map is loaded into the 

robot, the navigation algorithm continues updating it by using the robot’s sensors. This 

method enables the robot to navigate in dynamic environments and to correct 

continually its location within the map. For example, a navigation algorithm that 

integrates the A* search algorithm, the potential field method and the Monte Carlo 

localisation (MCL) method was explained in [27]. A visibility graph was generated 

using a camera and image processing. The A* search algorithm was then used to 

perform global path planning, while the potential field method was used to avoid the 

obstacles. The MCL algorithm continuously updates the robot’s steps in the 

environment. Nguyen Hoang, et al. [28] introduced a multi-ant colony algorithm that 

successfully found the optimal path and avoided round obstacles in a simulation. Both 

of these strategies [27, 28] supported concurrent examination of all environmental 

information. However, recalculating the path in response to a change in the environment 

incurs an extremely high computational cost. Typically, the global planning methods 

have three intrinsic drawbacks: they are expensive to compute, complex to construct 

and it is difficult to obtain an accurate graph model. 

Research on modelling environments and achieving exploration paths for mobile search 

robots has generally relied on global navigation planning. For instance, Fukazawa, et al. 

[4] proposed a points-distribution, path-generation algorithm in which the robot is given 

a set of points that completely cover the environment. The robot in that study sought the 

shortest path that encompassed all the points and it kept looking for an object while it 

moved along the path and then once found relocated it. The authors assumed that the 

robot had a complete map of the environment. They also argued that three types of path 

planning algorithm could cover the entire environment in exploration applications: the 

random walk, the spiral path and the zigzag path. The authors considered that the 

http://academic.research.microsoft.com/Keyword/32109/potential-field
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random walk could not guarantee accomplishment of the exploration task. The other 

two techniques generate the exploration path by joining line segments arranged in the 

environment. Clearly, the computational cost for creating a path increases with the total 

number of line segments.  

Another study proposed an efficient approach for modelling the search path by 

minimising the expected time required to find the target [29]. The assumptions made in 

that work were: that the mobile was equipped with efficient sensors, that the 

environment containing the object was completely known and that the motion strategy 

enabled the robot to find the target quickly. The known environment in [30] was divided 

into a set of regions for the robot that was used to search for multiple targets. The 

robot’s task was to discover the sequence of motions that reduced expected time to find 

the targets. However, the authors in [29, 30] did not describe how the robot recognised 

and discovered the objects. Furthermore, these studies were simulations and did not 

involve a robot.  

Some researchers have tried to avoid constructing a comprehensive environmental map. 

Tovar’s [31] robot used critical events in on-line sensor measurements, such as crossing 

lines, to build a minimal representation that provided a sensor feedback motion strategy. 

The authors introduced a visibility tree, which represents simply-connected planner 

environments, to dynamically encode enough information for generating optimal paths.  

Another study [32] presented a guide tracking method in which the mobile robot is 

provided with a trail from a starting point to the target location. The benefit of a trail is 

that the mobile robot reaches the target location with little requirement for autonomous 

navigation skills. However, the trail needs to be shaped prior to the robot navigation 

process.  

Local navigation planning 

Local navigation algorithms directly use the sensors’ information in the commands that 

control the robot’s motion in every control cycle, without constructing a global map 

[25]. Therefore, these algorithms are employed to guide the robot in one straight path 

from the start point to the target location in unknown or dynamic environments. While 

the robot navigates, it avoids obstacles that are in its path and keeps updating the 
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significant information, such as the distance between its current location and the target 

position. Typically, the local navigation algorithms are easy to construct and optimal for 

real-time applications. 

A potential field algorithm [33] is widely used within the local navigating technique. It 

is constructed by creating the artificial potential field around the robot. The target 

position’s potential attracts the robot while the obstacles’ potential repulses it. As the 

robot moves toward the target, it calculates the potential field and then determines the 

induced force by this field to control the robot’s motion. Typically, the robot moves 

from a higher to a lower potential field. The optimal potential field is constructed so that 

the robot is not trapped into a local minimum field before reaching the target but it is 

impossible to create such a field [34]. Therefore, this method is combined with other 

navigation algorithms to increase its efficiency, as in [27]. 

The Bug algorithms [2], which are well-known navigation methods, are relatively 

efficient as they solve the navigation problem by saving only some points of the path 

curve and do not build full environment maps. As such, they are identical to the local 

planning techniques because they only need local environmental information but the 

robot needs to learn little of the global information. If the robot discovers that no such 

path exists, that is, a local minimum, the algorithms will terminate its motion and report 

that the target is unreachable. The authors [2], who compared eleven members of this 

family, claimed that these techniques presume the robot to have perfect localisation 

ability, perfect sensors and no size (point object). Consequently, the algorithms are not 

used directly for realistic robot navigation. The Bug movement strategies are 

appropriate for a robot that is designed to navigate in an unknown environment that is 

constantly changing [2, 25]. 

2.2.1.2 Robot Localisation 

Robot localisation is the robot’s ability to estimate its location relative to specific 

aspects within its environment, using whatever sensors are available. This process can 

be either relative localisation or absolute localisation [3, 35]. 
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Relative localisation 

In relative localisation, the robot calculates its current position relative to the previous 

locations, trajectories and velocities over a given period. As such, the robot requires 

knowledge of its initial location before it can continue determining its current location 

based on the direction, speed and time of its navigation [3]. The odometry method is 

widely used to measure the relative position because of its low cost and easy 

implementation. This method is implemented by using wheel encoders that count the 

revolutions of each wheel and an orientation sensor, such as electromagnetic compass 

that calculates the robot’s direction (see [35]).  Because the robot measures its distance 

based on the start location, any error in the measurements resulting from the drift or 

slippage of the wheels will compound over time. 

Absolute localisation 

In the absolute localisation method, the robot estimates its current position by 

determining the distance from predefined locations without regard to the previous 

location estimates [35]. Therefore, any error in the localisation measurement does not 

increase. This method usually employs landmarks to estimate the robot’s location. 

Landmarks are classified into active and passive landmarks. The former can be satellites 

or other radio transmitting objects and they actively send out information about the 

location of the robot. This has the advantage that the robot does not require prior 

information about the environment. However, the active landmarks’ signals might be 

disturbed before being received by the robot and this will cause errors in the 

measurement [3]. The Global Positioning System (GPS) is frequently used to measure 

the absolute position of robot that use active landmarks (see [36, 37]). The passive 

landmarks do not send signals as active landmarks do but they must be actively seen 

and recognised by the robot in order for it to determine its location [18]. Landmark 

recognition depends on the type sensors used.  

2.2.2 Computer Vision for Mobile Robot 

The availability of low cost, low power cameras and high speed processors, are the main 

reasons for the rapid development of image sensor applications [38]. Computer vision 
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relies on visual sensors that can extract relatively large amount of environmental 

information from an image [39]. Consequently, there has been intensive research on 

computer vision for mobile robot navigation since the early 1980s, as indicated in a 

survey of developments in this field [9]. The extracted information is provided to a 

robot’s controller, which then dictates the robot’s motion. In the case of the search 

robot, the main objective of image processing is to detect the target object. 

The literature review is divided into object recognition and vision-based mobile robot 

navigation. The former is the process of detecting, recognising and extracting object 

information, whereas the latter concerns the use of this information for robot navigation. 

2.2.2.1 Object Recognition 

In the very active field of research of computer vision [40], the techniques being used to 

detect and recognise an object in an image, include: image segmentation, template 

matching, Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features 

(SURF).  

Image segmentation scheme using colour image model  

Image segmentation is one of the basic techniques in computer vision. It is an analytical 

process, which recognises image content based on variations in colour and texture. RGB 

colour space, in which each colour involves three weights: red, green and blue, has been 

commonly used in the segmentation process to detect the target object [41, 42]. Other 

colour descriptors, such as the HSI colour space [43, 44] and dominant colour descriptor 

(DCD) [45] can also be used. Lin, et al. [46] developed a real-time algorithm that 

allows a mobile robot to detect and track a moving object by utilising adaptive colour 

matching, as well as a Kalman filter. The RGB colour space is used for object 

recognition, whilst the Kalman filter is used to estimate the object’s position and 

velocity. Browning and Veloce [47] proposed a new four-step image segmentation 

algorithm to detect objects in indoor and outdoor environments. First, a soft 

segmentation is applied to label the image pixels by colour class. Next, a hard threshold 

is applied to distribute the image pixels to areas that belong to a colour class of interest 
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or not. Then, the areas that are similarly labelled are revealed and connected. Finally, 

the relevant object is detected and recognised in the image. 

Template matching 

Template matching is a well-known technique to find a small part R, of an original 

image I, that matches a template image T [48]. The dimensions of the template must be 

smaller than the dimensions of I. The matching is done by sliding and comparing a 

given template with windows of the same size in the image I, to identify the window R 

that is most similar to the template. The location of R(x, y) in I, which is defined as a 

pixel index of the top-left corner of R in I, points to the location of the closest match as 

measured by a correlation number (Figure 2.1). The accuracy of the template matching 

process depends on the algorithm used for measuring the similarity between the 

template and the original image [49]. Matching tolerance against various image 

distortions that might occur during the process of acquiring the images, such as rotation, 

scaling and changed environmental lighting, is the major challenge with this method 

[50]. The accurate matching process is also achieved by selection of the optimal 

templates, which must present “a highly detailed and unique region” [49].  

 

Figure 2.1. Template matching technique 

Template matching has been intensively researched with results reflecting the 

algorithms used. For instance, Omachi, et al. [51] proposed a template matching 

algorithm that can efficiently identify the portion of the input image that is similar to the 

template; it was deemed efficient because processing time was very short and 

computational costs were reduced. Do and Jain [52] presented a template matching 
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algorithm that recognises objects in two stages: pre-attentive and attentive. The former 

is a fast process used to find regions of interest that are more predictable for detecting 

the target object in them. In contrast, the latter is the process of detecting and 

recognising the target object within the selected regions of interest found in the first 

stage.  

Scale Invariant Feature Transform (SIFT) 

Scale Invariant Feature Transform (SIFT), which is a well-known technique in 

computer vision, was initially presented by Lowe [53] in 1999 and has been widely used 

to detect, recognise and describe local features in an image. SIFT can extract an object 

based on its particular (key) points of interest in an image with scaling, translation and 

rotation. A SIFT algorithm consists of four major steps: scale-space extrema detection, 

key point localisation, orientation assignment and key point description. The first step 

employs a difference-of-Gaussian (DoG) function, that is D(x, y, σ), to specify the 

potential interest points that are invariant to scale and orientation. This is done by 

applying Equations 2.1 to 2.3; the results are shown in Figure 2.2A. Then, each pixel is 

compared with its neighbours to obtain maxima and minima of the DoG (Figure 2.2B). 

The pixels that are larger than all or smaller than all of their neighbours are chosen as 

potential interest points. 

 (     )   (     )   (   )                                                                             (2.1)               

where  

 (     )  
 

    
  ( 

     )                   (2.2) 

 (     )  [ (      )   (     )]   (   )    (      )   (     )      (2.3) 

in which I is an image; (x, y) are the location coordinates;   is the scale parameter (the 

amount of blur); the * denotes the convolution operation in x and y; k is a multiplication 

factor that separates two nearby scaled images; G is the Gaussian Blur operator; and L is 

a blurred image. 
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Figure 2.2. from [54] where Figure 2.2A represents the building of the Gaussian and 

DoG pyramid. Figure 2.2B represents the comparison of each pixel (i.e., the pixel 

marked with X) to its 26 neighbours (the pixels are marked with circles; and they are in 

3 × 3 regions at the current and adjacent scales) to find the maxima and minima of the 

DoG images. 

Key point localisation executes a detailed fit to the nearby data for location, scale and 

ratio of principal curvatures, in order to reject low contrast points and eliminate the edge 

response. This was achieved by using a Tyler expansion of the scale-space function 

 (     ) in Equation 2.4. Then, unstable extrema with low contrast are rejected using 

the function in Equation 2.6. Finally, a 2 × 2 Hessian matrix H (Equation 2.8) was used 

to eliminate the edge response.  
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Orientation assignment collected gradient directions (Equation 2.9) and magnitudes 

(Equation 2.10) of sample points in the region that is around each key point and then the 

most prominent orientation in that region was assigned to the key point location.  

 (   )       (
 (     )  (     )

 (     )  (     )
)       (2.9) 

 (   )  √( (     )   (     ))   ( (     )   (     ))            (2.10) 

In the final step, the descriptor of the local image region was computed to allow for 

significant levels of local shape distortion and change in illumination. SIFT was 

introduced into mobile robotics navigation systems in 2002 (see [55]). SIFT provides 

accurate object recognition with a low probability of mismatch but it is slow and when 

illumination changes, it is less effective [56].  

Speeded Up Robust Features (SURF) 

A SURF algorithm, using an integral image for image convolution and a Fast-Hessian 

detector, was proposed by Bay, et al. [57]. First, the integral image representation of an 

image was created from the input image by using Equation 2.11. Then, the integral 

image was used within a Hessian matrix (Equation 2.12) to find an accurate vector of 

interest points. The interest points were localised by using a Tyler expansion of the 

scale-space function  (     ) in Equation 2.13. Next, the interest points and integral 

image were employed to extract a vector of the SURF descriptor components of the 

interest points.  
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in which I is an image; (x, y) are the location coordinates;   is the scale parameter;  ∑  

is the integral image;    (     ) is the convolution of the second order Gaussian 

derivative 
   ( )

   
 (Laplacian of Gaussian) and similarly for     and    . 
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SURF and SIFT techniques use slightly different methods of detecting an object’s 

features in an image. The detectors in both calculate the interest points in the input 

image but they work differently. They use the interest points to create a descriptor 

vector that can be compared or matched to descriptors that were extracted from other 

images. SURF proved to be faster than SIFT and a more robust image detector and 

descriptor [56].  

Each of above-mentioned methods has its limitations in detecting an object’s features in 

an image [9]. Furthermore, there are three parameters that influence the object detection 

process, namely: environmental conditions, target characteristics and sensor efficiency 

[58]. Lighting, texture and background colour are the main environmental conditions. 

Sufficient texture and contrast features are the main target characteristics. Some 

researchers have combined and tested different image processing techniques to achieve 

better results [39]. For example, Ekvall, et al. [59] detected an object by applying a new 

method that combined SIFT and a colour histogram called the Receptive Field Co-

occurrence Histogram (RFCH) [60]. First, an image of the environment was captured 

without an object being present and then the operator placed the object in front of the 

camera. The object is then separated from the background by using image 

differentiation. Their experimental results showed that this method is robust to changes 

in scale, orientation and view position.  

In robot applications, object location and orientation relative to the robot have to be 

calculated and used to effect the robot’s motion [61]. The authors compared geometrical 

moments and the features from Eigen-space transformation for determining object 

characteristics in the image. The former was less susceptible to noise.  

2.2.2.2 Vision-based Mobile Robot Navigation 

Developments in mobile robot navigation based on a vision system can be divided into 

indoor and outdoor navigation [9]. The former can then be divided into map-based, 

map-building-based and mapless forms of navigation. The first relies on a sequence of 

landmarks, which the robot can detect for navigation, whereas the second involves 

sensors to construct the robot’s environment, so that it forms an internal map for 

navigation. Finally, mapless navigation is based on observing and extracting 
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information from the elements within the robot’s environment, such as walls and 

objects, before it is used for navigation.  

Conversely, outdoor mobile robot navigation can be divided into structured and 

unstructured environments. These will cover obstacle avoidance, landmark detection, 

map building and position estimation. A structured environment requires landmarks to 

represent the robot’s path, whereas in an unstructured environment there are no regular 

properties, so a vision system must extract possible path information. For example, to 

find a path in outdoor robot navigation, Blas, et al. [62] proposed an on-line image 

segmentation algorithm whose framework combined colour and texture segmentation to 

identify regions that share the same characteristics as the path. Lulio, et al. [63] applied 

a JSEG segmentation algorithm for an agricultural robot, so that it could classify an 

image into three areas: planting area, navigable area and sky. The image segmentation 

method was performed in three stages: colour space quantification, hit rate region and 

similar colour region merging. 

Visual tracking 

Visual tracking is a crucial research area [64] because it is involved in many robot 

applications, such as navigation and visual surveillance [39]. It consists of capturing an 

image by a camera, detecting a goal object in the image by image processing and 

guiding the robot automatically to track the detected object [48]. For indoor robot 

navigation, tracking is widely used for service robots [44]. For example, the robot used 

by Abdellatif [44] tracked by following a coloured target. Colour segmentation was 

applied to recognise the object and then the target’s location was determined. In 

addition, a camera with three range sensors was used to detect obstacles and target 

distances. The camera and range sensors outputs were used as inputs for a controller, 

which enabled the mobile robot to follow the object while avoiding obstacles. 

Abdellatif’s work was limited to using a single colour for target detection. Furthermore, 

there was no option available to the robot if the object was not detected in the current 

view. Medioni, et al. [65] also presented a robot navigation system that enabled a 

service robot to detect and track a human face or head, based on skin-coloured pixels, 

image intensity and circle detection in the image. 
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Landmarks 

Landmark recognition has been widely researched because landmarks enable a robot to 

perform tasks in a human environment [40, 65] by helping the robot to navigate and 

localise its position. Landmarks can be natural and artificial; the former employs natural 

symbols, such as trees, while the latter has specially designed signs, which are located 

frequently in indoor environments to allow easy recognition. When more than two 

landmarks are used to localise the robot, it might need to use either the triangulation or 

trilateration methods [3]. The former uses distances and angles, whereas the latter only 

employs distances to calculate the robot’s position and orientation.  

Some researchers have designed and implemented landmark recognition systems. For 

instance, a landmark detection and recognition system proposed by [40] involved 

detection of landmarks in a captured image, segmenting of the captured image into 

smaller images and recognition and classification of the landmarks by using colour 

histograms and SIFT. Another study featured a visual landmark recognition system that 

combined an image processing board and genetic algorithms for both indoor and 

outdoor navigation [66]. The system can detect and evaluate landmarks that are pre-

defined in the system’s library within the real-time image. Some researchers have used 

environmental features as landmarks. For example, Zhichao and Birchfield [67] 

explained a new algorithm that detects door features, such as colour, texture and 

intensity edges from an image. The extracted door information was used as a landmark 

for indoor mobile robot navigation. Murali and Birchfield’s [68] robot always 

performed straight line navigation in the centre of a corridor by keeping a ceiling light 

in the middle of the image but this greatly restricted its motion. 

2.2.3 Vision-Sensor Control 

The control of the vision-sensor includes two stages: ‘where to look next’ and ‘where to 

move next’ [69]. In the former, while the camera is fixed in the current position, all its 

configurations, such as zooming, are examined one by one. This strategy will be 

inefficient if the number of the camera’s setting is large or image processing consumes 

considerable time. Therefore, the authors in [69] introduced a ‘best-first’ strategy in 

which all the camera’s configurations are examined in the start location before the 
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navigation process is executed. The authors claimed that if this strategy is applied first 

and the target is detected, then time and effort involved in the searching process will be 

saved. The robot in that work was equipped with a stereo camera that did not have a 

zoom capability and the authors set the largest and closest distances between the robot 

and the target. If the target is not detected within the current viewpoint, the second stage 

(‘where to move next’) is performed and the next optimal viewpoint is determined. The 

next position should be attained with a high probability of detecting the object.  

2.3 Conclusions 

Researchers have developed many techniques to analyse images and detect objects but 

there are also limitations in these techniques. Subsequently, researchers have combined 

some of these techniques to achieve better results. This thesis will place less emphasis 

on SIFT than on colour segmentation, template matching and SURF because the long 

processing time incurred with SIFT is a major limitation with on-line image processing. 

The robot in this work uses a vision system to detect a target (object) and then approach, 

grasp and relocate it to a final location that is specified by an artificial landmark. The 

robot will execute following and tracking processes while it approaches and relocates 

the target.  

In terms of the exploration path, the navigation is planned either globally or locally 

based on the algorithm used. Most algorithms assume that the robot has sufficient 

knowledge about the start and goal locations; its task is to find the optimal path to 

connect these two locations. Most researchers who have worked with mobile search 

robots assume that the searched area is completely known. The robot task was to find 

the target; unfortunately, there was insufficient information about the tools the robot 

used to detect the target.  

In this study, the target location is totally unknown and therefore, the robot should 

search the whole area. Thus, the exploration path must be planned to cover the entire 

environment. It is assumed that the searched area has boundaries that are completely 

known, whereas its internal configurations are unknown. The robot starts its motion 

from the start location and then follows the walls or obstacles. While the robot navigates 

it continues to search for the target; if it is found, the robot approaches, grasps and 
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relocates it to the start location. If it is not found, the robot keeps following the walls 

until the start location is reached again, where the robot terminates its motion. The Bug 

algorithms are adapted to achieve the proposed motion planning.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

24 
 

Chapter 3            Hexapod Mobile Robot 

3.1 Introduction 

One of the main objectives of this work is to address the theoretical challenges posed in 

scaling model robots to an industrially useful size. This research has also the potential to 

identify limitations on the navigation system and path planning methods, due to terrain. 

