
  

Sensors 2020, 20, x; doi: FOR PEER REVIEW www.mdpi.com/journal/sensors 

Article 1 

Investigating the Use of Pre-trained Convolutional 2 

Neural Network on Cross-Subject and Cross-Dataset 3 

EEG Emotion Recognition 4 

Yucel Cimtay 1, *, Erhan Ekmekcioglu 1 5 

1 Institute for Digital Technologies, Loughborough University London, UK; y.cimtay@lboro.ac.uk; 6 
e.ekmekcioglu@lboro.ac.uk 7 

 8 
* Correspondence: yucel.cimtay@gmail.com; y.cimtay@lboro.ac.uk 9 

Received: date; Accepted: date; Published: date 10 

Abstract: EEG has great attraction in emotion recognition studies due to its resistance to deceptive 11 
actions of human. This is one of the most significant advantages of brain signals in comparison to 12 
visual or speech signals in emotion recognition context. A major challenge in EEG-based emotion 13 
recognition is that EEG recordings exhibit varying distributions for different people as well as for 14 
the same person at different time instances. This nonstationary nature of EEG limits the accuracy of 15 
it when subject independency is the priority. The aim of this study is to increase the subject-16 
independent recognition accuracy by exploiting pre-trained state of the art Convolutional Neural 17 
Network (CNN) architectures. Unlike similar studies that extract spectral band power features from 18 
the EEG readings, raw EEG data is used in our study after applying windowing, pre-adjustments 19 
and normalization. Removing manual feature extraction from the training system overcomes the 20 
risk of eliminating hidden features in the raw data and helps leverage the deep neural networks’ 21 
power in uncovering unknown features. To improve the classification accuracy further, median 22 
filter is used to eliminate the false detections along a prediction interval of emotions. This method 23 
yields mean cross-subject accuracy of 86.56% and 78.34% on SEED dataset for 2 and 3 emotion 24 
classes, respectively. It also yields mean cross-subject accuracy of 72.81% on DEAP dataset and 25 
81.8% on LUMED dataset for 2 emotion classes. Furthermore, the recognition model that has been 26 
trained using the SEED dataset was tested with the DEAP dataset, which yields a mean prediction 27 
accuracy of 58.1% across all subjects and emotion classes. Results show that in terms of classification 28 
accuracy, the proposed approach is superior to, or on par with, the reference subject-independent 29 
EEG emotion recognition studies identified in the literature and has limited complexity due to the 30 
elimination of the need for feature extraction.  31 

Keywords: EEG; emotion recognition; pretrained models; convolutional neural network; dense 32 
layer; subject independency; dataset independency; raw data; filtering on output 33 

 34 

1. Introduction 35 

EEG is the measurement of the electrical signals which is a result of brain activities. The voltage 36 
difference is measured between the actual electrode and reference electrode. There are several EEG 37 
measurement devices in the market such as Neurosky, Emotiv, Neuroelectrics and Biosemi [1] which 38 
provide different spatial and temporal resolutions. Spatial resolution is related to number of 39 
electrodes and temporal resolution is related to the number of EEG samples processed for unit time. 40 
Generally, EEG has high temporal but low spatial resolution. In terms of spatial resolution, EEG 41 
electrodes can be placed on the skull according to the 10-20 or 10-10 and 10-5 positioning standards 42 
[2]. 43 
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EEG has lately been used as a powerful emotion prediction modality. It is reliable, portable and 44 
relatively inexpensive compared to other brain monitoring tools and technologies. EEG has many 45 
application areas. For the clinical applications, EEG is mostly used to investigate the patterns related 46 
to sleep [3] and epilepsy [4]. Some other applications of EEG analysis are consciousness and 47 
hyperactivity disorders [5,6], measurement of the affective components such as level of attention [7–48 
9], mental workload [10], mood and emotions [11–14] and brain computer interfaces which is the 49 
work of transforming brain signals into direct instructions [15–17]. 50 

Human emotions have crucial effects on communication with others. Understanding the 51 
emotions of human provides controlling and regulating the behaviors. As the digital world name of 52 
emotion recognition, affective computing, is the work of emotion recognition by using various 53 
sensors and computer-based environments. This concept was originated with Rosalind Picard's 54 
paper [18] on affective computing in 1995. In EEG context, affective computing is achieved by setting 55 
up brain computer interfaces (BCI) which includes sensors, machines and coding. In BCI, the 56 
operation of affective computing starts with presenting users with stimuli which induces specific 57 
emotions. These stimuli may be video, image, music, etc. During the session, EEG data is recorded 58 
with EEG devices. The next step is typically extracting features from the recorded EEG and training 59 
a classifier to predict emotion labels. The final step is testing the trained model with new EEG data 60 
which is not used in training session. Data collection and labelling are the most important aspects 61 
which has an impact on resulting recognition accuracy. The “Brouwer recommendations” about data 62 
collection given in [19] is crucial for handling accurate data and labelling. 63 

In the relevant emotion recognition literature, emotions have been broadly represented in two 64 
ways. The first approach classifies emotions as discrete states such as the six basic emotions proposed 65 
by Ekman and Friesen [20]. The second approach defines emotion as a continuous 4-D space of 66 
valence, arousal, dominance and liking [21, 22]. In most of the studies, this space is reduced to 2-D as 67 
valence and arousal dimensions [23,24]. The study conducted in [25] is very useful in the sense that 68 
it relates discrete and continuous approaches to each other. Discrete emotion states are mapped on 69 
to the valence-arousal circumplex model according to high number of blogposts. This study enables 70 
scientists to transform emotions from continuous space to discrete space.  71 

