11 research outputs found

    Motivational Social Visualizations for Personalized E-Learning

    Get PDF
    A large number of educational resources is now available on the Web to support both regular classroom learning and online learning. However, the abundance of available content produces at least two problems: how to help students find the most appropriate resources, and how to engage them into using these resources and benefiting from them. Personalized and social learning have been suggested as potential methods for addressing these problems. Our work presented in this paper attempts to combine the ideas of personalized and social learning. We introduce Progressor + , an innovative Web-based interface that helps students find the most relevant resources in a large collection of self-assessment questions and programming examples. We also present the results of a classroom study of the Progressor +  in an undergraduate class. The data revealed the motivational impact of the personalized social guidance provided by the system in the target context. The interface encouraged students to explore more educational resources and motivated them to do some work ahead of the course schedule. The increase in diversity of explored content resulted in improving students’ problem solving success. A deeper analysis of the social guidance mechanism revealed that it is based on the leading behavior of the strong students, who discovered the most relevant resources and created trails for weaker students to follow. The study results also demonstrate that students were more engaged with the system: they spent more time in working with self-assessment questions and annotated examples, attempted more questions, and achieved higher success rates in answering them

    Knowledgezoom for java: A concept-based exam study tool with a zoomable open student model

    Get PDF
    This paper presents our attempt to develop a personalized exam preparation tool for Java/OOP classes based on a fine-grained concept model of Java knowledge. Our goal was to explore two most popular student model-based approaches: open student modeling and problem sequencing. The result of our work is a Java exam preparation tool, Knowledge Zoom. The tool combines an open concept-level student model component, Knowledge Explorer and a concept-based sequencing component, Knowledge Maximizer into a single interface. This paper presents both components of Knowledge Zoom, reports results of its evaluation, and discusses lessons learned. © 2013 IEEE

    Learners Thrive When Using Multifaceted Open Social Learner Models

    Get PDF
    This article explores open social learner modeling (OSLM)-a social extension of open learner modeling (OLM). A specific implementation of this approach is presented by which learners' self-direction and self-determination in a social e-learning context could be potentially promoted. Unlike previous work, the proposed approach, multifaceted OSLM, lets the system seamlessly and adaptively embed visualization of both a learner's own model and other learning peers' models into different parts of the learning content, for multiple axes of context, at any time during the learning process. It also demonstrates the advantages of visualizing both learners' performance and their contribution to a learning community. An experimental study shows that, contrary to previous research, the richness and complexity of this new approach positively affected the learning experience in terms of perceived effectiveness, efficiency, and satisfaction. This article is part of special issue on social media for learning

    The Problem Solving Genome: Analyzing Sequential Patterns of Student Work with Parametrerized Exercises

    Get PDF
    ABSTRACT Parameterized exercises have recently emerged as an important tool for online assessment and learning. The ability to generate multiple versions of the same exercise with different parameters helps to support learning-by-doing and decreases cheating during assessment. At the same time, our experience with using parameterized exercises for Java programming reveals suboptimal use of this technology as demonstrated by repeated successful and failed attempts to solve the same problem. In this paper we present the results of our work on modeling and examining patterns of student behavior with parameterized exercises using Problem Solving Genome, a compact encapsulation of individual behavior patterns. We started with micro-patterns (genes) that describe small chunks of repetitive behavior and constructed individual genomes as frequency profiles that shows the dominance of each gene in individual behavior. The exploration of student genomes revealed that individual genome is very stable, distinguishing students from their peers and changing very little with the growth of knowledge over the course. Using the genome, we were able to analyze student behavior on the group level and identify genes associated with good and bad learning performance

    Guiding and motivating students through open social student modeling: Lessons learned

