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Abstract

The e↵ect of respiratory motion on attenuation correction in fludeoxyglucose (18F) positron
emission tomography (FDG-PET) was investigated. Improvements to the accuracy of com-
puted tomography (CT) derived attenuation correction were obtained through the alignment
of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation
misalignment leads to artefacts in the reconstructed PET image and several methods were
devised for evaluating the attenuation inaccuracies caused by this. These methods of evalu-
ation were extended to finding the frame in the respiratory gated PET which best matched
the CT. This frame was then used as a reference frame in mono-modality compensation for
misalignment. Attenuation correction was found to a↵ect the quantification of tumour vol-
umes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits
of compensating for misalignment.

Deformable image registration was used to compensate for misalignment, however, there
were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models
were developed that were robust to a poor SNR allowing for the estimation of deformation
from very noisy images. Firstly, a cross population model was developed by statistically
analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration
was developed based on the physiological function of respiration. The 1D approach correctly
modelled the expansion and contraction of the lungs and the di↵erences in the compress-
ibility of lungs and surrounding tissues. Several additional models were considered but were
ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the
developed models were also used to assist with optimising for the most accurate attenuation
correction.

It was found that the multimodality registration of the CT image to the PET image was
the most accurate approach to compensating for attenuation correction mismatch. Mono-
modality image registration was found to be the least accurate approach, however, incor-
porating a motion model improved the accuracy of image registration. The significance of
these findings is twofold. Firstly, it was found that motion models are required to improve
the accuracy in compensating for attenuation correction mismatch and secondly, a validation
method was found for comparing approaches to compensating for attenuation mismatch.
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Introduction
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A combined PET/CT scanner enables functional imaging using a PET tracer in combi-
nation with anatomical imaging using a multi-slice CT scanner. Thoracic PET/CT imaging
is often used to assess lung cancer by both detecting regional metastatic disease and to stage
and evaluate larger tumours in the lung. Although larger tumours can be easily seen on CT,
a combined PET/CT scanner allows for the increased detection of regional metastatic dis-
ease which is not distinguishable on CT. PET also reveals additional nodes from a primary
tumour, thus allowing for improved definition of organs requiring radiotherapy treatment
(Greco, Rosenzweig, Cascini, & Tamburrini, 2007).

Figure 1.1: A transverse slice of a PET/CT image of the thorax using a Biograph mCT.
Although the tumour mass is large, PET revealed that only a portion of the tumour mass
(blue) is metabolically active in comparison to the bulk (green).

PET-CT systems provide a combination of information regarding tumour biology and
precise lesion localisation (Osman, Cohade, Nakamoto, & Wahl, 2003). PET-CT imaging is
especially useful in diagnosing early-stage non-small cell lung cancer (NSCLC) as there is a
critical need to identify patients who are more likely to develop metastatic disease and who
thus might benefit from additional therapy (Wu et al., 2016).

Accurate reporting of combined PET/CT imaging requires a thorough understanding of
the normal and variant physiological distribution of tracers as well as common incidental find-
ings and technical artefacts (Corrigan, Schleyer, & Cook, 2015). A recent study demonstrated
that the visual appearance of tumours in PET/CT images can be used to predict metastatic
disease (Wu et al., 2016). However, the visual appearance of image features such as small
tumours can be severely a↵ected by inaccuracies during image reconstruction, including the
partial volume e↵ect, motion and attenuation (Corrigan et al., 2015).

Respiratory gated PET/CT is a common technique used for addressing motion. This
technique is particularly useful for imaging tumours in the thorax and liver which are sig-
nificantly a↵ected by motion. Although the gating technique mitigates image blur due to
respiratory motion, there is a trade o↵ between reduced motion artefacts and increased noise
due to the limited counts per frame. The noise in respiratory gated scans is a significant
problem, however, this can usually be overcome by either scanning for longer, increasing
radiation dose, or using a more sensitive detector system.

Attenuation correction can be derived from CT by scaling the CT image to produce
an attenuation map which is then incorporated into the reconstruction of the PET image.
The benefit of a combined PET/CT scanner relies on the assumption that the PET and CT
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images are aligned. Misalignment poses two significant problems. Firstly, the anatomical and
functional images are no longer spatially aligned diminishing the clinical benefit of observing
a lesion in both modalities. Secondly, the CT derived attenuation correction of PET images
relies upon an aligned CT.

CT derived attenuation correction is often inaccurate due to misalignment caused by
patient motion. Respiratory motion is the largest contributor to misalignment, and image
artefacts can be clearly seen in cases where the misalignment due to motion has altered the
appearance of the PET image. Attenuation mismatch artefacts are commonly visible near
the upper liver due to under-attenuation correction owing to larger lung volumes on the CT
than on the emission PET (Osman et al., 2003).

Figure 1.2: Respiratory motion typically produces a band artefact resulting from under
correction of attenuation around the diaphragm in AC PET images.

There have been numerous investigations into improving respiratory gated PET images
using various approaches to motion compensation. Given the increased sensitivity of PET
systems, it has been argued that motion compensation only provides incremental benefit
since motion corrupted data from PET systems could be discarded without jeopardising the
signal to noise ratio (SNR) in PET images (Liu et al., 2010). Despite numerous developments
in compensating for respiratory motion in PET, not all of these methods have been extended
to address attenuation misalignment even though it remains a clinically challenging issue
(Corrigan et al., 2015)

There has been extensive work on the task of modelling respiratory motion for the pur-
poses of estimating, tracking and predicting motion (McClelland, Hawkes, Schae↵ter, & King,
2013) with the most common method of tracking achieved through the use of image regis-
tration applied to respiratory gated frames. Some methods for compensating for motion in
PET/CT incorporate motion estimation into PET image reconstruction. Although these ap-
proaches are intended to improve the SNR, it has been shown that noise increases for some
reconstruction algorithms (Tsoumpas et al., 2013). This thesis proposes that a more valuable
goal is to track internal movement primarily for the purposes of attenuation correction. It
focuses on developing and comparing approaches to address mismatch between PET and CT
in an e↵ort to address the clinical issues of diagnosing disease from a PET scan.
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1.1 Contributions

An initial investigation into comparing existing methods of image registration was completed
for the purposes of tracking the internal deformation of organs due to respiratory motion.

Existing registration packages often feature a variety of methods for modelling tissue de-
formation, however, the performance of image registration packages is dependant on many
factors. Most packages use the tuning parameters as the main way to improve registration.
Registration can also be improved by finding optimal methods of tissue deformation, algo-
rithm regularisation and estimating image similarity. Because existing registration packages
feature a variety of methods a systematic approach was taken to validation whereby direct
comparisons between packages was possible.

The poor image quality of PET images can be addressed by simplifying image registration.
This was achieved by reducing the number of control points or through extensive regularisa-
tion. Although these approaches were known to increase the robustness of registration, the
investigations in this thesis showed that these were not adequately complex to accurately
estimate respiratory motion (Barnett, Meikle, & Fulton, 2011) .

Some methods of image registration have been evaluated using digital anthropomorphic
phantoms to determine suitability for PET/CT alignment (Bai & Brady, 2011). Although
this method was a useful first step, a limitation of this approach is that image registration may
appear accurate for simulations, yet still encounter di�culties in circumstances of abnormal
anatomy (Barnett et al. (2011) - in appendix).

