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Abstract — This paper studies periodic gaits of multi-legged locomotion systems 
based on dynamic models. The purpose is to determine the system performance 
during walking and the best set of locomotion variables. For that objective the pre-
scribed motion of the robot is completely characterized in terms of several locomo-
tion variables such as gait, duty factor, body height, step length, stroke pitch, foot 
clearance, legs link lengths, foot-hip offset, body and legs mass and cycle time. In 
this perspective, we formulate three performance measures of the walking robot 
namely, the mean absolute energy, the mean power dispersion and the mean power 
lost in the joint actuators per walking distance. A set of model-based experiments 
reveals the influence of the locomotion variables in the proposed indices. 

1 Introduction 
Walking machines allow locomotion in terrain inaccessible to other type of vehicles, 
since they do not need a continuous support surface [1]. On the other hand, the require-
ments for leg coordination and control impose difficulties beyond those encountered in 
wheeled robots [2]. Gait selection is a research area requiring an appreciable modeling 
effort for the improvement of mobility with legs in unstructured environments [3,4]. 
Previous studies mainly focused in the structure and selection of locomotion modes [5 –
 9]. Nevertheless, there are different optimization criteria such as energy efficiency [10], 
stability [2], velocity [11,12], comfort, mobility [13] and environmental impact. With 
these facts in mind, a simulation model for multi-leg locomotion systems was 
developed, for several periodic gaits. This study intends to generalize previous work 
[14 – 16] through the formulation of several dynamic indices measuring the average 
energy during different walking trajectories, the mean power dispersion and the power 
lost in the joint actuators along the space-time walking cycle. 

The foot and body trajectories are analyzed in what concerns its variation with the 
gait, duty factor, step length, maximum foot clearance, body height, legs link lengths 
and foot trajectory offset. Several simulation experiments reveal the system 
configuration and the type of the movements that lead to a better mechanical 
implementation, for a given locomotion mode, from the viewpoint of the proposed 
indices.
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Figure 1: Coordinate system and variables that characterize the motion trajectories of 
the multi-legged robot 

Bearing these facts in mind, the paper is organized as follows. Section two introduces 
the model for a multi-legged robot and the motion planning algorithms. Section three 
formulates the optimizing indices and section four develops a set of experiments that 
reveal the influence of the system parameters in the periodic gaits, respectively. Finally, 
section five presents the main conclusions and directions towards future developments. 

2 A Model for Multi-legged Locomotion 
We consider a longitudinal walking system with n legs (n  2 and n even), with the legs 
equally distributed along both sides of the robot body, having each one two rotational 
joints (Figure 1). 

Motion is described by means of a world coordinate system. The kinematic model 
comprises: the cycle time T, the duty factor β, the transference time tT = (1−β)T, the 
support time tS = βT, the step length LS, the stroke pitch SP, the body height HB, the 
maximum foot clearance FC, the ith leg lengths Li1 and Li2 and the foot trajectory offset 
Oi (i=1,…,n). Moreover, we consider a periodic trajectory for each foot, with body 
velocity VF = LS / T.

The algorithm for the forward motion planning accepts the body and ith feet desired 
cartesian trajectories pFd(t) = [xiFd(t), yiFd(t)]

T as inputs and, by means of an inverse 
kinematics algorithm, generates the related joint trajectories d(t) = [ i1d(t), i2d(t)]

T,
selecting the solution corresponding to a forward knee. 

The body of the robot, and by consequence the legs hips, is assumed to have a desired 
horizontal movement with a constant forward speed VF. Therefore, for leg i the cartesian 
coordinates of the hip of the legs are given by: 

( ) ( )
( )

iHd F

iHd B

x t V t
t

y t H
= =Hdp (1)

Given a particular gait and duty factor β, it is possible to calculate for leg i the 
corresponding phase φi and the time instant where each leg leaves and returns to contact 
with the ground [2]. From these results, and knowing T, β and tS, the cartesian 
trajectories of the tip of the foots must be completed during tT.