In EEG data channels, typically frequency domain analysis is used. In frequency domain the 72 
most important frequency bands are delta (1-3 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz) 73 
and gamma (31-50 Hz) [26]. Fast Fourier Transform (FFT), Wavelet Transform (WT), eigenvector and 74 
Autoregressive are the methods, which transform EEG signal from time domain to frequency domain 75 
[27]. The study [28] extracts several frequency-domain features like Differential entropy (DE) and 76 
energy spectrum (ES) in order to classify EEG data and [29] investigates the critical frequency bands 77 
and channels for EEG based emotion recognition. One of the major problems we observed in the 78 
context of emotion classification based on the analysis of EEG channels was that the classifier 79 
performance fluctuates remarkably across persons as well as across dataset. Most of these approaches 80 
train their classifiers using a set of features derived using the frequency domain analysis. While the 81 
classifiers’ performance are sufficiently high on test data, which comprise samples belonging to the 82 
same subjects but excluded from training and validation, when the same classifier is applied on EEG 83 
data of other subjects or on data extracted from various other datasets, the performance is degraded 84 
significantly. The same problem in subject-independent analysis is not apparent in the literature in 85 
the context of emotion recognition from facial expressions or other physiological data (e.g., heart rate 86 
variability, electro-dermal activity). This observation has led us to investigate classification 87 
approaches using raw EEG data, which preserves all information and prevents the risk of removing 88 
hidden features before training the classifier.  89 

2. Literature Review 90 

For the classification of EEG signals, many machine learning methods such as KNN [28], SVM 91 
[28–30], DT (Decision Tree) [31], Random Forest (RF) [32] and LDA (Linear Discriminant Analysis) 92 
[33] are applied in this field. In deep learning context, DBN (Deep Belief Network) [34] and AE (Auto 93 
encoders) [35] are studied with promising results. Besides DBN and AE, CNN and LSTM structures 94 

https://www.wikizeroo.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvUm9zYWxpbmRfUGljYXJk


Sensors 2020, 20, x FOR PEER REVIEW 3 of 21 

 

are widely used [36–40]. Most of these models have shown good results for subject dependent 95 
analysis. In [41], KNN method is employed on DEAP dataset [66] for different numbers of channels 96 
which show accuracy between 82% and 88%. The study conducted in [42] quadratic time-frequency 97 
distribution (QTFD) is employed to handle a high-resolution time-frequency representation of the 98 
EEG and the spectral variations over time. It reports mean classification accuracies ranging between 99 
73.8% and 86.2%. In [43] four different emotional states (happy, sad, angry and relaxed) are classified. 100 
In that study, DWT is applied on the DEAP dataset. Wavelet features are classified using an SVM 101 
classifier with Particle Swarm Optimization (PSO) [70]. The overall accuracy of 80.625% is reported 102 
with valence and arousal accuracy of 86.25% and 88.125%, respectively. 103 

An important issue in EEG-based emotion detection is the non-linearity and non-stationarity of 104 
EEG signals. Feature sets, such as the spectral band powers of EEG channels, extracted from different 105 
peoples against the same emotional states do not exhibit strong correlation. For example, galvanic 106 
skin response is a robust indicator of arousal state, where different people’s responses correlate with 107 
each other well. Training and testing data made of EEG channels’ spectral band powers and their 108 
derivatives have different distributions. And it is difficult to identify sets of features from the EEG 109 
recordings of different subjects, different sessions and different datasets that exhibit more 110 
commonality. This makes the classification difficult with traditional classification methods, which 111 
assume identical distribution. In order to address this problem and provide subject independency to 112 
EEG-based emotion recognition models, deeper networks, domain adaptation and hybrid methods 113 
have been applied [44,45]. Furthermore, various feature extraction techniques have been applied, and 114 
different feature combinations have been tried [48,50]. 115 

Subject independent EEG emotion recognition, as a challenging task, has gained high interest by 116 
many researchers lately. The method called Transfer Component Analysis (TCA) conducted in [44] 117 
reproduces Kernel Hilbert Space, on the assumption that there exists a feature mapping between 118 
source and target domain. A Subspace Alignment Auto-Encoder (SAAE) which uses non-linear 119 
transformation and consistency constraint method is used in [45]. This study compares the results 120 
with TCA. It achieves a leave one out mean accuracy of 77.88% in comparison with TCA, which shows 121 
73.82% on SEED dataset. Moreover, mean classification accuracy for session-to-session evaluation is 122 
81.81%, an improvement of up to 1.62% compared to the best baseline TCA. In one of the studies, 123 
CNN with Deep domain confusion technique is applied on SEED dataset [65] and achieves 90.59% 124 
and 82.16 mean accuracy for conventional (subject-dependent) EEG emotion recognition and “leave 125 
one out cross validation”, respectively [46]. In [47] Variational Mode Decomposition (VMD) is used 126 
as a feature extraction technique and Deep Neural Network as the classifier. It gives 61.25% and 127 
62.50% accuracy on DEAP dataset for arousal and valence, respectively. Another study [49] is using 128 
a deep convolutional neural network with changing numbers of convolutional layers on raw EEG 129 
data which is collected during music listening. It reports maximum 10-fold-validation mean accuracy 130 
of 81.54% and 86.87% for arousal and valence, respectively. It also achieves 56.22% of arousal and 131 
68.75% of valence accuracies for one-subject-out test. As can be seen, the reported mean accuracy 132 
levels drop considerable in one-subject-out tests due to the nature of the EEG signals.  133 