The shortcomings of image registration were addressed by considering a variety of respi-
ratory motion models. It was thought that this was an area lacking development because,
although many motion estimation algorithms were developed for CT imaging, few had been
successfully used in PET.

Existing models of respiratory motion have been used to track the motion of a tumour
(Liu, Alessio, & Kinahan, 2011), however, alternative models were sought which could also
track the movement of organs surrounding the tumour. This was especially challenging
because these organs contributed to attenuation mismatch, yet were not clearly visible on
the PET image.

An initial investigation highlighted di�culties in modelling motion in regions of low con-
trast and high noise on the PET image. A number of existing models were investigated
which were based on the physics of respiratory motion. Although these models were robust
to the noise in the image, they were also inaccurate in areas of abnormal motion such as
where disease had adversely a↵ected the ventilation to sections of the lung. Previous work
using finite element modelling (FEM) had demonstrated that such models require accurate
segmentation and classification of disease and tissue properties. Methods were sought which
could be used to accurately track clearly visible objects and only resort to modelling for
regions of low contrast.

The first contribution in this thesis was to develop two novel motion estimation methods
which addressed issues specific to respiratory motion in PET/CT.

The first model is presented in chapter 4 and used machine learning to estimate respiratory
motion. A machine learning population model was used to find the relationship between
motion in a collection of 4DCT scans. The population model was then used to find the most
statistically likely motion in a PET/CT even though no 4DCT had been acquired.
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Figure 1.3: Cross population model used to predict motion at End Inspiration (Top) and
End Expiration (Bottom).

The second model is presented in chapter 5 and used a 1 dimensional respiratory motion
model to constrain the amount that lung tissue expands and contracts. An initial estimate
of motion was used to build the 1 dimensional model of air flow and tissue deformation,
but it did not require segmentation of lung boundaries. This model was then built into
the image registration algorithm to provide the tissue expansion and contraction constrains.
This improved motion tracking in areas of low contrast where motion could not be otherwise
detected.

Figure 1.4: A coronal slice of the deformation field from the image registration overlaid onto
the target PET frame. The deformation field is represented by arrows of varying colour.
Red represents large deformations. Blue and grey represent smaller deformations. The field
produced using free-form deformation (left). The field produced after applying wave equation
constraints (right). In both cases the bending energy penalty term was 1%.

The second contribution in this thesis was to develop a method for validating motion
estimation and is presented in chapter 3. A set of consistency metrics were devised which
enabled the optimisation of image registration without the need for human observers. Vali-
dation through real scans was seen as necessary because abnormal anatomy was di�cult to
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model. Models would often fail for highly abnormal patients, highlighting the need to use
real patient data to test the robustness of the models.

These contributions demonstrated several approaches to improving attenuation correc-
tion of respiratory gated PET without increasing patient radiation dose using a combined
PET/CT scanner. Further work is outlined in chapter 6 and it is suspected that these ap-
proaches could be enhanced by using the additional information available on modern Time
Of Flight (TOF) PET systems.
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Chapter 2

Background
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PET/CT is a widely used imaging technique used in the diagnosis and staging of many
diseases including cancer. This thesis evaluates several attenuation correction methods for
PET/CT . This background chapter reviews developments which can o↵er improvements to
the accuracy of attenuation correction. In section 2.1, the design and purpose of standalone
PET and standalone CT scanner are introduced. The section discusses the benefit of a
combined PET/CT scanner, particularly the availability of CT as a means to produce an
attenuation map. It will be argued that despite these benefits, many studies have shown
that CT derived attenuation correction is inaccurate due to respiratory motion. Section 2.2
presents respiratory gating as a technique for mitigating respiratory motion in both PET and
CT scans.

Several approaches to attenuation correction are reviewed in section 2.3 and it will be
shown that the accuracy of attenuation correction could be significantly improved by ad-
dressing the misalignment between PET and CT images. Section 2.4 overviews a variety
of approaches to image registration. The section will also outline the theoretical framework
needed to address PET/CT misalignment using deformable image registration whereby the
attenuation map can be deformed such that it is aligned to the PET image.

Although the existing methods for correcting for alignment are promising, they all have
shortcomings in the way that they do not explicitly model respiratory motion. Section 2.5 will
describe a variety of ways these shortcomings can be addressed by parameterising respiratory
motion through modelling. Given the wide variety of options for addressing misalignment,
it is conceivable that any of the methods introduced in this review could be the approach
which yields the most accurate attenuation correction. Section 2.6 will review two existing
approaches to attenuation mismatch and identifies the need for improvement.

2.1 An Introduction to PET/CT Imaging

PET and CT are scanner technologies developed in the 1970s for the purposes of producing
3D images to aid the diagnosis of disease. A standalone CT scanner consists of a rotating X-
ray tube and a detector on the opposing side. The patient is fed through the CT scanner on a
moving bed and the entire assembly rotates around the patient to take multiple x-ray images
of the patient at various angles. A standalone PET scanner consists of a ring of detectors for
the purposes of detecting the position of radioactive decay of tracer radio-pharmaceuticals
in the body. In a similar way to CT, the patient is fed through the scanner and imaged at
various positions. A combined PET/CT scanner is a CT scanner with an adjoining PET
scanner such that the patient bed can be fed through both scanners in one episode. In
2001 Townsend produced patient images from a combined PET/CT scanner. The following
provides an overview of the benefits of a combined PET/CT scanner.

2.1.1 Helical Computed Tomography

Early designs of CT imaging systems acquired each axial slice separately in sequence with the
detector performing a full rotation around the patient before moving to the next bed position.
The development of continuously rotating CT systems, known as helical CT, provided much
faster acquisition times allowing for rotation times of less than 1 second. With this technical
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capability it was possible to operate these systems with the bed moving and sample projection
space using a helical geometry. Modern Helical CT systems have multiple rows of detectors,
allowing for the simultaneous acquisition of multiple slices. Helical CT is now the most
common mode of acquisition, and there has been much investigation into motion artefacts
specific to this method (Pan, Lee, Rietzel, & Chen, 2004).

Computed tomography (CT) is the process by which each axial 2D slice is reconstructed
from a set of projections. The physics of CT can be described by a basic model of transmis-
sion of X-rays through the voxels (ray of length l) representing an object being detected as
sinogram values Y

i

on the ith detector (equation 2.1). This is known as the Radon transform.
The sinogram is also comprised of both noise and scatter which need to be accounted for.

Y
i

= b
i

e�
P

j
lijµj + s

i

+ n
i

(2.1)

Reconstruction of the 2D slice is an inverse problem where the average attenuation in each
voxel, µ

j

, can be estimated by filtered back projection (FBP). FBP involves back projecting
each ray between the X-Ray tube source and the detector and determining the length, l

ij

,
which intersects with the jth voxel. The sensitivity for the detector is b

i

, the scatter, s
i

,
and the noise is n

i

. The geometry of helical CT is modified and the volume data must be
rebinned to produce axial slices.

