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ABSTRACT
Parameterized exercises have recently emerged as an impor-
tant tool for online assessment and learning. The ability
to generate multiple versions of the same exercise with dif-
ferent parameters helps to support learning-by-doing and
decreases cheating during assessment. At the same time,
our experience with using parameterized exercises for Java
programming reveals suboptimal use of this technology as
demonstrated by repeated successful and failed attempts to
solve the same problem. In this paper we present the re-
sults of our work on modeling and examining patterns of
student behavior with parameterized exercises using Prob-
lem Solving Genome, a compact encapsulation of individual
behavior patterns. We started with micro-patterns (genes)
that describe small chunks of repetitive behavior and con-
structed individual genomes as frequency profiles that shows
the dominance of each gene in individual behavior. The ex-
ploration of student genomes revealed that individual genome
is very stable, distinguishing students from their peers and
changing very little with the growth of knowledge over the
course. Using the genome, we were able to analyze student
behavior on the group level and identify genes associated
with good and bad learning performance.

Categories and Subject Descriptors
Information systems [Information Systems Applications]:
Data mining
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1. INTRODUCTION
Parameterized exercises have recently emerged as an impor-
tant tool for online assessment and learning. A parameter-
ized exercise is essentially an exercise template that is in-
stantiated at runtime with randomly generated parameters.

As a result, a single template is able to produce a large num-
ber of similar, but distinct questions. While parameterized
questions are considerably harder to implement than tradi-
tional “static” questions, the benefits offered by this technol-
ogy make this additional investment worthwhile. During as-
sessment, a reasonably small number of question templates
can be used to produce online individualized assessments for
large classes minimizing cheating problems [12]. In a self-
assessment context, the same question can be used again and
again with different parameters, allowing every student to
achieve understanding and mastery. The above mentioned
properties of parameterized exercises made them very at-
tractive for the large-scale online learning context. At the
same time, parameterized exercises as a learning technology
have its own problems. Our experience with personalized
exercises for SQL [17] and Java [7] in the self-assessment
context demonstrated that the important ability to try the
same question again and again is not always beneficial, es-
pecially for students who are not good in managing their
learning. The analysis of a large number of student logs
revealed some considerable number of unproductive repeti-
tions. We observed many cases where students kept solving
the same exercise correctly again and again with different
parameters, well passed the point when it could offer any
educational benefit. While it might increase self-confidence,
students’ time and effort might be spent better by advanc-
ing to more challenging questions. We also observe cases
where students persisted in failing to solve the same, too
difficult exercise, instead of focusing on filling the apparent
knowledge gap or switching to simpler exercises.

The work presented in this paper was motivated by our belief
that the educational value of parameterized exercises could
be increased by a personalized guidance mechanism that can
predict non-productive behavior and intercept it by recom-
mending a more efficient learning path. Main challenge with
predicting unproductive behavior is to examine the stability
of behavior patterns in the problem solving process. If the
patterns, such as specific unproductive sequences, appear
at random, there is a slim chance to predict and prevent
them. If, on the contrary, specific patterns are associated
with certain features of the student (such as knowledge and
individual traits), exercise complexity, or the learning pro-
cess stage, there is a good chance to learn the association
rules and use it for prediction. In this paper we performed
an extended study of problem solving patterns in the con-



text of parameterized exercises. We explored the connection
between these patterns and the components of the learning
process mentioned above. Our study produced a rather un-
usual result. While it was more plausible to expect that the
patterns are related to the current level of student knowl-
edge, our analyses revealed that the patterns are related to
student problem solving tendency. More exactly, we discov-
ered that every student has a specific combination of micro-
patterns, a kind of problem solving genome. We observed
that this genome is relatively stable, distinguishing every
student from his or her peers, it changes very little with the
growth of the student knowledge over the course. We also
discovered that genomes are not randomly distributed, and
instead, students with similar genomes form cohorts that
perform relatively similarly in the problem solving process.
We believe that our discovery of problem solving genome is
a very important step towards our goal of predicting and
preventing unproductive behavior. Indeed, the stability of
patterns on the personal level makes the task of pattern
prediction feasible while the presence of cohorts opens the
way to detect student problem-solving genome early in the
learning process. In this paper we present our approach
of detecting student problem-solving genome and report our
exploration of the genome on the level of individual students
and cohorts.