The study [50] extracts totally 10 different linear and nonlinear features from EEG signals. The 134 
linear features are Hjorth activity, Hjorth mobility, Hjorth complexity, the standard deviation, PSD-135 
Alpha, PSD Beta, PSD-Gamma, PSD-Theta and the nonlinear features are sample entropy and 136 
wavelet entropy. By using a method called Significance Test/sequential Backward Selection and the 137 
Support Vector Machine (ST-SBSSVM) which is a combination of the significance test, sequential 138 
backward selection, and support vector machine, it achieves 72% cross subject accuracy for DEAP 139 
dataset with High-Low valence classification. It also achieves 89% maximum cross subject accuracy 140 
for SEED dataset with positive-negative emotions. Another study [51] uses FAWT (Flexible Analytic 141 
Wavelet Transform) which decomposes EEG signals into sub bands. Random forest and SVM are 142 
used for classification. The mean classification accuracies are 90.48% for positive/neutral/negative 143 
(three classes) in the SEED dataset; 79.95% for high arousal (HA)/low arousal (LA) (two classes); 144 
79.99% for the high valence (HV)/low valence (LV) (two classes); and 71.43% for 145 
HVHA/HVLA/LVLA/LVHA (four classes) in the DEAP dataset. In [52] transfer recursive feature 146 
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elimination (T-RFE) technique is used to determine a set of the most robust EEG features for stable 147 
distribution across subjects. This method is validated on DEAP dataset, the classification accuracy 148 
and F-score for arousal is 0.7867, 0.7526 and 0.7875, 0.8077 for valence. A regularized graph neural 149 
network (RGNN) is applied in [53] for EEG-based emotion recognition, which includes inter-channel 150 
relations. The classification accuracy results on SEED dataset are 64.88%, 60.69%, 60.84%, 74.96%, 151 
77.50%, 85.30% for delta, theta, alpha, beta, gamma and all bands. Moreover, it achieves 73.84% of 152 
accuracy on SEED IV [71] dataset.  153 

There are several studies which apply transfer learning which aims to explore common stable 154 
features and apply to other subjects [54]. In terms of affective computing, the work is exploring some 155 
common and stable features which are invariant between subjects. This is also called domain 156 
adaptation. In [55] the scientists tried to find typical spatial pattern filters from various recording 157 
sessions and have applied these filters on the following ongoing EEG samples. Subject dependent 158 
spatial and temporal filters are derived from 45 subjects and a representative subset is chosen in [56]. 159 
The study [57] uses compound common spatial patterns which are the sum of covariance matrices. 160 
The aim of this technique is to utilize the common information which is shared between different 161 
subjects. The other important studies which apply different domain adaptation techniques on SEED 162 
dataset are [58–61]. The common properties of these domain adaptation techniques are exploring an 163 
invariant feature subspace which reduces the inconsistencies of EEG data between subjects or 164 
different sessions. In the study in [62] domain adaptation technique is applied not only in cross-165 
subject context but also for cross datasets. The trained model in SEED dataset is tested against DEAP 166 
dataset and vice versa. It reports an accuracy improvement of 7.25%-13.40% with domain adaptation 167 
compared to the one without domain adaptation. Scientists applied an adaptive subspace feature 168 
matching (ASFM) in [63] in order to integrate both the marginal and conditional distributions within 169 
a unified framework. This method achieves 83.51%, 76.68%, 81.20% classification accuracies for the 170 
first, second and third sessions of SEED dataset, respectively. This study also conduct testing between 171 
sessions. For instance, it trains the model with the data of first session and test on the second session 172 
data. In domain adaptation method, the conversion of features into a common subspace may lead to 173 
data loss. In order to avoid this, a Deep Domain Confusion (DDC) method based on CNN architecture 174 
is used [64]. This study uses adaptive layer and domain confusion loss based on Maximum Mean 175 
Discrepancy (MMD) to automatically learn a representation jointly trained to optimize classification 176 
and domain invariance. The advantage of this is adaptive classification with retaining the original 177 
distribution information. 178 

Having observed that the distribution of commonly derived sets of features from EEG signals 179 
show differences between subjects, sessions and datasets, we anticipate that there could be some 180 
invariant feature sets that follow common trajectories across subjects, sessions and datasets. There is 181 
a lack of studies that investigate these additional feature sets in the EEG signals that can contribute 182 
to robust emotion recognition across subjects. The aim of this study is to uncover these kinds of 183 
features in order to achieve promising cross-subject EEG-based emotion classification accuracy with 184 
manageable processing loads. For this purpose, raw EEG channel recordings after normalization and 185 
a state-of-the-art pre-trained CNN model are used. The main motivation behind choosing a pre-186 
trained CNN architecture is due to their superiority in feature extraction and inherent exploitation of 187 
domain adaptation. To improve the emotion recognition accuracy, additionally in the test phase, a 188 
median filter is used in order to reduce the evident false alarms. 189 

2.1 Contributions of the Work 190 

The contributions of this work to the related literature in EEG-based emotion recognition can be 191 
summarized as follows: 192 

• Feature extraction process is completely left to a pretrained state-of-the-art CNN model 193 
InceptionResnetV2 whose capability of feature extraction is shown as highly competent in 194 
various classification tasks. This enables the model to explore useful and hidden features for 195 
classification. 196 
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• Data normalization is applied in order to remove the effects of fluctuations in the voltage 197 
amplitude and protect the proposed network against probable ill-conditioned situations. 198 

• Extra pooling and dense layers are added to the pretrained CNN model in order to increase 199 
its depth, so that the classification capability is enhanced. 200 

• The output of the network is post-filtered in order to remove the false alarms, which may 201 
emerge in short intervals of time where the emotions are assumed to remain mostly 202 
unchanged. 203 

3. Materials 204 

The EEG datasets used in this work are SEED [65], the EEG data of DEAP [66] and our own EEG 205 
dataset [76] which is a part of multimodal emotional database LUMED (Loughborough University 206 
Multimodal Emotion Database). All the datasets are open to public access. 207 

3.1 Overview of the SEED Dataset 208 

SEED dataset is a collection of EEG recordings which is prepared by BCMI laboratory of 209 
Shanghai Jiao Tong University. 15 clips are chosen for eliciting (neutral, negative and positive) 210 
emotions. Each stimuli session is composed of 5 sec. of hint of movie, 4 min. of clip, 45 sec. of self-211 
assessment and 15 sec. of rest. There are 15 Chinese subjects (7 females and 8 males) participated in 212 
this study. Each participant had 3 sessions on different days. Totally 45 session of EEG data has been 213 
recorded. The labels are given according to the clip contents (-1 for negative, 0 for neutral and 1 for 214 
positive). The data was collected via 62 channels which are placed according to 10-20 system, down 215 
sampled to 200Hz, a bandpass frequency filter from 0-75Hz was applied and presented as MATLAB 216 
“mat” files. 217 

