17,739 research outputs found

    Scalable video transcoding for mobile communications

    Get PDF
    Mobile multimedia contents have been introduced in the market and their demand is growing every day due to the increasing number of mobile devices and the possibility to watch them at any moment in any place. These multimedia contents are delivered over different networks that are visualized in mobile terminals with heterogeneous characteristics. To ensure a continuous high quality it is desirable that this multimedia content can be adapted on-the-fly to the transmission constraints and the characteristics of the mobile devices. In general, video contents are compressed to save storage capacity and to reduce the bandwidth required for its transmission. Therefore, if these compressed video streams were compressed using scalable video coding schemes, they would be able to adapt to those heterogeneous networks and a wide range of terminals. Since the majority of the multimedia contents are compressed using H.264/AVC, they cannot benefit from that scalability. This paper proposes a technique to convert an H.264/AVC bitstream without scalability to a scalable bitstream with temporal scalability as part of a scalable video transcoder for mobile communications. The results show that when our technique is applied, the complexity is reduced by 98 % while maintaining coding efficiency

    Ultrarelativistic nanoplasmonics as a new route towards extreme intensity attosecond pulses

    Full text link
    The generation of ultra-strong attosecond pulses through laser-plasma interactions offers the opportunity to surpass the intensity of any known laboratory radiation source, giving rise to new experimental possibilities, such as quantum electrodynamical tests and matter probing at extremely short scales. Here we demonstrate that a laser irradiated plasma surface can act as an efficient converter from the femto- to the attosecond range, giving a dramatic rise in pulse intensity. Although seemingly similar schemes have been presented in the literature, the present setup deviates significantly from previous attempts. We present a new model describing the nonlinear process of relativistic laser-plasma interaction. This model, which is applicable to a multitude of phenomena, is shown to be in excellent agreement with particle-in-cell simulations. We provide, through our model, the necessary details for an experiment to be performed. The possibility to reach intensities above 10^26 W/cm^2, using upcoming 10 petawatt laser sources, is demonstrated.Comment: 15 pages, 5 figure

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    Stochastic Occupancy Grid Map Prediction in Dynamic Scenes

    Full text link
    This paper presents two variations of a novel stochastic prediction algorithm that enables mobile robots to accurately and robustly predict the future state of complex dynamic scenes. The proposed algorithm uses a variational autoencoder to predict a range of possible future states of the environment. The algorithm takes full advantage of the motion of the robot itself, the motion of dynamic objects, and the geometry of static objects in the scene to improve prediction accuracy. Three simulated and real-world datasets collected by different robot models are used to demonstrate that the proposed algorithm is able to achieve more accurate and robust prediction performance than other prediction algorithms. Furthermore, a predictive uncertainty-aware planner is proposed to demonstrate the effectiveness of the proposed predictor in simulation and real-world navigation experiments. Implementations are open source at https://github.com/TempleRAIL/SOGMP.Comment: Accepted by 7th Annual Conference on Robot Learning (CoRL), 202

    Implications of very rapid TeV variability in blazars

    Full text link
    We discuss the implications of rapid (few-minute) variability in the TeV flux of blazars, which has been observed recently with the HESS and MAGIC telescopes. The variability timescales seen in PKS 2155-304 and Mrk 501 are much shorter than inferred light-crossing times at the black hole horizon, suggesting that the variability involves enhanced emission in a small region within an outflowing jet. The enhancement could be triggered by dissipation in part of the black hole's magnetosphere at the base of the outflow, or else by instabilities in the jet itself. By considering the energetics of the observed flares, along with the requirement that TeV photons escape without producing pairs, we deduce that the bulk Lorentz factors in the jets must be >50. The distance of the emission region from the central black hole is less well-constrained. We discuss possible consequences for multi-wavelength observations.Comment: 5 pages, no figures, accepted for publication in Monthly Notices of the Royal Astronomical Society Letter

    Shock Dissipation in Magnetically Dominated Impulsive Flows

    Get PDF
    We have revisited the issue of shock dissipation and emission and its implications for the internal shock model of the prompt GRB emission and studied it in the context of impulsive Poynting-dominated flows. Our results show that unless the magnetization of GRB jets is extremely high, \sigma > 100 in the prompt emission zone, the magnetic model may still be compatible with the observations. The main effect of reduced dissipation efficiency is merely an increase in the size of the dissipation zone and even for highly magnetised GRB jets this size may remain below the external shock radius, provided the central engine can emit magnetic shells on the time scale well below the typical observed variability scale of one second. Our analytical and numerical results suggest that magnetic shells begin strongly interact with each other well before they reach the coasting radius. As the result, the impulsive jet in the dissipation zone is best described not as a collection of shells but as a continuous highly magnetised flow with a high amplitude magnetosonic wave component. How exactly the dissipated wave energy is distributed between the radiation and the bulk kinetic energy of radial jets depends on the relative rates of radiative and adiabatic cooling. In the fast radiative cooling regime, the corresponding radiative efficiency can be as high as the wave contribution to their energy budget, independently of the magnetization. Moreover, after leaving the zone of prompt emission the jet may still remain Poynting-dominated, leading to weaker emission from the reverse shock compared to non-magnetic models.Comment: Submitted to MNRA

    Modeling of a Variable-BVR Rotary Valve Free Piston Expander/Compressor

    Get PDF
    The concept of a free-piston expansion/compression unit with a variable Built-in Volume Ratio (BVR) is proposed. This device has no crankshaft mechanism which provides a possibility to optimize the expansion process free of mechanical limitations. An additional degree of freedom is used, namely the rotation to control the in- and the outlet ports timing. Further, the operation in the expander mode will be described. In most of the existing linear expanders/compressors, bouncing chambers or devices are used to reverse the piston movement at extreme positions. This approach is characterized by relatively high energy losses due to irreversibility of such a process. As an alternative, a fully controlled movement of the piston is proposed. This paper is focused on the control algorithm based on rules, which have been obtained and based on the insight in the system. Including the rotation timing, resulting in an optimal expansion process with an outlet pressure matching with the required one
    corecore