The rest of the paper is structured as follows. Next section
briefly reviews several areas of related work. Section 3 de-
scribes the dataset used in the study. Section 4 presented
the method for building the Problem Solving Genome. In
Section 5 we explore the Genome stability and it’s relation
with performance groups and the complexity of the exer-
cises. Section 6 summarizes the contribution and discusses
future work.

2. RELATED WORK
2.1 Parameterized Questions and Exercises
Recent studies in educational technology have demonstrated
promising results by leveraging computer and Web abilities
to deliver parameterized exercises worldwide, which has be-
come one of the focusing topics in Web-enhanced education.
One of the most influential system, CAPA [9], was evalu-
ated in a number of careful studies [8, 9], providing clear
evidence that individualized exercises can significantly re-
duce cheating while improving student understanding and
exam performance. The CAPA technology has been later
integrated into popular LON-CAPA platform [12] and its
functionality defined the assessment architecture of eDX.
Due to the complexity of parameterized assessment, the ma-
jority of work on parameterized questions and exercises was
done in physics and other math-related domains where a
correct answer to a parameterized question can be calcu-
lated by a formula. There are, however, examples of using
this technology in other domains. In particular, our team
focused on parameterized exercises for teaching program-
ming. We developed and explored QuizPACK platform for
C-programming [3] and a similar QuizJET platform for Java
programming [7]. Problem solving repetition behaviors has
been studied by psychologists in different ways, providing
evidence that repetition behaviors have roots in cognitive,
metacognitive and motivational aspects and explaining why
some students quit and some persist when facing challeng-
ing problems [14]. Schunk [16] shows the positive correla-

tion between persistency in repeating and self-efficacy (be-
lieve on self capabilities/skills to solve a problem). The at-
tribution theory [19] describes how students that attribute
performance outcomes (successes, failures) to effort tend to
work harder than students who attribute them to ability.
Grounded in the literature in educational psychology, we
conjecture that patterns on problem solving repetition may
be explained by individual learners’ motivational traits that
are part of learners’ personality [15]. These theories provide
insights into analyzing to which extent these behaviors are
stable on students.

2.2 Sequential Pattern Mining in Educational
Context

Minining sequential patterns of students actions has recently
gained attention in educational data mining field. Using ac-
tivity data collected from groups of students working with
interactive tabletops, Martinez et al [13], mined and clus-
tered frequent patterns to compare distinct behaviors be-
tween low and high achievement groups. The differential se-
quence mining method, introduced by Kinnebrew and Biswas
[11] has been successfully used to differentiate behavioral
patterns among groups of students (such as low and high
performance students). The method uses SPAM [1] to find
common patterns in the sequences of the whole dataset, and
then applies statistical tests to reveal differences in the fre-
quencies of the discovered patterns among different groups.
The same authors have applied this technique in data col-
lected from the system Betty’s Brain to discovered patterns
that can distinguish self-regulated behaviors in successful
and non-successful students [2], and to analyze the evolu-
tion of reading behaviors in high and low performance stu-
dents during productive and non-productive phases of work
[10]. Herold, Zundel and Stahovich [4] have used the dif-
ferential sequence mining on sequences of actions on hand-
written tasks and proposed a model to predict performance
on the course based on pattern features. Our work extends
this prior work by utilizing and aggregating the mined se-
quence patterns to construct student activity profiles. Such
profiles enable us to evaluate the statistical differences at
the student, exercise, and group levels.

3. SYSTEM AND DATASET
We collected answers of students who worked with QuizJET
[7] parameterized Java exercises in the context of an intro-
ductory object-oriented programming class at the School of
Information Sciences in the University of Pittsburgh. The
students accessed the exercises through Progressor+ inter-
face [6]. The system was provided for self-study and its use
was not mandatory. Each QuizJET exercise was generated
from a template by substituting a parameter variable with
a randomly generated value. Exercises generated using the
same template were equal from semantics point of view. To
answer the exercise the student had to mentally execute a
fragment of Java code to determine a value of a specific
variable or the content printed on a console. When the user
answers, the system evaluates the correctness, reports to the
student whether the answer was correct or wrong, shows the
correct response, and invites the student to“try again”. Next
time, the exercise will be generated with other values and
the correct answer will be different. In this way, the stu-
dent can try the same exercise many times, leaving a trace