3.2 Overview of the DEAP Dataset 218 

DEAP [22] is a multimodal dataset which includes the electroencephalogram (EEG) and 219 
peripheral physiological signals of 32 participants. For 22 of the 32 participants, frontal face video 220 
was also recorded. Data was recorded while one-minute long music videos were watched by 221 
participants. Totally 40 videos were shown to each participant. The videos were rated by the 222 
participants in terms of levels of arousal, valence, like/dislike, dominance and familiarity which 223 
changes between 1 and 9. EEG data is collected with 32 electrodes. The data was down sampled to 224 
128Hz, EOG artefacts were removed, a bandpass frequency filter from 4.0-45.0Hz was applied. The 225 
data was segmented into 60 second intervals and a 3 second baseline data was removed. 226 

3.3 Overview of the LUMED Dataset 227 

LUMED (Loughborough University Multimodal Emotion Dataset) is a new multimodal dataset 228 
that was created in Loughborough University London (UK), by collecting simultaneous multimodal 229 
data from 11 participants (4 females and 7 males). The modalities include visual data (face RGB), 230 
peripheral physiological signals (galvanic skin response, heartbeat, temperature) and EEG. These 231 
data were collected from participants while they were presented with audio-visual stimuli loaded 232 
with different emotional content. Each data collection session lasted approximately 16 minutes long 233 
that consists of short video clips playing one after the other. The longest clip was approximately 2.5 234 
minutes and the shortest one was 1 minute long. Between each clip, in order to provide the participant 235 
a refresh and rest, a 20 second-long gray screen was displayed. Although the emotional ground truth 236 
of each clip was estimated based on the content, in reality, a range of different emotions might be 237 
triggered for different participants. For this purpose, after each session, the participants were asked 238 
to label the clips they watched with the most dominant emotional state they felt. In this current study, 239 
we exploited the EEG modality of the LUMED dataset only. For this study, we have re-labelled the 240 
samples, such that only 2 classes were defined as negative valence and positive valence. This is done 241 
to make a fair comparison with other studies. Moreover, each channel’s data was filtered in the 242 
frequency range of 0.5Hz to 75Hz to attenuate the high frequency components that are not believed 243 
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to be have a meaningful correlation with the emotion classes. Normally, captured EEG signals are 244 
noisy with EMG (electromyogram) and EOG (electrooculogram) type artefacts. EMG artefacts are 245 
electrical noise resulted from facial muscle activities and EOG is electrical noise due to eye 246 
movements. For traditional classification and data analysis methods, in order to prevent heavily 247 
skewed results, these kinds of artefacts should be removed from the EEG channel data through 248 
several filtering stages. As an example, the study in [87] removes the eye movement artefacts from 249 
signal by applying ICA (Independent Component Analysis). LUMED dataset has been created 250 
initially with the purpose of training a deep-learning based emotion recognition system, described in 251 
Section 4. Depending on the type and purpose of other supervised machine learning systems, this 252 
dataset could require a more thorough pre-processing for artefact removal. In LUMED, EEG data was 253 
captured based on 10-20 system by Neuroelectrics Enobio 8 [82], an 8-channel EEG device with a 254 
temporal resolution of 500 Hz. The used channels were FP1, AF4, FZ, T7, C4, T8, P3, OZ, which are 255 
spread over frontal, temporal and center lobes of the brain. 256 

4. Proposed Method 257 

In this work, the emotion recognition model works on raw EEG signals without pre-feature 258 
extraction. Feature extraction is left to a state-of-the-art CNN model: InceptionResnetV2. The success 259 
of this pretrained CNN model on raw data classification was extensively outlined in [67]. Since the 260 
distribution of EEG data shows variations from person to person, session to session, and dataset to 261 
dataset, it is difficult to identify a feature set that exhibits good accuracy every time. On the other 262 
hand, pretrained CNN models are very competent in feature extraction. Therefore, this work gets use 263 
of it.  264 

4.1 Windowing of Data 265 

 Data is split into fixed length (𝑁) windows with an overlapping size of 𝑁/6 as shown in Figure 266 
1 (displayed for 3 random channels). One window of EEG data is given in Figure 2 where 𝑀 is the 267 
number of selected channels, 𝐶𝑎𝑏 is “𝑏𝑡ℎ data point of channel 𝑎”. 268 
 269 

 270 

Figure 1 Windowing with overlapping on raw EEG data 271 

4.2 Data Reshaping 272 
 273 

EEG data is reshaped to fit the input layer properties of InceptionResnetV2 which is shown in 274 
Figure 2. KERAS, which is an open-source neural network library written in Python, is used for the 275 
training purpose. Since KERAS is used for training purpose, the minimum input size should be (𝑁1, 𝑁, 276 
3) for InceptionResnetV2 where 𝑁1 ≥ 75 , 𝑁 ≥ 75  [68]. Depending on the number of selected 277 
channels, each channel data is augmented by creating the noisy copies of it. For instance, if the 278 
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number of selected channels is 𝑆, for each channel the number of noisy copies is calculated according 279 
to Equation 1 where 𝑐𝑒𝑖𝑙  operator rounds the number to the next integer (if the number is not 280 
integer) and 𝑁𝑁𝐶 is number of noisy copies. 281 
 282 

𝑁𝑁𝐶 =  𝑐𝑒𝑖𝑙 (
𝑁1

𝑆
) − 1, (1) 

 283 
The noisy copies of each channel are created by adding random samples of a gaussian 284 

distribution of mean 𝜇 and variance 𝜎2 where 𝜇 and 𝜎 are chosen as 0 and 0.01, respectively. This 285 
process is given in Equation 2 where [�̃�𝑎1, �̃�𝑎2, … , �̃�𝑎𝑁]  is the noisy copy of the original data 286 
[𝐶𝑎1, 𝐶𝑎2, … , 𝐶𝑎𝑁] and [𝑛𝑎1, 𝑛𝑎2, … , 𝑛𝑎𝑁] is the noise vector. 287 
 288 