As mentioned in Chapter 1, the functionality of the proposed control system will be 

tested using two types of mobile robots. The first is a legged mobile robot that is trained 

to search for, find and relocate a target object. The sensor platform for the robot is 

designed and constructed to enable the robot to navigate within its environment. The 

second robot is a wheeled one that will be designed, constructed and used to validate the 

methodology used.  

Wheeled robots are re-used in most industrial applications, however, some objects may 

be dropped on the ground and obstruct the robot’s motion. Even if these obstacles are 

small and the robot can navigate over them, the robot will consume high energy. 

Conversely, if the robot follows the obstacles’ boundaries, this makes the navigation 

path and travel time longer. Wheeled robots are also inefficient on very soft or rough 

surfaces, such as outdoor, unpaved terrains. 

Legged robots provide superior mobility on soft and unstructured terrains because they 

use discrete footholds. This consists only of point contacts with the ground for support 

and traction, whereas wheeled robots require a continuously supportive surface. They 

can also move over and overcome small obstacles more easily than wheeled robots. 

There are various types of legged robots classified by their number of legs; humanoid 

robots (two legs), tetrapod robots (four legs) and hexapod robots (six legs). This chapter 

will explain the configuration of the six-legged (hexapod) mobile robot, used in this 

work. 



 

25 
 

3.2 Mechanical Design 

The robot’s body comprises lower and upper legs, servo brackets and body bottom and 

top plates, all made from 3 mm thick aluminium sheet. The bottom and top plates of the 

body are separated by five separators, each 5 cm long. All these parts are shown in 

Figure 3.1A. The mobile robot has six legs and each of them has three rotary joints, 

namely: coxa, femur and tibia (Figure 3.1B), which provide three degrees of freedom. 

The joints are actuated by servo motors (see Appendix), which are able to provide up to 

2.5 Nm of torque. The robot has a gripper driven by two servo motors for moving it 

up/down (by the 14 cm long arm) and closing/opening the 10 cm long jaws in order to 

grasp objects (Figure 3.1C).  

 
Figure 3.1. The hexapod mobile robot structure 

3.3 The Electronic System 

Figure 3.2 illustrates the main parts of the electronic circuit used in the hexapod mobile 

robot. 

 

Figure 3.2. The hexapod electronic circuit 
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3.3.1 The Main Controller 

The hexapod has 20 servos (three for each leg and two for the gripper); therefore, it 

needs microcontroller controls for simultaneous operation. The controller used is a 

Roboard controller RB-100 computer based [70], which has a Vortex86DX, a 32 bit x 

86 CPU running at 1 GHz, and 256 MB of on-board memory, which consumes 400 mA 

at 6–24 V. This controller has I/O interfaces to the servo, DC motors, sensors and other 

devices and uses Open source C++ library code for Roboard’s unique I/O functions. A 

Linux operating system is installed in the main controller. Figure 3.3 shows the Roboard 

(with dimensions 96 × 56 mm), controller’s pins and features. The servo motors are 

controlled through pulse width modulation (PWM). 

 

Figure 3.3. The main controller (Roboard) 

3.3.2 Sensors 

The main controller has 8 ports of analogue to digital convertors (A/D) and 24 digital 

ports (PWM). Accordingly, up to 8 analogue sensors and 24 digital sensors can be used 

simultaneously. It also has I
2
C and SPI. The platform can support many types of 

sensors, which makes the robot scalable and suitable for many applications. The robot is 

equipped with the following sensors: 

- Seven analogue tactile sensors; one sensor is in each leg and one in the gripper. 

- Ultrasonic range sensors (Devantech SRF02) have been connected to the 

controller via the I
2
C interface and placed at the front and sides of the robot. 
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- A camera has been positioned at the front of the robot.  

The configuration of the sensors is explained in Chapter 5. 

3.4 Power 

The robot’s power is provided by 6 × 1.2 volt cells connected in series. The main 

controller uses all the cells (7.2 volts), whilst the servos are joined to just 5 × 1.2 volt 

cells (Figure 3.4).  

 

Figure 3.4. Power supply connection 

3.5 Walking Control System 

The forward and inverse kinematic equations are determined to establish the maximum 

and minimum alternating angular displacements through which the leg joints can move, 

as explained in (3.6). The hexapod home configuration (the reference joint angles), is 

also calculated at the beginning from the inverse kinematics. These angles are then used 

to implement the walking control system.  

In this study, the robot requires a motion control system that provides two aspects: to 

move the robot forward and to rotate it about the central axis. The hexapod robot is 

programmed using the alternating wave gait (“4 + 2” gait) [71] for steering and the 

tripod gait (“3 + 3” gait) [71-73] for walking forward. In the wave gait, the robot walks 

forward by lifting and moving only two legs at a time. Figure 3.5 shows the four cycles 

of one robot step. The green parts indicate a state of motion and the brown parts show a 

state of rest; that is, the feet are on the ground to support the robot. The front two legs 

are raised and moved first (Figure 3.5B), followed by the middle pair (Figure 3.5C) and 
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then the back pair (Figure 3.5D). Once all legs have moved forward, the robot then 

moves its body forward (Figure 3.5E) to complete one step.  

 

Figure 3.5. Wave gait of the hexapod 

The robot can also rotate or change its direction by moving two legs at once. For 

instance, if the robot wants to rotate clockwise, it moves its front-left leg forward and 

rear-right leg backward, followed by the middle legs, then the rear-left leg and front-

right leg (the left legs are all moved forward, whilst the right legs are all moved 

backward). The robot rotates its body once all the legs have completed their respective 

motions (see Figure 3.6). At any point of the motion in the wave gait, there are four legs 

or more in contact with the ground. 

 

Figure 3.6. Steering using wave gait 

In the tripod gait method, the robot walks forward by moving three legs at once, instead 

of the two legs as in the previous method. As such, the legs are divided into two groups 

of three; each group includes the front and back legs of one side and the middle leg of 

the opposite side. Each robot step has three cycles. First, the robot lifts and moves any 

set of legs (Figure 3.7B), followed by the other set (Figure 3.7C) and then by the robot 

body itself (Figure 3.7D). In this case, the robot can also rotate by moving three legs at 

(B) (C) (D) (E) (A) 

LR LM LF 

RR RM RF 

Step (1) Step (2) Step (3) Step (4) 



 

29 
 

once. For instance, if the robot wants to rotate clockwise, it performs the same previous 

steps but the right legs are moved backward, whilst the left legs are moved forward. 

Then, the robot’s body is rotated clockwise (Figure 3.8). The motion of the robot using 

the wave gait is slower than that using the tripod gait but it is more stable. The tripod 

gait method requires more leg coordination than the wave gait.  

 

Figure 3.7. Tripod gait of the hexapod 

 

Figure 3.8. Steering using tripod gait 

In each step, the robot starts by raising its legs from the ground by controlling the 

          angles and then they are moved forward by controlling the    angle 

(              are specified in Figure 3.9). In this study, the maximum distance of one 

walking step, specified by     could be 7 cm. However, the robot is programmed to 

move with 5 cm as its maximum displacement to reduce the probability of legs colliding 

with each other. As a simple example, in order for the robot to move forward 50 cm at 

maximum speed, it will need 10 steps. The robot uses sensory feedback to control its 

walking steps and to correct motion error, as explained in Chapter 5.  

 (C)  (D) (B)  (A) 

Step (2) Step (3) Step (1) 
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3.6 Kinematic Modelling 

Kinematic modelling describes the motion of the robot’s leg joints without 

consideration of the forces or torques that cause the motion. The problem of the forward 

kinematics is to find the relationships between the joint variables of the individual leg, 

and the position and orientation of the foot of the given leg on the ground. Conversely, 

inverse kinematics is used to calculate the values of the joint variables, which represent 

the angles between the links of the individual leg [34]. 

The forward kinematic is specified by using the Denavit-Hartenberg (DH), which is a 

well-known convention for selecting joints’ frames in robotic applications [34]. In this 

convention, each homogeneous transformation (  ) that represents the position and 

orientation between the joints’ (  and    ) frames is given by the formula  

    

[
 
 
 
          
         
             
             

           
            
            
          ]

 
 
 

                                (3.1) 

where the quantities   ,       and    are parameters associated with link   and joint  ; 

and they are  th link length, link twist, link offset and joint angle, respectively. Note:    

is the shortest distance between    and      measured along   ;    is the angle between 

   and      measured about   ;    is the distance along      from      to the intersection 

with   ; and    is the angle between      and    determined about     . In this thesis, 

the kinematics of a single three-joint leg located on the right side of the hexapod body 

will be derived (see Appendix for left legs). Figure 3.9 shows a graphical representation 

of a right leg that is either the right front (RF), right middle (RM) or right rear (RR) 

(Figure 3.5A). Note: the  (   )  represents the rotation axis of the  th joint, while    

specifies the change in the direction of the    axis relative to the direction of the  (   )  

axis and is determined about   .  

First, the base frame             is established. The origin    is placed at joint 1;    can 

be located along   . The direction of the    axis is first chosen arbitrarily and then the 

direction of the    axis that must achieve the right-hand rule is chosen. Next, the 

            frame is established at joint 2. The    and    axes are not coplanar; as such, 

the shortest line segment (  )  that is perpendicular to both axes defines the   . The 
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length of the line segment (  )  is determined from the coxa link. When    is equal to 

zero, the    axis is parallel to the    axis, as shown in Figure 3.9. However, the 

direction of the    axis will change because    is variable. As    and    are parallel and 

in the same direction,    and   will be zero in this case. The line segment between    

and     is    and it is determined from the femur link. Finally, the             frame is 

chosen at the end (foot) of the tibia link, as shown in Figure 3.9. In the case of revolute 

joints, all joint variables are angles, so that all    (link extensions) are zeros. The DH 

parameters for the right legs of the robot are shown in Table 3.1. 

Table 3.1: DH parameters of the robot leg on the right side 

Link               

1       
 

 
  0    

2     0  0    

3     0  0    

 

Figure 3.9. Graphical representation of the three-joint robot leg on the right side 
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The homogeneous transformation matrices  (  ) between the joints’ frames are 

determined by substituting the DH parameters, which are in Table 3.1, in DH matrix, 

which is Equation 3.1 [34]. Performing the required calculations yields 

   [

    

    

   
     

         
        
         
          

]                                                              (3.2) 
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]   
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]            

in which   and   represent the sine and cosine functions, respectively. Then, the final 

transformation matrix (   
 ) that represents the forward kinematics of the right leg is 

determined from Equation 3.3, which is represented as a dot product of three  (  ) 

matrices. Multiplying these together yields  

  (     )
   [  

   
 

  
]                                   (3.3) 

  
   =       

[
 
 
 
             
             
        
        

                   
                  
                           
                              ]

 
 
 
 

  (     )
  

[
 
 
 
    (       )      (       )
    (       )      (       )
  (       )   (       )

  

       (             (       ))

      (             (       ))

                             (       )
                    ]

 
 
 

  

The final matrix   
  represents the position and orientation of the leg’s foot relative to 

the base frame. The first three entries (  
 ) of the last column of   

  are the  ,   and   

components of the    (foot location) relative to the base frame; that is, 

  =    (             (       ))                (3.4) 
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  =    (             (       ))                (3.5) 

  =           (       )                 (3.6) 

These coordinates represent the right leg’s (RF, RM or RR) foot in the base frame. The 

3 × 3 rotation matrix   
  presents the orientation of the frame             relative to the 

             

The last two links (femur and tibia) are moving in one plane (           ) and all of 

the rotational axes (       and   ) are perpendicular to this frame. When the robot 

moves, the robot raises its legs from the ground by changing the angular values of 

         . Then, these legs are moved forward or backward by changing the angle    

for each leg individually; as such, the        alternates between two values of    . If 

the robot wants to move forward on a flat floor with constant speed, each of the 

              moves alternately between two constant angular values.  

The previous approach described how to calculate the feet’s position and orientation in 

terms of the joint variables. In the next approach, the joint variables will be determined 

in terms of the feet’s position and orientation. This will be done by using the inverse 

kinematics with geometric approach to find the               values. First    is 

determined by the formula   

        (   )                  (3.7) 

To simplify the problem,           are determined when     . In this case, the 

      plane falls on the       plane, as shown in Figure 3.10, which represents the 

geometry of the robot’s leg. Therefore,   in Equation 3.5 will be zero and by following 

the procedure presented in [73],    and    are 

        (      )        (   )               (3.8) 

           (               )               (3.9) 

where  

                           and  

   √       (    )            

    
     (    )
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Note that     is assigned in Figure 3.10 with a negative direction and this does not affect 

the calculations because     can take      .       

 

Figure 3.10. Geometry of the robot's leg 

3.7 Velocity Kinematics 

Once the forward kinematic equations are found, the velocity relationships that relate 

the linear and angular velocities of the leg’s foot to the joint velocities can be 

determined by using the Jacobian (J). The Jacobian is the most important matrix in the 

analysis and in controlling the robot’s motion because it is crucial to: the execution a 

smooth trajectory, determining the dynamic equations of motion and finding the 

relationships among the joints’ forces and torques [34]. The velocity relationships can 

be determined using the formula  

    ̇                                             (3.10) 

in which   is a vector of the linear and angular velocities of the leg’s foot    

[  ],  ̇ is a vector of the joints’ angular velocities  ̇   [  ̇   ̇   ̇], and   is the 

Jacobian which is obtained from  
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  [
       (        )

     
]                                                   (3.11)  

where         

The various quantities above are easily seen in the forward kinematics approach to be 
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The      of the DH frames are given by 
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]                                                                (3.13) 

Substituting the quantities of Equations (3.12) and (3.13) into Equation (3.11), and 

performing the required calculations yields  
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     (3.14) 

The first three rows of Equation (3.14) represent the linear velocity of the     (foot) 

relative to the base frame (the robot body). The last three rows are the angular velocity 

of             frame (leg’s foot frame).  

3.8 Torque distribution 

The total weight of the robot’s constituent parts creates forces and moments at the feet 

of the robot’s legs, which produces torques at the legs’ joints. It is important to compute 

the joint torques in order to select suitable motors to support the robot motion. 
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Generally, the relationships between the joint static torques and the forces and moments 

that are produced at the robot’s feet can be determined by using the formula  

     ( )                    (3.15) 

in which   ( ) is the J transposition of the leg,   is the resulting vector of the forces 

and moments at the end of lower leg (foot) and   is the corresponding vector of the joint 

torques.  

Substituting Equation (3.14) into Equation (3.15) and performing the required 

calculations yields the joint static torques of the legs on the right side of the robot’s 

body, which are given as 

 [
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(3.16) 

The problem of torque distribution in a dynamic state is more complicated because the 

angular and translational accelerations and velocities of the joints will affect the 

calculations, for more information see [74]. 

3.9 Movement (Gait) Control 

Figure 3.11 illustrates the movement control system of the hexapod. The robot starts to 

read and process the sensor data using the main controller (Roboard) to obtain the 

environmental information. This information is then sent to the motion planning and 

navigation algorithm. Motion planning divides the total displacement that the robot 

wants to achieve into smaller sections. As mentioned in section (3.5), the maximum 

distance of one walking step is 7 cm and thus, each section can be equal to or less than 

this displacement (in this study, the maximum step size is limited to 5 cm to reduce the 

probability of legs colliding with each other). The navigation algorithm uses the 

environmental information within the robot’s motion and determines the robot’s state 

and location in the environment. Accordingly, the robot calculates the desired total 

displacement or steering angle needed. The inverse kinematic is used to calculate the 

desired joints’ angles to manage the movement of the robot. The microcontroller 
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translates the desired joints’ angles into the PWM signals that control the operation of 

the servo motors. 

 

Figure 3.11. The movement control system in the hexapod 

3.10 Summary  

In this chapter, the hexapod mobile robot is described, analysed and discussed. First, the 

mechanical and electronic systems are described. Then, the walking control system is 

explained; the tripod gait is used for walking forward and the wave gait is employed to 

rotate the robot about its central axis. Next, the forward and reverse kinematics 

modelling is derived, followed by calculations of the Jacobian. The calculation of the 

torque distribution on the joints of the legs is then described. Finally, the movement 

control system is explained, in which, the robot explores the environment by using its 

sensors. The sensors’ signals are processed by the robot’s controller, which accordingly 

generates the PWM signals to the servo motors. The robot’s movement using the tripod 

gait is faster but its coordination is more complicated. The movement by wave gait is 

slower but more stable.  
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Chapter 4           The Wheeled Robot 

4.1 Introduction  

As mentioned in Chapter 3, it would be worth studying two types of mobile robots 

having two philosophies of locomotion configurations to identify limitations on the 

navigation system due to terrain. The methodology will also be tested within different 

software and electronic modules. Therefore, the decision was taken to design and 

implement a new wheeled robot to test the proposed methodology. The robot must have 

an on-board processor that has more computational capacity than the one in the 

hexapod, because of after implementation of all the algorithms within the hexapod’s 

controller, two problems have come to light. The first is that the board does not support 

the image processing techniques that need high computation capacity; therefore the 

robot stopped moving when any failure happened in processing the image. The second 

is that the board was extremely slow with the computation process, and this makes the 

robot slower than the expected speed. In this chapter, the design and development of an 

autonomous, wheeled mobile robot’s platform will be explained. This robot will be used 

to search for, find and relocate a small, cylindrical object in an indoor environment. The 

main structure of the robot consists of mechanical and electronic systems. 

4.2 Mechanical Design  

The mechanical structure consists of the robot body (chassis), wheel configuration, 

motor drives and gripper.  

4.2.1 Chassis 

The robot’s chassis was constructed from aluminium with a thickness of 3 mm. It is 300 

mm long and 200 mm wide with a frame that includes two floors, each one consisting of 

four bars (4 bars: two 20 cm long and two 30cm long) and forming a rectangular shape. 

These floors are separated by 4 holding bars, each 15 cm long (see Figure 4.1). The 

bottom floor of the frame is used to attach the DC motors, microcontroller, motor 

drives, range sensors that are placed at the front, and the battery. The upper floor is used 
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to attach the motherboard and hold other range sensors that are placed at the robot’s 

sides.  

 

Figure 4.1. The robot chassis 

4.2.2 Wheel Configuration 

The decision was made to use a four-wheeled drive principle with a zero-turn radius 

mechanism. A robot using this configuration reorients itself by rotating the pair of 

wheels mounted on one side in a particular direction, while rotating the pair on the other 

side in the opposite direction. If the robot is required to drive in a straight line, it will 

rotate all the wheels at the same speed and in the same direction. This mechanism has 

some benefits with respect to other wheel configurations (see Appendix). The main 

benefits are:  

 Robot stability: the four-wheeled configuration ensures stability; 

 Robot movement: the robot can move to a desired site and turn in place to 

attain a particular orientation; 

 Robot power: four wheels contribute to produce the robot’s motion and 

steering; this makes the robot more powerful; 

 Robot design: this kind of robot is easy to design and implement; and 
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 Robot steering radius: the robot is capable of executing a zero-point turn 

radius. 

Although using four wheels with four motors has many advantages, it also has some 

disadvantages, the main ones being:  

 Robot controllability: the straight line motion control has proved to be difficult, 

since all the motors have to rotate at the same speed; 

 Robot precision: the alignment of the four wheels must be precisely set to 

guarantee straight line motion. Thus, all wheels have to contact the ground at 

the same time to ensure straight line motion; and 

 Robot drive: this method of robot motion needs strong motors on both sides to 

perform the zero-point turn radius. 

4.2.3 Motor Drives 

The previous section reports that four motors were first needed on the mechanical 

platform. The next step was choosing the motors. Three types of motor can be 

considered for driving the mobile robot: DC motors, stepper motors and servo motors 

(see Appendix). The decision was taken to use DC motors for the driving system. 

Initially, some specifications of DC motors were examined and determined. These 

motors must be able to drive the robot and produce motion. To determine the power and 

torque needed by each motor, the maximum mass of the robot (m) was assumed to equal 

      and the robot will be used on a flat floor. Therefore, the force (F) needed to move 

the robot is 

                                                                                              (4.1)  

in which    and μ are the friction force and the estimated friction coefficient between 

the robot’s wheels and the ground, respectively, while ‘g’ is gravitational acceleration. 

Since the four-wheeled configuration is used, the robot’s weight is applied on four 

wheels. In this case, the force supplied by each motor is 

       (     )                  (4.2) 



 

41 
 

If the maximum friction coefficient μ, when the robot starts moving, and g are assumed 

to equal 0.8 and         respectively, this will produce a force 

       
         

 
                     (4.3) 

The maximum linear velocity of the robot is influenced by both the speed of the motors 

(measured in revolutions per minute (RPM)) and the diameter of the wheels (d). This is 

determined by the formula 

                             (4.4) 

Since the mobile robot will be used to search the indoor environment, which might have 

maximum dimensions of 10 x 10m, then the robot’s maximum speed (    ) that is 

appropriate for the navigation and search tasks is assumed to be 10 m/minute. If the 

wheel diameter (d) is chosen to be 8 cm, then the motor’s speed is  

                              (4.5) 

         

In this case, the motor’s maximum output power will be 

                                 (4.6) 

          (
    

      
 
 

  

      

 
)          

The torque needed (T) is then calculated from 

        (       
 

  
)                 (4.7) 

     (       
 

  
)              

The various calculations being completed, the choice of suitable motors can now be 

started. Four geared high-torque (1.17    ) DC motors that operate at 12 V were 

chosen (see Appendix). These motors have a maximum current draw of 1.5 Amps and 

rotate at 36 RPM. This is less than 40 RPM and reduces the robot’s maximum speed to 

9 m/minute, but it does not affect the calculations since the motor has a high torque that 

is greater than the maximum torque needed. The motors are attached to the robot’s 

chassis and their shafts are directly coupled to wheels with 80 mm diameter. Each pair 
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of motors, mounted on one side, turns in the same direction and at an identical speed. 

