176 research outputs found

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A Survey of 3D Indoor Localization Systems and Technologies

    Get PDF
    Indoor localization has recently and significantly attracted the interest of the research community mainly due to the fact that Global Navigation Satellite Systems (GNSSs) typically fail in indoor environments. In the last couple of decades, there have been several works reported in the literature that attempt to tackle the indoor localization problem. However, most of this work is focused solely on two-dimensional (2D) localization, while very few papers consider three dimensions (3D). There is also a noticeable lack of survey papers focusing on 3D indoor localization; hence, in this paper, we aim to carry out a survey and provide a detailed critical review of the current state of the art concerning 3D indoor localization including geometric approaches such as angle of arrival (AoA), time of arrival (ToA), time difference of arrival (TDoA), fingerprinting approaches based on Received Signal Strength (RSS), Channel State Information (CSI), Magnetic Field (MF) and Fine Time Measurement (FTM), as well as fusion-based and hybrid-positioning techniques. We provide a variety of technologies, with a focus on wireless technologies that may be utilized for 3D indoor localization such as WiFi, Bluetooth, UWB, mmWave, visible light and sound-based technologies. We critically analyze the advantages and disadvantages of each approach/technology in 3D localization

    3D millimeter-Wave Indoor Localization

    Get PDF
    The 3D nature of modern smart applications has imposed significant 3D positioning accuracy requirements, especially in indoor environments. However, a major limitation of most existing indoor localization systems is their focus on estimating positions mainly in the horizontal plane, overlooking the crucial vertical dimension. This neglect presents considerable challenges in accurately determining the 3D position of devices such as drones and individuals across multiple floors of a building let alone the cm-level accuracy that might be required in many of these applications. To tackle this issue, millimeter-wave (mmWave) positioning systems have emerged as a promising technology offering high accuracy and robustness even in complex indoor environments. This paper aims to leverage the potential of mmWave technology to achieve precise ranging and angling measurements presenting a comprehensive methodology for evaluating the performance of mmWave sensors in terms of measurement precision while demonstrating the 3D positioning accuracy that can be achieved. The main challenges and the respective solutions associated with the use of mmWave sensors for indoor positioning are highlighted, providing valuable insights into their potential and suitability for practical applications

    Design, simulation and experimental evaluation of indoor localization schemes for 60 GHz millimeter wave systems

    Get PDF
    This thesis targets localization schemes for single-anchor millimeter wave systems. The devised algorithms are evaluated by means of simulations in order to draw initial conclusions about their robustness. The obtained results are then validated via measurements involving commercial pre-standard 60-GHz MMW hardware, showing that by relying only on a single anchor, the algorithms can localize a node with high probability, and in many cases with sub-meter accurac
    corecore