[�̃�𝑎1, �̃�𝑎2, … , �̃�𝑎𝑁] = [𝐶𝑎1, 𝐶𝑎2, … , 𝐶𝑎𝑁] + [𝑛𝑎1, 𝑛𝑎2, … , 𝑛𝑎𝑁], (2) 

 289 
Since the samples are randomly chosen, each noisy copy is different from each other. 𝑁  is 290 

related to the windowing size. Therefore, a window size 𝑁 greater than or equal to 75 is chosen. 291 
We chose 𝑁 as 300 in order to provide a standard window size for datasets. This corresponds to 1.5 292 
secs for SEED dataset, approximately 2 secs for DEAP dataset and 0.6 sec for LUMED dataset. 293 
Moreover, we chose 𝑁1 as 80 for all datasets. Augmentation process is repeated 3 times in order to 294 
make the data to fit KERAS input size. This work does not use interpolation between channels due 295 
to that EEG is a nonlinear signal. The reason for adding noise is mainly for data augmentation. There 296 
are several ways of data augmentation such as rotation, shifting and adding noise. In the image 297 
processing context, rotation, shifting, zooming and adding noise are used. However, we only use 298 
noise addition for EEG data augmentation in order to both keep the channel’s original data and create 299 
new augmented data with limited gaussian noise. This is as if there was another electrode very close 300 
the electrode, which is augmented with additional noise. We use data augmentation instead of data 301 
duplication in order to make the network adapt to the noisy data and increase the prediction 302 
capability of it. This also prevents the network from overfitting due to data repetition. This technique 303 
was similarly applied in [83]. 304 

 305 
4.3 Normalization 306 
 307 

Following windowing, augmentation and reshaping, each channel data is normalized by 308 
removing mean of each window from each sample. This is repeated for all channels and the noisy 309 
copies. The aim of removing the mean is to equate the mean value of each window to 0. This protects 310 
the proposed network against probable ill-conditioned situations. In MATLAB, this process is 311 
applied automatically on the input data. In KERAS, we performed this manually just before training 312 
the network. Each dimension is created separately so they are different from each other.  313 
 314 
 315 
 316 



Sensors 2020, 20, x FOR PEER REVIEW 8 of 21 

 

 317 

Figure 2 Windowing, Reshaping and Normalization on EEG data 318 

4.4 Channel Selection 319 
 320 

In this work, we concentrated on the frontal temporal lobes of the brain. As it is stated in [72,73], 321 
emotion changes mostly affect the EEG signals on the frontal and temporal lobes. Different number 322 
of channels are tried in this work and increasing the number of channels does not help improve the 323 
accuracy. Because, technically, including the channels in the model, which are not correlated with the 324 
emotion changes, does not help and on the contrary can adversely affect the accuracy. It is also known 325 
that the electrical relations between asymmetrical channels are determining the arousal and valence, 326 
hence the emotion [74,75]. Therefore, we have chosen 4 asymmetrical pairs of electrodes: AF1, F3, F4, 327 
F7, T7, AF2, F5, F8 and T8 from frontal and temporal lobes which are equally spread on the skull. The 328 
arrangement of these channels in the window is AF1, AF2, F3, F4, F5, F6, F7, T7, T8. 329 

 330 
4.5 Network Structure 331 
 332 

In this work a pretrained CNN network, InceptionResnetV2, is used as base model. Following 333 
InceptionResnetV2, Global Average Pooling layer is added for decreasing the data dimension and 334 
extra dense layers (fully connected layers) are added in order to increase the depth and success for 335 
classifying complex data. The overall network structure is given in Figure 3, and the properties of the 336 
layers following the CNN is described in Table 1. The training parameters are specified in Table 2. In 337 
Figure 3, Dense Layer-5 determines the number of output classes and 𝑎𝑟𝑔𝑀𝑎𝑥 selects the one with 338 
the maximum probability. We use “relu” activation function to cover the interaction effects and non-339 
linearities. This is very important in our problem while using a deep learning model. Relu is one of 340 
the most widely used and successful activation functions in the field of artificial neural networks. 341 
Moreover, at the last dense layer we use the “softmax” activation in order to produce the class 342 
probabilities. 343 

 344 
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 345 

Figure 3 The structure of proposed network model. 346 

 347 

Table 1. The properties of Layers following InceptionResnetV2 base model. 348 

Layer (Type) Output shape Connected to Activation Function 

Global_Average_Pooling (None, 1536) convolution - 

Dense 1 (None, 1024) Global_Average_Pooling Relu 

Dense 2 (None, 1024) Dense 1 Relu 

Dense 3 (None, 1024) Dense 2 Relu 

Dense 4 (None, 512) Dense 3 Relu 

Dense 5 (None, z 1) Dense 4 Softmax 
1 z is set according to the number of output classes. 349 

Table 2. The training parameters of network. 350 

Property Value 

Base model InceptionResnetV2 

Additional layers Global Average Pooling, 5 Dense 

Layers 

Regularization L2 

Optimizer Adam 

Loss Categorical cross entropy 

Max. # Epochs 100 

Shuffle True 

Batch size 64 

Environment Win 10, 2 Parallel GPU(s), TensorFlow 

# Output classes 2 (Pos-Neg) or 3 (Pos-Neu-Neg) 

 351 
4.6 Filtering on Output Classes 352 
 353 

Since EEG is very prone to noise and different type of artifacts, filtering of EEG signals is widely 354 
studied in EEG recognition context. The study conducted in [84] compares three types of smoothing 355 
filters (smooth filter, median filter and Savitzky–Golay) on EEG data for the medical diagnostic 356 
purposes. The authors concluded that the most useful filter is the classical Savitzky–Golay since it 357 
smooths the data without distorting the shape of the waves. 358 
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Another EEG data filtering study is provided in [85]. This study employs a moving average 359 
filtering on extracted features and then classifies the signal by using SVM (Support Vector Machine). 360 
It achieves very promising accuracy results with limited processing time compared to similar studies.     361 