A significant problem with CT reconstruction is that sometimes a voxel is not sampled
from every sinogram angle. A simple example is when a metal object prevents any transmitted
signal being measured at certain angles, in which case ’fan’ artefacts will appear. The e↵ect
of these artefacts will also increase in the presence of noise, thus increasing the e↵ect for low
dose scans. Trade-o↵s a↵ecting dose and sampling can be measured and tested using phantom
experiments, making it possible to predict when artefacts will appear. Typically, every slice
is reconstructed with all 360 degrees of sinogram data. Alternatively, it is possible to under
sample projection angles using only 180 degrees of sinogram data (half scan reconstruction)
however, this also leads to artefacts. The scan duration is an important factor in reducing
the chance of motion occurring while the scan is underway. Scan speed can be increased by
increasing the pitch. A pitch greater than one stretches out the helical path of the tube such
that it skips slices. Increasing scan speed can reduce the chance of the image being corrupted
in some way due to motion, however, fast scan speed can often be at the price of poor axial
sampling (using high pitch) or high noise (using low mAs).

Image sampling is often assumed to be isotropic; that is, the resolution is the same in
every direction. Unfortunately, the sampling scheme employed in CT is usually non-isotropic
because the pitch is usually such that axial resolution is reduced in comparison to other
directions. Many automated image algorithms must pre-filter the image such that the data
has an isotropic sampling and resolution. These e↵ects are also di�cult to account for in
motion tracking algorithms because motion tracking algorithms rely on the ability of the
algorithm to track image features in all directions.

Clinical CT systems allow the operator to adjust the energy of the X-rays by varying
the tube voltage (kV) and the amount of X-ray exposure by varying the cumulative tube
current (mAs). Whilst these adjustments allow the operator to optimise image quality, careful
attention must be paid to the dose deposited by the X-rays. It is important to minimise dose
which is the energy deposited per unit volume of tissue (mGy). Table 1 shows typical doses
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Table 2.1: CT Dose Reference Levels (DRLs) for various sites. Scanner parameters were
interpreted using CT Expo (Stamm & Nagel, 2002).

Dose Reference Level Dose: Typical scan parameters
CTDI

vol

(mGy) for 70kg patient
ARPANSA DRL for 15 140 mAs, 140kV
diagnostic chest CT in adult 210mAs, 120kV
SNM Clinical Trials. 4.9-6.2 100 mAs, 110kV
Low dose CT for PET/CT
Jallow et al. (2016)
Example site (Westmead) 1.6 80 mAs, 80kV

Table 2.2: Typical scan parameters for helical CT

Scanner Dose: Typical scan parameters
CTDI

vol

(mGy)
GE LightSpeed MSCT 40mGy 100mAs, 120kV, up to 10 rotations,
Pan et al. (2004) 5s acquisition per slab.
GE Discovery ST PET/CT 160mGy 100mAs, 120kV, up to 30 rotations,
Murphy et al. (2011) 20s acquisition per slab

and scan parameters for a chest CT.

2.1.2 Cine Computed Tomography

Modern multi-slice CT systems have been introduced to increase scan speed. Mutli-slice CTs
have large detector coverage and can acquire between 1cm and 16cm of axial data in a single
rotation. Cine mode involves scanning at the same slice location for multiple gantry rotations
(Low et al., 2003). Cine mode has become possible through the reduction of rotation times
to less than 0.5 seconds, enabling the production of a 4D image with a temporal resolution
as low as 100ms.

A CT scanner capable of acquiring in cine mode can be combined with a respiratory
motion management system to generate a 4DCT. This method of acquisition is covered later
in the section on respiratory gating.

2.1.3 Anatomical Imaging of the Thorax using CT

Anatomical imaging of the thorax involves creating an image of internal organs with the
purpose of visualising disease. Thoracic computed tomography creates a 3 dimensional image
which allows for improved visualisation of disease over a conventional chest X-ray. A chest
X-ray of the thorax typically contains many overlapping organs, however, a thoracic CT
(Figure 2.1) provides a visual separation of the mediastinum, lungs, pleura, skeleton and
liver.

There are many indications requiring a thoracic CT including evaluation of abnormal
masses, staging of tumour and metastatic disease, and the evaluation of pulmonary embolus.
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Figure 2.1: A coronal cross-sectional CT image of the thorax

CT in the thoracic area can also be used to evaluate various types of cardiac and aortic disease.
Respiratory motion involves the continuous movement of nearly all of these organs in the
thorax and is known to cause image artefacts which can lead to misdiagnosis. Both thoracic
and cardiac CT imaging are a↵ected by respiratory motion. Numerous scanning protocols
have been developed to reduce the appearance of dome artefacts in the liver, however, the
outcome of a scan depends on patient compliance and scan speed. A discussion on the
mechanics of respiratory motion, as well as methods to estimate motion and assist in the
correction of motion for the improvement of diagnosis, is addressed later in this review.

Over the history of CT imaging, the quality of CT images has improved considerably
to ensure the reliability of diagnostic CT procedures at correctly detecting and staging dis-
ease. The reliable detection and/or staging of disease by an expert radiologist requires a
minimum level of image quality. The human observer model is a mathematical construct
which describes the image quality in an e↵ort to estimate the reliability of disease detection
(Barrett, Abbey, & Clarkson, 1998). In this model anatomical imaging can be thought of as
an attempt to identify the existence of a true object which may or may not be visible on the
CT image. The impact of CT image quality on disease detection imposes strict limitations
on CT acquisition parameters. Improved image quality may come at the expense of a higher
required radiation dose. This trade o↵ can often be mitigated using advanced CT dose op-
timisation methods, however, an investigation into this is beyond the scope of this review.
The same trade o↵ also a↵ects methods of respiratory motion detection and correction. This
is because detecting respiratory motion is analogous to the human observer model in which
we require a minimum image quality to observe an object.

The radio-density of organs in CT images is measured using the Hounsfield Scale, a
transformation of linear attenuation coe�cient where air is -1000HU and water as 0HU at
standard temperature and pressure (STP). Some organs in the thorax are easily identifiable
as their HU is significantly di↵erent from background. The process of finding anatomical
boundaries in CT is known as segmentation. The boundaries between organs of similar HU
are di�cult to detect and often require expert interpretation, for example, the boundary
between the myocardium and liver is di�cult to detect because both tissues have a density of
approximately 100HU. The visibility of apparent organ boundaries is a↵ected by respiratory
gating as described in section 2.2 and this is relevant to image registration methods reviewed
in section 2.4.
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Figure 2.2: The annihilation of a positron leads (left) to a coincidence detection along a line
of response (right)

2.1.4 Positron Emission Tomography

Positron Emission Tomography (PET) imaging relies on the radioactive decay of a positron
emitting isotope. Emitted positrons travel a short distance through tissue before they anni-
hilate (figure 2.2). Flourine 18 is a common PET isotope and the positrons have a maximum
range of 2.6mm in tissue (Levin & Ho↵man, 1999).

Each annihilation event creates two 511 keV gamma rays which are emitted in opposite
directions. The PET scanner consists of a ring of highly sensitive detectors which are de-
signed to detect both of these 511 keV gamma rays (see figure 2.2). The high sensitivity is
achieved by using photo-scintillating crystals which have su�cient density and size to ab-
sorb energy from a significant number of 511 keV gamma rays without them just passing
through undetected. The crystal is optically coupled to a photosensitive detector such as a
photomultiplier tube (PMT) or a solid state photo-detector. If the detection of each 511keV
event takes place within a narrow time frame then this is registered as a coincident detection.
The position of the detected events can then be used to identify the line-of-response (LOR)
upon which the annihilation must have taken place. A PET image is produced through the
tomographic reconstruction of the detection events recorded along each LOR.