This is achieved by connecting each pair of wheels with the same line, as shown in 

Figure 4.2. 

 

Figure 4.2. The wheeled-drive configuration 

4.2.3.1 Powering Motors 

The speed and direction of the DC motors are controlled by the microcontroller board; 

however, the motors need more energy than can be supported by this board. 

Consequently, a separate motor drive amplifier that can support the required power and 

can also be controlled by the microcontroller must be used. The motors’ control board 

[75], having 4 channels, each of which can control and provide 4 Amps (peak load) per 

motor, is chosen. This board provides pulse width modulation (PWM) pins that can 

individually control the speed and direction of four motors. Note that the PWM signals 

are generated using the microcontroller software and then sent to the pins of the motors’ 

control board. As mentioned above, one of the requirements is that the robot is capable 

of executing a zero-turn radius. Accordingly, each pair of motors is connected to one 

channel and controlled together at the same time. For instance, if the robot wants to 

move in a straight line, it will run both pairs of wheels in the same direction and at 

identical speeds. Conversely, if it wants to change orientation, it will rotate both pairs of 

motors in opposite directions. The benefit of using this method is that the robot can 

change its direction by spinning about its central axis.  
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4.2.4 The Gripper 

Typically, industrial robots (manipulators) need devices, called end effectors, at the end 

of their arms in order to interact with the environment and to perform their tasks. These 

devices might be either tools, used to perform tasks like welding and drilling, or 

grippers, used to reposition objects from one location to another. In the case of mobile 

robotics, the robots might need these kinds of devices to do the assigned tasks. In this 

study, the robot is used to relocate the targets; therefore, it needs a gripper to execute 

this process.  

Two factors must be considered when the gripper is designed: the grasping force that is 

applied to the object, and the jaw torque [76]. The former is influenced by two aspects: 

the style of the gripper’s jaws and the object’s weight. Jaws are generally designed in 

two styles: friction and encompassing [76, 77].  In the friction-jaw style, the holding of 

the object is totally done by the grasping force. However, the encompassing-jaw gripper 

cradles the object because its jaws are designed in the same shape as the object. 

Consequently, it needs less holding force. The object’s weight that the gripper 

experiences from both gravity and acceleration is a critical factor in determining the 

required gripping force. Lastly, the jaw’s total torque is produced by the grasping force, 

together with the acceleration and weight of the object.  

In this work, a small gripper was designed and implemented to grasp the target object, 

assumed to have a maximum mass (m) equal to 100 grams. The gripper is a friction-jaw 

style; however, it can be considered an encompassing-jaw gripper if it is used to grasp a 

rectangular shaped object. The gravitational acceleration (g) is assumed to equal 

        and the total jaw length is 9 cm; the distance from the gripping force to the 

rotational centre is 5 cm. The weight that comes from acceleration is assumed to be 

equal to the gravitational weight. Then, the formulas that are in [76, 77] were used as 

follows 

Grip Force Required (F) = Object’s mass    (g + Part Gs)   Jaw style factor     (4.8) 

where the Part Gs represents the robot’s acceleration and it is assumed to equal the 

gravitational acceleration (g), and the Jaw style factor equals one in case of the 

encompassing-jaw gripper. As such, the force required will be   
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This force generates the jaw torque that can be determined by  

Jaw Torque (J) = Jaw Length     Grip Force              (4.9) 

              

The gripper will also experience the torque from the object that is essentially given by  

Object Torque (P) = Jaw Length     Object’s mass     Part Gs          (4.10) 

                  

As mentioned above, the jaw’s total torque is made by the grip force, together with the 

acceleration and weight of the object. As such, the total torque is  

Total Torque (T) = Jaw Torque (J) + Object Torque (P)                       (4.11) 

               

Therefore, the specifications of the gripper have to be 2 N of the gripping force and 15 

     of the torque. The jaws of the gripper were designed to be driven by two servo 

motors.  The gripper is attached to the 10 cm long arm and can be moved up and down 

by another servo motor which is attached to the robot’s body (see Figure 4.3). The servo 

motors are controlled using the PWM signals that are generated by the microcontroller 

software. 

 

Figure 4.3. The gripper parts 
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4.3 Electronic Circuit Design 

Before describing the electronic system, it is worth mentioning the main requirement for 

designing a new robot. An autonomous mobile robot is needed to search for, find and 

relocate a target (object) in an indoor environment. In this scenario, it needs to employ 

sensors for navigating and detecting the target, and for controlling the robot’s motion. 

An electronic module system will play the main role in the performance of these tasks. 

Typically, detecting the target requires use of a vision system that needs high-level 

software (high computational processing). Conversely, the signals of other sensors are 

processed by low-level software (low-level processing). 

The high-level software needs to be run by a processor with a high computational 

capacity. The processor should also operate in standby mode since it is mounted on the 

robot. The decision then taken is to use a PC motherboard. However, this board does 

not have the sensor drivers and digital/analogue I/O circuitry necessary for handling the 

sensors and driving the motors. To solve this problem, there are two options. The first 

employs adapters that can handle the sensors and the motors to the PC motherboard. 

This will create two more issues. First, the sensors need to be run by software programs 

that can drive and process the sensory data; however, the motherboard does not have 

these. Second, even if the required software is installed, the CPU needs extra time and 

effort to process the sensors’ signals. The previous two problems would be solved by 

using the second method, which employs a microcontroller to handle and manage the 

low-level software.  As such, the microcontroller could serve as the interface unit 

between the main electronic components in the robot: PC motherboard, sensors and 

motor driver. The decision was finally made to combine these two modules, the PC 

motherboard and the microcontroller, to implement the main electronic system. 

4.3.1 The PC Motherboard 

An IBM Lenovo motherboard [78], which has Intel Pentium 4 CPU 3.00 GHz and 

1.00GB of RAM, is used. It has six USB ports and both parallel and serial ports. Some 

additions are made to this board to operate on the robot. 
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4.3.1.1 Software 

The software programs play the main role in implementing the robot’s electronic 

system. The required software includes a choice of an operating system, the 

programming languages, and whatever tools and libraries are necessary.   

Operating system 

Choosing a suitable operating system (OS) is important because it takes care of several 

aspects in the computer system such as handling, organizing and control of the 

hardware and its programming languages [79]. Various OS exist such as Windows, Mac 

OS X, and Linux. In robotics, Linux is extensively used because it is an open source, 

has good hardware and software support, is well documented, and has high performance 

and stability. Consequently, Linux OS (Ubuntu 10.04 LTS) [80] was chosen and then 

installed in the USB flash memory (8 GB). This memory is used as a hard disc for the 

motherboard because it is small, light and has low power consumption. Note that it is 

important to create partitions in the USB flash memory to save any changes or install 

programs, because without this partition any changes will be omitted.  

Program languages 

The main software tools and libraries that have been downloaded and installed are: 

 A programming IDE (Integrated Development Environment) “codeblocks” to 

edit, compile and run the image processing algorithms and to control and 

program the motherboard ports; 

 Intel Open Computer Vision (OpenCV [81]) and OpenSURF [82] libraries in 

order to do image processing; and 

 The microcontroller (Arduino) open-source software “sketches” to edit, compile 

and download the program, which controls the robot’s motion based on the 

sensory information and also controls the gripper’s action, into the 

microcontroller.  

4.3.2 The Microcontroller 

The Arduino Board [83] was chosen because: it provides all the needs for sensors and 

motors; it has the open source software for Windows and Linux; and it is easy to 
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configure I/O for other devices. The board has a USB port that is used for both 

downloading the control program for running on the board, and powering the board. 

The board’s features include an ATmega328 microprocessor, 32k flash memory and 16 

MHz clock speed. It has three groups of female-pin headers that allow connection and 

control of other devices. The groups are: power, analogue input, and digital 

input/output. The analogue input group has six pins which can also serve as general 

purpose digital I/O. The digital input/output group has 14 pins including six headers that 

generate pulse width modulation (PWM) signals; these are useful for controlling the 

speed of the motors.  Through I/O pins, the board also supports the basic 

communications standards such as I2C and TTL serials. Overall, the platform can 

support many types of sensors which make the robot more scalable and suitable for 

more applications. 

4.3.3 Communication Process 

The PC motherboard and the microcontroller need to communicate and control each 

other. Normally, in the communication process the PC behaves as a master (host) and 

each of other peripherals are slaves (devices). The PC motherboard has the ports that 

can be used mainly to control and communicate with external devices (see Appendix). 

The PC parallel port (sometimes called a printer port), which has 25 pins, is employed 

for the communication process. The port’s pins are classified into four categories: data 

registers (pins 2-9); control registers (pins 1, 14, 16 and 17); status registers (pins 10-13 

and 15); and grounds (pins 18-25). The data registers can be used to store a byte of data, 

which is sent as output to the data register pins. The control registers are mainly used to 

send control data to the printer port, while the status registers can read the states of the 

status pins. As such, the motherboard can be programmed to send 8 bits of information 

to the data pins, and to receive 5 bits of data from the status pins at once. The parallel 

port pins can also be used individually to send and receive data. Generally, this port is 

easier to program and faster than the serial ports [84].  

The microcontroller board has a USB connection that works as a serial connection. 

Typically, this port is used to download the control program and to power the 

microcontroller. This port can be used as a communication interface between the 

microcontroller and the motherboard. In this case, a communication program must be 
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written for each board to control each other. As mentioned above, the serial port is more 

difficult to program and control than the parallel port. It also requires additional CPU 

time to process and assess the communication messages between the two boards. 

Consequently, the decision was taken to use some of the parallel port’s pins to send 2 

bits of data to control the microcontroller, and to receive 2 bits of information from the 

microcontroller to control the motherboard (this process is explained in Chapter 7).    

4.3.4 Sensors and Movement Control 

The robot must be able to move safely and to recognise objects in the environment. 

Therefore, ultrasonic range sensors and a camera were used within the navigation 

system to achieve the task. Three types of SONAR devices were used, namely, 

Devantech SRF02, SRF08 and SRF10 ultrasonic range finder [85]. These sensors 

communicated with the microcontroller board (Arduino) by analogue pins 4 and 5 in 

alternate I2C function mode. In this study, the robot was equipped with a Logitech 

camera model C200 [86] as a vision sensor. It takes images with a resolution of up to 

640 by 480 pixels with the maximum rate of image capture of 30 frames per second. 

The camera was connected to the motherboard by an USB port. The camera was 

attached on a servo motor to rotate it 180° to its left or right side, and placed on the 

front of the robot (the sensor configuration is described in Chapter 5).  

 

Figure 4.4. The movement control system in the wheeled robot. 

Figure 4.4 illustrates the movement control system of the wheeled robot. As mentioned 

before, the robot was made to combine two modules to implement the main electronic 

system. The PC motherboard was to execute the image processing calculations while 
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the microcontroller was to process the sensory signals and performing the movement 

decisions.  As such, the robot could capture images and process them while it navigated. 

Then, the image processing results were sent to the microcontroller that accordingly 

decided on the robot’s motion. The robot could update the environmental information in 

each of its movement cycles without stopping its motion. Therefore, the robot’s reaction 

for any change in the environment was much faster than the hexapod.  

4.4 Power System 

The PC motherboard normally needs an AC-DC power supply providing +3.3, +5 and 

±12 V.  When this board is used for a robotics project, it must be run by a DC battery 

instead of the power supply. As such, a small DC-DC power supply, called Pico-PCU, 

was used with a 12 V DC battery to provide the required voltages. The DC motors and 

servo motors require a 12 V and 6 V DC power supply. In this case, there were three 

options for using batteries as explained below: 

- two DC batteries (12 V and 6 V) are used; however, this increases the robot’s 

weight; 

- a DC to DC converter is used; or 

- DC battery cells are used to power the different parts. 

In this project, the third option was at first used to feed the motors and the motherboard. 

However, it was found that the motherboard was reset when the robot started to move. 

This was because the motors draw high current when they start motion. Therefore, a 

separate 12 V DC battery was used to feed the motherboard, and the 10 × 1.2 volt DC 

cells were employed to drive both the robot and its gripper.   

4.5 Circuit Schematics 

Figure 4.5 shows all the components and data lines in the electronic circuitry of the 

robot.  

 The microcontroller was powered from the motherboard via a USB cable. 

 The microcontroller fed the logic circuit of the motor controller via two wires 

(Vcc and Ground). 
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Figure 4.5. The circuit configuration 

 The range sensors were attached to the microcontroller via the I2C 

communication (pins 4 and 5). 

 Each pair of motors, attached to one side of the robot, was connected to one 

channel of the motors’ control board.  This board was controlled by two of the 

microcontroller’s I/O-digital pins, which represent PWM (to control the speed of 

the motors) and DIR (to control the direction of the motors). One of the motor 

pairs was connected to pins 3 and 4 while the other pair was connected to pins 5 

and 6. 

 The microcontroller controlled the PC motherboard via two digital pins (7 and 

8), which were connected to two status pins of the parallel port. 
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 The PC motherboard controlled the microcontroller by two data pins of the 

parallel port, which were connected to two analogue pins A0 and A1 of the 

microcontroller. 

 The camera was attached to the motherboard via a USB. 

 The robot’s power was provided by 10 × 1.2 volt cells connected in series. The 

DC motor controller used all the cells (12 volts), whilst the servos were joined to 

just 5 × 1.2 volt cells 

 The servo motors (three for the gripper and one to “pan” the camera) were 

controlled by the digital pins of the microcontroller (pins 9, 10, 11, 12). 

4.6 Summary  

The decision was made to test the proposed methodology using two types of mobile 

robots having two philosophies of locomotion configurations in order to identify 

limitations on the navigation system. In Chapter 3, the hexapod mobile robot is 

described, analysed and discussed. This chapter proposes a methodology for designing 

and implementing a wheeled robot. The designed robot has a four-wheeled drive 

principle with a zero-turn radius mechanism. The robot’s electronic system combines 

two modules, the PC motherboard and the microcontroller. The former is used to 

execute image processing while the latter is to process other sensors’ signals. The 

communication between the two boards is done by using the motherboard’s parallel 

port. The robot also has a gripper to transport the objects.   
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Chapter 5           Exploration Path and Motion Control 

5.1 Introduction 

A mobile robot generally moves in an environment that contains a starting point, the 

target position and a number of arbitrarily shaped obstacles, each of which has a finite 

area. The robot’s objective is to find a continuous path from the start point to the target 

position without collision. This process is organised by means of the controller that 

includes the navigation system. The aim of the navigation system is to enable the robot 

to plan its motion. The motion planning for the mobile robot involves three 

considerations: gathering the environmental information and then transferring it to a 

mapping module in real-time; generating a path that the robot can navigate without 

collisions; and controlling the robot throughout its motion [16, 87]. In the case of a 

mobile search robot, the motion planning must enable the robot to navigate in a planned 

path and to continue searching and discovering its environment. The target position is 

unknown, which means that the path needs to be carefully planned in order to cover the 

entire search area.  

The navigation system is required to model the environment in order to enable the 

mobile robot to execute its tasks. Modelling includes the process of mapping the 

environment based on the information obtained from the mobile robot’s sensors, in 

order to determine the position of various entities, such as landmarks or objects. 

Without this mapping the mobile robot cannot navigate and find objects in the 

environment or plan its path to a target location [88]. In most mobile search robot 

applications, the environment and the target’s location are unknown and therefore, the 

environment modelling has to be done taking into consideration the similarities among 

different environments. In indoor environments, there are many aspects that can be used 

as a reference for the robot’s motion, such as walls and doors. The walls are particularly 

important when designing a navigation system that enables the mobile robot to work 

autonomously in different indoor environments. Pieces of furniture on the floor of the 

environment may obstruct access to the target object and need to be considered when 

designing the navigation system.  
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This chapter describes the exploration path and motion control. It starts by explaining 

how the Bug algorithms are adapted and implemented to guide the robot when 

exploring its environment. Then it explains the process of control of the robot motion, 

which is dependent on its sensory information. 

5.2 Motivation for Bug Algorithms 

As mentioned in Chapter 2, the navigation algorithms are classified into global and 

local planning [25]. The global algorithms plan the robot’s path from the start to the 

goal, by searching a graph that represents a map of the global environment. The 

environmental graph is constructed either off-line or on-line. The former assumes that 

the environment is known completely, whereas the latter builds the graph based on local 

sensory information. The global planning methods have three drawbacks: expensive in 

computation, complexity of construction and difficulty of obtaining an accurate 

graphical model. Conversely, local planning algorithms use sensor information directly 

in the commands that control the robot’s motion in every control cycle, without 

constructing a global map [25]; therefore, they are easy to construct and optimal for 

real-time applications. 

The Bug algorithms [2] are intended to steer the robot from the starting point to the 

target position without an environmental map. As such, they are identical to local 

planning techniques, as they need only local environmental information. However, the 

robot needs to learn a little of the global information, such as the number of path points 

between the start and the final locations. If the robot discovers that no such path exists, 

the algorithms will terminate the robot’s motion and report that the target is 

unreachable. 

5.2.1 Bug Family Close Review 

The Bug family includes many algorithms that involve small variations on those 

initially developed by [89, 90]. The family generally assumes that the robot is a point 

object (analogous to a bug), having perfect localisation ability and perfect sensors [2]. 

The Bug family also assumes that the robot knows the distance and direction between 

the starting point and the target location, in addition to a minimal number of its path’s 
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points. All the Bug algorithms employ at least two procedures to operate: navigating to 

the target; and following the obstacles’ boundaries. Typically, these algorithms can be 

adapted for any robot that has range or tactile sensors and a localisation technique such 

as landmark recognition [91]. The simplest Bug algorithm (Bug 1) could be described in 

Figure 5.1.  

Figure 5.2 represents two sample environments. The green tile indicates the start S, 

while the red identifies the target T. The dashed black line represents the desired path 

between the start and the goal, which is defined to the robot, while the green arrows 

denote the actual path of the robot’s motion. The aims of all Bug family algorithms are 

explained as follows. The robot starts moving directly towards the target when it can; if 

it hits an obstacle, it goes forward along the intervening obstacle boundaries until that 

obstacle can be overcome and the robot continues directly towards the goal, as shown in 

Figure 5.2A. However, if no path exists to the target, the algorithms are able to identify 

this state and they terminate, reporting that the goal is unreachable, as shown in Figure 

5.2B.  

 

Figure 5.1. The simplest Bug algorithm (Bug 1) 

1. Drive towards the target T. Go to (2). 

2. Is the target reached?  

a) Yes. Stop. 

b) No. Go to (3).  

3. Is the obstacle encountered?  

a) Yes. Define the hit point (Hi). Go to (4).  

b) No. Go to (1).  

4. Go around the obstacle. Continue updating and saving (Dm) the closest 

distance to the target, until: 

a) The target is reached. Stop. 

b) (Hi) is encountered again. Check if the target is surrounded by 

this obstacle (the line segment [Dm, T] is obstructed by the 

obstacle): 

i. Yes. The target is unreachable. Stop. 

ii. No. Return to (Dm). Go to (1). 
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Figure 5.2.The Bug Algorithm states 

5.3 The Bug-Like Algorithm 

Ng and Bräunl [2] claimed that Bug algorithms are required to follow a wall to control 

the robot motion. This means that when the robot moves towards the target and there is 

an obstacle in the path, the robot will navigate around the obstacle by keeping it 

completely to one of its sides. Zhu, et al. [25] criticised previous works, which are 

mainly theoretical and concerned with optimising the path length and designing new 

situations for leaving obstacles. The authors claimed that earlier works ignored the 

practical implementation issues. The Bug algorithms also assumed that the robot moves 

close to an obstacle but no attention is paid to collision avoidance. The robot must 

actually maintain a safe distance from the wall or the obstacle that the robot is 

following. This is done by using a method based on ultrasonic range sensors, which are 

employed to generate the control commands to steer the robot. This will be explained in 

the following sections.  

In this study, the spirit of Bug algorithms is employed for the Bug-like technique that 

will be used to implement the exploration path for the search robot. As mentioned 

before these algorithms use two procedures to operate: navigating to the target; and 

following the obstacles’ boundaries. The robot with Bug algorithms also needs to know 

the exact distance and direction of the path between the starting point and target 

position, in addition to some points on that path. However, the robot in this work 

(A) 

T 

S 
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explores an environment that is unknown but is defined for the robot as an indoor world 

that is constrained by external walls. In this scenario, the target objects might reside 

with equal probability at any location in the environment and, therefore, the robot must 

navigate and search the whole area autonomously. 