Emotions change quicker than moods for healthy people [69]. However, in very short time 362 
intervals (in the range of few seconds), the emotions show lesser variance in healthy individuals with 363 
good emotion regulation. Different from the studies [84, 85], the filtering is applied on the output in 364 
our method. It is assumed that in a defined small-time interval 𝑇 the emotion state does not change. 365 
Therefore, we apply a median filter on the output data inside a specific time interval with an aim of 366 
removing the false alarms and increase the overall emotion classification accuracy. This process is 367 
shown in Figure 4 where A and B stands for different classes. 368 
 369 

 370 

Figure 4 Filtering on Output 371 

The overall process that describes how model training and testing is carried out is visually depicted 372 
in Figure 5. 373 

 374 

Figure 5 Overall training and testing process of the EEG-based emotion recognition model 375 

5. Results and Discussions 376 

In this work, for SEED dataset, classification tests are conducted for 2 categories of classification: 377 
2-classes: Positive-Negative valence (Pos-Neg) and 3-classes: Positive-Neutral-Negative valence (Pos-378 
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Neu-Neg). SEED dataset provides the labels as negative, neutral and positive. DEAP dataset labels 379 
the valence and arousal between 1 and 9. The valence values above 4.5 are taken as positive and the 380 
values smaller than 4.5 are taken as negative. For LUMED dataset, classification is done as either 381 
positive or negative valence. One-subject-out classification for each dataset are conducted and the 382 
results are compared to several reference studies, which provide cross-subject and cross-dataset 383 
results. In one-subject-out tests, one subject’s data is excluded completely from the training set. The 384 
remaining training set is divided into training and validation sets. In this work, during training, when 385 
we do not see improvement on validation accuracy for 6 consecutive epochs, we stopped the training 386 
and applied the test data on the final model. An example is shown in Figure 6. For each user, Table 3 387 
depicts one-subject-out tests for SEED dataset based on all sessions together, with and without 388 
normalization and with and without output filtering. We also got the accuracy results without 389 
pooling and dense layers. The mean accuracies dropped by 8.3% and 11.1% without pooling and 390 
dense layers, respectively. Applying median filter on the predicted output improves the mean 391 
accuracy by approximately 4% for SEED dataset. The filter size is empirically and set to 5. This 392 
corresponds approximately to 6 seconds of data. In this time interval it is assumed that the emotion 393 
state remains unchanged. It can be seen in Table 3 that the accuracy for some users is high and for 394 
some users it is relatively lower. This is based on the modeling of the network with the remaining 395 
training data after excluding the test data. However standard deviation is still acceptable. Another 396 
issue is that when the number of classes is increased from 2 (Pos-Neg) to 3 (Pos-Neg-Neu), the 397 
prediction accuracies drop. This is because some samples labelled as neutral might fall into the 398 
negative or the positive classes.  399 

One of the most important characteristics of our work in this paper is that we provide the 400 
accuracy scores for each subject separately. This is not observed in most of the other reference studies 401 
that tackle EEG-based emotion recognition.      402 
 403 
 404 

 405 

Figure 6 An example of network training 406 

 407 

Table 3. “One subject out” classification accuracies for SEED dataset. 408 

Users 

Accuracy  

(Pos-Neg)1 

Accuracy 

(without 

normalization)  

Accuracy 

 (with 

filtering) 

Accuracy  

(Pos-Neu-

Neg)2 

Accuracy 

(without 

normalization)  

Accuracy  

(with 

filtering) 
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(Pos-Neg) (Pos-Neg) (Pos-Neu-Neg) (Pos-Neu-

Neg) 

User 1 85.7 74.2 88.5 73.3 55.2 78.2 

User 2 83.6 76.3 86.7 72.8 57.4 78.5 

User 3 69.2 56.7 74.3 61.6 53.9 67.7 

User 4 95.9 69.4 96.1 83.4 72.4 88.3 

User 5 78.4 70.1 83.2 74.1 54.3 76.5 

User 6 95.8 81.8 96.4 85.3 67.7 89.1 

User 7 72.9 56.2 77.7 64.4 53.5 70.3 

User 8 69.2 49.3 75.2 62.9 51.3 69.2 

User 9 88.6 61.5 90.5 79.2 64.8 82.7 

User 10 77.8 70.1 82.7 69.3 56.0 74.5 

User 11 78.6 65.7 83.1 73.0 59.9 78.1 

User 12 81.6 72.0 85.7 75.6 63.2 78.4 

User 13 91.2 80.2 94.2 81.3 73.1 84.9 

User 14 86.4 72.3 91.8 73.9 61.1 78.5 

User 15 89.2 73.9 92.3 75.4 60.3 80.3 

Average 82.94 68.64 86.56 73.7 60.27 78.34 

Std.Dev. 8.32 8.88 6.94 6.80 6.59 6.11 
1 Pos-Neg: Positive-Negative, 2 Pos-Neu-Neg: Positive-Neutral-Negative. 409 

 410 
Table 4 shows the cross-subject accuracy comparison of several top studies, which provides the 411 

results for 2-classes (Pos-Neg) or 3-classes (Pos-Neu-Neg). For Pos-Neg, the proposed method 412 
achieves 86.5% accuracy which is slightly lower than ST-SBSSVM [50]. However, our method has far 413 
less complexity, since it does not depend on pre-feature extraction and associated complex 414 
calculations. Furthermore, it is not clear in [50] if the reported maximum accuracy of ST-SBSSVM 415 
corresponds to the mean prediction accuracy of all subjects, or the maximum prediction accuracy of 416 
any subject amongst all. 417 