Figure 1: Steps for building the Problem Solving
Genome.

of successes and failures. In total, Progressor+ provided ac-
cess to 103 different parameterized exercises organized in 19
topics (Variables, Objects, Arrays, etc.). Exercises are also
labeled in terms of complexity as easy, medium and hard.
There are 41 easy exercises, 41 medium exercises and 19 hard
exercises. The dataset includes three semesters of student
data (Spring 2012, Fall 2012 and Spring 2013). Overall, the
dataset recorded 6489 incorrect and 14726 correct attempts.
Easy exercises were attempted 10620 times, medium com-
plexity exercises were attempted 7876, and hard exercises
were attempted 2719 times. Once started to work with an
exercise the students might attempt it just once or try it
several times in a sequence. The dataset includes 4212 sin-
gle attempts (no repetition) and 4758 sequences with more
than 1 attempt. Among these there are 2717 with more
than 2 attempts, 1583 with more than 3 attempts, and 1016
sequences with more than 4 attempts.

4. BUILDING THE PROBLEM SOLVING
GENOME

The key idea of our “genome” approach is to build a com-
pact characteristics of student problem-soving behavior on
the level of micro-patterns. To build a genome we started
with finding proper micro-patterns (genes) and then built a
genome of a student as a vector representing the frequen-
cies of different micro-pattern occurrences in the student
problem-solving logs. An overview of the genome-building
process is shown in Figure 1. To build the genes, we started
by label students’ attempts using time and correctness (Fig-
ure 1(a), Section 4.1). We then apply sequential pattern
mining to extract sequential micro-patterns Figure 1 (b),
Section 4.2). Most frequent micro-patterns were selected as
genes and used as a basis for the Problem Solving Genome,
which is a vector of gene frequencies (Figure 1(c), Section
4.3). This section presents the genome-building process in
details while the next sections report our exploration of the
Genome.

4.1 Attempts labeling
We use both time and correctness of each attempt to la-
bel it for further use in sequential pattern mining analysis.
In this way, each action will convey more information than
using correctness only. As shown in the Figure 2, distri-
bution of times for first attempts are different from other
(non-first) attempts. This is reasonable if we consider that
the user needs extra time the first time to read and under-
stand the exercise. Additionally, time distribution is differ-
ent for different exercises, as in general, complex exercises
need longer times. Thus, for labeling the time factor, we
used time information of historical records in our system to
compute median times for each exercise for both first and
other attempts. Then, we labeled the attempt as short or
long depending on the time being lower or greater than the
median of the distribution for the specific exercise. Combin-
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Figure 2: Time distributions (logaritmic) for easy,
medium and hard exercises. The right curve is al-
ways the first attempt time distribution, showing
that first attempts usually take longer times.

Table 1: Top 20 patterns (genes) ordered by sup-
port. Observe the presence of many inefficient pat-
terns like ‘ss’ or ‘FF’ among top 20.

Pattern Support Pattern Support
1 ss_ 0.163 11 _FS 0.07
2 ss 0.107 12 FS 0.066
3 Ss 0.101 13 FS_ 0.060
4 SS_ 0.091 14 FF 0.059
5 _FS_ 0.086 15 SS 0.058
6 _FF 0.083 16 _SS 0.054
7 Ss_ 0.081 17 _ss_ 0.053
8 _fS_ 0.079 18 _SS_ 0.052
9 _fF 0.077 19 sss 0.050
10 sss_ 0.074 20 _fS 0.048

ing correctness and time, we finally label the attempts using
the letters ‘s’ (lowercase s) for a short success, ‘S’ (uppercase
S) for a long Success, ‘f’ for a short failure, ‘F’ for a long
Failure.

The labeled attempts are organized in sequences by pairs
student-question within a session in the system. Each se-
quence su,e represent the sequential attempts of user u in
the exercise e within a session. If the user attempted the
same exercise in different sessions, there will be more than
one sequence su,e. Additionally, we mark starting and end-
ing points on sequences using ‘ ’ (underscore). For example,
a sequence fSs means start with a short failure, make a
long success and then finish with a short success.