A significant proportion of detected events are due to the chance of two independent
detections happening within the same coincidence time window. These are referred to as
random events and need to be estimated and accounted for during tomographic reconstruc-
tion. Additionally, approximately 20-40% of events are scattered as a result of interacting
with tissue. Scatter alters the path the photon travels to the detector meaning that the
LOR no longer represents the positions where the original annihilation took place. Given
the numerous potential interactions that lead to detected events, an estimate of the amount
of useful detected signal to noise ratio (SNR) is useful in establishing the quality of image
which can be produced from the PET scanner. The noise equivalent count rate (NECR) is a
benchmark of SNR which is dependent on true detected events, random detected events and
the scattered events.

The amount of noise in the image depends upon the number of measured true coincident
events. The number of events can be predicted by knowing the sensitivity of the PET
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Table 2.3: Typical scan parameters for PET

Scanner Sensitivity Dose (MBq) Duration Coincidence Events
Biograph 16 4kcps/MBq 200 20mins 107

Biograph mCT 8kcps/MBq 250 15min 2⇥ 107

100 msec 1 sec 10 sec
 4 000 cts 40 000 cts 400 000 cts

Figure 2.3: Low count PET/CT coronal slices simulated using the X CAT phantom. Shades
of red indicate the counts detected using PET. The signal to noise ratio (SNR) is so low
that even a large organ such as the liver is not visible until there are at least 4⇥ 105 counts
recorded in the PET field of view (FOV) for low count images and this is why 106 counts is
really needed to see structures.

scanner, the dose administered to the patient, and the duration of the scan (figure 2.3). The
signal to noise (SNR) of the PET system is proportional to the inverse square root of the
true coincident rate. The SNR limits the reliability of detecting a tumour in comparison to
the surrounding tissue (Caucci & Barrett, 2012). Later in this review it will be shown that
the SNR of the PET scanner places significant limitations on estimating respiratory motion.
Table 2.3 shows administered dose and acquisition duration and scanner sensitivity suitable
for producing a whole body image for clinical use for two commonly used PET/CT scanners.

PET is an intrinsically 3-dimensional (3D) imaging methodology and most modern re-
construction algorithms model coincidence detection in 3D. A 3D model involves ray tracing
from the detector element along the line of response to find which image voxels are a potential
source of the annihilation event. In order to make improved estimates of the voxel values,
�(x, y, z) it is necessary to use the Radon transform. The Radon transform is the forward
projection from every voxel to every detector element, p(s,�, z1, z2), in the PET emission
sinogram where s is the detector position, � is the angle and z1 and z2 are the axial positions
of the detector rings (figure 2.4).

p(s,�, z1, z2) = R(�(x, y, z)) (2.2)

Given that it is not possible to know the exact source of the annihilation event a statistical
algorithm can be used to find an estimate of voxel values, �(x, y, z). This estimate is the
combination of voxel values which leads to the maximum likelihood of the forward projection
matching the emission data (Shepp & Vardi, 1982).

Maximum Likelihood Expectation Maximisation (MLEM) is an iterative algorithm for
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Figure 2.4: Ray tracing in 3D showing detector element p(s,�, z1, z2) and voxel � at position
x, y, z.

obtaining the jth voxel, �
j

, from the ith detector measurement E
i

. Approximately 100
iterations are required for a typical PET image before MLEM converges to an estimate,
however, there exist many practical methods to accelerate convergence.

Maximum likelihood reconstruction of low count acquisitions does not necessarily lead to
a visually interpretable image (figure 2.3), thus, it is often necessary to perform post recon-
struction smoothing for the purposes of visual interpretation. Post reconstruction smoothing
may also improve the stability of image registration algorithms discussed in section 2.4. .

PET relies on the accuracy of the system model which incorporates corrections into
the MLEM reconstruction. An accurate system model corrects for events which are mis-
positioned or missing due to photon scatter, photon attenuation, detector resolution and
dead time. Accurate corrections for photon attenuation is arguably one of the most critical
factors for accurate PET in the thorax.

Equations 2.3 and 2.4 shows the update step including incorporating scatter, S
i

and
randoms, R

i

e↵ects (Iatrou, Ross, Manjeshwar, & Stearns, 2004).
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2.1.5 Functional Imaging using PET

Positron emission tomography (PET) is an imaging technique aimed at visualising and quan-
tifying the physiological processes. The most common use of PET is to image the glucose
metabolism in an e↵ort to either diagnose or stage cancer. In this technique, trace amounts
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of the radio-labelled glucose analog, flurodeoxyglucose (FDG), are injected into the blood-
stream. A fluorine radioisotope (F18) is used to label flurodeoxyglucose such that it becomes
radioactive and undergoes positron emitting decay. The PET system is then used to obtain
an image which is representative of FDG metabolism. For thoracic tumour imaging, FDG is
distributed to the tumour and metabolised at a much higher rate in comparison to surround-
ing tissue. The concentration of FDG in the circulatory system decreases over a number of
hours as it is absorbed into tissue. FDG remains in the tissue once it has been metabolised,
thus the total amount metabolised can be approximated by performing delayed imaging. It
can then be assumed that the metabolic rate of FDG does not vary significantly during the
scan. The assumption of constant metabolism is useful when attempting to perform motion
correction in PET.

It is not practical to wait until all the FDG is metabolised because the F18 also un-
dergoes radioactive decay with a half life of 109.8 minutes. Delayed imaging is performed
at approximately 60 minutes post injection because this provides the optimal image when
taking into consideration both metabolism and radioactive decay of the tracer. An ideal
delayed image provides a high signal at the tumour site in comparison to the surrounding
background organs. The system resolution of modern clinical PET scanners is approximately
4mm and acquired images are a↵ected by the partial volume e↵ect (Erlandsson, Buvat, Pre-
torius, Thomas, & Hutton, 2012). The detection of small tumours (1cm) is limited by the
PET system resolution and may only be positively identified if there is a high contrast of
FDG-PET uptake in comparison to surrounding organs.

The in vivo concentration of FDG in diseased tissue provides clinical information about
the pathology of the disease. Voxel values are directly proportional to in vivo tracer activity
when the PET image is normalised for the sensitivity of each detector element pair, ran-
dom coincidences are subtracted for each line of response and both attenuation and scatter
correction are included in MLEM reconstruction. Since the voxel values are proportional,
they can be calibrated and converted into units of Becquerels per millilitre (Bq/mL). This
technique of estimating the absolute tracer activity is known as quantitative PET. For the
FDG-PET tracer it has become popular to scale images according to a standardised uptake
value (SUV) corrected for body mass and injected activity. The SUV is frequently used in
thoracic imaging to stage the progression of disease, including pulmonary tumour nodules.

Motion a↵ects the quantitation of PET scans and this can be compensated by incorpo-
rating motion correction. Motion correction requires knowledge of the motion upfront and
this can be achieved by transforming LORs to compensate for the motion of a rigid body.
Livieratos et al. (2005) demonstrated the correction of the inferior-superior motion of the
heart in respiratory gated PET scans Unfortunately, although it is possible to correct for
motion by transforming LORs, this thesis and review will show that this is non-trivial for
motion of other organs in the thorax.

