86 research outputs found

    Motor Imagery EEG Recognition using Deep Generative Adversarial Network with EMD for BCI Applications

    Get PDF
    The activities for motor imagery (MI) movements in Electroencephalography (EEG) are still interesting and challenging. BCI (Brain Computer Interface) allows the brain signals to control the external devices and also helps a disabled person suffering from neuromuscular disorders. In any BCI system, the two most essential steps are feature extraction and classification method. However, in this paper, the MI classification is improved by the performance of Deep Learning (DL) concept. In this proposed system two-moment imagination of right hand and right foot from the BCI competition three datasets IVA has been taken and classification methods utilizing Conventional neural network (CNN) and Generative Adversarial Network (GAN) are developed. The training time is reduced and non-stationary problem is managed by applying Empirical mode decomposition (EMD) and mixing their intrinsic mode functions (IMFs) in feature extraction technique. The experimental result indicates the proposed GAN classification technique achieves better classification accuracy in terms of 95.29% than the CNN of 89.38%. The proposed GAN method achieves an average positive rate of 62% and average false positive rate of 3.4% on BCI competition three datasets IVA whose EEG facts were resulting from the similar C3, C4, and Cz channels of the motor cortex

    CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework for Zero-Shot Electroencephalography Signal Conversion

    Full text link
    Electroencephalography (EEG) is a prominent non-invasive neuroimaging technique providing insights into brain function. Unfortunately, EEG data exhibit a high degree of noise and variability across subjects hampering generalizable signal extraction. Therefore, a key aim in EEG analysis is to extract the underlying neural activation (content) as well as to account for the individual subject variability (style). We hypothesize that the ability to convert EEG signals between tasks and subjects requires the extraction of latent representations accounting for content and style. Inspired by recent advancements in voice conversion technologies, we propose a novel contrastive split-latent permutation autoencoder (CSLP-AE) framework that directly optimizes for EEG conversion. Importantly, the latent representations are guided using contrastive learning to promote the latent splits to explicitly represent subject (style) and task (content). We contrast CSLP-AE to conventional supervised, unsupervised (AE), and self-supervised (contrastive learning) training and find that the proposed approach provides favorable generalizable characterizations of subject and task. Importantly, the procedure also enables zero-shot conversion between unseen subjects. While the present work only considers conversion of EEG, the proposed CSLP-AE provides a general framework for signal conversion and extraction of content (task activation) and style (subject variability) components of general interest for the modeling and analysis of biological signals.Comment: Accepted for publication at the 37th Conference on Neural Information Processing Systems (NeurIPS 2023

    Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network

    Get PDF
    Abstract Background Conventional methods of motor imagery brain computer interfaces (MI-BCIs) suffer from the limited number of samples and simplified features, so as to produce poor performances with spatial-frequency features and shallow classifiers. Methods Alternatively, this paper applies a deep recurrent neural network (RNN) with a sliding window cropping strategy (SWCS) to signal classification of MI-BCIs. The spatial-frequency features are first extracted by the filter bank common spatial pattern (FB-CSP) algorithm, and such features are cropped by the SWCS into time slices. By extracting spatial-frequency-sequential relationships, the cropped time slices are then fed into RNN for classification. In order to overcome the memory distractions, the commonly used gated recurrent unit (GRU) and long-short term memory (LSTM) unit are applied to the RNN architecture, and experimental results are used to determine which unit is more suitable for processing EEG signals. Results Experimental results on common BCI benchmark datasets show that the spatial-frequency-sequential relationships outperform all other competing spatial-frequency methods. In particular, the proposed GRU-RNN architecture achieves the lowest misclassification rates on all BCI benchmark datasets. Conclusion By introducing spatial-frequency-sequential relationships with cropping time slice samples, the proposed method gives a novel way to construct and model high accuracy and robustness MI-BCIs based on limited trials of EEG signals

    Investigating the use of pretrained convolutional neural network on cross-subject and cross-dataset EEG emotion recognition

    Get PDF
    The electroencephalogram (EEG) has great attraction in emotion recognition studies due to its resistance to deceptive actions of humans. This is one of the most significant advantages of brain signals in comparison to visual or speech signals in the emotion recognition context. A major challenge in EEG-based emotion recognition is that EEG recordings exhibit varying distributions for different people as well as for the same person at different time instances. This nonstationary nature of EEG limits the accuracy of it when subject independency is the priority. The aim of this study is to increase the subject-independent recognition accuracy by exploiting pretrained state-of-the-art Convolutional Neural Network (CNN) architectures. Unlike similar studies that extract spectral band power features from the EEG readings, raw EEG data is used in our study after applying windowing, pre-adjustments and normalization. Removing manual feature extraction from the training system overcomes the risk of eliminating hidden features in the raw data and helps leverage the deep neural network’s power in uncovering unknown features. To improve the classification accuracy further, a median filter is used to eliminate the false detections along a prediction interval of emotions. This method yields a mean cross-subject accuracy of 86.56% and 78.34% on the Shanghai Jiao Tong University Emotion EEG Dataset (SEED) for two and three emotion classes, respectively. It also yields a mean cross-subject accuracy of 72.81% on the Database for Emotion Analysis using Physiological Signals (DEAP) and 81.8% on the Loughborough University Multimodal Emotion Dataset (LUMED) for two emotion classes. Furthermore, the recognition model that has been trained using the SEED dataset was tested with the DEAP dataset, which yields a mean prediction accuracy of 58.1% across all subjects and emotion classes. Results show that in terms of classification accuracy, the proposed approach is superior to, or on par with, the reference subject-independent EEG emotion recognition studies identified in literature and has limited complexity due to the elimination of the need for feature extraction.<br

