814 research outputs found

    Gait Analysis of Natural and Artificial Walking Systems

    Get PDF
    This paper studies periodic gaits of multi-legged locomotion systems based on dynamic models. The purpose is to determine the system performance during walking and the best set of locomotion variables. For that objective the prescribed motion of the robot is completely characterized in terms of several locomotion variables such as gait, duty factor, body height, step length, stroke pitch, foot clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In this perspective, we formulate three performance measures of the walking robot namely, the mean absolute energy, the mean power dispersion and the mean power lost in the joint actuators per walking distance. A set of model-based experiments reveals the influence of the locomotion variables in the proposed indices

    Nonprehensile Object Transportation with a Legged Manipulator

    Get PDF
    This paper tackles the problem of nonprehensile object transportation through a legged manipulator. A whole- body control architecture is devised to prevent sliding of the object placed on the tray at the manipulator’s end-effector and retain the legged robot balance during walking. The controller solves a quadratic optimization problem to realize the sought transportation task while maintaining the contact forces between the tray and the object and between the legs and the ground within their respective friction cones, also considering limits on the input torques. An extensive simulation campaign confirmed the feasibility of the approach and evaluated the control performance through a thorough statistical analysis conducted varying mass, friction, and the dimension of the transported object

    Optimization And Learning For Rough Terrain Legged Locomotion

    Get PDF
    We present a novel approach to legged locomotion over rough terrain that is thoroughly rooted in optimization. This approach relies on a hierarchy of fast, anytime algorithms to plan a set of footholds, along with the dynamic body motions required to execute them. Components within the planning framework coordinate to exchange plans, cost-to-go estimates, and \u27certificates\u27 that ensure the output of an abstract high-level planner can be realized by lower layers of the hierarchy. The burden of careful engineering of cost functions to achieve desired performance is substantially mitigated by a simple inverse optimal control technique. Robustness is achieved by real-time re-planning of the full trajectory, augmented by reflexes and feedback control. We demonstrate the successful application of our approach in guiding the LittleDog quadruped robot over a variety of types of rough terrain. Other novel aspects of our past research efforts include a variety of pioneering inverse optimal control techniques as well as a system for planning using arbitrary pre-recorded robot behavior

    Analytical Workspace, Kinematics, and Foot Force Based Stability of Hexapod Walking Robots

    Get PDF
    Many environments are inaccessible or hazardous for humans. Remaining debris after earthquake and fire, ship hulls, bridge installations, and oil rigs are some examples. For these environments, major effort is being placed into replacing humans with robots for manipulation purposes such as search and rescue, inspection, repair, and maintenance. Mobility, manipulability, and stability are the basic needs for a robot to traverse, maneuver, and manipulate in such irregular and highly obstructed terrain. Hexapod walking robots are as a salient solution because of their extra degrees of mobility, compared to mobile wheeled robots. However, it is essential for any multi-legged walking robot to maintain its stability over the terrain or under external stimuli. For manipulation purposes, the robot must also have a sufficient workspace to satisfy the required manipulability. Therefore, analysis of both workspace and stability becomes very important. An accurate and concise inverse kinematic solution for multi-legged robots is developed and validated. The closed-form solution of lateral and spatial reachable workspace of axially symmetric hexapod walking robots are derived and validated through simulation which aid in the design and optimization of the robot parameters and workspace. To control the stability of the robot, a novel stability margin based on the normal contact forces of the robot is developed and then modified to account for the geometrical and physical attributes of the robot. The margin and its modified version are validated by comparison with a widely known stability criterion through simulated and physical experiments. A control scheme is developed to integrate the workspace and stability of multi-legged walking robots resulting in a bio-inspired reactive control strategy which is validated experimentally

    On-The-Go Robot-to-Human Handovers with a Mobile Manipulator

    Full text link
    Existing approaches to direct robot-to-human handovers are typically implemented on fixed-base robot arms, or on mobile manipulators that come to a full stop before performing the handover. We propose "on-the-go" handovers which permit a moving mobile manipulator to hand over an object to a human without stopping. The on-the-go handover motion is generated with a reactive controller that allows simultaneous control of the base and the arm. In a user study, human receivers subjectively assessed on-the-go handovers to be more efficient, predictable, natural, better timed and safer than handovers that implemented a "stop-and-deliver" behavior.Comment: 6 pages, 7 figures, 2 tables, submitted to RO-MAN 202

    An optimization approach to rough terrain locomotion

    Full text link

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Artificial intelligence within the interplay between natural and artificial computation:Advances in data science, trends and applications

    Get PDF
    Artificial intelligence and all its supporting tools, e.g. machine and deep learning in computational intelligence-based systems, are rebuilding our society (economy, education, life-style, etc.) and promising a new era for the social welfare state. In this paper we summarize recent advances in data science and artificial intelligence within the interplay between natural and artificial computation. A review of recent works published in the latter field and the state the art are summarized in a comprehensive and self-contained way to provide a baseline framework for the international community in artificial intelligence. Moreover, this paper aims to provide a complete analysis and some relevant discussions of the current trends and insights within several theoretical and application fields covered in the essay, from theoretical models in artificial intelligence and machine learning to the most prospective applications in robotics, neuroscience, brain computer interfaces, medicine and society, in general.BMS - Pfizer(U01 AG024904). Spanish Ministry of Science, projects: TIN2017-85827-P, RTI2018-098913-B-I00, PSI2015-65848-R, PGC2018-098813-B-C31, PGC2018-098813-B-C32, RTI2018-101114-B-I, TIN2017-90135-R, RTI2018-098743-B-I00 and RTI2018-094645-B-I00; the FPU program (FPU15/06512, FPU17/04154) and Juan de la Cierva (FJCI-2017–33022). Autonomous Government of Andalusia (Spain) projects: UMA18-FEDERJA-084. Consellería de Cultura, Educación e Ordenación Universitaria of Galicia: ED431C2017/12, accreditation 2016–2019, ED431G/08, ED431C2018/29, Comunidad de Madrid, Y2018/EMT-5062 and grant ED431F2018/02. PPMI – a public – private partnership – is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc
    corecore