2.1.6 Benefits of a Combined PET and CT Scanner

The interpretation of a FDG-PET image involves distinguishing abnormal foci from the
metabolism of non-involved organs such as brain, heart, liver, intestines, and the lung. Glu-
cose metabolism is significantly increased by a variety of physiological processes, however,
the anatomical location of a foci is needed to interpret whether it is abnormal physiology.
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Combined PET/CT imaging allows for better distinction between normal physiology and
disease. FDG foci can be localised to anatomical structures identified on CT providing ad-
ditional interpretation of whether the structure is likely to have disease (Townsend, Carney,
Yap, & Hall, 2004). Conversely, interpretation of suspicious structures observed on the CT
can potentially be modified or refined by reference to the PET scan. In both cases, the
alignment of the CT image and PET images are important.

Attenuation correction in PET imaging requires an accurate estimate of the photon atten-
uation at every voxel location. This makes it possible to calculate the proportion of photons
which were not detected along each LOR due to the linear attenuation of 511keV photons.
This proportion is equivalent to the attenuation correction factor (ACF) and can be applied
to the counts recorded on a line of response. Attenuation is due to a combination of the pho-
toelectric absorption and Compton scattering within tissue. Although the CT can be used to
estimate the radio-density in terms of Hounsfield units, the low energy X-rays with a mean of
approximately 70keV have a linear attenuation coe�cient which is quite di↵erent to that of
511keV annihilation photons. The approach taken by P. E. Kinahan, Townsend, Beyer, and
Sashin (1998) was to separate the problem into an approximation of the relationship for two
types of tissue leading to a bilinear scaling function. Figure 2.5 shows a proposed relationship
between HU and the linear attenuation for 511keV annihilation photons (P. E. Kinahan et
al., 1998). Soft tissue such as lung, liver, fat and muscle are assumed to only require a single
scaling factor which applies to HU less than 0. Spongiosa and cortical bone contain signif-
icant calcium and phosphorous and require an alternate scaling factor. The radio density
is dependent on the x-ray energy leading to modified scaling factors for specific CT tube
energies (P. E. Kinahan et al., 1998). Soft tissue such as lung, liver, fat and muscle are as-
sumed to only require a single scaling factor which applies to HU less than 0. Spongiosa and
cortical bone contain significant calcium and phosphorous and require an alternate scaling
factor. The radio density is dependent on the x-ray energy leading to modified scaling factors
for specific CT tube energies.

Accurate attenuation correction is essential for quantitative PET/CT, and although the
bilinear scaling method can be used to derive the attenuation map from CT, there are chal-
lenges and potential improvements to attenuation correction which are detailed in section
2.3.1.

2.1.7 Improving PET Reconstruction with Time of Flight

The principle of time-of-flight PET is to measure the di↵erence in arrival time of a pair of
photons along a line of response. Since photons travel at the speed of light, the di↵erence
in arrival time can be used to estimate the position of the event along the line of response.
Although the TOF resolution is poor, this additional information can be incorporated into
the system model for iterative reconstruction to localise events along each LOR. The main
benefit of TOF reconstruction is a significant increase in SNR of large body patients (Karp,
Surti, Daube-Witherspoon, & Muehllehner, 2008). There were few TOF systems commer-
cially available during initial investigations into the e↵ect of respiratory motion on PET/CT
imaging undertaken for this thesis. More recent investigations have shown that TOF can
improve reconstruction making it more robust to inconsistencies in attenuation correction
(Conti, 2010). The specific benefits of TOF for attenuation correction are detailed in section
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Figure 2.5: Bilinear scaling from HU to attenuation coe�cient for 511 keV photons.

2.3.5.

2.2 Respiratory Gating in PET/CT

Respiratory gating in both PET and CT can be used to generate 4D images providing a
sequence of images at di↵erent phases of the respiratory cycle. The method of generating
4D image is di↵erent for each modality. This section describes some of the challenges in
acquiring gated images.

Respiratory motion during a PET scan degrades the image, particularly at organ bound-
aries which may continuously move by 20mm for the duration of the acquisition. Respiratory
gating in PET can be used to address motion by partitioning data into bins which correspond
to particular phase intervals in the respiratory cycle (figure 2.6). Each gate thus contains
only a part of total motion and will have reduced motion artefacts (Dawood, Bther, Lang,
Schober, & Schfers, 2007). Gating is often performed over many respiratory cycles whereby
the total counts in each bin is added up over many cycles providing su�cient counts to re-
construct an image. Section 2.2.2 outlines key challenges in gated PET including methods
for identifying phase intervals in the respiratory cycle, addressing image noise, addressing
motion blur and tracking the motion of objects.

Respiratory gating in CT is implemented by taking multiple CT images of the same
slice many times. Cine CT mode is the preferred method for acquiring images and is often
referred to as 4DCT. The key challenges in generating a 4DCT image are that frames need
to be sorted according to their phase interval in the respiratory cycle.
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Figure 2.6: A respiratory trace (left) where gated events are used to select events from the list
mode stream. These events are summed and reconstructed to create a gated frame (right).

2.2.1 Acquiring a Trace Suitable for Respiratory Gating

The respiratory trace is a time varying function which is an indicator of the depth of respi-
ration. The respiratory trace is analysed to determine the phase interval for each respiratory
gated bin. The ideal respiratory trace is the lung air volume and should clearly mark sig-
nificant time points during the scan such as end inspiration (EI) and end expiration (EE).
The only means of directly estimating lung air volume is to use spirometry during imaging,
however this is impractical.

Several methods of acquiring a trace by monitoring the external movement of the chest
have been proposed such as the use of a strain gauge or reflective markers (Nehmeh et
al., 2004), or marker-less motion tracking using video (Noonan et al., 2012) (figure 2.7).
The primary advantage of surface data is that it produces a more reliable result and is
less dependent on patient positioning. In some cases chest surface tracking can be used to
distinguish whole body motion from respiratory motion (Pretorius et al., 2011). Marker-
less tracking of the chest surface can also be used to construct a patient specific model of
respiratory motion and this technique is described in more detail in the section on parametric
models for respiratory motion. A disadvantage of external movement tracking is that it is
not necessarily representative of internal motion, in particular, because the changes in lung
volume lag the external movement of the chest (Liu, Alessio, & Kinahan, 2011). Another
method that can be used to monitor internal movement is radio-wave frequency (Gu et al.,
2012). In the case of PET it is also possible to interpret a respiratory trace from the list-
mode data itself. The movement of FDG avid organs across the most sensitive region of the
PET detector can be interpreted from variations in the count rate in the list mode data (He
et al., 2008). Alternative approaches such as dimensionality reduction or spectral analysis
(Thielemans, Schleyer, et al., 2011) are more robust to noise. For example, Thielemans,
Rathore, Engbrant, and Razifar (2011) used principal components analysis to interpret the
respiratory trace from relative changes between elements in a down-sampled sinogram .
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Figure 2.7: A schematic view of all the possible di↵erent tracking systems which have
been used to create a respiratory trace, including markerless (purple), reflective block (red),
spirometery (blue), doppler radar (green) and strain gauge (orange).