4.2 Sequential pattern mining
To discover frequent patterns, we use PexSPAM algorithm
[5], which extends the fast SPAM algorithm [1] with gap and
regular expression constraints. Given a sequence database
D = s1, s2, ..., sn, the support of a pattern α is the number
of sequences of D which contains α as a subsequence at least
once. If the support of α is bigger than a threshold, then α
is considered a frequent pattern. Support measure does not
inform for multiple occurrences of the pattern within a se-
quence. In this work, we set a small minimum support in 1%
because even when a pattern occurs in overall few sequences,
it can still make a difference when looking at the aggregation
of pattern occurrences by student. Additionally, since we are
interested in looking at patterns of 2 or more sequential at-
tempts, we set the gap in 0 and considered only sequences
with more than 1 attempt. After running the mining algo-
rithm, we discover 102 common patterns occurring at least
in 1% of the sequences. These common micro-patterns of
student behavior play the role of genes in our approach. The
top 20 genes and the corresponding support can be seen in
Table 1.



4.3 The problem solving genome: character-
izing students with pattern vectors

Using the 102 gene patterns discovered by the sequential pat-
tern mining, we build individual frequency vectors that show
how frequently each gene appears in student problem solv-
ing behavior. Since this vector captures in a compact form
the specifics of student problem solving behavior, we call
it student Problem Solving Genome. Note that frequency-
based approach allows building individual genome using any
subset of gene sequences, for example, all sequences in the
term, the first half of sequences of the student activity on
the term, a random subset of sequences, etc.

Since a pattern might occur more than once in a sequence,
and more than one pattern may occur in a sequence, the
frequency vectors are not summing to 1. Thus, we normalize
the vectors for further analysis.

5. EXPLORING THE PROBLEM-SOLVING
GENOME

5.1 Problem Solving Genome stability
The first step of problem-solving genome exploration is as-
sessing its stability. To what extent the name “genome” that
we assigned to the micro-pattern frequence vector is justi-
fied? Is it just a random mix of pattern which could be
different for different time slots or, like a real genome, it is a
stable characteristic of a user that distinguishes him or her
from the peers? A good approach to check genome stability
is to randomly split sequences of user activity patterns into
two equal sets and build the genome vector from each of two
halves. If the genome is stable, then two random halves of
the split genome should be significantly closer to each other
than to half-genomes of other users. In contrast, if genome
halves are no closer to each other than to half-genome vec-
tors of other users, we can’t consider genomes as stable user
characteristics. To assess the stability hypothesis we built
two half-genomes for each user by randomly splitting his or
her ovserved sequences in half and compiling gene frequency
vectors for each half. We then calculate pairwise distances
between all half-genomes.

To compute distances, we use Jensen-Shannon (JS) diver-
gence as it is a symmetric version of Kullback-Leibler di-
vergence and has been widely used for computing distance
between frequency distributions. Additionally, we filter out
all student with less than 60 sequences, limiting differences
due to extreme differences on amount of activity. There are
32 students with at least 60 sequences. In this analysis we
use paired samples t-test on the difference between the self
and other distances. Normality assumption is met. Results
are shown in Table 2 first row (a). Students self-distances are
significanly smaller (M = .2370, SE = .0169) than distances
to other students (M = .4815, SE = .0141), t = −15.224,
p < .001, Cohen’s d = 2.693.

While similarity of random half-genomes is a very strong ar-
gument in favor of genome stability, the random split has one
weak aspect: since each of the random halves represents stu-
dent micro patterns over the whole duration of the course,
it is still possible that student genome gradually changes
over the course duration from one pattern frequency to an-
other. To assess temporal stability of genome we need to

Table 3: Mean and standard error of distances
within and between easy and hard exercises.

Mean SE
within easy .3311 .0031
within hard .3478 .0085

between easy-hard .4145 .0050

use temporal split, i.e., to compare half-genomes built from
the temporally first half (early) and second half (late) of stu-
dent sequences. Results on Table 2 second row (b) confirm
the temporal stability hypothesis: distances between halves
of the same genome (M = .3211, SE = .0214) are signifi-
cantly smaller than between-student distances (M = .4997,
SE = .0164), t = −6815, p < .001, Cohen’s d = 1.205. This
result is very important, it confirms that individual prob-
lem solving genome is stable, it characterizes each user as
individual and doesn’t change with the growth of his or her
knowledge or course progression. In other words, the fre-
quencies of micro-pattern appearances is a true “genome”
that uniquely characterizes every user while sufficiently dis-
tinguishing them from others.