For each cycle the desired trajectory of the tip of the swing leg is computed through a 
cycloid function given by (considering, for example, that the transfer phase starts at 
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t = 0 s for leg 1), with f = 1/T:
⎯ during the transfer phase: 

( )1

1
( ) sin 2

2Fd Fx t V t ft
f

π
π

= − (2a)

( )1 ( ) 1 cos 2
2
C

Fd

F
y t ftπ= − (2b)

⎯ during the stance phase: 

1 ( )Fd Fx t V T= (3a)

1 ( ) 0Fdy t =
(3b)

From the coordinates of the hip and feet of the robot it is possible to obtain the leg 
joint positions and velocities using the inverse kinematics ψ−1 and the Jacobian 
J = ψ/  yielding: 

( ) ( )
( ) ( ) ( )id

id

x t
t t t

y t
= = −d Hd Fdp p p (4a)

( ) [ ] ( )1( ) ( )t t t t−= =d d d dp p (4b)

( )1( )t t−=d dJ p
(4c)

Based on this data, the trajectory generator is responsible for producing a motion that 
synchronises and co-ordinates the legs. In order to avoid the impact and friction effects, 
at the planning phase we estimate null velocities of the feet in the instants of landing 
and taking off, assuring also the velocity continuity. 

These joint trajectories can also be accomplished either with a step or a polynomial 
versus time acceleration profile. After planning the joint trajectories we calculate the 
inverse dynamics in order to ‘map’ the kinematics into power consumption. The robot 
inverse dynamic model is of the form: 

( ) ( ) ( )= + +H c , g (5)

where τ = [fix, fiy, i1, i2]
T (i=1,…,n) is the vector of forces/torques, θ = [xiH, yiH, i1, i2]

T

is the vector of position coordinates, H(θ) is the inertia matrix and ( )c ,  and g(θ) are 

the vectors of centrifugal/Coriolis and gravitational forces/torques, respectively. 

3 Measures for Performance Evaluation 
In mathematical terms, we provide three global measures of the overall performance of 
the mechanism in an average sense. 

3.1 Mean Absolute Energy 
A first measure in this analysis is the mean absolute energy per travelled distance. It is 
computed assuming that energy regeneration is not available by actuators doing 
negative work, that is, by taking the absolute value of the energy. At a given joint j
(each leg has m = 2 joints) and leg i, the mechanical power is the product of the motor 
torque and angular velocity. The global index is obtained by averaging the mechanical 
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absolute energy delivered over the step length LS:

( ) ( )
0

1 1

1 n m T

av ij ij
i jS

E t t dt
L = =

= ⋅ (6)

The average of the absolute energy consumption, per travelled distance, Eav, should be 
minimised. 

3.2 Mean Power Dispersion 
Although minimising energy appears to be an important consideration, it may occur 
instantaneous, very high, power demands. In such cases, the average value can be small 
while the peaks are physically unrealisable. An alternative index is the standard devia-
tion per meter that evaluates the dispersion around the mean absolute energy over a 
complete cycle T and step length LS:

( ) ( ) ( )
1 1

n m

i ij ij
i j

P t t t
= =

= ⋅ (7a)

( ) 2

0

1 1 T

av i av
S

D P t E dt
L T

= ⋅ − (7b)

where Pi is the total instantaneous absolute mechanical power. In this line of thought, 
the most suitable trajectory is the one that minimizes Dav.

3.2 Mean Power Lost 
Another alternative optimisation strategy addresses the power lost in the joint actuators 
per step length LS. From this point of view, the index mean power lost per meter can be 
defined as: 

( ) 2

0
1 1

1 n m T

L ij
i jS

T t dt
L = =

= (8)

The most suitable trajectory is the one that minimizes TL.

4 Simulation Results 
To illustrate the use of the preceding concepts, in this section we develop a set of 
simulation experiments to estimate the influence of several parameters during periodic 
gaits and to compare the performance measures. Consequently, the multi-legged 
locomotion was simulated, in order to examine the role of the walking gait versus β, LS,
HB and FC, with n = 6, VF = 1 ms−1

, SP = 1 m, Li1 = Li2 = 0.5 m, Oi = 0 m, Mb = 87.4 kg, 
Mi1 = Mi2 = 1.05 kg and Mif = 0 kg. 

Due to the high number of parameters and values, in the sequel we capture the optimal 
values by cross-relating several distinct combinations for the Wave Gait (WG): 

⎯ Step Length vs. Body Height – Figures 2 – 4 show Eav, Dav and TL versus (LS, HB).
We verify that all indices decrease slightly with HB and sharply with LS.