    Get PDF
    Background/Context: A large number of educational resources are now made available on the web to support both regular classroom learning and online learning. The abundance of available content has produced at least two problems: how to help students find the most appropriate resources and how to engage them in using and benefiting from these resources. Personalized and social learning have been suggested as potential ways to address these problems. Our work attempts to integrate these directions of research by combining the ideas of adaptive navigation support and open student modeling with the ideas of social comparison and social visualization. We call our approach Open Social Student Modeling (OSSM). Objective/Research Questions: First, we review a sequence of our earlier projects focused on Open Social Student Modeling for one kind of learning content and formulate several key design principles that contribute to the success of OSSM. Second, we present our exploration of OSSM in a more challenging context of modeling student progress for two kinds of learning content in parallel. We aim to answer the following research questions: How do we design OSSM interfaces to support many kinds of learning content in parallel? Will current identified design principles (key features) confirm the power of the learning community through OSSM with multiple learning-resource collections? Will the OSSM visualization provide successful personalized guidance within a richer collection of educational resources? Research Design: We designed four classroom studies to assess the value of different options for OSSM visualization of one and multiple kinds of learning content in the context of programming-language learning. We examined the comparative success of different design options to distill successful design patterns and other important lessons for the future developers of OSSM for personalized and social e-learning. Findings/Results: The results confirmed the motivational impact of personalized social guidance provided by the OSSM system in the target context. The interface encouraged students to explore more topics and motivated them to work ahead of the course schedule. Both strong and weak students worked with the appropriate levels of questions for their readiness, which yielded consistent performance across different levels of complex problems. Additionally, providing more realistic content collection on the navigation-supported OSSM visualizations resulted in uniform performance for the group. Conclusions/Recommendation: A sequence of studies of several OSSM interfaces confirmed that a combination of adaptive navigational support, open student modeling, and social visualization in the form of the OSSM interface can reinforce the navigational and motivational values of these approaches. In several contexts, the OSSM interface demonstrated its ability to offer effective guidance in helping students to locate the most relevant content at the right time while increasing student motivation to work with diverse learning content

    Social navigation

    Get PDF
    In this chapter we present one of the pioneer approaches in supporting users in navigating the complex information spaces, social navigation support. Social navigation support is inspired by natural tendencies of individuals to follow traces of each other in exploring the world, especially when dealing with uncertainties. In this chapter, we cover details on various approaches in implementing social navigation support in the information space as we also connect the concept to supporting theories. The first part of this chapter reviews related theories and introduces the design space of social navigation support through a series of example applications. The second part of the chapter discusses the common challenges in design and implementation of social navigation support, demonstrates how these challenges have been addressed, and reviews more recent direction of social navigation support. Furthermore, as social navigation support has been an inspirational approach to various other social information access approaches we discuss how social navigation support can be integrated with those approaches. We conclude with a review of evaluation methods for social navigation support and remarks about its current state

    Learners Thrive Using Multifaceted Open Social Learner Modeling

    Full text link

    DATA ANALYTICS AND PERSUASIVE TECHNOLOGY TO PROMOTE STUDENTS’ ENGAGEMENT AND LEARNING

    Get PDF
    The use of interactive systems and internet technology nowadays enhance the process of learning as they allow educational resources to be effectively distributed and delivered to students. This gives students the opportunity to learn at their own pace and convenience. Hence, universities employ these computing technologies to aid in teaching and learning in order to meet the needs of diverse learners. Thus, students could engage in learning activities at any time and even outside the four walls of universities. Despite the usefulness of these systems, students find it hard to engage for a long time with these learning resources. They are distracted by so many activities such as chatting, playing games, listening to music, watching movies, etc. As a result, a wide gap exists in academic performance between successful students and unsuccessful one (those that drop out of universities). Therefore, there is a need for research on how to increase students’ motivation to learn. The level of motivation of students to learn and progress in their education determine the length of time they spend on learning-related activities. This research investigated the use of persuasive technology in encouraging students to spend quality time in their learning resources. Persuasive technology describes computer applications which change users’ behaviour or opinion without using coercion or deception. Specifically, this research examined the effect of three social influence strategies of persuasive technology (social comparison, social learning, and competition) on students’ engagement in their learning activities. Socially-oriented strategies recognize the fact that humans are socially-driven and thus, our feeling, behaviour or opinion is affected by that of others (social influence). The strategies were operationalized in a persuasive system as three versions of visualization using students’ assessment grades. The persuasive system was applied to a real university course-based setting to determine its effect on students’ engagement in their learning activities. Quantitative and qualitative approaches were used in determining the effectiveness of the persuasive system versions implementing the three strategies in motivating the students to engage actively in learning activities. The results of this research show that the three socially-oriented strategies of persuasive technology employed can be used in educational software to influence students to achieve a positive goal in their learning. Precisely, the persuasive system attracted and motivated students to spend more time in their learning activities

    Learner models in online personalized educational experiences: an infrastructure and some experim