5.2 Effect of complexity
While we discovered that the knowledge level and course
stage doesn’t affect the genome, it is still possible that be-
havior patterns are affected by exercise complexity. To un-
derstand how the complexty level of the exercises impact
on the pattern frequencies, we analyze distances between
the genome of the exercises (i.e pattern frequency vector for
each exercise). Having the exercises’ genome and the pre-
defined classification in easy, medium and hard, we select
pairs of exercises within and between complexity levels and
compute distances using Jensen-Shannon divergence. We
filter out all questions with less than 20 sequences and per-
form comparisons between extremes groups, i.e. easy and
hard complexity levels to extreme the differences. Normal-
ity and homogeneity of the variance on pair distances are not
met on all levels, thus non-parametric test is applied. Re-
sults of the Krustal-Wallis test shows significant differences
between distances within and between levels, χ2(2, N =
1596) = 160.359, p < 001. Mean and standard error of dis-
tances within easy, within hard, and between easy and hard
groups are shown in Table 3. Mann-Whitney test is per-
formed to test differences among the levels. Distances within
easy exercises (mean rank = 626.16) are significantly smaller
than distances between easy and hard exercises (mean rank
= 909.77), z = −12.564, p < .001. Similarly, the dis-
tances within hard exercises (mean rank = 277.20) are sig-
nificantly smaller than distances between easy and hard ex-
ercises (mean rank = 383.13), z = −4.733, p < .001. These
results shows a clear dependency of the pattern behaviors
with the complexity level of the questions. This is reason-
able given that hard questions, which need more time, are
expected to discourage repetitions.

The impact of exercise difficulty on the behavior patterns
leaves open an interesting opportunity that genome is as
much impacted by the unique exercise difficulty profile or
every user as by their individual differences. To exclude this
option, we re-examine the analysis on Section 5.1 now con-
sidering randomly split genome built only from activity on
easy exercises, to control for differences of students amount



Table 2: Statistical tests comparing students with themselves and others.
self distances dist. to others

M SE M SE t sig. Cohen’s d
a) randomly split genome .2370 .0169 .4815 .0141 -15.224 < .001 2.693
b) early/late genome .3211 .0214 .4997 .0164 -6.815 < .001 1.205
a) randomly split genome in easy exercises .3736 .0214 .6065 .0128 -10.352 < .001 1.657

of activity on different complexity exercises. We perform
this analysis with 39 students having at least 20 sequences
in easy questions. Results shown in last row (c) in Table 2
confirm the stability of patterns: students are more similar
to themselves (self distance M = .3736, SE = .0214) than
to others (distances M = .6065, SE = .0128), t = −10.352,
p < .001, Cohen’s d = 1.6569, even within the exercises of
the same complexity.

5.3 Patterns of Success within student groups
Since one of the goals of this paper is using behavior anal-
ysis to identify and prevent inefficient patterns, it would be
valuable to use the genome to identify which patterns make
groups of students more or less successful in the learning
process. The easiest approach to do it is to split students
into performance-related groups and find unique genome as-
pects in this group. This simple approach, however, might
not work since for students with very different genomes, dif-
ferent behavior patterns might be related to success. In this
case, to find connection between patterns and performance,
we shold group students into groups with similar behavior
and contrast most and least successful students within each
group. In this section we perform both kinds of the analysis.

5.3.1 Behavior Patterns for Predefined Performance
Groups

Predefined Performance Groups (PPG) are defined based
on pre and posttest scores that we collected. The pre and
posttest were highly similar among different semesters (small
variation on questions) and the scores were further normal-
ized as (score) / (max score) (having that min score is 0).
Additionally, using the normalized pre and posttest scores,
we compute a normalized learning gain score as (normalized
post score) - (normalized pre score). For each of the pretest,
posttest, and learning gain measures, students are classi-
fied in three groups using the percentiles 33.3 and 66.7: low,
medium and high. For example, a student with pretest lower
or equal than the percentile 33.3 in the pretest score distri-
bution is classified as low pretest student. Summarizing,
we have 3 PPG (low, medium, high) for each performance
measure (pretest, posttest and learnig gain).