2.2.2 Challenges with Respiratory Gating a PET Scan

Respiratory motion during a PET scan tends to corrupt the image causing organ and disease
boundaries to blur. Motion blurring dilutes the signal from small areas of increased uptake,
thus lung tumour nodules may not be detectable on a PET image. Respiratory gating
has been shown to restore the appearance of areas of focal uptake such that they may be
more reliably detectable (Liu, Pierce, Larry, Alessio, & Kinahan, 2009). There are various
methods for partitioning PET data to produce a respiratory gated scan. Partitioning PET
list mode data by phase interval (phase gating) is the most widely used method because it
is straightforward to encode timing intervals into the PET list mode data stream (Bruyant,
2007). The list mode stream can be binned into an arbitrary number of sinograms and
reconstructed into a sequence of images which each contain less motion than an ungated
image.

Although phase gating can be used to address respiratory motion a significant challenge
arises due to the Poisson nature of PET imaging. Noise has a significant e↵ect on the
identification of anatomical landmarks and the distinction of organ and disease boundaries
compromising the interpretation of gated PET images. The noise limitations of gating can
be overcome by increasing the acquisition duration however, long duration scans may not be
desirable in circumstances where a high patient throughput is required in the PET clinic.

Depending on patient breathing patterns, the quality of images within di↵erent gates
may not be comparable due to di↵erent degrees of motion blur. For patients with irregular
breathing patterns alternative methods of gating are necessary. Partitioning PET data into
bins is nearly always implemented retrospectively, thus, alternative gating schemes can be
applied in PET without the need for an additional scan.

One method of minimising the e↵ect of irregular breathing is to partition events in a
PET scan according to the amplitude of the respiratory trace. There are a variety of ways to
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Figure 2.8: Three methods for partitioning the respiratory cycle using gating. The time
intervals used for partitioning the list mode data are indicated by vertical lines. The bin
numbers are shown on the time axis (horizontal)

gate depending on the trace amplitude cuto↵s used for each bin (figure 2.8). Some methods
of amplitude gating ensure that every frame has the same number of counts whereas other
methods ensure that each frame has a similar degree of motion blur (Dawood et al., 2007).
In respiratory gated PET, the optimal gating method is largely influenced by the trade o↵
between the image noise due to limited number of events per frame versus the image blur due
to motion within each frame. The e↵ect of noise is so significant that if the number of counts
drops below 106 counts then it is questionable whether motion can be interpreted regardless
of the method used (Cloquet, Goldman, & Defrise, 2010).

The expiration phase of the respiratory cycle is typically a few seconds long and there is
very little motion leading up to the point of end expiration. This phase is referred to as the
quiescent part of the respiratory cycle. Quiescent gating is a variation of amplitude gating
and is less sensitive to noise and irregular breathing (Liu et al., 2010). In this scheme only
events during the quiescent part of the respiratory cycle are binned to obtain a single motion
compensated frame (figure 2.8). Despite the benefits, it is not possible to characterise motion
from a single frame.

2.2.3 Challenges with Acquiring a Respiratory Cine CT

There are many strategies for producing a 4DCT using a CT scanner in cine mode. The GE
LightSpeed multi-slice CT scanner was an early commercial implementation of cine CT. In
cine mode, the GE light speed steps through couch positions scanning the body repeatedly
with multiple rotations for each table position. Cine mode captures enough image slices at
each location to sample the entire respiratory cycle. Post-processing involves sorting CT
slices so that the phase interval for each CT slice is similar for each gated frame.

4DCT scans are very susceptible to motion artefacts because they are typically of long
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duration being acquired at multiple couch positions. Advances in the methods of sorting
slices in cine CT images can reduce the susceptibility to motion. These sorting methods are
dependent on the implementation of respiratory gating and are discussed in a later section.
Early methods of avoiding motion artefacts in 4DCT were to acquire additional rotations and
then discard slices which couldn’t be accurately sorted into phase intervals. This involved
acquiring 20 to 30 CT rotations per couch position (McClelland et al., 2006) discarding
unmatched slices without compromising data su�ciency. State of the art CT scanners with
larger axial field of view (FOV) also have fewer artefacts arising from incorrectly sorted slices.
For example, a 128 slice CT has the capability to acquire a complete lung cine using only 3 or
4 couch positions. Although 4DCT can be used to capture a motion free image, the purpose
of 4DCT is often to increase treatment margins to account for motion during external beam
radiotherapy. 4DCT has also been used to track the motion of tumours due to respiration.
The tracking can be used to assist in the delivery of highly conformal radiotherapy whereby
the treatment field is dynamically adapted to account for tumour motion.

2.2.4 Challenges with Tracking Motion from Respiratory Gated
Images

In 4DCT tumours are tracked by segmenting every frame in the gated sequence and can then
be used to compensate for tumour motion. The same approach can be expanded to track
any organ provided their features can be identified through image segmentation. Ideally,
the segmentation should be fully automated so that it does not require a human operator
to manually locate every image feature. However, automated segmentation is adversely
a↵ected due to confounding factors such as inadequate image sampling, excessive image
noise and the presence of discontinuities caused by gating inaccuracies. There have been
numerous developments in algorithms for automated segmentation of CT images (Heimann
et al., 2009; Zheng, Barbu, Georgescu, Scheuering, & Comaniciu, 2008). The automated
segmentation of the lungs is straightforward because of the stark di↵erence in density between
pulmonary vessels and the bronchiole tree. These soft tissue organs are generally more
di�cult to segment, even by human experts, due to the similar densities of adjacent tissues.
Given the di�culties encountered by human experts, automated algorithms are unlikely to
succeed. Despite developments in segmentation based tracking (Keall et al., 2005), fully
automated approaches do not perform well in comparison to other methods of respiratory
motion estimation (Murphy et al., 2010).

Although a segmentation approach may be suited to cine CT, confounding factors make
it unlikely for the technique to be broadly applicable to respiratory gated PET. Simulations
demonstrate (Segars, Sturgeon, Mendonca, Grimes, & Tsui, 2010) that the movement of
surrounding objects such as the liver, heart and diaphragm are significant, however, the image
quality of PET is such that the boundaries of some of these organs are not clearly visible
(Mattes, Haynor, Vesselle, Lewellen, & Eubank, 2003). Given the di�culty for a human
observer to identify anatomical objects from a PET image it is unlikely that a segmentation
approach will be accurate. Alternative methods may be more robust to noise, sampling and
image artefacts in gated PET.
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2.3 Correction Methods for Attenuation in PET/CT

CT derived attenuation correction (CTAC) is now the most widely used correction method
in PET imaging. Despite the wide use of CTAC, recent investigations into the e↵ect of res-
piratory motion on attenuation correction have led to the development of several alternative
methods. Several of these alternative methods to attenuation correction are incorporated
into PET image reconstruction. Given the wide use of PET/CT, we have concentrated on
methods which can utilise the combination of both CT and PET modalities. A complete
study of all methods is beyond the scope of this review and can be found elsewhere (Berker
& Li, 2016).