Figure 5.3 shows the two sample environments previously depicted in Figure 5.2. Each 

environment contains the starting point, the target and a number of obstacles. The target 

position is unknown. The aim of the Bug-like algorithm is for the robot to start its 

motion by following the wall (for instance, the robot positions itself with the wall to its 

left). If it encounters an obstacle or another wall, it turns clockwise until it can drive 

forwards again. If the robot discovers that there is no wall to its left that can be 

followed, it moves in a circular pattern counter-clockwise until a wall is detected to the 

left or in the front of the robot. The navigation process then continues until the robot 

discovers the target, as shown in Figure 5.3A. The robot then terminates this algorithm 

and starts a new task that requires approaching, grasping and relocating the detected 

target object. However, if the target object is hiding and the robot cannot detect it, that 

is, no path exists to the target. In this case, the robot will continue to search for the 

target object until the starting point is encountered again, which means the goal is 

unreachable and the robot terminates the navigation (Figure 5.3B). The Bug-like 

algorithm is explained in Figure 5.4. Note that in this section, the exploration path is 

explained without consideration of the probable locations of the target in the 

environment (this case is described in Chapter 7). 

     

Figure 5.3. The Bug-like algorithm states 

(A) (B) 
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Figure 5.4. The Bug-like algorithm 

5.3.1 Localisation 

The robot must know where it is starting and finishing its navigation and consequently, 

it has to recognise its location relative to the environment. In this study, the problem is 

that the robot starts moving from a starting point that can be recognised in the 

environment. The robot keeps itself a specific distance from an adjacent wall to either 

right or left. While the robot follows the wall, it keeps searching for the target. If the 

target is found, the robot will leave the wall and approach the target, grasp it and 

relocate it.  

In the relocating process, whilst the robot is currently in the location where it grasped 

the object, it will search for the delivery location, which was its starting point. If that is 

found, the robot will approach it by tracking until the location is reached and the object 

will be placed there. However, if the delivery location cannot be seen from the current 

1. Is the robot’s distance to the wall within the safe ranges?  

a) Yes. Go to (2).  

b) No. Correct the distance by moving further from or closer to 

the wall.  

2. Drive forward from the start S by following the wall (in this case put 

the wall in the left side), and search for the target T. Test that: 

2.1 Is the target reached (detected)?  

a)  Yes. Go to (3).  

b)  No. Go to (2.2).  

2.2 Is the obstacle encountered?  

a)  Yes. Check if the obstacle is the starting point S:  

i)         Yes. The target is not found. Go to (3). 

ii)         No. Rotate the robot clockwise until it can drive 

forwards again. Go to (1).  

b)  No. Go to (2.3).  

2.3 Is there any wall on the right:  

a) Yes. Go to (1).  

b)  No. Drive the robot in a circular pattern (counter-clockwise) 

until the wall is detected to the right or in the front of the 

robot. Go to (1).    

3. Exit  
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location, the robot will move to the wall again and then follow it until the delivery 

location (starting point) is reached. If the target object is not found in the search process, 

the robot will continue following the wall until it encounters the starting point, where 

the robot terminates its motion. 

This process assumes that the environment is surrounded by walls and its entrances are 

continuously closed. This does not work in practice because the environment has 

(entrances) doors that might be open while the robot navigates. In this case, when the 

robot follows the entrance’s boundaries, it will leave the area that it must search. This 

problem is overcome by covering the environmental entrances with artificial landmarks 

so that the robot will consider them as walls, and it will navigate beside them (as will be 

explained in Chapter 7).  

5.4 Sensor Configuration 

Successful autonomous operations of mobile robots fundamentally require robust 

motion control systems. The control system selects its actions based on the present 

conditions of a robot’s world. The surrounding environment is typically monitored 

through various sensors, including those for vision, range and force (applied on objects 

by the robot). The sensors convert the environmental information obtained into digital 

or electrical signals, which are used by the control system to control the physical actions 

of the robot. These mobility actions are normally motions executed with a mobile 

robot’s real hardware, including wheels, legs and grippers. Figure 5.5 shows the control 

process for a robot with legs or wheels.  

The sensor configuration consists of the types of sensors used and the distribution of 

these sensors on the robot’s body. The former is mainly specified depending on the 

robot application and the amount of information required. Most types of sensors used 

for the acquisition of environmental information are vision sensors, ultrasonic range 

sensors, tactile sensors, and laser sensors. Vision sensors are usually used for 

applications needing a large amount of environmental information such as exploration 

and search and rescue applications. However, these sensors require processors with high 

computational capacity to process and extract information from the images. Range 

sensors are appealing in terms of cost and power consumption. Furthermore, they only 



 

59 
 

need low computational processing capacity to analyse their signals. Tactile sensors, 

which are transducers sensitive to touch, force, or pressure, are widely used to improve 

the stability (balance) of legged robots and to control gripping force. Laser sensors are 

widely used in navigation processes for mapping the environment and localisation of 

the robot because their readings are accurate. The number of sensors used and their 

distribution on the robot’s body depends mainly on the robot’s size and application. 

Typically, the accuracy of the robot’s measurement system will dramatically rise if the 

robot is equipped with the high number of sensors.  However, this increases the robot’s 

price and leads to a more complex control system in its implementation [7]. Therefore, 

the number of sensors should be reduced without affecting the effectiveness of the robot 

motion.  

 

Figure 5.5. Control process 
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5.4.1 Sensor Types 

The description of three types of sensors implemented in robot sensory platforms will 

follow.  

5.4.1.1 Vision Sensors 

In this study, a Logitech webcam model C200 [86] was used as the vision sensor. It 

takes images with a resolution of up to 640 by 480 pixels with the maximum rate of 

image capture of 30 frames per second. The sensor is connected to the main board by a 

USB port. The camera is fixed at the front of the hexapod mobile robot but is attached 

to a servo motor at the front of the wheeled robot, allowing rotation of 180°. Image 

processing approaches will be explained in Chapter 6. 

5.4.1.2 Ultrasonic Range Sensors 

An ultrasonic range sensor typically works by emitting a beam of sonic pulses and 

receives the returned echo that reflects from an object. The sensor computes the time 

interval between emitting the signal and receiving the echo to determine the distance to 

the object. The emitted signal has a cone shape that covers a fixed volume. The cone 

volume or beam width typically depends on the type of transducer. Beam width is the 

most important characteristic for choosing these sensors within robotics applications 

because it decides a bore-sight, which is the angle of ranging that the transducer covers 

in a direction straight-ahead [92]. For example, a sensor that emits a beam within a large 

bore-sight would discover objects that are not directly in the robot’s path.  

Three types of sonar devices are used: Devantech SRF02, SRF08 and SRF10 ultrasonic 

range finders [85]. The SRF02 ultrasonic range finders are low cost, small in size and 

have low power consumption. The minimum and maximum range distance measured by 

the sensor could be 15 and 200 cm, respectively. Its beam width is less than 55°. 

Conversely, the SRF08 and SRF10 sensors measure approximately the same distance 

interval of between 3 cm and 11 m. However, their beam widths are 55° and 72°, 

respectively. All these sensors can be operated within the I
2
C mode, which allows 

communication of data between I
2
C devices over two lines, the serial data (SDA) and 

serial clock (SCL) lines. I
2
C devices are divided into two categories: masters 
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(microcontroller) and slaves (sensors). Master devices control the clock and generate 

START and STOP signals to operate slaves. Conversely, each slave must have a unique 

address and waits for the master commands to perform its work. A basic read or write 

sequence of master to slave is:  

- Send the START bit 

- Send the slave address 

- Send the Read (1)/Write (0) bit 

- Wait for/Send an acknowledge bit 

- Send/Receive the data byte (8) bits  

- Expect/Send acknowledge bit 

- Send the STOP bit 

The default shipped address of these sensors is 0xE0 but it can be changed to any of 16 

addresses: E0, E2, E4, E6, E8, EA, EC, EE, F0, F2, F4, F6, F8, FA, FC or FE. 

Consequently, up to 16 SRF02s can be connected together on a single I2C bus with 

different addresses (Figure 5.6). To change the default shipped address, only one sensor 

has to be connected to the I2C bus and then three sequence commands are written in the 

correct order followed by the new address in code [93] (Figure 5.7). 

 

Figure 5.6. The sensors with I
2
C 
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Figure 5.7. The code to change the sensor’s address 

5.4.1.3 Tactile Sensors  

Tactile sensors can provide information at the time of contact between the robot and 

other objects in an environment. These sensors are mostly used to calculate the amount 

of force applied by the robot’s end effectors. They are also widely utilised for adjusting 

the legged robot’s motion. Seven of the Interlink Electronics 0.2” Circular FSR sensors 

[94], which are very thin, robust, polymer thick film (PTF) devices that could measure 

forces between 1 and 100 N, are attached within the hexapod mobile robot: one sensor 

in each leg and one in the gripper. The legged sensors enable the robot to walk over 

rough terrain, which is the type of environment that the robot is designed for, while the 

gripper sensor allows the robot to control the force applied to the target when it is 

grasped and relocated.  

The leg sensors control the rotation of the motors that provide the motion of the 

assigned leg. This is done by providing feedback to the controller (Figure 5.8). If the 

amount of force applied by the assigned leg reaches a pre-defined maximum value, 
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which is defined according to the robot’s weight, the controller will stop the motors 

within the current angles. This presents three advantages for the robot. The first is that it 

allows adjustment of the robot legs to provide stability within a horizontal plane. The 

second is that it prevents any damage to the motors and the third is that it enables the 

robot to walk on uneven terrain. The gripper sensor controls the grip force that is 

applied to the object. If this force exceeds the pre-defined value, which depends on the 

grasped object’s weight, the controller will stop the gripper servo motors’ motion. 

 

Figure 5.8. The legs and gripper controller 

5.4.2 Distribution of Sensors and Motion Problem 

One of the main objectives of this work is to find a suitable method for locating a small 

number of sensors on the robot’s body that is ideal for autonomous navigation. In 

Chapters 3 and 4, an explanation was given of the two types of mobile robot platform, 

used to validate the approaches of this thesis. In the proposed navigation system, the 

robot navigates to the nearest wall (or similar construction) and then moves along that 

structure. If the robot using the built-in ultrasonic range sensor system detects an 

obstacle, it will navigate around that obstacle and then continue moving along the wall. 

While the robot is self-navigating in its environment, it continues to look for the target 

using the vision system. In this case, the main requirement is that the robot must keep 

driving at a constant distance from the wall, whilst also avoiding any obstacles in its 

way (Figure 5.9). Consequently, there are a number of requirements that the ultrasonic 

range sensor system has to guarantee: 

- Maintaining a desired distance from a wall; 

- correcting errors that come from the robot’s legs or wheels slipping on the 

floor; 

- detecting the boundaries of obstacles to enable navigation around them; 
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- detecting the nearest wall when the robot starts to navigate; 

- discovering the distance between the robot and the walls or obstacles directly in 

the robot’s path and 

- controlling the robot when it approaches the target object. 

 

Figure 5.9. The robot navigation strategy 

5.4.2.1 The Hexapod Mobile Robot Sensor Configuration 

The hexapod mobile robot is 19 cm long, 13 cm wide and 15 cm high (7 cm from the 

ground). When the robot walks, its legs will be higher than the robot’s body covering 

both sides of the robot. Consequently, if any of the ultrasonic sensors is mounted 

directly on the robot’s body, it will continue detecting both the ground and the legs. The 

possibility of this problem increases when sensors that emit a beam with a large beam 

width angle are used. Consequently, the decision taken was to use the SRF02 ultrasonic 

range sensors because their beam width angle is narrow and suitable for this application. 

Six of these sensors are mounted: two sensors are on front and on each side of the robot 

(Figure 5.10). The front sensors measure the distance between the robot and the walls or 

obstacles in the robot’s direct path. They are also used to control the robot when it 

approaches the target object. The side sensors help to locate the walls or obstacles 

beside the robot.  
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Figure 5.10. The hexapod’s sensor platform 

5.4.2.2 The Wheeled Mobile Robot Sensor Configuration 

The wheeled robot was equipped with the same sensory system as the hexapod (see 

Figure 5.10). However, SRF10 and SRF08 range sensors were used instead of SRF02 

and also three sensors are attached to the front of the robot instead of the two sensors 

used for the hexapod to increase the robot’s sensing ability. Note that SRF10 sensors 

were mounted to the front because they are much smaller than SRF08. Experiments 

confirmed that these sensors are more accurate than SRF02; they can also detect a 

narrow object 6 m distant at an angle of 60 degrees. However, two problems 

materialised in using the SRF10 sensors. First, these sensors detect obstacles that are not 

directly in the robot’s path. Second, they observe the ground as a wall or an obstacle. 

Therefore, some experiments, as in [92], were done to reduce the beam width angle. 

Therefore, a 3 cm long paper tube with a rectangular section with an area the same as 

the sensor area, was installed. The inside walls of the tube were covered by a thin layer 

of sponge. Thus, the beam width angle is reduced dramatically because the sponge 

absorbs and narrows the beam of the sensor. The sensors, after paper tubes were 

installed, only detected objects within an angle of 30 degrees or less. 

5.5 The Motion Problem Analysis 

In this section, the conditions under which the ultrasonic sensors mounted on the robot 

give enough information will be analysed, to determine both the robot motion and 

environment structure. Assume the robot moves in the environment that is shown in 
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Figure 5.11 and that it faces some motion problems that are assigned in Figures 5.12 

and 5.13. Presume that: 

- The robot navigates along the wall that is on its right side and it must keep moving 

between the two green lines (Figure 5.11). The robot should recognise the obstacles 

that the robot must move around without any collisions; 

- (   )     (   ) are the right-side rear and front distances, measured between the 

robot and the wall or the obstacle by the right-side sensors; 

- (   ) and (   ) are the highest and lowest values in the desired distance interval 

that is assigned by the user and they specify the maximum and minimum distances 

between the robot and the wall that is at the robot’s right-side. They must keep the 

robot moving between the green lines; 

- (   ) is the desired distance between the robot and the wall straight-ahead and is 

chosen by the user. The robot must change its direction when it comes closer to the 

wall than this line and 

- (   )     (   ) are the front distances between the robot and the objects or wall 

straight-ahead and they are measured by the front sensors mounted to the left and 

right, respectively (Figure 5.11). In the case of the wheeled robot, three sensors are 

used and therefore, (   ) is added and it points to the central sensor measurement. 

 

Figure 5.11. The robot motion analysis 
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Case 1 : In Figure 5.12A, the robot uses its front and right-side range sensors to 

determine the distance between its body and the walls. It will start moving in a 

straight forward motion, if: both distances (   )     (   ), measured by the 

right-side sensors of the robot are equal and they enable the robot to move between 

the two green lines; AND the front sensors’ measurements are greater than the 

desired front distance (   ) that is assigned by the red line. 

 

Case 2 : In Figures 5.12B and C, the robot must correct its location beside the wall, if 

the robot’s sensors measure the same conditions as in Case 1. However, the right-

side sensors’ measurements (   )     (   ) are not equal and thus, the error is 

given by    

            –                                (5.1) 

 

If the error is positive or negative, the robot will rotate right or left, respectively 

until the minimum difference between the two sensors’ measurements, which is 

specified by the user to enable the robot to move within a minimum error, is 

reached. Notice that the amount of the rotation angle is specified by three values 

(small, average and large) based on the quantity of the error. 

 

Case 3 : When any of the front-sensor measurements (   ) (   )    (   ) indicate 

that the robot has reached the wall straight-ahead, as shown in Figure 5.12D, the 

robot turns left until a straight forward space is opened that allows for continued 

motion of the robot, as shown in Figure 5.12E. 

 

Case 4 : If the robot reaches an obstacle, it will behave in the same way as when it faces 

a wall. The robot keeps driving along the obstacle until its edge boundaries are 

detected by the robot’s right-side sensors. In this case, the two echoes received by 

the two side transducers are not equal. For instance, if the measured distance by 

front-right-side sensor (   ) is greater than the measurement of the rear-right-side 

sensor (   ) and it is also greater than the maximum value in the desired distance 

interval (   ), the robot starts to steer in a direction to the right. This continues 

until the robot detects the boundaries of the obstacle and both the right-side sensors’ 

measurements (   )     (   ) are identical. Then the robot moves forward and 



 

68 
 

continues to correct its location along the obstacle; this enables the robot to move 

around the obstacle (Figures 5.12F to H). 

    

 

    

 

Figure 5.12. The robot’s motion (when it moves between the desired values of the 

distance interval (HDS) and (LDS)) 

The above analysis suggests that the robot moves along the wall or a similar structure 

maintaining the desired distance that is between the maximum and minimum values of 

the desired distance interval (   ) and (   ) (Figure 5.11). The motion faults are now 

discussed should the robot drive outside of this interval. In this scenario, there are three 

states that are presented by the ultrasonic sensory measurements. The measurements 

might show that: 

State 1 : There is a wall or an obstacle in the robot’s path and that there is no free space 

to correct the faulty motion. Consequently, the robot discards any faults and the 

motion in Case 3 is performed. 

 

State 2 : There is a wall or obstacle in the robot’s path but the robot has enough free 

space to perform its motion. In this case, there are two conditions to correct any 

motion faults. The first occurs when the robot navigates along the wall with a 

distance that is closer than the minimum value of the desired distance interval 

(   ) to the wall (Figure 5.13A). In this scenario, the robot performs the motion in 
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Case 5. The second situation happens when the robot moves along the wall with 

distance that is more than the maximum value of the desired distance interval 

(   ) (Figure 5.13E); then the motion in Case 6 is executed. 

 

Case 5 : The robot steers a specific counter-clockwise angle ( ) that is assigned by the 

user (Figure 5.13B). It then moves straight forward until the rear-right-side sensor 

measures a distance (   ) that is equal to or more than the result of ((    

    )    ) (Figure 5.13C). Next, the robot turns back at angle ( ) in a clockwise 

direction to locate itself along the wall (Figure 5.13D). 

 

Case 6 : The robot turns a specific clockwise angle ( ) (Figure 5.13F) and then moves 

straight forward until the rear-right-side sensor measures a distance that is equal to 

or less than the result of ((        )    ) (Figure 5.13G). The robot then rotates 

back ( ) angle in the counter-clockwise direction to locate itself beside the wall 

(Figure 5.13H). 

 

State 3 : There is no wall or obstacle in the robot’s path and therefore, the robot 

performs similar motion to State 2.  

    

   

     

 

Figure 5.13. The robot’s motion states (when it navigates outside of the desired values 

of the distance interval (HDS) and (LDS)) 

𝜶 
𝜶 

𝜶 

𝜶 

(A) (C) (B) 

(E) (F) 

(D) 

(H) (G) 



 

70 
 

5.6 Experimental Results 

The algorithm in Figure 5.4 was implemented taking consideration of the motion 

analysis in Section 5.5. All code was written using C++ and C languages and then tested 

with both the hexapod and wheeled robots. The experiments were carried out to 

evaluate the navigation system, which was tested without the robot searching for the 

target (object). As such, the image processing functions, searching for the target in the 

image, were not called on by the navigation system. The objective of the robots was to 

navigate along the walls from the starting point to the target position, avoiding 

collisions with obstacles in their paths. The obstacles were rectangular shaped objects of 

various sizes. 

First, the experiments were carried out with the hexapod in different environments to 

evaluate its control system (see [1]). Figure 5.14 represents a graph of an example of the 

experimental environment (3000 × 4000 mm) that was a part of the laboratory room. 

The yellow rectangle represents the robot and the red tile denotes the landmark (the 

nearest wall). The green arrows denote the robot’s navigation path and the dashed, 

rectangular blocks represent the obstacles in the robot’s path. The letter scripts in Figure 

5.14 point to the locations of the robot in Figure 5.15.  

The robot moved from its initial location and approached the nearest assigned wall 

(Figure 5.15A). After approaching the wall, the robot turned in the desired direction (in 

this case to the right). When the robot reached the first obstacle, it considered this 

obstacle as a wall, turned right and navigated along this obstacle, as shown in Figure 

5.15B. The robot repeated the process for the second obstacle until it reached the 

boundaries of the obstacle. In this case, the robot turned in the left direction, in order to 

keep the obstacle on its left. The processes were repeated until the robot went back to 

the wall.  

The hexapod was initially equipped with just one front, ultrasonic range sensor. 

However, the robot hit obstacles that were located straight ahead but outside of the 

sensor’s beam width. Consequently, another sensor was added, as shown in Figure 5.10. 

In this case, the obstacle avoidance process improved significantly. The navigation 

system was tested without the robot searching for the target object. The system was 
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executed successfully, proving the effectiveness of the methodology used. The hexapod 

was successful in analysing the range sensors’ information but it moved slowly. 

 

Figure 5.14. The sample environment 

 

 

Figure 5.15. The hexapod mobile robot motion 

Then the wheeled mobile robot was tested without using the camera and the PC 

motherboard. All motion codes were implemented in the microcontroller. Figure 5.16 
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started its navigation from point (A) and its objective was to reach point (F) without 
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colliding with any obstacles that were located in its path. The letter scripts in Figure 

5.16 point to the locations of the robot in Figure 7.17. This robot moved much more 

quickly than the hexapod. 