We collected 97 pretest and 93 posttest results in the 3
semester. We further filter out the students with few us-
age of the system, setting a threshold of minimum 20 se-
quences and minimum 2 sessions. Additionally, we exclude
one student that present in the first 6 sequences a very un-
usual number of repetitions, and we consider this student as
a clear outlier. At the end our data consists in 67 students
having pretest, and 65 of them having both pre and posttest.
Table 2 shows the number of students in each PPG.

Does students with similar performances have similar pat-
terns for solving parameterized exercises? Is this similarity,
between the students of the same predefined performance

Table 4: Number of students in each predefined per-
formance group (PPG).

Pretest Posttest Learning gain
(total=67) (total=65) (total=65)

low 24 22 22
medium 16 19 20

high 27 24 23

group, more than the similarity we can find between the stu-
dents from different groups? For this analysis we contrast
the genome built using all the term activity (all problem
solving sequences) of the students classified in the perfor-
mance groups described before. We sample 50% of all possi-
ble pairs of students within and between PPGs and compute
the distances (Jensen-Shannon divergence) of all within and
between group pairs. Then, we compare the average of dis-
tances within and between groups to see if students inside
each group are more similar to each other than to students
in other groups. Normality and homogeneity of variance
is not met for all groups, thus we use Krustal-Wallis non-
parametric mean rank test and Mann-Whitney test for single
comparisons. We constrained the analysis to PPGs low and
high to see extreme differences.

Results are shown in Table 5. Mann-Whitney comparison
is reported only where significant differences among groups
were found (pretest). For pretest groups, distances within
the low group (mean rank = 222.70) are significantly smaller
than distances between low and high groups (mean rank =
258.21), z = −2.537, p = .011. This suggests that stu-
dent with no previous experience tend to behave differently
than students with stronger background. There is no signifi-
cant difference between high and low-high distances, though,
meaning that high group behave more heterogeneously than
low group. For posttest and learning gain groups there are
no significant differences on distances within and between
groups. This results are intriguing, as we will expect to
find clear differences among performance groups. Since we
could not find those differences, we could hypothesize that
specific behavior patterns can’t be easily characterized as
universally helpful or harmful for student performance, in-
stead, the impact of each micro-pattern on student behavior
might depend on the whole profile of micro-patters, i.e., the
genome. This, to find connections between genome and per-
formance, we need to start from the opposite side: cluster
the students based on the genome, characterize the clusters
in terms of the distinguishable patterns, and find helpful
and harmful patterns within each class. We describe these
analyses in the following sub sections.

5.3.2 Clustering students by their genome
We use the genome as a feature vector and cluster students
using spectral clustering technique [18] as it gives a better
separation of the students. We choose two clusters (K=2)
as we observe that two clusters give the largest eigen-gap,



Table 5: Statistical tests on differences on distances between pairs of students within low, within high, and
between low and high PPGs.

low high low-high Krustal-Wallis test Mann-Whitney test
M SE M SE M SE Mean Ranks χ2 sig. Mean ranks z sig.

(low,high,low-high)
Pretest .465 .014 .547 .017 .512 .010 294.68, 368.67, 341.51 11.926 .003 222.70, 258.21 -2.537 .011

low < low-high
Posttest .486 .016 .516 .018 .511 .011 256.41, 271.97, 273.69 1.061 .588 - - -
L. Gain .507 .019 .470 .018 .517 .013 242.32, 216.57, 251.35 5.276 .071 - - -
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Figure 3: Top 30 patterns and their frequencies in each cluster. Patterns are ordered by the difference on
frequencies between cluster 2 (non-confirmers) and 1 (confirmers).