    Intelligent Biosignal Processing in Wearable and Implantable Sensors

    Get PDF
    This reprint provides a collection of papers illustrating the state-of-the-art of smart processing of data coming from wearable, implantable or portable sensors. Each paper presents the design, databases used, methodological background, obtained results, and their interpretation for biomedical applications. Revealing examples are brain–machine interfaces for medical rehabilitation, the evaluation of sympathetic nerve activity, a novel automated diagnostic tool based on ECG data to diagnose COVID-19, machine learning-based hypertension risk assessment by means of photoplethysmography and electrocardiography signals, Parkinsonian gait assessment using machine learning tools, thorough analysis of compressive sensing of ECG signals, development of a nanotechnology application for decoding vagus-nerve activity, detection of liver dysfunction using a wearable electronic nose system, prosthetic hand control using surface electromyography, epileptic seizure detection using a CNN, and premature ventricular contraction detection using deep metric learning. Thus, this reprint presents significant clinical applications as well as valuable new research issues, providing current illustrations of this new field of research by addressing the promises, challenges, and hurdles associated with the synergy of biosignal processing and AI through 16 different pertinent studies. Covering a wide range of research and application areas, this book is an excellent resource for researchers, physicians, academics, and PhD or master students working on (bio)signal and image processing, AI, biomaterials, biomechanics, and biotechnology with applications in medicine

    Effective EEG analysis for advanced AI-driven motor imagery BCI systems

    Get PDF
    Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets.Developing effective signal processing for brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) involves factoring in three aspects of functionality: classification performance, execution time, and the number of data channels used. The contributions in this thesis are centered on these three issues. Contributions are focused on the classification of motor imagery (MI) data, which is generated during imagined movements. Typically, EEG time-series data is segmented for data augmentation or to mimic buffering that happens in an online BCI. A multi-segment decision fusion approach is presented, which takes consecutive temporal segments of EEG data, and uses decision fusion to boost classification performance. It was computationally lightweight and improved the performance of four conventional classifiers. Also, an analysis of the contributions of electrodes from different scalp regions is presented, and a subset of channels is recommended. Sparse learning (SL) classifiers have exhibited strong classification performance in the literature. However, they are computationally expensive. To reduce the test-set execution times, a novel EEG classification pipeline consisting of a genetic-algorithm (GA) for channel selection and a dictionary-based SL module for classification, called GABSLEEG, is presented. Subject-specific channel selection was carried out, in which the channels are selected based on training data from the subject. Using the GA-recommended subset of EEG channels reduced the execution time by 60% whilst preserving classification performance. Although subject-specific channel selection is widely used in the literature, effective subject-independent channel selection, in which channels are detected using data from other subjects, is an ideal aim because it leads to lower training latency and reduces the number of electrodes needed. A novel convolutional neural network (CNN)-based subject-independent channels selection method is presented, called the integrated channel selection (ICS) layer. It performed on-a-par with or better than subject-specific channel selection. It was computationally efficient, operating 12-17 times faster than the GA channel selection module. The ICS layer method was versatile, performing well with two different CNN architectures and datasets

    Machine Learning in Robot Assisted Upper Limb Rehabilitation: A Focused Review

    Get PDF
    Robot-assisted rehabilitation, which can provide repetitive, intensive and high-precision physics training, has a positive influence on motor function recovery of stroke patients. Current robots need to be more intelligent and more reliable in clinical practice. Machine learning algorithms (MLAs) are able to learn from data and predict future unknown conditions, which is of benefit to improve the effectiveness of robot-assisted rehabilitation. In this paper, we conduct a focused review on machine learning-based methods for robot-assisted upper limb rehabilitation. Firstly, the current status of upper rehabilitation robots is presented. Then, we outline and analyze the designs and applications of MLAs for upper limb movement intention recognition, human-robot interaction control and quantitative assessment of motor function. Meanwhile, we discuss the future directions of MLAs-based robotic rehabilitation. This review article provides a summary of MLAs for robotic upper limb rehabilitation and contributes to the design and development of future advanced intelligent medical devices
    corecore