Another issue is that many reference cross-subject studies use the excluded users’ data for 418 
validation during the training process. In domain adaptation methods, target domain is also used 419 
with source domain to convert data into an intermediate common subspace that makes distributions 420 
of target and source domain closer. Similar approach with adding an error function is used in [46]. 421 
Using the target domain with source domain can increase the cross-subject [46,63] accuracy because 422 
of that the distributions between labelled and unlabeled data is controlled by some cost functions 423 
empirically. However, these kinds of approaches are not well-directed. Since, we should know that 424 
we only have source domain in cross-subject and/or cross-dataset classification. We aim to generate 425 
a model and feature set only from source domain which will be tested with unused target data (either 426 
labelled or unlabeled). What should be done is that validation and training data should be clearly 427 
split, where excluded subjects’ data should not be used in validation. After reaching the furthest 428 
epoch where overfitting does not kick in yet, training should be stopped. Then, the final trained 429 
model should be tested with the excluded subjects’ data. In our study we respected this rule. 430 

 431 
Table 4. “One-subject-out” prediction accuracies of reference studies using the SEED dataset. 432 

Work 
Accuracy  

(Pos-Neg) 

Accuracy 

(Pos-Nue-Neg) 

ST-SBSSVM [50] 89.0 - 

RGNN [53] - 85.3 

Proposed 86.5 78.3 

CNN-DDC [46] - 82.1 

ASFM [63] - 80.4 

SAAE [45] - 77.8 

TCA [44] - 71.6 
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GFK [77]  67.5 

KPCA [78]  62.4 

MIDA [79]  72.4 

 433 
Table 5 shows the accuracy results of proposed model for DEAP database for 2-classes (Pos-434 

Neg). Generally, the reported accuracies are lower than the ones achieved in the SEED dataset. This 435 
may be due to poorer labelling quality of the samples in the DEAP dataset. Some reference studies 436 
employ varying re-labelling strategies on the samples of the DEAP dataset to revise class labels. This 437 
automatically increases the reported prediction accuracy levels. However, we decided not to alter 438 
and respect the original labelling strategy used in that dataset. We only set the threshold in the exact 439 
midpoint of the scale of 1 to 9 to divide the samples into two classes, positive and negative. It is 440 
acceptable to achieve slightly lower accuracy values than some others as shown in Table 6. To 441 
reiterate, post median filtering improves the mean prediction accuracy by approximately 4%. 442 

 443 

Table 5. “One-subject-out” prediction accuracies for DEAP dataset using 2-classes (Pos-Neg) 444 

Users 

Accuracy  

 

Accuracy 

 (with median 

filtering) 

User 1 65.1 69.2 

User 2 71.2 73.4 

User 3 67.8 69.1 

User 4 61.7 65.3 

User 5 73.1 75.9 

User 6 82.5 85.4 

User 7 75.5 77.2 

User 8 67.6 71.3 

User 9 62.8 67.9 

User 10 61.9 66.6 

User 11 68.8 72.5 

User 12 64.3 69.8 

User 13 69.1 74.9 

User 14 64.3 68.8 

User 15 65.6 70.2 

User 16 68.7 72.1 

User 17 65.6 70.7 

User 18 75.8 78.3 

User 19 66.9 72.1 

User 20 70.4 73.2 

User 21 64.5 68.8 

User 22 61.6 68.3 

User 23 80.7 83.6 

User 24 62.5 69.4 

User 25 64.9 70.1 

User 26 69.7 72.9 

User 27 82.7 85.3 

User 28 68.9 73.8 

User 29 61.7 69.9 

User 30 72.9 77.7 

User 31 73.1 78.4 

User 32 63.6 68.1 

Average 68.60 72.81 



Sensors 2020, 20, x FOR PEER REVIEW 14 of 21 

 

Std. Dev. 5.85 5.07 

 445 
Table 6 shows the prediction accuracies of several studies that use the DEAP dataset for 2 classes 446 

(Pos-Neg). Our proposed method yields promising accuracy results with only limited complexity 447 
(e.g., without any pre-feature extraction cycle) when compared to others. For all eight incoming EEG 448 
data channels, the windowing, reshaping, normalization and classification processes take on average 449 
0.34 sec on the test workstation (Core i-9, 3.6 GHz, 64 Gb RAM). This is the computational time used 450 
by the python script and KERAS framework. Hence, the data classification can be achieved with 451 
roughly a delay of half a second, rendering our usable in real time systems. 452 

 453 
    454 

Table 6. One-subject-out accuracy comparison of several studies for DEAP dataset (Pos-Neg). 455 

Work Accuracy 

FAWT [51] 79.9 

T-RFE [52] 78.7 

Proposed 72.8 

ST-SBSSVM [50] 72 

VMD-DNN [47] 62.5 

MIDA [79] 48.9 

TCA [44] 47.2 

SA [80] 38.7 

ITL [81] 40.5 

GFK [77] 46.5 

KPCA [78] 39.8 

 456 
Table 7 shows the accuracy results of our proposed model on the LUMED dataset for 2-classes 457 

(Pos-Neg). It produces a mean prediction accuracy of %81.8 with a standard deviation of 10.9. Post 458 
media filtering increases the mean accuracy by approximately 4.5%. 459 

Table 7. One-subject-out prediction accuracies for the LUMED dataset. 460 

 
Accuracy  Accuracy 

 (with filtering) 

 

User 1 85.8 87.1 

User 2 56.3 62.7 

User 3 82.2 86.4 

User 4 73.8 78.5 

User 5 92.1 95.3 

User 6 67.8 74.1 

User 7 66.3 71.4 

User 8 89.7 93.5 

User 9 86.3 89.9 

User 10 89.1 93.4 

User 11 58.9 67.6 

Average 77.11 81.80 

Std. Dev. 12.40 10.92 

In this work, cross-dataset tests are also conducted between the SEED-DEAP, SEED-461 
LUMED and DEAP-LUMED datasets for positive and negative labels. Table 8 shows the cross-462 
dataset accuracy results between SEED and DEAP. Our model is trained using the data in the 463 
SEED dataset and tested on the DEAP dataset separately. It yields 58.10% mean prediction 464 
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accuracy that is promising in this context. The comparison of the cross-dataset performance of 465 
our proposed model with the other cross-dataset studies is given in Table 9. The cross-dataset 466 
accuracy of our model is consistently superior to other studies. Table 10 shows the cross-dataset 467 
results between SEED-LUMED and DEAP-LUMED. Since LUMED is a new dataset we cannot 468 
give any benchmark results with other studies. However, the mean accuracy results and 469 
standard deviations are promising.  470 