    Get PDF
    Technologies are changing the world around us, and education is not immune from its influence: the field of teaching and learning supported by the use of Information and Communication Technologies (ICTs), also known as Technology Enhanced Learning (TEL), has witnessed a huge expansion in recent years. This wide adoption happened thanks to the massive diffusion of broadband connections and to the pervasive needs for education, highly connected to the evolution in sciences and technologies. Therefore, it has pushed up the usage of online education (distance and blended methodologies for educational experiences) to, even in lately years, unexpected rates. Alongside with the well known potentialities, digital-based educational tools come with a number of downsides, such as possible disengagement on the part of the learner, absence of the social pressures that normally exist in a classroom environment, difficulty or even inability from the learners to self-regulate and, last but not least, depletion of the stimulus to actively participate and cooperate with lectures and peers. These difficulties impact the teaching process and the outcomes of the educational experience (i.e. learning process), being a serious limit and questioning the broader applicability of TEL solutions. To overcome these issues, there is a need of tools to support the learning process. In the literature, one of the known approach to improve the situation is to rely on a user profile, that collects data during the use of the eLearning platforms or tool. The created profile can be used to adapt the behaviour and the contents proposed to the learner. On top of this model, some researches stressed the positive effects stimulated by the disclosure of the model itself for inspection purposes by the learner. This disclosed model is known as Open Learner Model (OLM). The idea of opening learners' profile and eventually integrate them with external on-line resources is not new and it has the ultimate goal of creating global and long-run indicators of the learner's profile. Also the representation aspect of the learner model plays a role, moving from the more traditional approach based on the textual and analytic/extensive representation to the graphical indicators that are able to summarise and to present one or more of the model characteristics in a way that is considered more effective and natural for the user consumption. Relying on the same learner models, and stressing the different aggregation and representation capabilities, it is possible to either support self-reflection of the learner or to foster the tutoring process to allow proper supervision by the tutor/teacher. Both the objectives can be reached through the graphical representation of the relevant information, presented in different ways. Furthermore, with such an open approach for the learner model, the concepts of personalisation and adaptation acquire a central role in the TEL experience, overcoming the previous limits related to the impossibility to observe and explain to the learner the reasons for such an intervention from the tool itself. As a consequence, the introduction of different tools, platforms, widgets and devices in the learning process, together with the adaptation process based on the learner profiles, can create a personal space for a potential fruitful usage of the rich and widespread amount of resources available to the learner. This work aimed at analysing the way a learner model could be represented in visual presentation to the system users, exploring the effects and performances for learners and teachers. Subsequently, it concentrated in investigating how the adoption of adaptive and social visualisations of OLM could affect the student experience within a TEL context. The motivation was twofold. On one side was to show that the approach of mixing data from heterogeneous and not already related data sources could have a meaningful didactic interpretations, whether on the other one was to measure the perceived impact of the introduction on online experiences of the adaptivity (and of social aspects) in the graphical visualisations produced by such a tool. In order to achieve these objectives, the present work analysed and addressed them through an approach that merged user data in learning platforms, implementing a learner profile. This was accomplished by means of the creation of a tool, named GVIS, to elaborate on the collected user actions in platforms enabling remote teaching. A number of test cases were performed and analysed, adopting the developed tool as the provider to extract, to aggregate and to represent the data for the learners' model. The GVIS tool impact was then estimated with self- evaluation questionnaires, with the analysis of log files and with knowledge quiz results. Dimensions such as the perceived usefulness, the impact on motivation and commitment, the cognitive overload generated, and the impact of social data disclosure were taken into account. The main result found by the application of the developed tool in TEL experiences was to have an impact on the behaviour of online learners when used to provide them with indicators around their activities, especially when enhanced with social capabilities. The effects appear to be amplifies in those cases where the widget usage is as simplified as possible. From the learner side, the results suggested that the learners seem to appreciate the tool and recognise its value. For them the introduction as part of the online learning experience could act as a positive pressure factor, enhanced by the peer comparison functionality. This functionality could also be used to reinforce the student engagement and positive commitment to the educational experience, by transmitting a sense of community and stimulating healthy competition between learners. From the teacher/tutor side, they seemed to be better supported by the presentation of compact, intuitive and just-in-time information (i.e. actions that have an educational interpretation or impact) about the monitored user or group. This gave them a clearer picture of how the class is currently performing and enabled them to address performance issues by adapting the resources and the teaching (and learning) approach accordingly. Although a drawback was identified regarding the cognitive overload, the data collected showed that users generally considered this kind of support useful. There is also indications that further analyses can be interesting to explore the effects introduced in the teaching practices by the availability and usage of such a tool

    Open social student modeling in competency-based education

    Get PDF
    Ph.D
    corecore