⎯ Step Length vs. Duty Factor – Figures 5 – 7 depict the three indices versus (LS, β). 
We conclude that Eav, Dav and TL increase monotonically with β and decrease with 
LS.
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Figure 2: Plot of log(Eav) vs. (LS, HB) for 
β = 50%, FC = 0.01 m, VF = 1 ms−1, WG

Figure 5: Plot of log(Eav) vs. (LS, β) for 
FC = 0.01 m, HB = 0.7 m, VF = 1 ms−1, WG
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Figure 3: Plot of log(Dav) vs. (LS, HB) for 
β = 50%, FC = 0.01 m, VF = 1 ms−1, WG

Figure 6: Plot of log(Dav) vs. (LS, β) for 
FC = 0.01 m, HB = 0.7 m, VF = 1 ms−1, WG
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Figure 4: Plot of log(TL) vs. (LS, HB) for 
β = 50%, FC = 0.01 m, VF = 1 ms−1, WG

Figure 7: Plot of log(TL) vs. (LS, β) for 
FC = 0.01 m, HB = 0.7 m, VF = 1 ms−1, WG

⎯ Duty Factor vs. Body Height – Figure 8 depicts Eav(β, HB). We conclude that Eav

increases monotonically with β and decreases slightly with HB. Although not 
presented Dav(β, HB) and TL(β, HB) show the same type of variation with β and HB.

⎯ Duty Factor vs. Foot Clearance – Figure 9 depicts Eav(β, FC) revealing that it 
increases with β and FC. The charts of Dav(β, FC) and TL(β, FC) show the same type 
of variation with β and FC.

log(Eav)

log(Dav)

log(TL)

log(Eav)

log(Dav)

log(TL)
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Figure 8: Plot of log(Eav) vs. (β, HB) for 
LS = 1.8 m, FC = 0.01 m, VF = 1 ms−1, WG

Figure 10: Plot of log(Eav) vs. (Li1, Oi) for 
β = 2%, LS = 1.8 m, FC = 0.01 m, 

HB = 0.7 m, VF = 1 ms−1, WG
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Figure 9: Plot of log(Eav) vs. (β, FC) for 
LS = 1.8 m, HB = 0.7 m, VF = 1 ms−1, WG

Figure 11: Plot of log(Dav) vs. (Li1, Oi) for 
β = 2%, LS = 1.8 m, FC = 0.01 m, 

HB = 0.7 m, VF = 1 ms−1, WG

⎯ Foot Trajectory Offset vs. Leg Length – In the previous experiments we considered 
constant link lengths and masses, namely Li1 = Li2 = 0.5 m and Mi1 = Mi2 = 1 kg, for 
Oi = 0 m. Now we study the influence of these factors upon Eav, Dav and TL.
Therefore, we establish a total constant leg length and mass of Lt = Li1 + Li2 = 1 m 
and MLt = Mi1 + Mi2 = 2 kg while varying the relation between the two links, 
yielding (i = 1, …, 6; j = 1, 2) Mij = (Lij / Lt).MLt.
Figure 10 shows Eav(Oi, Li1) for legs link lengths 0.0 < Li1 < 1.0  and  for  hip–foot  
offset  –0.5 < Oi < 0.5. 
We verify that Eav varies slightly with Li1 and Oi. Log(Dav) – Figure 11 – and log(TL)
present a similar variation. Furthermore, it results that the locomotion is more 
efficient with Li1 ≈ 0.7 m (Li1+Li2 = 1 m) and Oi ≈ −0.2 m. 

In conclusion, comparing all the previous experiments, we can establish a 
compromise for optimising the Wave Gait, namely, that the best situation occurs for 
β ≈ 2%, 0.9 ≤ HB ≤ 0.95 m, 2.5 ≤ LS ≤ 3.0 m and FC ≈ 0 m, considering 
Li1 = Li2 = 0.5 m, Oi = 0 m and VF = 1 ms−1 (it should be noted that this value of β
corresponds to the robot working on a running condition rather than just walking). 

Once established these optimal values we can study the effect of other parameters, 
namely: 

log(Eav)

log(Eav) log(Dav)

log(Eav)
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⎯ Body Forward Velocity – Figures 12 – 14 present the evolution of min[Eav(VF)], 
min[Dav(VF)] and min[TL(VF)], respectively. Figure 14 reveals that for low velocities 
we have Eav ∝ VF

−0.01 while for high velocities Eav ∝ VF
2.16. For medium velocities, 

this chart presents a transition area in the range 0.5 < VF < 3.0 ms−1.
Concerning Dav we have a similar variation (Figure 15). For low velocities we have 
Dav ∝ VF

−0.04 while for high velocities Dav ∝ VF
3.32. For medium velocities, this chart 

presents a transition area in the range 0.2 < VF < 3.0 ms−1 with a minimum at 
VF ≈ 1.0 ms−1.
The chart for TL (Figure 16) presents a slightly different variation, being TL ∝ VF

−0.51

for low velocities and TL ∝ VF
1.65 for high velocities. For this index, the transitions 

occur in the range 0.9 < VF < 3.0 ms−1 and, in this case, we have TL ∝ VF
−0.01.