Table 8. Cross-dataset prediction accuracy results (Trained on SEED and Tested on DEAP) 471 

Users 

Accuracy  

(Pos-Neg) 

Accuracy 

 (with median filtering) 

(Pos-Neg) 

User 1 50.5 54.9 

User 2 61.7 63.7 

User 3 43.3 47.3 

User 4 46.0 51.5 

User 5 68.9 71.9 

User 6 45.3 49.4 

User 7 73.4 77.2 

User 8 51.9 56.3 

User 9 62.3 67.9 

User 10 63.8 68.6 

User 11 48.6 53.6 

User 12 46.4 51.3 

User 13 50.1 57.1 

User 14 70.4 76.9 

User 15 58.8 62.8 

User 16 59.7 66.3 

User 17 46.6 53.1 

User 18 64.7 68.5 

User 19 47.9 53.3 

User 20 39.1 44.6 

User 21 62.1 68.8 

User 22 45.6 51.3 

User 23 61.4 69.9 

User 24 54.0 59.2 

User 25 50.8 56.3 

User 26 40.8 44.7 

User 27 39.2 45.3 

User 28 42.4 48.4 

User 29 46.2 50.3 

User 30 41.7 46.2 

User 31 61.4 65.7 

User 32 53.8 57.1 

Average 53.08 58.10 

Std. Dev. 9.54 9.51 

 472 

Table 9. One-subject-out cross-dataset prediction accuracy and standard deviation comparison of 473 
several studies (Trained on SEED and Tested on DEAP) 474 

Work 
Accuracy (Pos-

Neg) 

Standard 

Deviation 
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Proposed 58.10 9.51 

MIDA [79] 47.1 10.60 

TCA [44] 42.6 14.69 

SA [80] 37.3 7.90 

ITL [81] 34.5 13.17 

GFK [77] 41.9 11.33 

KPCA [78] 35.6 6.97 

Table 10. Cross-dataset prediction accuracy results (Trained on SEED/DEAP and Tested on LUMED) 475 

Users 

(LUMED) 

Trained on SEED Trained on DEAP 

Accuracy  

(Pos-Neg) 

Accuracy 

 (with median filtering) 

(Pos-Neg) 

Accuracy  

(Pos-Neg) 

Accuracy 

 (with median filtering) 

(Pos-Neg) 

User 1 68.2 72.3 42.7 48.3 

User 2 54.5 61.7 50.4 56.8 

User 3 54.3 59.6 49.7 54.1 

User 4 59.6 64.1 51.3 57.9 

User 5 44.8 53.7 87.1 89.7 

User 6 67.1 73.5 52.6 58.4 

User 7 53.2 60.8 53.8 59.2 

User 8 64.5 71.2 46.0 49.3 

User 9 48.6 50.9 84.7 85.6 

User 10 64.9 76.3 51.5 58.8 

User 11 57.1 64.8 63.8 67.1 

Average 57.89 64.44 57.6 62.29 

Std. Dev. 7.33 7.82 14.23 12.91 

6. Conclusions 476 

In many recognition and classification problems, the most time and resource consuming part is 477 
the feature extraction process. Many scientists focus on extracting meaningful features from the EEG 478 
signals either in time and/or frequency domain in order to achieve successful classification results. 479 
However, the derived feature sets, which can be useful in the classification problem for one subject, 480 
recording session or dataset can fail for different subjects, recording sessions and datasets. 481 
Furthermore, since the feature extraction process is a complex and time-consuming process, it is not 482 
particularly suitable for online and real time classification problems. In this study, we do not rely on 483 
a separate pre-feature extraction process and shift this task to the deep learning cycle that inherently 484 
employs this process. Hence, we do not manually remove any potentially useful information from 485 
the raw EEG channels. Similar approaches, where deep neural networks are utilized for recognition, 486 
were applied in different domains, such as in [86] where electromagnetic sources can be recognised. 487 
The success of CNNs has already been shown as highly competent in various classification tasks, 488 
especially in the image classification context. Therefore, we deploy of a pretrained CNN architecture 489 
called InceptionResnetV2 to classify the EEG data. We have taken the necessary steps to reshape the 490 
input data to feed into and train this network.  491 

One of the most important issues, which influences the success of deep learning approaches is 492 
the data itself and the quality and reliability of the labels of the data. The “Brouwer 493 
recommendations” about data collection given in [19] are very useful for handling accurate data and 494 
labelling. Especially during the EEG data recording process, these recommendations should be 495 
double checked due to the EEG recording device’s sensitivity to noise. 496 

EEG signals are non-stationary and nonlinear. This makes putting forth a general classification 497 
model and a set of features based on the well-studied spectral band powers difficult. It is important 498 
to be able to identify stable feature sets between subjects, recording sessions and datasets. Since for 499 



Sensors 2020, 20, x FOR PEER REVIEW 17 of 21 

 

complex classification problems, CNN is very successful in extracting not-so-obvious features from 500 
the input data, we exploit a state of the art pretrained CNN model called InceptionResnetV2 and do 501 
not filter out any information from the raw EEG signals. For robustness, we further enrich this deep 502 
network by adding fully connected dense layers. This increases the depth and prevents the network 503 
from falling into probable ill-conditions and overfitting problems. 504 

In this work, we applied the model successfully on three different EEG datasets: SEED, DEAP 505 
and LUMED. Furthermore, we tested our model in a cross-dataset context. We have trained our 506 
model with SEED dataset, tested on DEAP and LUMED dataset. Moreover, we have trained our 507 
model with DEAP dataset and tested on LUMED dataset. We showed that the results are promising 508 
and superior to most of the reference techniques. Once we generate the fully pre-trained model, we 509 
can feed any online raw data directly as input to get the output class immediately. Since there is not 510 
a dedicated pre-feature extraction process, our model is more suitable to be deployed in real-time 511 
applications.       512 
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