2.3.1 Challenges In CT Based Attenuation Correction

CT derived attenuation correction (CTAC) relies upon the accuracy of the bilinear scaling
method for deriving attenuation coe�cients from CT. The accuracy of CTAC can be adversely
a↵ected because low energy X-rays from CT (less than 80kV) are preferentially absorbed by
objects in the body. This e↵ect is referred to as beam hardening and can lead to inaccuracies
in voxel wise tissue density from CT because log attenuation is no longer a linear function
of object thickness. CT Reconstruction algorithms have been adapted to reduce the e↵ect of
beam hardening due to large or dense objects including bone and other highly dense materials
such as metal implants. The accuracy of CTAC is also a↵ected because the scan field of view
(typically 50cm) does not extend to the full bore size of the PET/CT. The truncated parts of
the patient can be accounted for by estimation of the tissue density of voxels which lie outside
the scan field of view. Importantly the CT derived attenuation map will not be spatially
aligned to the PET image. Spatial mismatch due to respiratory motion is arguably the largest
source of inaccuracy in the thorax. Objects visible in the thorax are a↵ected di↵erently by
motion in PET and CT. CT is a snapshot of the respiratory cycle whereas non-gated PET is
an average image of the respiratory cycle. Respiratory motion can be mitigated in PET using
respiratory gating, however, this does not address attenuation mismatch. Unfortunately,
respiratory motion is complex and attenuation mismatch is di�cult to mitigate because
motion is continually occurring and altering during the PET/CT acquisition:

1. During the CT scan. Respiratory motion during the CT can lead to artefacts in the
attenuation map.

2. During the PET scan. Respiratory motion during the gated PET scan leads to misalign-
ment between the stationary attenuation map and moving objects in the gated PET
frames. Some gated frames will su↵er from increased attenuation mismatch whilst other
frames will be better matched.

The propagation of CT artefacts into the attenuation map was a common problem with
early model combined PET/CT scanners (Osman, Cohade, Nakamoto, & Wahl, 2003). Im-
provements in CT scanner speed have reduced the incidence of respiratory motion induced
artefacts a↵ecting attenuation correction. In addition to this, it has been shown that it
is more accurate to acquire the spiral CT at end expiration to further reduce the chance
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of motion artefacts appearing in the image (Killoran et al., 2011). Such respiratory mo-
tion artefacts can also be minimised using a deep inspiration breath hold (DIBH) protocol
(Nehmeh et al., 2007). When artefacts do appear they tend to a↵ect the PET quantification
for the entire set of axial slices which contain the CT artefact, thus leading to the appearance
of boundaries in the PET image where there are none (Zaidi, Montandon, & Alavi, 2007).

Although the DIBH technique addresses motion during the CT, it does not address
motion between the PET and CT, nor during the PET. If the duration of the gated PET
scan is extended, then it is possible to address attenuation mismatch by only sampling list
mode events for which the CT and PET match. For example, if the CT was acquired at
end expiration then it is feasible to create a single gated PET frame which corresponds to
the same phase in the respiratory cycle (Liu et al., 2010). Unfortunately, this method is
sensitive to changes in breathing pattern and it is di�cult to predict in advance the timing
and duration of gate intervals during the PET scan required to match the CT.

Respiratory gated PET typically bins events into 8-12 frames, meaning that each frame
represents a 500ms - 1s segment of the respiratory cycle. Intra-gate motion during this time
has many implications for attenuation as tumour and organ boundaries may shift and this
is not reflected in CTAC. Although this e↵ect can be mitigated by increasing the number
of gated frames, intra-gate motion can be addressed using additional information such as a
model of respiratory motion (Alessio, Kinahan, Champley, & Caldwell, 2010).

Given the multiple ways in which respiratory motion can a↵ect PET/CT thoracic imaging,
it is clear that there is no simple solution to CTAC misalignment. The remainder of this
review is dedicated to methods to address this.

2.3.2 Improving the Accuracy of Attenuation Correction using
Cine CT

The mismatch between PET and CT can be partially addressed by averaging all frames in a
cine CT. By averaging over the complete respiratory cycle the cine CT derived attenuation
map is a closer spatial match than CTAC applied to non-gated PET (Alessio et al., 2007).
This has an advantage over acquiring CTAC as breath hold or free breathing as the result
is highly dependent on the timing and speed of the CT acquisition. The radiation dose of a
respiratory cine CT can be reduced by reducing the tube current to as low as 10mAs without
compromising its usefulness for attenuation correction (Xia, Alessio, & Kinahan, 2009).

Cine CT can also be used to create a gated CT with the same number of frames as
the gated PET. It has been shown that when using this acquisition protocol the breathing
pattern was comparable enough between the gated PET and gated CT to enable it to be
used for quantitative attenuation correction (Nehmeh et al., 2004). However, subsequent
investigations have shown that low dose phase gated CT is even more prone to respiratory
motion artefacts due to deficiencies in the sorting of CT slices (Lu, Parikh, Hubenschmidt,
Bradley, & Low, 2006). It is di�cult to avoid the problem that CT and PET are a↵ected by
motion in di↵erent ways.

Some studies have shown that there is little di↵erence between phase matched 4DCT
and respiratory averaged 4DCT (Killoran et al., 2011; Sun & Mok, 2012). Figure 2.9 shows
phantom studies which have been used to quantify of attenuation correction. In the study
published by Killoran et al. (2011), spiral CTAC acquired at end-expiration (EE) was com-
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Figure 2.9: Coronal slices of attenuation maps in a simulation study using spiral CTAC
(Left) acquired at end-expiration (EE) and respiratory averaged 4DCT (Right) similar to
those conducted by Killoran et al. (2011)

parable to respiratory averaged 4DCT. This implies that methods such as quiescent gating
may be as accurate as using cine CT (Liu et al., 2010). Partial volume e↵ects may arise
due to motion during the spiral CT acquisition, however, this is likely to be a secondary
concern in comparison to attenuation mismatch provided the motion during the spiral CT is
minimised. The partial volume e↵ect in CT is directly related to scanner speed and would
likely be present in very slow spiral CT scans such as those used in early cardiac PET/CT
(Di Carli et al., 2007).

2.3.3 Natterer’s Formulation of the Consistency Condition Equa-
tion

Without attenuation correction PET images reconstructed with iterative MLEM appear noisy
due to an inconsistent system model (McQuaid, Lambrou, & Hutton, 2008). Although atten-
uation correction can be applied as a post reconstruction correction (Bai & Brady, 2011), this
does not entirely eliminate the inconsistencies caused by attenuation mismatch. Numerous
attempts have been made to quantify this inconsistency as well as to address attenuation
correction and attenuation mismatch (Berker & Li, 2016).

PET image reconstruction involves the inverse of the Radon transform, where lines of
response (LOR) are iteratively back projected into voxels. The Radon transform has sym-
metries in the absence of any attenuating objects. The same symmetries hold in the presence
of attenuating objects provided accurate attenuation correction is applied. This dependency
was exploited to develop a consistency condition for attenuation correction (Natterer, 1999).

It was subsequently proposed that Natterer’s consistency condition can be used to address
attenuation mismatch (Alessio et al., 2010). In this scheme, (equation 2.5) the attenuation
correction factor, eT (s,�), for each line of response was used to correct measured sinogram
data, E(s,�), at each detector position, s, and view angle, �. The consistency condition held
for the integral of any combination moment, m, and frequency, k.