 

Figure 5.16. The corridor environment where the wheeled robot’s motion was tested  

 

 

Figure 5.17. The wheeled robot motion 
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5.7 Conclusions 

This chapter introduces the family of Bug algorithms and describes its basic concepts. 

The main reasons for choosing the Bug algorithms are to implement the exploration 

path: they are appropriate for a robot designed to navigate in an unknown environment 

that is constantly changing; they are designed to follow walls or obstacles; and they 

guide the robot to its goal by saving few of the environmental information. 

Subsequently, the Bug-like algorithm that uses the spirit of the Bug algorithms is 

introduced and explained. Next, the sensor configurations that help both robots to 

navigate along the walls or similar structures and avoid the obstacles are described. The 

motion problems are then analysed in detail. Finally, experiments were conducted on 

both robots to demonstrate the effectiveness of the methodology used. It was concluded 

that it is possible to design and implement a navigation system within a small quantity 

of sensors if they are attached and employed effectively on the robot’s body. 
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Chapter 6           Object Detection-Based on Vision System 

6.1 Introduction 

As the mobile robot performs a visual search, the most important aspect it must have, is 

the ability to detect and recognise the desired objects in an environment. Vision-based 

object recognition is important for undertaking the exploration task; it involves using a 

vision sensor and employing an optimal object recognition technique. This chapter 

discusses the vision-based object detection techniques that are used in this study.  

6.2 Object Detection Problem 

The mobile robot’s object recognition tools must deal with a 3-D environment in real-

time. Specifically, the robot requires the ability to detect the target object from different 

sides, distances and rotation angles. The appearance of an object in an image varies 

from one viewpoint to another. Variations due to environmental conditions, target 

characteristics and sensor efficiency also complicate object recognition. Lighting, 

texture and background colour are the major relevant environmental conditions and the 

key characteristics of the target include features of texture and contrast. Various 

methods can be used in order to detect the object in the image but they are severely 

limited by their need for training data and sophisticated algorithms [95].  

6.3 Object Detection 

The main objective of image processing is detecting the target object and the delivery 

location (see Figure 6.1). This can be achieved using several methods, including: colour 

segmentation, template matching and speeded up robust features (SURF).  

6.3.1 Object Detection by Colour Segmentation  

Colour segmentation, which is one of the basic techniques in computer vision, is an 

analytical process that recognises image content based on variations in colour and 

texture. It has been widely used for object recognition based on its individual profile 

within these variations. Specifically, RGB (red, green and blue colour space) and HSI 
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(Hue, Saturation and Intensity colour space) are commonly used for colour 

segmentation. In this study, RGB and HSI were initially employed to detect the target 

and the delivery location. 

 

Figure 6.1. Some objects are wanted to be detected: the image on the left side is the 

target objects while the image on the right side is the delivery location 

6.3.1.1 Segmentation by RGB 

In RGB colour space, each individual colour involves three weights: red (R), green (G) 

and blue (B). Eight bits specify each R, G and B in the RGB colour space so that the 

colour intensity for each weight is between 0 and 255. In other words, all possible 

colours in the RGB colour space are made from different intensities of red, green and 

blue colours. For instance, the colour white, which has maximum intensity (255) of red, 

green and blue, is changed to yellow by decreasing the blue from its maximum to its 

minimum value. The brightest yellow, which is made from the maximum levels of red 

and green and the minimum level of blue, is transferred to dark yellow by reducing the 

red and green values. Figure 6.2 explains how RGB colour space represents colours. 

Two colour segmentation methods were tested using the RGB colour space. 

 

Figure 6.2. RGB colour space 
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Method (1) 

The first method was achieved by using the original 24-bit image directly to segment 

the desired colour. Four rules were used for the task of object detection based on colour:  

1- {    (   )      } means that the primary colour components (red) should be 

between the maximum (  ) and the minimum (  ) threshold values  

2- {    (   )      } means that the primary colour components (green) should 

be between the maximum (  ) and the minimum (  ) threshold values 

3- {    (   )      } means that the primary colour components (blue) should 

be between the maximum (  ) and the minimum (  ) threshold values 

4- Regarding the object colour, choose the absolute of one of these forms: 

| (   )–  (   )|, | (   )–  (   )| OR | (   )–  (   )| 

                      . For instance, if the red object is to be detected, this 

value will be the greatest absolute difference value between the green and the 

blue abs | (   )–  (   )|.  

In this method, the segmentation code reads and compares the intensity weight value of 

each pixel in the input image using the above four rules. Then, the results of the 

comparison are combined using the AND logical operation. If the pixels satisfy these 

rules, then the pixels are considered to be the object colour. In this case, these pixels are 

given the maximum value (255). Otherwise, those pixels that do not satisfy the four 

rules are given the minimum intensity (0). This process converts the colour image to a 

binary image (Figure 6.3). 

 

Figure 6.3. Object recognition using its colour (method 1): the image on the left side is 

the original image while the image on the right side is a binary image 
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The maximum and minimum threshold values of the object colour weights are 

determined by using some photo manipulation software, such as MS Paint (Figure 6.4). 

Then, these values are used with the above four rules to write the segmentation code 

that determines whether each image pixel either follows the object colour or not. 

 

Figure 6.4. MS Paint software 

Method (2) 

The second method is carried out by splitting the 24-bit colour image into three 8 bit 

images; one for each colour intensity channel. Next, each is segmented separately and 

then re-combined. First, the maximum and minimum threshold values for each colour’s 

channel are determined and these values are used to segment each colour channel 

image. Finally, the three images are combined in a way that releases the object pixel in 

the image. For example, if the red object is to be detected, the red channel image is 

segmented using the corresponding threshold values. Then, the other two channel 

images are segmented by releasing the minimum values of blue and green in the red 

colour, that is, in the object colour. Next, the green and blue channel images are 

combined additively. The result is subtracted from the red channel image achieved from 

the red channel image segmentation. This process produces a binary image in which the 

white colour defines the object pixels and the black colour the background. In this 

example, if the blue and green colours are segmented from minimum value (0) to 

maximum value (255), this will produce detection of only a pure red object that does 
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not contain any blue or green colour. Figure 6.5 shows the result of recognising a Coca 

Cola can by this method. The latter method has proven to be more effective than the 

former (see section 6.5). 

      

Figure 6.5. Recognition a Coca Cola Can (method 2) 

6.3.1.2 Segmentation by HSI 

In HSI colour space, each colour with all its status from darkest to brightest is assigned 

by a particular period of Hue values. The amount of the original colour that is mixed 

with white colour is specified by a Saturation value and the brightness of the colour is 

assigned by Intensity values. Colour segmentation based on HSI is done to utilise the 

object’s colour content in the input image. Figure 6.6 shows how the HSI colour space 

symbolises colours. The Hue range is between 0 and 360 degrees, while the Saturation 

and Intensity components range between 0 and 1 (see [96]).  The segmentation process 

is achieved using the following steps:  

1. Determine the object colour interval of the HSI colour space; 

2. Convert the image contents from RGB colour space to HSI colour space; and 

3. Apply the segmentation method. 

The object colour HSI interval is computed by taking an image of the object for which 

the robot will search. Then, the image is sent to some photo manipulation software, such 

as MS Paint, in order to assign the object colour’s HSI interval. This is done by 

choosing the object colour in the image and editing the colour to read the HSI values. 

The process is repeated within different locations on the object’s projection in the image 
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until the HSI interval defines the object’s colour. Figure 6.4 depicts the editing colour 

screen in the MS Paint software showing for each colour that there are HSI and RGB 

values. The Hue value in MS Paint is between 0 and 239.  

 

Figure 6.6. HSI colour space [96] 

OpenCV is used to convert the RGB image to an HSI image; its Hue value is between 0 

and 179 and therefore, the Hue value from MS Paint has to be scaled by multiplying it 

by 180/240. After converting from the RGB colour space to the HSI colour space, the 

H, S and I components of each pixel in the image  (   ) are compared with the pre-

determined HSI interval, as in the equation (5.1). Next, the results are combined using 

the AND logical operation to determine whether the pixel follows the object colour or 

not. If all three values of the H, S, and I in that pixel are within the stated HSI ranges, 

then the pixel is considered to be following the object colour.  In this case, this pixel is 

given the maximum value (255). Otherwise, it is given the minimum intensity (0). This 

procedure is repeated for all other pixels to segment the image and convert it to a binary 

image  (   ) (see Figure 6.7). 

 (   )  {
  (    (   )    )    (    (   )    )     (    (   )    )
           

         (6.1) 
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Figure 6.7. Recognition of a Coca Cola can by HSI: the image on the left side is the 

original image while the image on the right side is a binary image 

6.3.1.3 Object features 

Once the object is detected, its location relative to the robot must be determined. This is 

done by calculating the features of the object in the image, which include the object’s 

shape (ratio of height to width), area (number of pixels) and centroid (the centre 

coordinates). As such, some measurements for the camera calibration should be made to 

relate the actual information of the distance and orientation between the robot and the 

object, to the object’s features in the image (for more information, see [97, 98]).  

In this study, the object’s orientation was determined by finding the target’s horizontal 

location in the image. If this location was not in the middle of the image plane, the robot 

turned to achieve this outcome. Then, the robot determined the distance to the object 

using the front ultrasonic range sensors. For this, two of the object’s features are 

needed: the area and centroid of the object in the image. After the colour segmentation 

process and detection of the object, its area and centre coordinates are determined by 

using the technique proposed by [61, 97]: 

      ∬     (   )                     (6.2) 

                                                                                                           

in which      represents the moments with the rank (   );  (   ), which in a binary 

image is 1 when the pixel follows the detected object, otherwise it is 0 which represents 

a continuous 2D image.         are the coordinates of the pixels in the image. The area 

of the object in image A is represented by M0, 0; and the centre coordinates of the object 

in this image are represented by X=M1, 0/M0, 0 and Y=M0, 1/M0, 0. 
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After the area and centre coordinates of an object in the image is calculated, the 

resulting values are then forwarded as input signals to the robot controller. Note that in 

both RGB and HSI colour segmentation methods, some image noise might appear in the 

binary image background because of the segmentation process; therefore, this noise 

must be removed or reduced. This was done using the morphological opening operation, 

which is performed by eroding the image and then dilating it (see [99]). This operator 

was used because it eliminates all small noises and keeps the shape and area of the 

target object in the image.  Figure 6.8 shows the pseudocode of the entire process. 

 

Figure 6.8. Object detection algorithm  

6.3.2 Object Detection by Template Matching 

As mentioned before, when the robot searches for the object, there are three problems 

regarding the object’s invariant features: scaling, rotation and the 3-D models of the 

object (the camera’s viewing angles). These can be solved in a template matching 

technique by using various template sizes with different possible rotations and object 

sides [95]. However, it was noticed that this is an extremely slow process in real-time 

image processing. Accordingly, the second problem is ignored by assuming that the 

robot approaches the object in a constant vertical direction. Other assumptions made to 

reduce the number of templates are explained in the template matching procedure as 

below. 

Name: Object detection by colour segmentation 

Input: Image = Capture Image (); 

Output: The object features (area and Central coordinates), or Null if the object 

is not found. 

1- Area = Null, X-axis = Null, Y-axis = Null; 

2- Segment Image(Image); 

3- Apply morphological opening operation (to reduce image’s noise); 

4- if (Object found) then 

5-       Determine Area, X-axis and Y-axis; 

6- end if; 

7- return Area, X-axis and Y-axis; 



 

82 
 

Template matching can be performed by using colour or grey scale images; both the 

template and the original image must have the same format. In the former, the 

calculation is made for each channel in the image while the latter is carried out in only 

one channel. Thus, template matching using the grey scale will be faster than using the 

colour image. The method of template matching that is explained in [95] was adapted 

and used to match the 3D object in real-time image I:  

1. Using 3D model (object), create 2D object projection templates  (          

  ), where (     ) is the template dimension in location ( ),      is the object’s 

side views (         ) and    is the object distance from the robot (60 to 150 cm 

in 30 cm steps) 

2. Convert the template T and the captured image I to grey scale, if necessary 

3. Find the best match R in I for T using template matching algorithms 

4. Find the centre of T in the image and send it to the robot. 

In step 1, an infinite number of template images can be created from the 3D object with 

different distances from the robot. However, if all poses and side projections of the 3D 

object are taken into consideration, it will be computationally expensive [95]. Therefore, 

only the four side 2D projections of the object are considered, together with the distance 

between the robot and the object (60 to 150 cm in 30 cm steps). This will produce 16 

template images.  

In step 2, both the template and the captured image can be used either as a grey scale or 

as a colour image. The size of the template is  (   ) and the captured image is 

 (   ). The size of the resulting image R that holds the correlation number is 

 ( –     –    ). In step 3, template matching algorithms move (by sliding) the 

patch of  (   ) through the  (   ), one pixel at a time (left to right, up and down). 

At each location, the algorithms compare the data of T to the data of the particular area 

of I and store the comparative result in R. The algorithms also calculate how “good” or 

“bad” the match (correlation) is in that location. There are two options to implement the 

template matching methods. The first is done by using existing libraries in computer 

vision, such as OpenCV software; the second option would be to write the entire set of 

code. The former is suitable in this project in order to save time. In OpenCV software, 

six template matching algorithms have been implemented [100]:  
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i) method=CV_TM_SQDIFF 

It is a square difference matching method that differentially matches the template 

against the original image; therefore, a perfect match is 0.  

 (   )  ∑ [ (     )   (         )]                                             (6.3) 

ii) method=CV_TM_CCORR 

It is a correlation matching method that multiplicatively matches the template within the 

original image; therefore, the perfect match is the highest value.   

 (   )  ∑ [ (     )     (         )]                                              (6.4) 

iii)  method=CV_TM_CCOEFF 

It is a correlation coefficient matching method that matches the template against the 

original image relative to their means.  

     (   )  ∑ [  (     )      (         )]                                             (6.5)        

There is normalised version for each of the above-mentioned techniques. The 

normalised methods are used to decrease the effects of the light differences between the 

original image and the template [100].     

iv)  method=CV_TM_SQDIFF_NORMED 

 (   )   
∑ [ (     )  (         )]      

√∑  (     )       ∑  (         )      

                                                (6.6) 

v)  method=CV_TM_CCORR_NORMED 

 (   )   
∑ [ (     )     (         )]      

√∑  (     )       ∑  (         )      

                                                (6.7) 

vi)  method=CV_TM_CCOEFF_NORMED 

     (   )   
∑ [  (     )      (         )]      

√∑  (     )       ∑  (         )      

                                                 (6.8)        

in which             ,             ,  

  (     )    (     )     ((   )      ∑  (       ))       , and 

  (         )    (         )     ((   )      ∑  (           ))       . 
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When using NORMED calculations, the maximum value of a correlation will be 1, 

while other calculations may generate much larger numbers. Therefore, the methods 

used with NORMED are more suitable for this project because the correlation threshold 

that represents the “good” match is more easily specified. CCORR and CCOEFF 

calculations will return correlations with a value of 1 for a perfect match, while SQDIFF 

will return 0 for such a match. The best match correlation can be found by the 

minMaxLoc() Function, which can then be compared with the correlation threshold. 

The final step (4) is executed if the best match value is equal or greater than the 

threshold. In this step, the location of the best match is specified using the previous 

function. Then, the centre of the perfect matching area is determined in the original 

image. The centre of the area represents the desired object’s centre; it is C(x + w/2, y + 

h/2). Figure 6.9 presents the pseudocode for all steps in this process. Figure 6.10 shows 

the results of detecting and recognising two objects by using colour and grey scale 

images; the red rectangles (the black rectangles in Figures 6.10C and D) represent the 

objects that are found in the real-time images (see Figures 6.10A and B). The next 

Chapter explains how the object’s centre and the match value are used to send signals to 

the robot’s controller for managing its motion. 

 

Figure 6.9. Algorithm for object detection using template matching 

Name: Object detection by Template matching  

Input: Image = Capture Image (), Template (Number) = Template Image (Number) 

Output: The object features (correlation and Central coordinates), or Null if the 

object is not found. 

1- Correlation= Null, X-axis = Null, Y-axis = Null; 

2- for Number = 1 to 16 do 

3-       Match (Image & Template (Number)); 

4-       Determine Correlation; 

5- if  (Correlation ≥  threshold) then 

6-             Determine X-axis, Y-axis ; 

7- go to return ; 

8- end if; 

9- end for 

10- return Correlation, X-axis and Y-axis; 
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Figure 6.10. Template matching results, (A and B) using a colour images and (C and D) 

using a grey scale images: original images are on the left and template images are on the 

right 

6.3.3 Detecting object by Speeded Up Robust Features (SURF) 

This strategy has been successfully implemented and tested. Figure 6.11 illustrates the 

results of detecting and recognising two objects by using this method. The small images 

are the templates of the objects and the big images are the captured images in real-time. 

First, the template of an object to be found is taken; then the interesting points and 

descriptors of the template image are extracted and calculated. The small circles, which 

represent the SURF interesting points, can be clearly seen in Figures 6.11B and D. 

Next, the interesting points and descriptors of the environment (in the real time image) 

are extracted and determined. Then, the matching process is undertaken by comparing 

the interesting points and descriptors of both the template and the real-time image. The 

results of the detection process are shown Figures 6.11A and C; the green rectangles 

represent the objects that are found in the real-time images. The number of interesting 

(A) (B) 

(C) (D) 
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points, which is the same in both images, is determined and the average of their 

horizontal centre coordinates in the captured image is calculated and fed to the 

controller. If the number of matching interesting points is equal or greater than a 

threshold number, then the object is detected. This method has proved to be quicker 

than template matching (see section 6.5). Figure 6.12 presents the pseudocode for the 

SURF process. 

   

Figure 6.11. Results of SURF method; the small images are the templates of the objects 

and the large images are the captured images 

 

Figure 6.12. Algorithm for object detection using SURF 

(A) (B) (C) (D) 

Name: Object detection by SURF  

Input: Image = Capture Image (), Template = Template Image () 

Output: The object features (Matched points and Central coordinates), or Null 

if the object is not found. 

1. Matched points= Null, X-axis = Null, Y-axis = Null; 

2. SURF (Template); 

3. Find Interest points and Descriptors; 

4. SURF (Image); 

5. Find Interest points and Descriptors; 

6.  Match (Image (Interest points and Descriptors) & Template (Interest 

points and Descriptors)); 

7. if  (Matched points  ≥  threshold) then 

8.      Determine X-axis, Y-axis ; 

9. end if; 

10. return Matched points, X-axis and Y-axis; 
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6.4 The landmark design 

In order to identify the final (delivery) location (the same as the start point) in an 

environment, a mobile robot needs to observe characteristics of this location. Fast 

determination of the location’s features by the camera is crucial in real-time navigation. 

Therefore, a cylindrical shaped artificial landmark that has two solid colours (green and 

blue) was used, as shown in Figure 6.14A. The main advantage of using the cylindrical 

shaped landmark is that it appears the same from any side direction. The two-colour 

landmark pattern was chosen because it is less likely to be confused with the 

background environment and can also provide a more accurate detection process. 

Detecting the landmark begins by performing colour segmentation on the captured 

image to find the green colour component of the landmark (Figure 6.14B). If the green 

part is recognised, its area and central coordinates are determined. Then, the captured 

image is segmented to detect the landmark’s blue component (Figures 6.14C and D), 

followed by the determination of its area and central coordinates. If the areas of both 

colours and their horizontal coordinates are similar and vertical, the centre of the green 

area is above that of the blue, and this indicates that the location is found. In this case 

the robot must detect the landmarks, as shown in Figure 6.14E. When the landmark is 

detected, the main task for the robot is to find out the landmark’s location and then 

approach it by keeping its image within the centre of the image plane (as will be 

explained in Chapter 7). However, if any of the previous conditions are not met, the 

robot continues its search for the location.  

The same landmark design was used to mark the entrance (the doors if they are open) 

but different colours (red and yellow) were used. This landmark enables the robot to 

finds out that either it encounters the entrance of the environment or not. If so, the robot 

steers and moves beside that entrance (see Chapter 7). The same strategy as previously 

outlined is adapted to detect and recognise these landmarks. Figure 6.13 presents the 

pseudocode for the landmark detection procedure. 
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Figure 6.13. Algorithm for landmark detection  

 

Figure 6.14. Landmark feature pattern and its segmentation 

Name: Landmark detection by colour segmentation 

Input: Image = Capture Image (); 

Output: The landmark features (areas and Central coordinates), or Null if the 

landmark is not found. 

Area1 = Area2 = Null, X-axis1 = X-axis2 = Null, Y-axis1 = Y-axis2 = Null; 

Segment Image (Image) for the landmark’s upper part; 

Apply morphological opening operation (to reduce image’s noise); 

if (upper part detected (Area1)) then 

      Segment Image (image) for the landmark’s lower part; 

      Apply morphological opening operation (to reduce image’s noise); 

      If (lower part detected (Area2)) then 

             Determine Area1, X-axis1, Y-axis1, Area2, X-axis2 and Y-axis2; 

      end if; 

end if; 

return Area1, X-axis1, Y-axis1, Area2, X-axis2 and Y-axis2; 

(A) (B) (C) 

(E) (D) 
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6.5 Experimental Results 

The proposed algorithms for image processing were implemented using C++ and some 

libraries were used, including OpenCV [81] and OpenSURF [82]. They were initially 

tested by using a PC with a 1.7 GHz microprocessor and 1 GB of RAM. A Linux 

operating system (Ubuntu 10.04 LTS [80]) was installed in the computer. A webcam, 

model C200 was used as the vision sensor. This takes images with a maximum 

resolution of 640 by 480 pixels with an image capture rate of 30 frames per second. The 

camera was connected to the PC via a USB port.  