⎯ Body Height and Step Length vs. Body Forward Velocity – Figure 15 presents the 
evolution of LS(VF) and HB(VF) for the minimum values of Eav. We conclude that for 
VF ≤ 3 ms−1 LS / HB increases / decreases with VF from LS = 1.0 m / HB = 0.95 m up 
to LS = 4.5 m / HB = 0.6 m. Moreover, LS(VF) and HB(VF) present the same variation 
for the minimum values of Dav and TL.

⎯ Number of Legs – In this case we consider two alternatives. A first option is to 
establish that each leg mass is constant and, therefore, the total robot mass (MRt)
varies with the number of legs (n): 

( )1 2 1 2
1

, 1
n

Rt b i i i i
i

M M M M M M kg
=

= + + = = (9)

where Mb is the mass of the body. Figure 16 shows that Eav increases proportionally 
with n. We get similar conclusions for Dav and TL (Figures 17 and 18). 
A second alternative is to have a robot with the total mass (MRt) constant: 

( )1 2
1

, 100
n

Rt b i i Rt
i

M M M M M kg
=

= + + = (10)

The legs mass varies with n, according to the expression [17 – 19]: 

( )1 2 0.47
1 20.35 , ,i i n

i i
Rt

M M
e M M i

M
−+

= = ∀ (11)

Figure 19 shows that Eav decreases proportionally with n. We get similar 
conclusions for Dav and TL (Figures 20 and 21). 

Comparing these last experiments, we can establish a compromise for optimising the 
Wave Gait, namely, that the robot should walk (in fact, it should “run”, since β < 50%) 
with VF ≈ 1 ms−1 and the mass of the robot should be concentrated on the body, while 
the legs should be as light as possible. 

Finally, we compare the locomotion performance of several different animals (whose 
characteristics are presented in Appendix 1 [17 – 19]), based on the formulated indices. 

The results (Figures 22 – 24) of the indices min[Eav(VF)], min[Dav(VF)] and 
min[TL(VF)] agree with the previous conclusions. 
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Figure 12: Plots of min[Eav(VF)] for 
FC = 0.01 m, WG

Figure 14: Plots of min[TL(VF)] for 
FC = 0.01 m, WG
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Figure 13: Plots of min[Dav(VF)] for 
FC = 0.01 m, WG

Figure 15: Plot of LS(VF) and HB(VF) for 
min(Eav) with FC = 0.01 m, WG

5 Conclusions 
In this paper we have compared various dynamic aspects of multi-legged robot 
locomotion gaits. By implementing different motion patterns, we estimated how the 
robot responds to a variety of locomotion variables such as duty factor, step length, 
body height, maximum foot clearance, foot trajectory offset and leg lengths. For 
analyzing the system performance three quantitative measures were defined: the average 
energy consumption, the mean power dispersion and the power expenditure in the 
actuators per walking distance. Analyzing the experiments we obtained the best set of 
locomotion variables and, also, we concluded that the results obtained through the 
different indices are compatible. 

While our focus has been on a dynamic analysis in periodic gaits, certain aspects of 
locomotion are not necessarily captured by the proposed measures. Consequently, 
future work in this area will address the refinement of our models to incorporate more 
unstructured terrains, namely with distinct trajectory planning concepts. Moreover, we 
will also address the effects of the foot – ground interaction and a model describing the 
ground characteristics. The contact and reaction forces at the robot feet will enable fur-
ther insight towards the development of efficient multi-legged locomotion robots. 

