1,828 research outputs found

    Characterisation and correction of respiratory-motion artefacts in cardiac PET-CT

    Get PDF
    Respiratory motion during cardiac Positron Emission Tomography (PET) Computed Tomography (CT) imaging results in blurring of the PET data and can induce mismatches between the PET and CT datasets, leading to attenuation-correction artefacts. The aim of this project was to develop a method of motion-correction to overcome both of these problems. The approach implemented was to transform a single CT to match the frames of a gated PET study, to facilitate respiratory-matched attenuation-correction, without the need for a gated CT. This is benecial for lowering the radiation dose to the patient and in reducing PETCT mismatches, which can arise even in gated studies. The heart and diaphragm were identied through phantom studies as the structures responsible for generating attenuation-correction artefacts in the heart and their motions therefore needed to be considered in transforming the CT. Estimating heart motion was straight-forward, due to its high contrast in PET, however the poor diaphragm contrast meant that additional information was required to track its position. Therefore a diaphragm shape model was constructed using segmented diaphragm surfaces, enabling complete diaphragm surfaces to be produced from incomplete and noisy initial estimates. These complete surfaces, in combination with the estimated heart motions were used to transform the CT. The PET frames were then attenuation-corrected with the transformed CT, reconstructed, aligned and summed, to produce motion-free images. It was found that motion-blurring was reduced through alignment, although benets were marginal in the presence of small respiratory motions. Quantitative accuracy was improved from use of the transformed CT for attenuation-correction (compared with no CT transformation), which was attributed to both the heart and the diaphragm transformations. In comparison to a gated CT, a substantial dose saving and a reduced dependence on gating techniques were achieved, indicating the potential value of the technique in routine clinical procedures

    Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

    Get PDF
    The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch

    Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

    Get PDF
    The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch

    Theoretical and numerical study of MLEM and OSEM reconstruction algorithms for motion correction in emission tomography

    Get PDF
    Patient body-motion and respiratory-motion impacts the image quality of cardiac SPECT and PET perfusion images. Several algorithms exist in the literature to correct for motion within the iterative maximum-likelihood reconstruction framework. In this work, three algorithms are derived starting with Poisson statistics to correct for patient motion. The first one is a motion compensated MLEM algorithm (MC-MLEM). The next two algorithms called MGEM-1 and MGEM-2 (short for Motion Gated OSEM, 1 and 2) use the motion states as subsets, in two different ways. Experiments were performed with NCAT phantoms (with exactly known motion) as the source and attenuation distributions. Experiments were also performed on an anthropomorphic phantom and a patient study. The SIMIND Monte Carlo simulation software was used to create SPECT projection images of the NCAT phantoms. The projection images were then modified to have Poisson noise levels equivalent to that of clinical acquisition. We investigated application of these algorithms to correction of (1) a large body-motion of 2 cm in Superior-Inferior (SI) and Anterior-Posterior (AP) directions each and (2) respiratory motion of 2 cm in SI and 0.6 cm in AP. We determined the bias with respect to the NCAT phantom activity for noiseless reconstructions as well as the bias-variance for noisy reconstructions. The MGEM-1 advanced along the bias-variance curve faster than the MC-MLEM with iterations. The MGEM-1 also lowered the noiseless bias (with respect to NCAT truth) faster with iterations, compared to the MC-MLEM algorithms, as expected with subset algorithms. For the body motion correction with two motion states, after the 9th iteration the bias was close to that of MC-MLEM at iteration 17, reducing the number of iterations by a factor of 1.89. For the respiratory motion correction with 9 motion states, based on the noiseless bias, the iteration reduction factor was approximately 7. For the MGEM-2, however, bias-plot or the bias-variance-plot saturated with iteration because of successive interpolation error. SPECT data was acquired simulating respiratory motion of 2 cm amplitude with an anthropomorphic phantom. A patient study acquired with body motion in a second rest was also acquired. The motion correction was applied to these acquisitions with the anthropomorphic phantom and the patient study, showing marked improvements of image quality with the estimated motion correction. © 2009 IEEE

