3,282 research outputs found

    Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy

    Get PDF
    Oral capillaroscopy is a critical and non-invasive technique used to evaluate microcirculation. Its ability to observe small vessels in vivo has generated significant interest in the field. Capillaroscopy serves as an essential tool for diagnosing and prognosing various pathologies, with anatomic–pathological lesions playing a crucial role in their progression. Despite its importance, the utilization of videocapillaroscopy in the oral cavity encounters limitations due to the acquisition setup, encompassing spatial and temporal resolutions of the video camera, objective magnification, and physical probe dimensions. Moreover, the operator’s influence during the acquisition process, particularly how the probe is maneuvered, further affects its effectiveness. This study aims to address these challenges and improve data reliability by developing a computerized support system for microcirculation analysis. The designed system performs stabilization, enhancement and automatic segmentation of capillaries in oral mucosal video sequences. The stabilization phase was performed by means of a method based on the coupling of seed points in a classification process. The enhancement process implemented was based on the temporal analysis of the capillaroscopic frames. Finally, an automatic segmentation phase of the capillaries was implemented with the additional objective of quantitatively assessing the signal improvement achieved through the developed techniques. Specifically, transfer learning of the renowned U-net deep network was implemented for this purpose. The proposed method underwent testing on a database with ground truth obtained from expert manual segmentation. The obtained results demonstrate an achieved Jaccard index of 90.1% and an accuracy of 96.2%, highlighting the effectiveness of the developed techniques in oral capillaroscopy. In conclusion, these promising outcomes encourage the utilization of this method to assist in the diagnosis and monitoring of conditions that impact microcirculation, such as rheumatologic or cardiovascular disorders

    Vision Science and Technology at NASA: Results of a Workshop

    Get PDF
    A broad review is given of vision science and technology within NASA. The subject is defined and its applications in both NASA and the nation at large are noted. A survey of current NASA efforts is given, noting strengths and weaknesses of the NASA program

    Machine learning for flow field measurements: a perspective

    Get PDF
    Advancements in machine-learning (ML) techniques are driving a paradigm shift in image processing. Flow diagnostics with optical techniques is not an exception. Considering the existing and foreseeable disruptive developments in flow field measurement techniques, we elaborate this perspective, particularly focused to the field of particle image velocimetry. The driving forces for the advancements in ML methods for flow field measurements in recent years are reviewed in terms of image preprocessing, data treatment and conditioning. Finally, possible routes for further developments are highlighted.Stefano Discetti acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 949085). Yingzheng Liu acknowledges financial support from the National Natural Science Foundation of China (11725209)

    Robust Cardiac Motion Estimation using Ultrafast Ultrasound Data: A Low-Rank-Topology-Preserving Approach

    Get PDF
    Cardiac motion estimation is an important diagnostic tool to detect heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of the complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate the cardiac motion using ultrafast ultrasound data. -- Our solution is based on a variational formulation characterized by the L2-regularized class. The displacement is represented by a lattice of b-splines and we ensure robustness by applying a maximum likelihood type estimator. While this is an important part of our solution, the main highlight of this paper is to combine a low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati Matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. While maintaining the accuracy of the solution, the low-rank preprocessing is shown to speed up the convergence of the variational problem. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that experience motion.Comment: 15 pages, 10 figures, Physics in Medicine and Biology, 201

    Visualisation of inshore marine water depth data

    Get PDF
    The literature review performed as part of this Project concentrated on two objectives. The first objective was the identification of techniques applicable to the visualisation of the inshore marine water depth data obtained from the Department of Marine & Harbours (M&H). The second objective involved examining how colour is best used within data visualisation. The experimentation investigated a simple method for interpreting movement between depth surveys undertaken by M&H. Although it achieved the objective of creating a longer and smoother animation, it was concluded that the movement of the harbour floor was not accurately represented. The Project applied an optical flow algorithm, originating from computer vision, to perform analysis of motion of material on the harbour floor. The output from the algorithm is a map that shows the motion (magnitude and direction) of the harbour floor in such a way that would allow M&H to quantitatively measure the changes in the harbour, as well as create a static image visualising the changes that occur from survey to survey. Finally, we propose an algorithm to interpolate depth data between surveys. This is based on using the derived optical flow velocities to perform a morphing operation

    Automated Analysis of Time-resolved X-ray data using Optical Flow Methods

    Get PDF
    We develop a general-purpose framework for analysis of time-resolved X-ray data based on optical flow. We perform a systematic evaluation of state-of-the-art optical flow techniques and their components. On the top of motion estimation we provide an extensive data analysis toolkit. All the devised techniques can be applied in 4D (3D + time). The implementation employs advanced numerical schemes and computations on GPU. We present the application of the optical flow methods to a number of scientific problems from various research fields

    Computing and data processing

    Get PDF
    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers
    • …
    corecore