The experiments were done off-line and then in real-time. In the former, environmental 

images were taken and processed to extract the object’s features. In this scenario, it was 

possible to control the environmental factors, such as light intensity and background 

colours. Therefore, optimal results were obtained in these experiments. However, search 

robots execute their tasks in dynamic environments; therefore, the object detection 

algorithms must be evaluated under these conditions. Thus, the object’s features were 

extracted from the images captured in real-time.  

In order to evaluate the presented algorithms, a Coca Cola can, which is 6 cm in radius 

and 13 cm in height, was used and it was located at 60 cm from the camera (see Figure 

6.15A). First, the colour segmentation techniques were tested to determine the 

processing time, and the can’s area and its horizontal location in the image as shown in 

Figures 6.15B to D. Table 6.1 illustrates the experimental results.  Then, the template 

matching and SURF methods were evaluated (see Table 6.2). It is important to note that 

the time was determined after processing ten frames while the area, centre and match of 

the can were calculated for the last frame. From the experimental results, it was 

concluded that: 

 In both RGB and HSI colour segmentation methods, some image noise might 

appear in the binary image background because of the segmentation process; 

therefore, this noise must be removed or reduced. This was done using some 

morphology operations (see section 6.3.1.3).  

 In RGB colour space, two methods have been used. The first method used the 

original 24-bit image directly to segment the desired colour. The second split the 
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24-bit colour image into three 8-bit images; one for each colour intensity channel 

(see Section 6.3.1.1). The second method proved to be more efficient (the detected 

object is shown within more details in the image, see Figures 6.15B and C) 

because the segmentation process for each colour weight was not affected by the 

two other colour weights. Then, these channels were re-combined to achieve the 

binary image. Conversely, in the first method, each pixel in the image was tested 

for three weights, which strongly relates them to each other [41]. However, the 

number of calculations needed by the second method was greater than for the first 

and therefore, the processing time was slightly longer (see Table 6.1), and this 

affected the real-time processing.  

 The HSI technique was more effective than the RGB colour space for finding an 

object by its colour (see Figure 6.15). This is because each uniform colour in HSI, 

from the darkest to the brightest, is assigned a particular period of Hue values, 

whereas the Saturation and Intensity periods specify only the amount and 

brightness of the colour, respectively. It was also concluded that the HSI 

technique was less sensitive to changes in light intensities in agreement with [44]. 

However, the segmentation process in HSI took longer than in RGB (see Table 

6.1). This was because the output of the camera was in the RGB colour space and 

thus, the colour space transformation between RGB and HSI incurs computational 

cost, which affects real-time behaviour [41].   

 When a target object with a single colour is used, optimal results are achieved by 

using the colour segmentation method. In this case, the segmentation techniques 

are ideal for detecting the target from any viewpoint because the object is 

specified by its uniform colour. The detection task depends on the number of 

pixels that follow the object pixels in the image and this is not affected by the 

object’s rotation. However, the number of object’s pixels is influenced by the 

object’s distance from the camera. In this case, if the object is close to the camera, 

it will cover a large area in the image. Conversely, if it is far away from the 

camera, it appears in the image as only a few pixels. 

 The background colours of the environment affected the segmentation process.  

 The template matching and SURF methods achieved better results when multiple-

coloured objects were used. In this case, an accurate matching process is attained 

because the templates that represent the objects’ images have the highly detailed 
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and unique regions [49]. The SURF method and specifically the associated 

calculation process, was quicker because only one object template was used, 

instead of the 16 used in template matching (see Table 6.2).  

 In all the above-mentioned techniques, the coordinates at the centre of the target 

in the image must be calculated. This information is then supplied to the robot’s 

controller, which influences its motion as will be explained in Chapter 7.   

The image processing algorithms were then implemented on the real robots for 

validation. 

 

 

Figure 6.15. The Coca Cola detection by the colour segmentation technique: (A) the 

original image; (B) and (C) the image segmentation using RGB (methods 1 and 2, 

respectively), and (D) the image segmentation using HSI colour space  

(A) (B) 

(C) (D) 
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Table 6.1: Experimental results for the colour segmentation methods by using the PC. 

HSI was more efficient than RGB (the detected object’s details in the image have a high 

quality); however, the processing time was longer. The numbers of pixels in object area 

were different because the morphological process levels (Number of iterations) and the 

threshold values that were used in the segmentation methods were different. Therefore, 

the centre horizontal coordinate (X axis) was slightly different; however, that was not 

affecting the controlling process (see Chapter 7).      

 

Table 6.2: Experimental results for template matching and SURF (the match was 

determined by the number of the matched points that exist between the template and the 

captured image in SURF method while it was calculated by the correlation number in 

the template matching) by using the PC. Note that the time is for processing ten frames 

while the robot only needs to process one frame; therefore, the processing time will be 

reduced to 0.4 and 3 seconds for the SURF and template matching, respectively 

 

6.5.1 Image Processing for the Hexapod 

As mentioned in Chapter 3, the hexapod has a computer-based Roboard controller RB-

100 that has a Vortex86DX and a 32 bit x 86 CPU running at 1 GHz with 256 MB on-

board memory. The main control program and all image processing functions were 

implemented on-board. The main drawback was that this board has a processor with a 

Item RGB (method 1) RGB (method 2) HSI 

Time (s) 1.641 1.653 1.901 

Area (pixel) 6468 7527 8297 

Centre, X  axis 

(pixel) 

343 340 341 

 

Item SURF Template matching  

Time (s) 4.244 30.171 

Match (matched points for SURF and correlation 

for template matching) 

8 0.785 

Centre, horizontal coordinate, X  axis (pixel) 339 337 
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low computation capacity (see Tables 6.3 and 6.4). For instance, Table 6.3 shows that 

although the PC’s processor used is 1.7 times faster than the Roboard processor, the 

image processing time within PC was approximately four times shorter than that 

determined within the hexapod. The experimental results also showed that this board 

sometimes failed in the segmentation using the HSI process and consequently, the robot 

stopped moving at the location where the failure occurred. The board was also 

extremely slow in processing the template matching and SURF calculations (see Table 

6.4), which meant that the robot moved extremely slowly. Therefore, the colour 

segmentation methods were adapted for the hexapod to detect both the target and the 

delivery location. 

Table 6.3: Experimental results for the colour segmentation methods by using the 

hexapod’s Roboard, the time was determined after processing ten frames while the area 

and centre of the can were calculated for the last frame (see Table 6.1) 

 

Table 6.4: Experimental results for template matching and SURF by using the 

hexapod’s Roboard, the time was determined after processing two frames while the 

match and centre of the can were calculated for the last frame (see Table 6.2) 

 

Item RGB (method 1) RGB (method 2) HSI 

Time (s) 7.043 7.105 7.315 

Area (pixel) 6279 7595 7784 

Centre, X  axis 

(pixel) 

335 332 333 

 

Item SURF Template matching  

Time (s) 8.311 93.171 

Match (points for SURF and correlation for 

template matching) 

6 0.711 

Centre (X  axis) 331 335 
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6.5.2 Image Processing for the Wheeled Robot 

It was decided to use a PC motherboard with a high computational capacity to perform 

the image processing calculations. Therefore, a wheeled robot was implemented, as 

explained in Chapter 4. An IBM motherboard, which has Intel Pentium 4 CPU 3.00 

GHz and 1.00GB of RAM was used. The experimental results showed that this board 

was much faster for image processing (see Tables 6.5 and 6.6).  

Table 6.5: The colour segmentation methods’ results by using the wheeled robot’s 

motherboard; the processing time for ten frames was much shorter than other two 

boards (see Tables 6.1 and 6.3 for comparison) 

 

Table 6.6: The template matching and SURF’s results within the motherboard, the time 

was determined after processing ten frames.  As mentioned above, the robot only needs 

to process one frame; therefore, the processing time has been dramatically reduced by 

using the new processor to be 0.2 and 1.5 seconds for the SURF and template matching, 

respectively 

 

The experimental results demonstrated that the algorithms used for object detection 

were highly efficient providing adequate processing capacity (Intel Pentium 4 CPU 3.00 

Item RGB (method 1) RGB (method 2) HSI 

Time (s) 0.939 0.942 1.001 

Area (pixel) 6796 7674 8303 

Centre (X  axis) 329 328 328 

Item SURF Template matching  

Time (s) 2.458 15.906 

Match (points for SURF and correlation for 

template matching) 

9 0.795 

Centre (X  axis) 327 330 

 



 

95 
 

GHz and 1.00GB of RAM). Finally, for the hexapod, the colour segmentation methods 

were used to detect both the target and the delivery location, whereas for the wheeled 

robot they were only employed to find the delivery location. 

6.6 Conclusion  

Different image processing techniques have been employed in order to achieve optimal 

results for object detection. It has been concluded that when an object is specified by 

unicolour, segmentation techniques are ideal for detecting it from any direction. The 

detection process is not affected by scale and rotation of the object. However, it is 

affected by the environmental conditions, particularly the colours of the background. 

The template matching and SURF methods achieve better results when multiple colours 

are used. The SURF method has proved to be quicker than the template matching 

method. The image processing algorithms need processors with high computational 

performances. Therefore, when they were rebuilt in the hexapod robot processor, the 

robot proved to be extremely slow. Consequently, a new robot was implemented that 

uses a PC motherboard. In this study, the SURF and template matching methods are 

used to detect and recognise the target object and the colour segmentation method is 

employed to detect the landmark that defines the final location (delivery location). This 

is because the conditions of the environment near the delivery location can be 

controlled. The landmarks are cylindrical in shape and they have two colours to improve 

the detection process.  
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Chapter 7           The Control System 

7.1 Introduction  

In Chapter 1, the problem statement identified the challenges in constructing a 

navigation system for an indoor search robot. One of the main objectives of this work is 

to design a system that is capable of overcoming the challenges using a small number of 

sensors. The previous chapters have described the main tools that the control system 

needs to enable the robot to search its environment for a target object. The proposed 

control system enables the mobile robot to collect environmental information and 

transfer it to the navigation algorithm in real-time; generate an exploration path that the 

robot can navigate without collisions; and control the robot throughout its motion. The 

robot’s navigation strategy was introduced and explained in Chapter 5 and this enables 

the robot to explore the entire search area of an indoor environment. As the robot 

executes the visual search, it needs tools that enable it to perform this task. In Chapter 6, 

some of the object detection techniques were presented. This chapter explains the 

implementation of the entire control system for both the robots used in this study (the 

hexapod and wheeled mobile robots, see Chapters 3 and 4).  

7.2 The Main Program of the Hexapod 

The navigation system relies on the code that controls the robot’s motion. The system 

gathers sensor information in real-time and translates it into control commands. In the 

proposed navigation system, the robot starts its motion by searching the environment in 

the start point with the objective of finding the target object. If the robot does not find 

the target, it will navigate and explore its environment during its motion. Figure 7.1 

depicts the mobile robot navigation strategy in which the robot keeps the wall on its left 

(as explained in Chapter 5) when moving forward. Any obstacle that exists in the 

robot’s path will be considered as a structure that is similar to the wall and the robot 

turns right and navigates along this obstacle. While the robot navigates, it continues 

searching for the target and correcting its location beside the wall. 
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Figure 7.1. The robot navigation strategy 

Figure 7.2 represents the flowchart segments of the navigation process of the hexapod 

mobile robot. First, the robot executes searching mode (1), which enables the robot to 

search 360° in the current field (see section 7.2.2). If the target object is found in this 

process, then time and effort included in the searching process will be saved. However, 

if the robot does not find the object, it will move to the nearest wall (or similar 

obstacle). The nearest wall can be found either by the vision system (as such, it is 

defined by a specific artificial landmark), or by the ultrasonic range sensors. When the 

robot reaches the pre-defined distance from the wall (which is defined by the user and it 

must enable the robot to rotate without colliding with the walls or obstacles), it will turn 

90º to the right and increase the termination counter (counter (1)), which helps the robot 

decide when the searching process is completed (i.e., when it has covered the whole 

searching area). The robot will compare the current counter value with the pre-defined 

value that has been decided by the user. If it is equal to or greater than the pre-defined 

value, the robot will terminate the navigation and the search process. Otherwise, the 

robot stops moving and performs the searching mode (4) function that enables the robot 

Obstacle  

Obstacle  

How does 

the robot 

identify this 

obstacle? 

Robot 

How does the robot maintain straight line navigation?  

How does the robot 

maintain a desired, 

constant distance to 

the wall?  

How does the robot 

recognise the edges 

of the obstacle?  

How does the robot 

localise itself in the 

environment?  

Robot’s path  
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to search for the target object in the current direction. If the robot finds the target at any 

time, it will leave the wall and finish the searching process. Otherwise, the robot will 

position itself beside a wall and continue the search.   

The locating process is initiated by reading the front ultrasonic range sensors’ 

information. If the distance between the robot and the wall or the obstacle is equal to or 

less than the pre-defined value, this means there is not enough free space for the robot to 

navigate and correct its location beside the wall. In this case, the robot stops moving and 

executes searching mode (3), which enables the robot to find that either the encountered 

obstacle is the starting point or not (see section 7.2.2). If so, the robot terminates its 

motion; otherwise, it turns 90º to the right. If there is enough space to correct the 

location, the robot will read the information from both left-side range sensors. If both 

measurements are equal to or less than the maximum pre-defined value of the distance 

interval (which specifies the largest distance from the adjacent wall and it also specified 

by the user as explained in Chapter 5), the robot will locate itself beside the wall (see 

section 7.2.1) and then move to a specific distance before resuming the search process. 

The hexapod robot walks six steps (30 cm) and then stops to update the sensors’ 

information. A counter (2) is added to the program to specify the distance that the robot 

walks without searching for the target object (performing the searching mode (2)) as 

will be explained in section 7.3.    

However, if both left-side range sensor measurements are greater than the maximum 

pre-defined distance value, this will mean that the robot moves beside the obstacle, 

having reached the boundaries of this obstacle. In this case, the robot turns 90º to the 

left in order to keep the obstacle on its left side. Then, it executes searching mode (5), 

which enables the robot to finds out that either it encounters entrance (door) or not (see 

section 7.2.2).   If so, the robot turns 90º to the right and moves beside that entrance. 

Otherwise, it keeps walking and reading the sensor measurements until it detects the 

boundaries of the obstacle again. This enables the robot to navigate around the obstacle. 

In this process, the robot keeps searching the environment for the target object as 

explained before. However, if one of the left-side range sensor measurements is greater 

than the maximum pre-defined distance value, the robot seeks to detect the boundaries 

of the obstacle and therefore, it walks a specific distance and then checks the sensors’ 

information. The robot navigation process continues until either the robot finds the 
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target, or the counter value reaches the pre-defined termination value. The robot also 

terminates the searching process if the start point is re-encountered. If the robot finds 

the target object, it will move to approach it, then grasp and relocate it to a new location 

(see sections 7.2.3 and 7.2.4). 

7.2.1 Locating the Robot beside the Wall 

When the robot follows the walls or obstacles boundaries, it must move within a desired 

distance from these objects to avoid collision. The flowchart in Figure 7.3 explains the 

implementation of the code that uses the side range sensors’ information to control the 

hexapod mobile robot motion and to locate it beside the wall. When the robot wants to 

walk along the wall, it starts ranging the distance between its current location and the 

wall. If one or both of the range sensors’ measurements is greater than the maximum 

pre-defined distance interval (see section 5.5), the correction loop is ended. Otherwise, 

the loop is continued by comparing both measurements. If both measurements are not 

equal, the robot will be either moving away from the wall or risking collision with the 

wall. Therefore, the robot needs to correct its direction to be parallel to the wall. For 

instance, if the side front sensor measurement is greater than the rear side sensor 

measurement, the robot will correct its direction by rotating a specific angle to the left. 

This process will be continued until the minimum difference between the two sensors’ 

measurements, which is specified by the user to enable the robot to move within a 

minimum error, is reached. This process helps the robot to move along the wall in a 

straight line.   

The robot in this loop also ensures that its distance from the wall is equal to the pre-

defined interval values. If the distance is equivalent to the pre-defined values, the 

correction loop is ended. Otherwise, the robot needs to move away from or closer to the 

wall. For instance, if the distance is greater than the maximum pre-defined distance 

interval, the robot will correct this and move to be closer to the wall. This process is 

repeated until it achieves the desired condition. This process keeps the robot moving 

along the wall at a specific distance without any collisions with that wall. While the 

robot performs this process, it keeps checking the front ultrasonic range sensors’ 

information. If the measured distance is equal to or less than pre-defined value, the 

robot terminates this process.  
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Figure 7.2. The navigation process flowchart 
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Figure 7.2. The navigation process flowchart (continued) 
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Figure 7.3. Flowchart for locating the robot beside the wall 
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7.2.2 Searching Mode 

Searching mode means that the robot uses its vision system to find a target that is a 

known object in an unknown 3-D environment; this task requires the robot to control 

the camera’s action. As mentioned in Chapter 2, this process includes two stages: 

‘where to look next’ and ‘where to move next’ [69]. In this study, both robots are 

equipped with cameras that do not have zoom capabilities. Therefore, the target’s size in 

the image depends on its distance from the robots. In the first stage, the robot stops its 

movement and fixes the camera in a current position (viewpoint) for a length of time 

sufficient for acquiring and processing the image and updating the robot’s knowledge 

about the environment. If the target object is not detected in the current viewpoint, the 

robot executes the second stage in which it moves the camera to the next optimal 

viewpoint. The next viewpoint should be reachable with high probability of detecting 

object. It should also bring other hidden search areas into the camera’s view [69]. 

The selection of the next viewpoint includes choosing the position and direction of the 

camera (the new sight angle) relative to the previous viewpoint of the camera. The view 

angle of the vision sensor plays an important role in the search process because it 

decides the area that will be searched each time. It also decides the maximum pan angle 

that must be used to rotate the camera each time. For instance, the blue object that is 

shown in Figure 7.4A is not detected and recognized by the vision system because 

portions of the object area are hidden from the camera’s view. In this case, if the camera 

is rotated by an angle that is the same as the sensor’s sight angle, the same problem will 

continue to appear, as shown in Figure 7.4B. Moreover, if the pan angle is greater than 

the sensor’s vision angle, even the object that is on the area between the new field (cyan 

area) and the previous one (yellow area) will be ignored, as shown in Figure 7.4C. 

Therefore, in order to solve this problem the camera is rotated by pan angles that are 

less than the sensor’s view angle, as shown in Figure 7.4D.  

The probability of finding the object in the field increases if the robot searches each 

single area from two different viewpoints. This is because the camera might be rotated 

to a viewpoint in which the camera acquires the object’s image with higher contrast 

features. In this research, the sight angle of the vision sensor used was 36°. The decision 

taken was to use a 20° pan angle, which it is almost equal to half of the vision angle and 
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satisfies all the above conditions. The hexapod mobile robot has a fixed camera; 

therefore, the pan rotation is provided by revolving the robot about its central axis. As 

such, the searching time is increased by the duration of the robot’s rotation. This 

problem has been solved for the new, wheeled robot by attaching the camera to a servo 

motor that turns the camera by a specific pan angle.  

The hexapod robot has five searching modes (see Figure 7.5). First, searching mode (1) 

is used to search for the object in the starting location. If the target is not detected in the 

first image taken by camera, the robot turns 20° clockwise (in case of wheeled robot, the 

camera is rotated) about its central axis and another image is taken. This process is 

repeated until the target is detected. After a full rotation of 360°, if the target has not 

been detected, this loop is terminated and the robot starts the navigation process.  

Second, the searching mode (2) is used when the robot is navigating, i.e., it locates the 

wall at one of its sides; therefore, the robot needs to search the space that is directly 

ahead and also the space that is inside the environment (the middle of the room). In this 

case, the robot rotates the camera 180° instead of the 360° that is used in mode (1). As 

mentioned above, the hexapod mobile robot had a fixed camera so that it performed 

searching modes by rotating itself about its central axis. Therefore, in both modes the 

robot has been programmed to execute the object approaching function (by moving 

straight forward in the current direction) once the target is found, or to continue the 

search process. In case of the wheeled robot, the camera was attached on a servo motor 

to rotate it. Therefore, if the target is found in any viewpoint, the robot will revolve its 

body in that direction and then perform the object approaching function.  