    ATTENUATION CORRECTION IN CARDIAC PET/CT USING A TIME- AVERAGED CT

    Get PDF
    Heart disease is a leading cause of death in Canada, and Positron Emission Tomography (PET) is the gold standard for determining the viability of heart tissue following a heart attack. PET images require correction for attenuation, that is, for signal absorption by patient tissues. Attenuation correction (AC), is done via a transmission scan such as Computed Tomography (CT). However, due to the differences between PET and CT scan durations, respiration-induced motion can cause temporal mismatches leading to errors in the reconstructed PET image. This study compares the magnitude of these errors when single-phase CT, respiratory-averaged CT, and 4D CT are used for AC of cardiac PET in an in vivo canine model. The respiratory-averaged CT correction produced maximum percentage differences that were 7 times less than those produced by the single-phase correction. Using a respiratory-averaged CT may provide an accurate form of AC for cardiac PET imaging

    Performance and Methodological Aspects in Positron Emission Tomography

    Get PDF
    Performance standards for Positron emission tomography (PET) were developed to be able to compare systems from different generations and manufacturers. This resulted in the NEMA methodology in North America and the IEC in Europe. In practices, the NEMA NU 2- 2001 is the method of choice today. These standardized methods allow assessment of the physical performance of new commercial dedicated PET/CT tomographs. The point spread in image formation is one of the factors that blur the image. The phenomenon is often called the partial volume effect. Several methods for correcting for partial volume are under research but no real agreement exists on how to solve it. The influence of the effect varies in different clinical settings and it is likely that new methods are needed to solve this problem. Most of the clinical PET work is done in the field of oncology. The whole body PET combined with a CT is the standard investigation today in oncology. Despite the progress in PET imaging technique visualization, especially quantification of small lesions is a challenge. In addition to partial volume, the movement of the object is a significant source of error. The main causes of movement are respiratory and cardiac motions. Most of the new commercial scanners are in addition to cardiac gating, also capable of respiratory gating and this technique has been used in patients with cancer of the thoracic region and patients being studied for the planning of radiation therapy. For routine cardiac applications such as assessment of viability and perfusion only cardiac gating has been used. However, the new targets such as plaque or molecular imaging of new therapies require better control of the cardiac motion also caused by respiratory motion. To overcome these problems in cardiac work, a dual gating approach has been proposed. In this study we investigated the physical performance of a new whole body PET/CT scanner with NEMA standard, compared methods for partial volume correction in PET studies of the brain and developed and tested a new robust method for dual cardiac-respiratory gated PET with phantom, animal and human data. Results from performance measurements showed the feasibility of the new scanner design in 2D and 3D whole body studies. Partial volume was corrected, but there is no best method among those tested as the correction also depends on the radiotracer and its distribution. New methods need to be developed for proper correction. The dual gating algorithm generated is shown to handle dual-gated data, preserving quantification and clearly eliminating the majority of contraction and respiration movementSiirretty Doriast

    Motion-Corrected Simultaneous Cardiac PET-MR Imaging

    Get PDF

    Synthesis of Realistic Simultaneous Positron Emission Tomography and Magnetic Resonance Imaging Data

    Get PDF
    The investigation of the performance of different positron emission tomography (PET) reconstruction and motion compensation methods requires accurate and realistic representation of the anatomy and motion trajectories as observed in real subjects during acquisitions. The generation of well-controlled clinical datasets is difficult due to the many different clinical protocols, scanner specifications, patient sizes, and physiological variations. Alternatively, computational phantoms can be used to generate large data sets for different disease states, providing a ground truth. Several studies use registration of dynamic images to derive voxel deformations to create moving computational phantoms. These phantoms together with simulation software generate raw data. This paper proposes a method for the synthesis of dynamic PET data using a fast analytic method. This is achieved by incorporating realistic models of respiratory motion into a numerical phantom to generate datasets with continuous and variable motion with magnetic resonance imaging (MRI)-derived motion modeling and high resolution MRI images. In this paper, data sets for two different clinical traces are presented, ¹⁸F-FDG and ⁶⁸Ga-PSMA. This approach incorporates realistic models of respiratory motion to generate temporally and spatially correlated MRI and PET data sets, as those expected to be obtained from simultaneous PET-MRI acquisitions
    corecore