suggesting there are two intrinsic groups in the data. Figure
3 shows the top 30 frequent patterns in both of the clus-
ters. Each point represents the average frequency of seeing
a particular pattern in the cluster. Error bars are included
to indicate significance. We order the patterns in x-axis by
the differences between clusters 2 and 1. As we can see in
this figure, some of the patterns, such as fS , FS , ss,
Sss, etc., occur with significant frequency difference in the
two clusters and some other patterns, such as fS, fs , Ff,
etc., do not show significant differences. If we look more
closely, the sequences that start with failure are mostly re-
lated to the students in cluster 2 and the sequences that
start with success are mostly related to the students in clus-
ter 1. Also, we can see that the students in cluster 1 tend to
repeat their successful attempts more and more frequently
(e.g. the ssss pattern). In other words, even when they get
the right answer to the question, they will insist on confirm-
ing knowing the question by repeating it again and again.
Unlike students in cluster 1, the students in cluster 2 are
much less prone to this “confirmation” behavior. Instead,
they are more prone to stop working with an exercise early,
frequently right after figuring out the first right answer to
the question, even if they have struggled for the correct an-
swer in their previous attempts (e.g. fS , FS , and FS
patterns). Thus, using the student genome, we can identify
two major types of student behaviors in solving parameter-
ized exercises. Based on these observations above, we call
the first cluster of the students the confirmers and the sec-
ond cluster the non-confirmers.

5.3.3 Performance differences among clusters
Once two clusters of students that are similar in their overall
behavior are identified, we can re-examine the connection
between student success in the course and the aspects of
their genomes on the cluster level. To find out the cluster-
level relationship between different behaviors and learning

outcomes, we study pattern by pattern differences between
different PPGs within each cluster and describe the patterns
that distinguish them. Both of the clusters have students
from all PPGs. As a result, we cannot say that the stu-
dent’s genome has a direct impact on the performance of
the student. Both confirmers and non-confirmers can have
high or low performance. To look at the clusters deeply and
to see if there are any differences in the patterns, within each
cluster, that can drive students’ performance, we repeat the
first analysis within each cluster looking at the learning gain.
For each of the clusters, we look at the patterns and the dif-
ference between their average frequencies for the students
with low and high learning gain. The result is shown in Fig-
ure 4. The upper diagram shows the students in cluster 1
(the confirmers) and the lower diagram shows the students
in cluster 2 (the non-confirmers). The red line with round
markers show the pattern frequencies for low learning gain
students and the blue line with the triangle marker is rep-
resentative of high learning gain students.

If we look at the patterns in cluster 1 (the confirmers), we
can see that there are some patterns that show significant
difference between the low and high learning gain students.
All of these patterns start with a failure: FS and Ff have
long failures in the beginning of the patterns and fF, fs ,
and ff, have short failures at the beginning of the patterns.
Among these patterns, only FS is practiced more by the
high learning gain students. This indicates that, among the
confirmer students, the ones that put a good amount of effort
to answer a question right, after a long failure and stop
repeating the same question learn more. The low learning
gain group shows more frequent use of the Ff, fF, fs , and
ff patterns. The common element of all of these patterns is

short failure (f ). If we look at Figure 4 for confirmers, we can
see that all of the patterns that include a short failure, are
practiced more by the low gain students. This can indicate
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Figure 4: Top 30 patterns and their frequencies for low and high learnig gain PPG by cluster.

that the low gain confirmer students do not spend enough
time and thought on the questions that they do not know
the answer of.

The non-confirmers show more pattern differences between
the low and high learning gainers. We can see that the high
learning gain group follow the patterns of FF, FS, FS,
SS , SS, SS, and Ss more frequently. This means that the
high learning gain, non-confirmer students tend to continue
trying a non-parameterized exercise and spending time on it
after they failed in it or it took them a long time to get to the
correct answer for that exercise. In this sense, these students
are closer to the confirmer group of students (cluster 1) but
only at the times that they are not sure if they have learnt
the solution to an exercise. On the other hand, the low
learning gain group tend to develop the fs , fs , and ff
patterns in their sequences. The first two indicates that they
give up practicing the exercise after having a short success
that comes after a short failure. Also, they tend to repeat
short failures on the same exercise more often.

