508 research outputs found

    MLP and Elman recurrent neural network modelling for the TRMS

    Get PDF
    This paper presents a scrutinized investigation on system identification using artificial neural network (ANNs). The main goal for this work is to emphasis the potential benefits of this architecture for real system identification. Among the most prevalent networks are multi-layered perceptron NNs using Levenberg-Marquardt (LM) training algorithm and Elman recurrent NNs. These methods are used for the identification of a twin rotor multi-input multi-output system (TRMS). The TRMS can be perceived as a static test rig for an air vehicle with formidable control challenges. Therefore, an analysis in modeling of nonlinear aerodynamic function is needed and carried out in both time and frequency domains based on observed input and output data. Experimental results are obtained using a laboratory set-up system, confirming the viability and effectiveness of the proposed methodology

    Flight control systems properties and problems, volume 1

    Get PDF
    This volume contains a delineation of fundamental and mechanization-specific flight control characteristics and problems gleaned from many sources and spanning a period of over two decades. It is organized to present and discuss first some fundamental, generic problems of closed-loop flight control systems involving numerator characteristics (quadratic dipoles, non-minimum phase roots, and intentionally introduced zeros). Next the principal elements of the largely mechanical primary flight control system are reviewed with particular emphasis on the influence of nonlinearities. The characteristics and problems of augmentation (damping, stability, and feel) system mechanizations are then dealt with. The particular idiosyncracies of automatic control actuation and command augmentation schemes are stressed, because they constitute the major interfaces with the primary flight control system and an often highly variable vehicle response

    Task-Space Control of Articulated Mobile Robots With a Soft Gripper for Operations

    Get PDF
    A task-space method is presented for the control of a head-raising articulated mobile robot, allowing the trajectory tracking of a tip of a gripper located on the head of the robot in various operations, e.g., picking up an object and rotating a valve. If the robot cannot continue moving because it reaches a joint angle limit, the robot moves away from the joint limit and changes posture by switching the allocation of lifted/grounded wheels. An articulated mobile robot with a gripper that can grasp objects using jamming transition was developed, and experiments were conducted to demonstrate the effectiveness of the proposed controller in operations

    Free piston expander with a variable built-in volume ratio and with an integrated linear alternator

    Get PDF

    Joint University Program for Air Transportation Research, 1989-1990

    Get PDF
    Research conducted during the academic year 1989-90 under the NASA/FAA sponsored Joint University Program for Air Transportation research is discussed. Completed works, status reports and annotated bibliographies are presented for research topics, which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to airport operations. An overview of the year's activities for each university is also presented

    State Estimation and Control of Active Systems for High Performance Vehicles

    Get PDF
    In recent days, mechatronic systems are getting integrated in vehicles ever more. While stability and safety systems such as ABS, ESP have pioneered the introduction of such systems in the modern day car, the lowered cost and increased computational power of electronics along with electrification of the various components has fuelled an increase in this trend. The availability of chassis control systems onboard vehicles has been widely studied and exploited for augmenting vehicle stability. At the same time, for the context of high performance and luxury vehicles, chassis control systems offer a vast and untapped potential to improve vehicle handling and the driveability experience. As performance objectives have not been studied very well in the literature, this thesis deals with the problem of control system design for various active chassis control systems with performance as the main objective. A precursor to the control system design is having complete knowledge of the vehicle states, including those such as the vehicle sideslip angle and the vehicle mass, that cannot be measured directly. The first half of the thesis is dedicated to the development of algorithms for the estimation of these variables in a robust manner. While several estimation methods do exist in the literature, there is still some scope of research in terms of the development of estimation algorithms that have been validated on a test track with extensive experimental testing without using research grade sensors. The advantage of the presented algorithms is that they work only with CAN-BUS data coming from the standard vehicle ESP sensor cluster. The algorithms are tested rigorously under all possible conditions to guarantee robustness. The second half of the thesis deals with the design of the control objectives and controllers for the control of an active rear wheel steering system for a high performance supercar and a torque vectoring algorithm for an electric racing vehicle. With the use of an active rear wheel steering, the driver’s confidence in the vehicle improves due a reduction in the lag between the lateral acceleration and the yaw rate, which allows drivers to push the vehicle harder on a racetrack without losing confidence in it. The torque vectoring algorithm controls the motor torques to improve the tire utilisation and increases the net lateral force, which allows professional drivers to set faster lap times

    Proceedings of the Workshop on Computational Aspects in the Control of Flexible Systems, part 2

    Get PDF
    The Control/Structures Integration Program, a survey of available software for control of flexible structures, computational efficiency and capability, modeling and parameter estimation, and control synthesis and optimization software are discussed

    Tendon-Sheath Mechanisms in Flexible Membrane Wing Mini-UAVs: Control and Performance

    Get PDF
    Flexible membrane wings (FMWs) are known for two inherent advantages, that is, adaptability to gusty airflow as the wings can flex according to the gust load to reduce the effective angle of attack and the ability to be folded for compact storage purposes. However, the maneuverability of UAV with FMWs is rather limited as it is impossible to install conventional ailerons. The maneuver relies only on the rudders. Some applications utilize torque rods to warp the wings, but this approach makes the FMW become unfoldable. In this research, we proposed the application of a tendon-sheath mechanism to manipulate the wing shape of UAV. Tendon-sheath mechanism is relatively flexible; thus, it can also be folded together with the wings. However, its severe nonlinearity in its dynamics makes the wing warping difficult to control. To compensate for the nonlinearity, a dedicated adaptive controller is designed and implemented. The proposed approach is validated experimentally in a wind tunnel facility with imitated gusty condition and subsequently tested in a real flight condition. The results demonstrate a stable and robust wing warping actuation, while the adaptive washout capability is also validated. Accurate wing warping is achieved and the UAV is easily controlled in a real flight test
    corecore