∝ VF
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Figure 16: Plots of min[Eav(VF)] vs. n for 
FC = 0.01 m, WG

Figure 19: Plots of min[Eav(VF)] vs. n for 
FC = 0.01 m, WG
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Figure 17: Plots of min[Dav(VF)] vs. n for 
FC = 0.01 m, WG

Figure 20: Plots of min[Dav(VF)] vs. n for 
FC = 0.01 m, WG
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Figure 18: Plots of min[TL(VF)] vs. n for 
FC = 0.01 m, WG

Figure 21: Plots of min[TL(VF)] vs. n for 
FC = 0.01 m, WG
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Figure 22: Plots of min[Eav(VF)] vs. n for FC = 0.01 m, WG
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Figure 23: Plots of min[Dav(VF)] vs. n for FC = 0.01 m, WG
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Figure 24: Plots of min[TL(VF)] vs. n for FC = 0.01 m, WG
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Appendix 1 
Number of Legs Animal Total Mass (Kg) Leg and Body Mass (kg) Leg lenghts (m) 
 Quail MRt = 0.0444 Mb = 0.036200  
   Mi1 = 0.003600, i = 1, 2 Li1 = 0.026, i = 1, 2 
   Mi2 = 0.000500, i = 1, 2 Li2 = 0.026, i = 1, 2 

 Turkey MRt = 5.69 Mb = 4.220000  
   Mi1 = 0.649000, i = 1, 2 Li1 = 0.21, i = 1, 2 
   Mi2 = 0.086000, i = 1, 2 Li2 = 0.21, i = 1, 2 
n = 2 (Bipeds)  
 Ostrich MRt = 89.5 Mb = 47.936000  
   Mi1 = 18.271000, i = 1, 2 Li1 = 0.605, i = 1, 2 
   Mi2 = 2.515000, i = 1, 2 Li2 = 0.605, i = 1, 2 

 Human MRt = 80.0 Mb = 54.24  
   Mi1 = 8.00, i = 1, 2 Li1 = 0.48, i = 1, 2 
   Mi2 = 4.88, i = 1, 2 Li2 = 0.48, i = 1, 2 
 Squirrel MRt = 0.11538 Mb = 0.089300  
   Mi1 = 0.002700, i = 1, 2 Li1 = 0.024, i = 1, 2 
   Mi2 = 0.001540, i = 1, 2 Li2 = 0.024, i = 1, 2 
   Mi1 = 0.006400, i = 3, 4 Li1 = 0.024, i = 3, 4 
   Mi2 = 0.002400, i = 3, 4 Li2 = 0.024, i = 3, 4 
     
 Dog MRt = 5.0372 Mb = 3.705400  
   Mi1 = 0.256700, i = 1, 2 Li1 = 0.1025, i = 1, 2 
n = 4 (Quadrupeds)   Mi2 = 0.081800, i = 1, 2 Li2 = 0.1025, i = 1, 2 
   Mi1 = 0.294900, i = 3, 4 Li1 = 0.1025, i = 3, 4 
   Mi2 = 0.032500, i = 3, 4 Li2 = 0.1025, i = 3, 4 
     
 Horse MRt = 97.904 Mb = 79.500000  
   Mi1 = 3.571000, i = 1, 2 Li1 = 0.405, i = 1, 2 
   Mi2 = 1.887000, i = 1, 2 Li2 = 0.405, i = 1, 2 
   Mi1 = 2.720000, i = 3, 4 Li1 = 0.405, i = 3, 4 
   Mi2 = 1.024000, i = 3, 4 Li2 = 0.405, i = 3, 4 
 Cockroach MRt = 0.0026 Mb = 0.002250  
   Mi1 = 0.000028, i = 1, 2 Li1 = 0.015305, i = 1, 2 
   Mi2 = 0.000005, i = 1, 2 Li2 = 0.015305, i = 1, 2 
   Mi1 = 0.000052, i = 3, 4 Li1 = 0.015305, i = 3, 4 
   Mi2 = 0.000009, i = 3, 4 Li2 = 0.015305, i = 3, 4 
   Mi1 = 0.000066, i = 5, 6 Li1 = 0.015305, i = 5, 6 
   Mi2 = 0.000014, i = 5, 6 Li2 = 0.015305, i = 5, 6 
n = 6 (Hexapods)     
 Stick-insect MRt = 0.0009 Mb = 0.000792  
   Mi1 = 0.000019, i = 1, 2 Li1 = 0.0146, i = 1, 2 
   Mi2 = 0.000004, i = 1, 2 Li2 = 0.0146, i = 1, 2 
   Mi1 = 0.000014, i = 3, 4 Li1 = 0.0146, i = 3, 4 
   Mi2 = 0.000003, i = 3, 4 Li2 = 0.0146, i = 3, 4 
   Mi1 = 0.000014, i = 5, 6 Li1 = 0.0146, i = 5, 6 
   Mi2 = 0.000003, i = 5, 6 Li2 = 0.0146, i = 5, 6 
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