Comparing beneficial and harmful patterns for the two clus-
ters, we can make an interesting observation that the in-
creased use of several beneficial patterns for each cluster
make students more familiar to the opposite cluster. For ex-
ample, while confirmers have generally low tendency to stop
after first hard success FS , successful confirmers demon-
strate this pattern much more frequently. On the other side,
while non-confirmers generally tend to stop after first hard
success, successful non-confirmers have higher tendency to
continue after hard success as shown by significantly in-
creased frequencies of such patterns as SS , SS , and Ss
In other words, while the two clusters are considerably dif-
ferent by their behavior overall, the “centrist” students that
are closer to the opposite cluster tend to be more successful,
while the extreme behavior that distinguishes the cluster is
frequently related to less successful performance.

Another interesting observation here is that having repeated
successes in the same exercise does not add to the learning
gain of the students. We can see that none of the patterns
having more than one short success make any significant
differences between the low and high learning gain students.
The above analysis shows the specific patterns that can ex-

plain the differences between high and low learning gain stu-
dents in each of the confirmers and non-confirmer clusters.
In both of the clusters, short failures are more associated
with low learning gain students. For the non-confirmers
group, the students, who acted similar to the confirmers
group in cases of having a hard time getting to the right
answer, have higher learning gain. Also, repeating the short
success did not add to the learning gain of students. These
results are promising for the further guidance of the stu-
dents in the correct use of the system to increase their per-
formance. Based on a students’ pattern cluster, we can en-
courage them to follow the sequences that are associated
with high learning gain for their cluster (such as encourag-
ing them to think longer on questions) and discourage them
from following the patterns that have no effect or negative
effect (e.g. stopping the student from repeating short suc-
cesses).

6. CONCLUSIONS AND FUTURE WORK
In this paper we explored patterns of student repetitive work
with parameterized exercise for Java programming domain.
The goal of this work was to understand the connections
between micro- and macro-level behavior patterns and fac-
tors that might be responsible for this behavior such as ex-
ercise difficulty, student personality, level of knowledge, or
position in the course. In turn, we hoped that this under-
standing could help us predict how a specific student would
work with a specific exercise and prevent inefficient behav-
ior such as repetitive successful attempts to solve an exercise
when the exercise become too easy to contribute to student
knowledge growth. To explore the impact of students’ per-
sonal features on their work with programming exercises,
we build the student problem solving genome, a compact
representation that encapsulates the specifics of individual
behavior patterns. To build the genome, we started with
micro-patterns (genes) that describe small chunks of repet-
itive behavior in relation to the correctness and duration of
each attempt. We then constructed a genome as a frequency
profile that shows the dominance of each gene in the student
behavior.

Using the genome approach we analyzed the stability of be-
havior patterns for students and groups and explored their
connection with student success in the course. The most



interesting finding was stability of the genome on individual
level. As our analysis showed, the genome characterizes a
user as a person rather than her level of knowledge as might
be expected in an educational system. It uniquely identi-
fies a user among other users and doesn’t change with the
considerable growth of student knowledge over the course
duration. While the problem complexity does affect the be-
havior patterns as well, we demonstrated that the genome
is defined by some inherent characteristics of the user rather
than a difficulty profile of the problems they solve.

To find connection between problem-solving genome and
student performance, we examined genomes for various groups
of students. Since a direct attempt to associate genome with
performance-related groups (a typical way group students in
educational context) was not successful, we started from the
opposite side and formed student groups on the basis of their
genome (i.e., behavior) similarity. As it appears, all students
could be most reliably split into just two cohorts that are
differ considerably by their behavior. After that split, we
were able to contrast successful and less successful learn-
ers by their behavior and identify “beneficial” and “harmful”
genes for each cohort. In particular, it was interesting to ob-
serve that the behavior of successful learners in each cohort
was somewhat closer to the behavior of the opposite cohort.

In the future work we would like to proceed to our ultimate
goal of recognition and prediction of inefficient behavior.
The discovery of a stable genome provides a good ground
for developing a recognition engine and the presence of be-
havior cohorts indicates that some good guidance (encour-
aging“beneficial”micro-patterns and discouraging“harmful”
ones) could be provided even in the early stage of student
work when it might be harder to build a reliable genomic
profile. We also believe that the “genome” approach pro-
vides a new way for exploration of student problem solving
behavior and plan to explore to the stability of “genome”
and the presence of behavior cohorts in other domains with
parameterized problem solving.
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