Third, the searching mode (3) is employed to terminate the robot motion if the searching 

process is completed without finding the target. In this case, the robot finds out that 

either the encountered obstacle is the start location or not? If so, the robot terminates its 

motion; otherwise, it continues the navigation process. The searching mode (4) is used 

to search the area, which is directly ahead, for the target object while the robot moves 

forward. Finally, the searching mode (5) is employed within the navigation system in 

order to enable the robot to finds out that either it encounters the entrance of the 

environment or not. If so, the robot steers 90° to the right and moves beside that 

entrance.  
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Figure 7.4. Viewpoints of the camera: (A) the state when the blue object is on the 

boundary of the camera’s view area (part of the object cannot be seen by the robot); (B) 

the camera is rotated to the new viewpoint (cyan area) by an angle that is the same as 

the camera’s old viewpoint (yellow area); (C) the state when the camera is rotated by a 

pan angle is greater than the camera’s sight angle; and (D) shows the desired state when 

the pan angle is less than the camera’s sight angle  

 

 

 

Figure 7.5. The pseudocodes of the searching mode algorithms 

(A) (B) (C) (D) 

Name: searching mode (1) 
Input: Image processing results 
Output: Camera rotation, Robot motion  

for (angle = 0 to 360° step 20°) do 
      Image processing; 
      if  (target object found) then 
           go to the object approaching; 
      end if  
end for 
go to navigation process 

 

Name: searching mode (2) 
Input: Image processing results 
Output: Camera rotation, Robot motion  

for (angle = 0 to 180° step 20°) do 
      Image processing; 
      if  (target object found) then 
           go to the object approaching; 
      end if  
end for 
go to navigation process 

 

Name: searching mode (3) 
Input: Image processing results 
Output: Robot motion   

Image processing;  
if  (start location encountered) then 
      terminate the robot motion; 
end if 

 

Name: searching mode (4) 
Input: Image processing results 
Output: Robot motion   

Image processing;  
if  (target object found) then 

      go to the object approaching; 
end if 

 
 

Name: searching mode (5) 
Input: Image processing results 
Output: Robot motion   

Image processing;  
if  (environment’s entrance’s landmarks encountered) then 
      turn right 90°; 
end if 
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7.2.3 Approaching the Object 

When the target object is detected, the main task for the robot is to find out the target’s 

location and then execute a specific duty [98]. In this study, the robot must grasp and 

relocate the target to the delivery location (starting point). In this scenario, the robot 

must approach the object by keeping its image within the centre of the image plane [44]. 

As such, the object’s centre (horizontal coordinate) in the image is determined, as 

explained in Chapter 6, and forwarded as input to the robot controller. In this process, 

the captured image is divided into three areas (see Figure 7.6); consequently, there are 

three logical cases that can be fed to the controller. The first is that the object’s centre is 

on the right of the middle area (green area); therefore, the robot has to rotate to the right 

using a specific rotation angle, dependent on the amount of the error value, in order to 

correct the error and bring the object’s centre to the middle area. The second is that, if 

the centre is on the left side, the robot will rotate to the left side and the third, if the 

centre is in the middle, the robot moves forward to approach the object.  

During the approach process, the robot controller continuously updates the position of 

the robot relative to the object by using the information coming from the front 

ultrasonic sensors. When the robot reaches a pre-determined distance from the object, 

which enables the robot to grasp it, the robot does this. In the grasping action, the robot 

opens its gripper, moves it down to place the object in an appropriate grip point (in the 

middle of the object), closes the gripper to grasp the object firmly, and then moves it up 

a desired distance.  As mentioned in Chapter 5, a force sensor was attached in the 

gripper to detect the amount of the grip force that is applied to the object. This sensor is 

employed as on/off switch. If the force exceeds the pre-defined maximum value, which 

depends on the grasped object’s weight, the robot will stop the gripper servo motors’ 

shafts in the current locations. Once the grasping operation is accomplished, the robot 

then executes the relocating process (as will be explained in the next section). If the 

robot loses the object in the image during the approaching process, it will again carry 

out the searching mode (1). Figure 7.7 presents the pseudocode of the object 

approaching process.  
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Figure 7.6. The desired area (green area) location in the image 

 

Figure 7.7. The object approaching algorithm  

Middle image 

640 pixels 

280  

40  

360  

480 pixels 
280  280  80  

Name: Object approaching  
Input: Image processing results, Ultrasonic Range sensors’ measurements () 
Output: The robot motion.  

if (the object is not approached) do 
       Image processing results; 
   if (Target object found ) then  
           Determine the object’s central coordinates (X-axis, Y-axis); 
           if (the object’s centre is in the left of the image plane) then 
                 Turns left; 
          else if (the object’s centre is in the right of the image plane) then 
                 Turns right; 
          else if (the object’s centre is in the middle of the image plane) then 
                 Read the front ultrasonic range sensors’ measurements; 
                 if (distance, measured from the robot to the object ≤ the pre- defined distance) then  
                        grasp the object; 
                        go to the relocating process; 
                 else  
                         Move forward (approaching the object); 
                 end if 
            end if  
   else  
            go to the searching mode (1); 
   end if 
end if 
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7.2.4 Relocating Process 

Once the target has been approached and grasped, the robot starts searching for the 

delivery location that is defined by a landmark (see Chapter 6). As such, the robot 

performs the same codes that were used initially to find the target object, but this time it 

searches for the delivery location. At the location where the object is grasped, the robot 

searches the environment for the delivery location by performing the searching mode 

(1). If the location is found, the robot will approach it and deliver the object. In this 

case, the robot carries out the approaching function (see section 7.2.3) except that the 

image processing is performed to find the location. When the robot reaches the delivery 

location, it moves its gripper to a point above the delivery location surface. Then, the 

gripper is opened and moved up to release the object on the surface. However, if the 

location is not detected in the previous process, the robot will carry out the navigation 

and searching functions as explained in section (7.2).   

7.3 Experimental Result 

The experiments have been conducted on the hexapod. The main control program and 

all image processing algorithms were written using C++. The experimental environment 

was the office room with a total area of 3200 × 4000 mm. Figure 7.8 represents the 

environmental map of the room. The brown rectangle represents the robot and the green 

rectangle denotes the starting point (delivery location) to which the robot must relocate 

the target object. The letter scripts (in Figures 7.8A and B) identify the locations of the 

robot in Figures 7.9 and 7.10, respectively, and the green arrows represent the robot’s 

navigation path. The experiments were carried out to evaluate the hexapod’s control 

system. First, the system was tested without the robot finding the target object. The 

objective of the robot was to navigate along the walls, starting from the starting point 

and to return to this location, avoiding collisions with obstacles in its path. The 

obstacles were rectangular shaped objects of various sizes (see Figure 7.8A).  

In the initial location, the robot started searching for the target object by executing 

searching mode 1. When the object was not found, the robot started moving from its 

current location and approached the nearest wall (see Figure 7.9A). After approaching 

the wall, the robot turned in the desired direction (for example, turned right). When the 
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robot reached the first obstacle, it viewed this obstacle as a wall, turned right and 

navigated along it. The robot continued moving until it reached the boundaries of the 

obstacle. In this case, the robot turned left, in order to keep the obstacle on its left side. 

The robot kept looking for the object while it moved forward by performing searching 

modes 2 and 4. These processes were repeated for other obstacles until the robot went 

back to the wall (see Figures 7.9B and C). The robot continued moving along the walls 

or obstacles until it encountered the start location (delivery location), where the robot 

terminated its motion (see Figure 7.9D).  

   

Figure 7.8. Simulation of the environment  

 

Figure 7.9. The hexapod motion (without finding the target object) 

Two heuristics, which are characterised by selecting the points that the robot must stop 

and search its surrounding environment [30], were used to examine the relative effect of 

varying search and travel cost (the operating time needed). In the first heuristic, the 

robot travels 1.2 m, which is specified by counter (2), and then stops to execute 

searching mode (2) to search the environment for the target. In the second heuristic, the 

robot travels 1.5 m before performing searching mode (2). Table 7.1 describes the 

results of both searching heuristics.  

B 
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C 
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The hexapod walked six steps (30 cm) forward and then stopped to update the sensory 

information, which consists of the ultrasonic sensors and camera information 

(performing searching mode 4). In this study, the robot required 12.8 s for travelling (30 

cm) and 2.9 s for updating the environmental information. In the first heuristic, the 

robot repeated this process four times to travel 1.2 m so it required 62.8 s (51.2 s 

travelling and 11.6 s updating sensors’ information) to perform this task. Then, the 

robot stopped to execute searching mode 2, which required 84 s (26.1 s updating camera 

information and 57.9 s rotating the camera) to be accomplished. The robot navigated in 

the previous environment (Figure 7.8A) 10.8 m to complete searching the whole area. 

In this scenario, the search process consumed 67% of the operating time. This involves 

the time of rotating the robot’s body (pan the camera) (779 s) and image processing 

(365.4 s). The travelling time represent of 33% of the total time and it only consists of 

moving forward and updating the sensory information. In the second heuristic, the robot 

travelled 1.5 m without performing searching mode (4); as such it only required 64 s. 

Then, it carried out searching mode (2). Although the travelling time was staying at 

460.8 s, it increased to 44% of the operating time. This was because the robot travelled 

the same distance; however, it consumed less time within the search process.  

Table 7.1: Experimental results of two searching heuristics: the hexapod robot spent 

67% or less from the operating time for searching the environment  

 

In both heuristics, the robot was extremely slow because it had a fixed camera so that it 

performed searching modes by rotating itself about its central axis. This contributed 

with the image processing and calculations of the robot’s gait signals for making the 

navigation process extremely slow. The travelling time will dramatically increase if the 

robot travels in an environment that has more obstacles. The experimental results also 

demonstrated that with the decrease of the number of the heuristic's points that the robot 

stops and searches the surrounding area, the searching cost was reduced from 67% to 

Item Searching 

time (s) 

Travelling 

time (s) 

Total time 

(s) 

Searching 

cost (%) 

Travelling 

cost (%) 

Heuristic 1 944.40 460.80 1405.20 67 33 

Heuristic 2 588.00 460.80 1048.80 56 44 
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56% (see Table 7.1). However, this might reduce the probability of finding the target 

object.  Therefore,   the search process must be carefully planned, which means the 

heuristic should have a smallest number of points that can cover the entire environment. 

Then, the control system was tested by the robot finding and relocating the desired 

object (see Figure 7.8B). In this scenario, the robot executed the above process until it 

detected and recognised the target object. In this case, the robot abandoned the wall and 

moved towards the target. In doing so, it kept the image of the target within the image 

plane. When the robot reached the pre-determined distance from object, it grasped it and 

put it in the delivery location (see Figures 7.10A to D). A specific artificial landmark (as 

explained in previous sections) defined the delivery location. The system was executed 

successfully, which proves the effectiveness of the methodology used.  

 

Figure 7.10. Searching for, finding and relocating the object using the hexapod 

Figure 7.11 illustrates the hexapod motion in an environment where the target is not 

placed close to the wall (here the target cannot be seen from the starting point because it 

is covered by the obstacle Figure 7.11A). Therefore, the robot moved along the walls 

and continued executing the searching modes (as explained before) until it could find 

the object. In this case, the robot left the wall and approached the object to grasp it 

(Figure 7.11B). Then, the robot performed searching mode (1) in order to find the 

delivery location; and because this location could not be seen from the current location, 

the robot moved to the closest wall (in this case the obstacle). Then, it followed the 

obstacle’s boundaries until it detected the delivery location (Figures 7.11C to E). The 

robot then approached this location to put the object there (Figure 7.11F). More 

environmental states are given in [1]. 

(A) (B) (C) (D) 
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The hexapod readily analysed the range sensors’ information. However, the main 

drawback is that the robot has a processor with low computational speed (Roboard). 

The experimental results show that this board failed during segmentation with the HSI 

process and consequently, the robot stopped moving in the location where the failure 

occurred. The board was also extremely slow with processing the template matching 

and SURF calculations, which resulted in the robot moving extremely slowly. 

Therefore, the colour segmentation with the RGB was employed for the object 

detection, and this greatly restricted the robot’s applications in respect of the 

environmental conditions that affect the image segmentation process (see Chapter 6). 

 

Figure 7.11. The hexapod motion when the object is not close to the wall 

7.3.1 Problems and Limitations  

The hexapod used had inherent hardware problems and limitations that affected its 

performance.  

 The board did not have sufficient computation capacity for image processing 

calculations. Therefore, the experiments showed that image segmentation using 

the HSI failed and the robot terminated its motion in the location where the 

failure occurred. The robot’s controller board also had computational speed 

limitations; therefore, it processed the template matching and SURF calculations 

slowly, which caused the robot to move slowly. 

(A) (B) (C) 

(D) (E) (F) 
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 It had a fixed camera so that it performed searching modes by rotating itself 

about its central axis. This contributed to making the navigation process 

extremely slow. 

 It is small and therefore, the ultrasonic range sensors used must have narrow 

beams. Otherwise, they will detect some of the robot’s components, such as its 

legs, as explained in Chapter 5. This will affect the method that enables the 

robot to follow the obstacle boundaries. 

7.4 The Main Program of the Wheeled Robot 

The decision was taken to test the methodology on a robot with a processor with higher 

computational capacity; therefore, the wheeled robot was designed and implemented 

(see Chapter 4). The wheeled robot was designed to have two boards. The first was the 

PC motherboard, which had an Intel Pentium 4 CPU 3.00 GHz processor and 1.00 GB 

of RAM to execute the image processing calculations. The second was the 

microcontroller for processing the sensory signals and performing the movement 

decisions. As such, the robot could capture images and process them while it navigated. 

In the final design, the robot’s microcontroller sent the digital signals in two bits to the 

motherboard to process the images (Table 7.2); then, two signals were received about 

the states of the object in the image (Table 7.3). For instance, if the robot grasps the 

detected object and wants to relocate it, the microcontroller sends digital code (10) to 

the motherboard to initiate the search for the delivery location. In this example, if the 

robot does not find the location, then the motherboard sends digital code (00) to the 

microcontroller, which means that there is no object in the image. 

Table 7.2: The states of the searching process sent to the motherboard 

 

Bin (2) Bin (1) The search state 

0 0 Stop searching 

0 1 Search for the target object   

1 0 Search for the delivery location 

1 1 Search for environment’s entrance 
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Table 7.3: The states of object location in the images sent to the micro-controller 

 

When the microcontroller received the image processing results, it accordingly decided 

the robot’s motion. The robot could update the environmental information in each of its 

movement cycles without stopping its motion. Therefore, the robot’s reaction for any 

change in the environment was much faster than the hexapod. The wheeled robot was 

also equipped with ultrasonic range sensors that had wide beam widths and were more 

precise than those used with the hexapod. The wheeled robot was programmed to 

perform the same navigation algorithm that was used with the hexapod but it differed 

slightly in the way that it followed the walls. For example, the hexapod walked along 

the wall that was on the left, while the wheeled robot located the wall to its right.  

The main motion control program was programmed in C and the image processing 

algorithms and parallel port’s control programs were developed using C++. The 

experimental environment was the same as is in Figure 7.8. However, some obstacles 

were positioned at different locations, as shown in Figure 7.12. The experiments were 

performed in two stages. In the first, the robot accomplished the search process without 

the necessity of finding the target object (Figures 7.12A and 7.13A-F). The robot 

carried out the same heuristics that was executed by the hexapod. In the first heuristic, 

the robot required 11.3 s for travelling 1.2 m and then it stopped to execute searching 

mode (2), which required 17.83 s (this time is for rotating the camera, for acquiring and 

processing the images, and for updating the robot’s knowledge about the environment) 

to be accomplished. In the second heuristic, the robot needed 14 s in order to travel 1.5 

m, and then it carried out searching mode 2. Table 7.4 shows the operating time to 

travel and explore the environment in which the robot also travelled 10.8 m to search 

the whole area. The results demonstrates that the operating time depends on the 

searching time (the time of rotating the camera and processing the images) because the 

Bin (2) Bin (1) The object state 

0 0 No object 

0 1 In the Left   

1 0 In the Right  

1 1 In the middle 
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travelling time is constant in both heuristics used. As such, the heuristic must be 

carefully planned to have a minimum number of points that cover the entire 

environment. 

Table 7.4: Experimental results of two searching heuristics: the wheeled robot spent 

64% or less from the operating time for searching the whole environment  

 

 

Figure 7.12. Simulation of the first environmental experiments of the wheeled robot 

 

 

Figure 7.13. The wheeled robot motion (without detecting the target) 

Item Searching 

time (s) 

Travelling 

time (s) 

Total time 

(s) 

Searching 

cost (%) 

Travelling 

cost (%) 

Heuristic 1 178.30 101.70 280.00 64 36 

Heuristic 2 124.81 101.70 226.51 55 45 
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In the second stage, the robot found the object and relocated it to the delivery location, 

as shown in Figures 7.12B and 7.14A-F. The time needed to complete the search task 

was dramatically reduced with the wheeled robot. For instance, the hexapod needed 

about 25 minutes to search the entire area in the first heuristic described above, whereas 

the wheeled robot required less than 4.40 minutes to search the same area. The 

limitations of the hexapod are described in section 7.3.1.  

 

Figure 7.14. The wheeled robot motion (finding and relocating the target) 

   

Figure 7.15. Simulation of the second environmental experiments of the wheeled robot 

The experiments were then conducted in an environment that has a total area of 3200 × 

3800 mm (see Figure 7.15) in order to evaluate the wheeled robot motion within 

different situations. The yellow circles represent the landmarks used to identify the 
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environment’s entrance.  The objective of the robot in Figures 7.15A and 7.16A-F was 

to navigate along the walls from the starting point and return to this point. When the 

robot reached and recognised the entrance’s landmarks, it considered them as a wall and 

navigated along them, as shown in Figures 7.16C and D. 

 

Figure 7.16. The wheeled robot motion in the second environment (without detecting 

the target) 

 

Figure 7.17. The wheeled robot motion in the second environment (finding and 

relocating the target) 

(A) (B) (C) 

(D) (E) (F) 

(A) (B) (C) 

(D) (E) (F) 
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Figures 7.15B and 7.17A-F explain the robot motion in the environment where the 

target is not placed close to the wall. In this scenario, the robot navigated beside the 

walls and continued performing the searching modes 2, 3, 4 and 5. When it discovered 

the object (Figure 7.17B), it left the wall and approached the object to grasp it (Figures 

7.17C and D). The robot then moved to the closest wall (in this case the obstacle), and 

followed the obstacles’ boundaries until it detected the delivery location (Figures 7.17E 

and F). In this case, the robot started approaching this location to place the object there. 

The system was also executed successfully, which proves the effectiveness of the 

methodology used.  

7.5 Conclusions  

In this chapter, the navigation system that enabled the mobile robot to search and find 

the object in the environment has been implemented and tested within two types of 

mobile robots, legged and wheeled. The robots’ performances were greatly dependent 

on the electronic system. The wheeled robot was equipped with two processors. One 

was for executing vision task while the other was for the motion control. Therefore, its 

reaction for any change in the environment was much faster than the hexapod that used 

one board for both tasks. The hexapod had inherent hardware problems and limitations 

that also affected its performance. First, it belongs to the legged robots that are inherent 

to be slower than the wheeled ones. Second, it had a fixed camera so that it performed 

searching modes by rotating itself about its central axis. This contributed to making the 

navigation process extremely slow.  

It was concluded that if the number of the heuristic’s points that the robot must stop and 

search the surrounding area is reduced, the searching cost is dramatically decreased. 

However, this reduces the probability of finding the target object.  Therefore,   the 

search process must be carefully planned which means the heuristic should have a 

minimum number of points that can cover the entire environment. It was also concluded 

that it is possible to implement a navigation system within a smallest number of sensors 

if they are positioned and used effectively on the robot’s body. Experiments proved that 

the methodologies used and that the codes developed made the robots capable of 

performing their tasks of finding, approaching and relocating objects as planned.  
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Chapter 8           Conclusions and Future Work 

8.1 Conclusions  

This thesis focused on mobile robot’s navigation system. More specifically, it 

considered the challenges of designing and operating a mobile search robot used to 

search for, find and relocate a target object in an indoor environment. The problem was 

divided into three sub-problems: motion planning; visual-search; and relocation of 

objects. The first enables the robot to navigate in a planned path and to continue 

searching and discovering its environment. The second relies on using the vision sensor 

(camera) and is supported by some object-detection techniques. The third involves 

using a robot’s gripper to grasp the desired object and then move it to the final location. 

The experiments were carried out with two types of robots, hexapod and wheeled 

robots, to demonstrate that:  

• the methodology used is suitable for a search robot that works autonomously in 

unknown indoor environments; 

• the way used is efficient to identify the location of orientation of robot for an 

effective control mechanism. 

• the technique used is ideal to position the sensors on the robot’s body for 

autonomous navigation.  

• the techniques for image processing that are used are optimal for object 

detection within robot exploration applications; 

• the proposed exploration path covers the entire environment for a search robot; 

• the proposed strategy of searching is also suitable for the designed environment; 

and 

• it is possible to construct an optimal motion control system that employs a 

camera and a minimum number of ultrasonic range and force sensors. 

The conclusions of the proposed work are detailed as follows: 

Mobile robot construction 

Although designing and implementing of the mobile robot was not a closed problem, 

this work proposed a construction method of two different types of mobile robots. In 

Chapter 3, the modelling of the hexapod mobile robot was explained in detail. Then, the 
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control system for that robot was proposed. Chapter 4 explained the construction of the 

wheeled robot.  

The exploration path 

For the exploration path, the same Bug algorithm strategies were used, in which, the 

robot navigated by following the walls or obstacle boundaries. While the robot moved 

beside the wall, it had to execute three tasks. The first was to correct its location beside 

the walls and avoid the obstacles that were in its path. The second was to carry out the 

visual-search process for the target object, by rotating the camera to explore the 

surrounding environment. If the robot found the target at any time, it executed the third 

task, in which it approached the object, then grasped and relocated it to the target 

location. The target location was defined using the artificial landmark.    

Object detection 

Three techniques were employed for object detection and recognition; colour 

segmentation; template matching; and Speeded-Up Robust Features (SURF). There 

were two problems that appeared when implementing these techniques on the hexapod’s 

controller board. First, the board could not support image-processing techniques that 

require high computation capacity. Second, the computation process was extremely 

slow, which made the robot slower than expected. These problems were solved by 

designing a new robot, which had a PC motherboard for the image processing. 

8.2 Results  

The main findings of these research questions can be summarized as follows:  

• The problem statement identified the challenges in constructing a navigation 

system for an indoor search robot. Part of this research involved designing 

systems that were capable of overcoming the challenges. The general question 

was: How should a self-navigating mobile robot control system be designed?   

Generally, the optimal navigation system must support three skills for the robot. The 

first is path-planning skill, which is the robot’s ability to find the shortest way from 

starting point to the target position, while avoiding obstacles. All the existing navigation 
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algorithms assume that the robot knows the exact location of both places. However, in 

case of the search robot, it does not know the target position. As a result, the robot must 

navigate to search for the target. In this scenario, the robot has to explore the entire 

environment. The second skill is the ability to position itself in its environment. In this 

case, the robot must be trained to understand some of the environmental aspects. The 

third skill is the ability to control its motion, which relies on actuators or motors that 

move the robot from one place to another.  

In the proposed navigation system, the robot starts its motion from the initial location 

(starting point) that is defined by a visual mark (landmark). The robot’s objective is to 

search for, find, and relocate the target object to the delivery location, which is (in this 

study) the same as the starting point. To simplify the problem, the robot is used to 

search the indoor environment that is defined by external boundaries (walls). The robot 

navigates along the walls and considers all obstacles as structures similar to the wall. 

While the robot moves, it continues to orient itself beside the wall. It also keeps 

searching for the target and the starting point. If it encounters the starting point again, it 

will consider the search process accomplished and that the target is unreachable.  

• Another aspect of the research was: How should the different types of sensors be 

integrated within the control system for the search robot?  

• The accuracy of a measurement system will dramatically rise if the robot is 

equipped with the high number of sensors.  However, this increases the robot’s 

price and leads to a more complex control system in its implementation [7].  

Therefore, the number of sensors must be reduced without affecting the 

effectiveness of the robot motion. The question is: How should a minimum 

number of sensors be attached on the robot’s body for autonomous navigation?    

• Which custom built instruments are needed for the robot’s navigation system, 

which is based on the vision system and range sensors, to function optimally in 

the intended simulation of an industrial environment?  

Various sensors can be used to enable the robot to sense its surrounding environment 

and then decide on its behaviour. These sensors provide the environmental information 

by means of electrical signals, which must be processed in the robot’s processor to 

generate meaningful information for influencing the robot’s motion. Some types of 
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sensors (such as visual sensors) need processors with a high computation capacity to 

analyse their signals. Typically, the robot is equipped with the appropriate types of 

sensors based on its application, and the robot’s environmental situation. In this study, 

the robot executed a visual search; therefore, it was equipped with a vision sensor 

(camera). This sensor was used to perform three tasks: searching for the target object; 

finding the delivery location; and detecting the room’s (indoor environment) entrance.  

The robot needed to navigate along the walls and avoid the obstacles located in its path. 

In this scenario, the robot had to maintain a desired distance from the walls or the 

obstacles so it was equipped with ultrasonic range sensors. These were attached on the 

robot’s body in a way that made each sensor perform a specific task. For example, two 

sensors were used for each side of the robot side to locate the robot beside the wall, or 

to detect the obstacle’s boundary. The anterior sensors were used to detect the walls or 

obstacles that were in the robot’s path. They also helped to control the robot’s motion 

when it approached the object or the delivery location.  

The robot was also used to relocate the target object. Therefore it was equipped with a 

gripper to perform the relocating task. The gripper was equipped with a force sensor to 

sense and control the force that was applied to the object. In the case of the hexapod 

robot, each leg was equipped with a force sensor that could be used to help control the 

robot’s movement.  

• Although there are many options, how should vision technology be integrated 

with robot technology for autonomous navigation? (This investigation is 

expected to lead to optimal mobile robot navigation system.)  

Vision sensors enable the robot to execute its tasks autonomously; therefore, their use 

has been investigated for several decades. Accordingly, various techniques, including 

visual tracking, localisation and mapping, have been developed and used to facilitate 

navigation. However, vision sensors generally need processors with high computation 

capacity to process their output signals. In addition, their outputs are influenced by 

environmental conditions (lighting, texture and background colour) and objects features 

(i.e. texture and contrast features). Furthermore, the calculations of objects’ distances 

from the camera are still a major challenge in computer vision. Therefore, the robot 

navigation is achieved by a combination of various sensors.  
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This study presents a vision-based technology for a robot that executes the visual search 

for a target object. If it is found, the robot will implement visual tracking to approach 

the target object before grasping it. When this is completed, the robot will again execute 

the visual search; however, this time, it will search for the target location where the 

robot will release the object. If the robot returns to the start location, which is defined 

by a visual landmark, without finding the target object, the search process has been 

accomplished.    

• Which algorithms should a mobile robot use to search and locate objects in the 

visual field?  

Generally, the robot navigates within its environment, which contains a starting 

location, target location and number of arbitrarily sized and shaped obstacles. Its 

objective is to move from the start to the target, without any collision. In the case of the 

search robot, the robot uses the vision system to detect, recognise and locate the target 

object, and also some other objects that might be used for its localisation. As a result, 

the robot has to select the best visual field (camera’s viewpoint).  

In this study, the method that is in [69] was employed and adapted to perform this task. 

The two stages were ‘where to look next?’ and ‘where to move next?’ In this thesis, the 

camera did not have zoom capability and only rotated by pan angles (there are no tilt 

angles). Therefore, these two stages seem to be combined in one stage. However, this 

method proved to be effective in performing the search process.  

• How can a robot be enabled to perform its tasks in different terrains? (The 

research has the potential to identify limitations, owing to terrain, on the 

navigation system and path-planning methods.) 

Wheeled robots are re-used in most industrial applications, however, some objects may 

be dropped on the ground (in the robot’s path) and obstruct the robot’s motion. Even if 

these obstacles are small and the robot can navigate over them, the robot will consume 

high energy. Conversely, if the robot follows the obstacles’ boundaries, this makes the 

navigation path and travel time longer. Wheeled robots are also inefficient on very soft 

or rough surfaces, such as outdoor, unpaved terrains. In contrast, legged robots provide 

superior mobility in soft and unstructured terrains. They can also move over and 
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overcome small obstacles more easily than wheeled robots. In this study, both types of 

robots, hexapod and wheeled robots, were studied and employed to test the 

methodology used. The hexapod proved to be more flexible in its motion than the 

wheeled robot. However, it was much slower than the wheeled one. The design and 

implementation of this type of robot is a more complicated task; particularly, the 

calculations of the torques and coordinating systems of its joints.  

The algorithms of the navigation and path-planning problems are divided, based on the 

environmental information needed, into global and local formulations. In the former, the 

terrain map is provided as an input for the robot, and navigation planning involves 

finding a suitable path between the start and target locations. Consequently, for any 

changes in the environment the robot needs to update the comprehensive map. These 

methods have three basic limitations; expensive computation; complex to construct; and 

difficult to get an accurate graph model. Conversely, in the local formulations, the 

environment is unknown and the robot needs to acquire the environmental information 

directly, by using a sensory system. These methods are appropriate for a robot that is 

designed to navigate in an unknown environment that is constantly changing. They are 

also easy to construct and optimal for real-time applications.  

In the proposed navigation system, the robot used a local method similar to the Bug 

formulations. The robot used its sensor (vision and range) system to obtain the local 

environmental information. However, the robot had extra information about its 

surrounding terrain such as: walls defined the environment; and all obstacles were 

located close to the walls.  

• Finally, the issue of scalability with regard to the size of the robot must be 

addressed as, in general, this issue has not received sufficient attention from 

researchers. While no large-scale robots were designed in this project, what are 

the theoretical challenges of scaling the model robots used to an industrially 

useful size? 

The robotics system mainly involves mechanical and electronic components. The 

former includes the robot’s chassis and movement tools, such as wheels, legs and 

motors. The size and weight of these components depend on the required robot size. 

Conversely, the electronic system mostly consists of the main processor board and the 
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motor-driver board, which controls and powers the motors. In this study, two small 

prototypes of robots were used, hexapod and wheeled robots. The major difficulty with 

designing and implementing similar large robots is that the robot’s weight increases 

dramatically. As such, large and more powerful motors, which provide high torque, will 

be needed to drive the robot. Typically, these types of motors consume a large amount 

of energy when operating. The electronic system will be the same, although motor-drive 

amplifiers that provide the motor with high current are needed.  

Other scalability issues become apparent when the robot has to execute different tasks. 

These include size and weight, as well as the controller’s capacity. For instance, if the 

robot is employed in industry to transport objects of various sizes or shapes, it must be 

able to adjust its gripper as required. In this case, the robot needs three aspects: the 

ability to change its size; various sensors in order to discover the surrounding 

environment; and an intelligent controller to deal with different situations.  

8.3 Future Work 

This study investigates the search mobile robot, to search for, find and relocate the 

target object in an indoor environment. Future relevant work could include: 

 Robot navigation (exploration path): this includes implementing and simulating 

other navigation algorithms for comparison, and validating their results from 

experimental testing. It also involves investigating the robot’s localisation 

techniques, such as simultaneous localization and mapping (SLAM) [38] and 

Kalman Filters [3]. 

 Object detection: this includes using a vision sensor that has zooming 

capabilities and is mounted on a pan-tilt system to increase the robot’s ability to 

search large areas.  

 Robot construction: it will be interesting if a large-scale robot is built and then 

used to search a large area, to relocate objects. More sensors must be added to 

this robot to increase the robot's capability to explore its environment.  

 Robot intelligence: it is important to implement an autonomous system using an 

artificial intelligent controller, such as a Fuzzy controller or a neural network 

control system. 
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Appendices 

A.1          The Wheeled Robot 

   

Figure A.1. The wheeled robot 

A.1.1       Wheel Configuration 

Wheels are the most popular locomotion mechanism in mobile robotics because 

wheeled mobile robots can be precisely controlled, are easy to program and require 

relatively simple mechanical implementation. Wheels are also very well suited for 

locomotion on flat structured surfaces where they are more efficient than a legged 

locomotion. Wheeled robots use different types of wheel and motor drive 

configurations. The wheel configurations are important because they influence the 

controllability and stability of the mobile robot.  

There are many types of wheel configuration, in which the number of wheels on the 

robot rises from two to four or more. Let us explain the configurations that have up to 

four wheels. To start with, some robots have a two-wheeled configuration. These robots 

typically use a two-wheel differential drive mechanism for moving and changing 

direction. In a differential drive mechanism, the mobile robot’s movement is based on 

two independently driven wheels placed on each side of the robot body. The robot can 

change its direction by altering the relative angular velocity of the wheels and therefore, 

does not require an additional steering mechanism. The disadvantages of two-wheel 

robots are that they lack stability and require an accurate method of distribution of the 

robot’s weight. 

Some robotics designers insert a third wheel that rotates freely to add more balance for 

their robots. The third wheel could be driven by a servo or a stepper motor to steer the 
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robot. The main benefit of this design, which is called tricycle drive, is that it is easy to 

control. However, the robot needs a long turning curve to change its direction. Some 

robots are designed to combine drive and steer mechanisms (tricycle drive) in the third 

wheel. In such a case, this wheel is driven by two motors (usually a DC motor for 

motion and a servo or stepper motor for steering), whereas the other two wheels rotate 

freely and are positioned for balance. In addition to the same disadvantages of the 

previous tricycle drive, this mechanism of steering and driving at the same time is 

difficult to build. Another three-wheeled configuration that employs a two-motor drive 

configuration is called the synchronic drive. In this, one motor drives all three wheels 

while the second motor steers all them. A robot with synchronic configuration 

guarantees straight-line motion but it has complex mechanisms yet to be developed.  

Typically, increasing the number of wheels will improve the robot’s stability and 

accordingly, many designers use the four-wheeled configuration. Some wheeled mobile 

robots are designed using the car steering configuration. In this case, the robot uses two 

driving motors attached to the rear or the front wheels to provide motion and two or one 

motor to steer. The main problem in this configuration is that robot needs to travel a 

long arc to change its direction. Another configuration also uses four wheels but 

employs a differential drive mechanism. The differential drive configuration is popular 

in robotics because it is easy to develop. However, the steering of the robot is more 

difficult to control than the robot using the car steering configuration. Lastly, some 

robots have four motor drives within a zero-turn radius configuration. The robot using 

this configuration reorients itself by rotating each pair of wheels that are mounted on 

one side in the same direction, whilst rotating another pair in the opposite direction. If 

the robot wants to drive in a straight line, it will rotate all the wheels with the same 

speed and direction. 

A.1.2       Motors  

There are three types of motors that can be considered for driving mobile robots: DC 

motors, stepper motors and servo motors. Let us give a brief argument for each class: 
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DC motors 

DC motors are widely used to drive wheeled robots because of their small size and high 

output energy. They are defined by the their operating DC voltage that might be rated as 

few as 1.5 Volts up to or more than 100 Volts. The ideal DC motor generates high 

torque whilst requiring low current. However, the input power (current × voltage) 

indicates the mechanical power output. Consequently, if the DC motor were required to 

create more output mechanical torque, it would draw a higher current whilst the DC 

voltage remains constant. The maximum input current and maximum output torque will 

be at the stalled state when the motor starts rotating or during maximum load. The DC 

motors are also specified by their rotation speed, which is defined as rotations per 

minute (RPM) when the motor is running freely. Characteristically, DC motors rotate at 

speeds approaching the thousands of RPM. Therefore, gearboxes are added to reduce 

the speed and increase the output mechanical torque. The motors RPM and output 

torque specify the motors output power. The greatest output power is achieved mid-way 

between the maximum speed (no torque) and the maximum torque (no speed). 

Typically, the speed of a DC motor is controlled using a pulse width modulation 

(PWM) technique, which controls the amount of input power to the motor. This is 

performed by digital circuitry that creates the square waves that rapidly switch between 

“on” and “off”. The on-off model simulates input power between full “on” and “off” by 

changing the percentage of time “on” versus the percentage of time “off”. For instance, 

if it is desired that the motor rotate at half-speed, the time of the switch “on” is equal to 

the time of the switch “off” in the square PWM waveforms. 

Stepper motors 

A stepper motor is a permanent magnetic motor that has shaft moves (steps) between 

discrete rotary positions each time the controller gives one pulse. They could be rotated 

at a specific number of steps with a high accuracy. Accordingly, they are used for 

applications that need high positioning accuracy, such as robot steering. Typically, 

stepper motors are controlled by series of pulses until their shafts reach the desired 

location. 
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Servo motor 

A servo motor has different components in one package: a small DC motor, gear 

reduction to increase torque and electronic shaft to sense position and control circuit. 

The main difference between the servo and stepper motors is that the former have a 

feedback control loop. This loop drives the servo motor’s shaft to the desired position 

assigned by the user. Consequently, if the servo motor encounters an obstacle in the 

rotation path, it will continue trying until it either reaches the target rotation or harms 

itself. However, if the stepper motor meets the same obstacle, it can bounce steps 

without damaging itself. Servo motors are generally used for those applications that 

need specific alternating movements between two positions, such as the joints of a 

legged robot. Typically, they have three wires: two for powering and one for control. 

The servo motors are controlled by a series of pulses that indicate the desired position of 

the shaft. 

The PC motherboard and the microcontroller need to communicate and control each 

other. Normally, in the communication process the PC behaves as a master (host) and 

each of other peripherals are slaves (devices). Typically, the PC motherboard has ports 

that can be used mainly to control and communicate with external devices. Let us 

evaluate the three main types of PC ports: USB, Serial and parallel ports. 

A.1.3       Communication ports  

Universal serial bus (USB) 

USB has been widely used to interface computers to other peripheral devices, such as 

memory sticks, computer mice and keyboards. It has been also introduced for many 

other industrial applications including measurement and automation. Typically, the 

USB connector can be up to 5 metres long and has four main connections: Power 

(normally 5v), Ground and a twisted pair of differential +/- data lines. The data and 

acknowledgement transaction will consist of a number of packets (specific numbers of 

Bytes for each packet) that the Master is sending or requiring. The main benefit of USB 

is that it supports the high data rates required within the computer and peripherals. 
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Serial port 

A serial port is mostly used to transmit communication data, such as transferring files 

between the computers. Generally, the serial port has 9 pins: pins 2, 3 and 5 are used to 

transmit data, receive data and signal ground, respectively, whilst the other pins are used 

to control the communication process. The ‘1’ and ‘0’ are the data, which define a 

voltage level of 3V to 25V and -3V to -25V, respectively. The data are sent and 

received one bit after another with some extra bits, such as start bit, stop bit and parity 

bit to detect errors. 

Parallel port 

The parallel port, which is sometimes called the printer port, has 25 pins. These pins are 

classified into four categories: data registers (pins 2-9), control registers (pins 1, 14, 16 

and 17), status registers (pins 10-13 and 15), and grounds (pins 18-25). The data 

registers can be used to store a byte of data that is sent to the port data register pins. The 

control registers are mainly used to send control data to the printer port while the status 

registers could read the states of the status pins. The data are sent as 8 bits of byte to the 

data pins at a time while the port can receive 5 bits of data from the status pins. The 

parallel port pins can be used individually to send and receive data. The port is easier to 

program and faster compared with serial ports.  

The microcontroller board has a USB connection that works as a serial connection. 

Typically, this port is used to download the control program and to power the 

microcontroller. This port could be used as a communication interface between both the 

microcontroller and the motherboard. In this case, two programs (one program for each 

board to control another board) have to be written. As mentioned above, the serial port 

is more difficult to program and control than the parallel port. It also requires additional 

CPU time to process and assess the communication messages between the two boards. 

Consequently, the decision taken is to use some parallel port pins to send 2 bits of data 

to control the microcontroller and to receive 2 bits of data from the microcontroller to 

control the motherboard. 

- More information about PC ports is given by [http://electrosofts.com/parallel/]. 

 

http://electrosofts.com/parallel/
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A.1.4     Part List  

Table A.1:    Part list  

Name Unit 
price 

Qty Total 
price ($) 

Supplier 

DC motor 24.95 4 99.80 http://www.jaycar.com.au/ 

Microcontroller  88.55 1 88.55 http://www.robotgear.com.au/ 

Motor drive 27.95 1 27.95 http://www.robotgear.com.au/ 

Servo motor  39.95 3 119.85 http://www.jaycar.com.au/ 

Servo motor drive 39.95 1 39.95 http://www.jaycar.com.au/ 

SRF08  Range Finder 53.5 5 267.5 http://www.robotgear.com.au/ 

USB flash memory 13.99 1 13.99  

Nuts and Screws 18.45 1 18.45 http://www.jaycar.com.au/ 

DC power supply 98.28 1 98.28 e-bay 

Wheels 11.66 2 pairs 23.32 http://www.robotgear.com.au/ 

Pololu universal 
mounting 

8.75 2 pairs 17.5 http://www.robotgear.com.au/ 

A.2           The hexapod Mobile Robot  

A.2.1      Kinematic Modelling 

Table A.2: 

DH parameters of the robot leg on the left side 

Link               

1      
 

 
  0    

2     0  0    

3     0  0    

 

   

[
 
 
 
          
         
     
     

           
            
            
          ]

 
 
 

               (A.1) 



 

139 
 

   [

    

    

   
     

        
         
         
          

]             

   [

       
      
        
        

      
      
         
          

]                 

   [

      
       
        
        

      
      
          
          

]                        (A.2) 

  
   =        

[
 
 
 
             
             
            
        

                  
                   
                          

          ]
 
 
 
                             (A.3) 

 

  (    )
   [  

   
 

  
]                                          (A.3) 

Performing the required calculations yields the forward kinematic modelling:  
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A.2.2      Jacobian  

The origins of the DH frames of the left legs are given by  
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The      of the DH frames are given by: 
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Performing the required calculations yields:  
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A.2.3      Torque Distribution  

The joint static torques are calculated by  

     ( )                                                             (A.8) 

The resulting joint static torques of the legs on the left side of the robot’s body are then 

given as: 
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A.2.4      Part List  

Table A.2:    The main parts of the hexapod 

Name Link 

Hitec HS-645MG 
Servo 

http://www.robotshop.ca/hitec-hs645mg-servo-
motor.html 

Hitec HSR-5990TG 
Servo 

http://www.servodatabase.com/servo/hitec/hsr-5990tg 

RoBoard Starter Kit http://www.robotshop.ca/roboard-starter-kit-3.html 

1600mAh battery pack www.joondaluphobbies.com.au 
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