Z 2⇡

0

Z 1

�1
smeik�eT (s,�)E(s,�)dsd� = 0, k > n (2.5)

At the beginning of this thesis work it was clear that the potential to exploit the consis-
tency condition to inform the alignment of PET/CT had not been investigated thoroughly.
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2.3.4 Reconstruction of Maximum Likelihood Activity and Atten-
uation

Estimating attenuation from PET sinogram data has been considered as a way to avoid the
need for a separate acquisition for obtaining an attenuation map image (Nuyts et al., 1999).
Maximum likelihood reconstruction of attenuation and activity (MLAA) was developed as a
logical extension of consistency conditions incorporating activity and attenuation estimation
into an iterative algorithm (Clinthorne, Fessler, Hutchins, & Rogers, 1991). MLAA is a
constrained maximum likelihood approach and takes into account the Poisson nature of
detected emissions, where the likelihood of emission, L, is dependent on emission activity, ~�,
and attenuation, ~µ (equation 2.6). Nuyts et al. (1999) shows that the maximum likelihood can
be solved by an iterative algorithm in which each voxel in the estimate is forward projected
along a line of response, i. At each iteration, the forward projection, p

i

is compared to the
measured events, E

i

.

L(~�, ~µ) =
X

i

(�p
i

+ E
i

ln(p
i

)) (2.6)

MLAA is implemented using a nested iterative solver, where the likelihood is maximised
by alternating updates of attenuation and emission estimates. Although MLAA can be
used to estimate the attenuation map, it relies on a non-zero @L

@µ

in order to maximise L.
This means that MLAA is underdetermined as can be demonstrated by the fact that many
di↵erent activity distributions can lead to the same Radon transform (sinogram). Prior to the
availability of TOF data, simulations showed that MLAA was not accurate for some cases
of non-uniform attenuation (Nuyts et al., 1999). After the advent of combined PET/CT,
MLAA was perceived as redundant because CTAC was perceived as superior in accuracy.
However, it was soon found that CTAC mismatch artefacts had a serious e↵ect and that
perhaps MLAA could augment CTAC in some way. This led to a resurgence of interest in
alternative methods for improving the estimation of attenuation from CTAC. For example,
it was shown that MLAA could be used to address truncation of CTAC derived attenuation
maps by estimating the extended field of view (eFOV) of the attenuation map using an
adaptation of MLAA (Nuyts et al., 2013).

The shortcomings of MLAA reveal that without additional information assumptions are
required for estimating attenuation.

2.3.5 Attenuation Correction using Consistency Conditions For
TOF Imaging

Time of Flight (TOF) information localises the position of the annihilation event along the
line of response (LOR), however, uncertainties of approximately 15cm (500ps) exist depending
on the type and size of photo-scintillating crystals in the scanner (Daube-Witherspoon et al.,
2006). The uncertainty in position along the LOR is parameterised using 1D Gaussian. A
new consistency equation has been proposed which is an extension of Natterer’s consistency
equations (Panin, Defrise, & Casey, 2010)
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where p are the sinogram values in the absence of attenuation, s is the detector position,
� is the angle, t is the photon TOF and � is the TOF time resolution. The last term in this
equation is dependent on overall average attenuation and must be conserved. This consistency
equation (2.7) is used to find the derivatives of the Radon transform of the attenuation map,
@R(~µ)
@s

and @R(~µ)
@�

. These derivatives can be integrated to estimate the ACF sinogram up
to a constant (Defrise, Rezaei, & Nuyts, 2012). Although this formulation allowed for the
estimation of the ACF factors from sinogram data, it was extremely sensitive to noise (Defrise
et al., 2012) and it was suspected that iterative algorithms will lead to significantly superior
results.

The availability of time-of-flight (TOF) information enabled an estimation of attenuation
correction factors (ACF) up to a constant and the same approach could be extended to
address the shortcomings of MLAA (Defrise et al., 2012). MLAA was underdetermined
leading to a cross-talk problem where it was not possible to maximise the more likely activity
and attenuation (Rezaei et al., 2012). The underdetermined nature of MLAA can also be
observed through symmetries in the associated Fisher information matrix (Rezaei et al.,
2012).

Maximum Likelihood Reconstruction for TOF-PET with simultaneous estimation of the
attenuation factors (MLACF) was developed as an iterative algorithm which uses TOF infor-
mation to find both the attenuation and emission (Rezaei, Defrise, & Nuyts, 2014). MLACF
uses the TOF consistency equations to obtain a ML solution thereby stabilising the joint
estimation problem (Rezaei et al., 2014).

Although MLACF is promising, two significant problems stem from the inverse relation-
ship between the emission and attenuation. The first problem is that the attenuation factor
is currently only estimated up to a constant, and the overall attenuation factor has to be
obtained using an alternative method. The second problem is that LORs with no uptake
have no emission signal and thus attenuation cannot be estimated along that LOR. This can
be mitigated by excluding low count regions of the sinogram prior to reconstruction.

An advantage of MLACF over CTAC is that even if the PET image is compromised by
motion, the MLACF is a↵ected in the same way and there is no need to correct for mis-
alignment. Although MLACF is promising in that it may enable quantitative PET imaging
without relying on transmission scans or other anatomical imaging procedures, it is subopti-
mal to ignore the information obtained from CTAC in a combined PET/CT scanner.

Whilst it would be interesting to further investigate the benefits of TOF, this review in-
dicates that methods of misalignment require a robust method of parameterising respiratory
motion. It is also worthwhile considering what information can be obtained about misalign-
ment of the CTAC due to respiratory motion. These issues are covered in the following
sections.
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2.4 Image Registration Applied to Respiratory Gated
PET/CT

There are numerous methods for estimating respiratory motion in both PET and CT. For
example, motion has been estimated from the cine CT image data itself by tracking the
movement of features during the CT scan (Han, 2010). Data driven methods such as these
typically use image registration as a means of finding the correspondence between frames
in the cine CT (Ehrhardt, Lorenz, & others, 2013). Although image registration has tra-
ditionally been used to align pairs of images it has been extended to sequences of images
for the construction of respiratory motion models in both PET and CT. In this case the
goal of registration is to estimate the transformations which correspond to the respiratory
motion being observed. Several kinds of transforms have been proposed as suitable for
modelling respiratory motion. There are also two kinds of image registration techniques,
feature-based and intensity-based. In feature-based registration, the similarity between im-
ages is determined through the alignment of segmented features in both the fixed and moving
image. In intensity-based registration, the similarity between image is determined through
voxelwise correspondences between the fixed and moving images. This investigation focused
on intensity-based registration because segmenting features in PET images is challenging.
Typically only solid large tumours such as single pulmonary nodules (SPN) are the only
identifiable features that can be reliably identified and tracked in PET. Thus feature-based
registration o↵ers very little for determining the motion of organs other than the tumour.

2.4.1 Objective Function

In intensity-based registration the objective function is a voxelwise measure of similarity
between a source and target image. The transformation, T (✓), is often found by maximising
the similarity, S, between the fixed image, I

Fixed

, and the transformed moving image, I
Moving

(figure 2.10). Registration is often formulated as the minimisation of an objective function
as shown in equation 2.8.

argmin�S(I
Fixed

, T (✓, I
Moving

)) (2.8)

Objective functions based on the direct correlation between voxels are suitable when reg-
istering PET to PET and CT to CT. In such cases the transform, T (✓), is an estimate of
the respiratory movement from one frame to the next and is found by minimising the sum
of squared di↵erences or correlation coe�cient between sequential frames. Direct correlation
metrics such as SSD require images with enough counts to distinguish between the vari-
ance caused by respiratory movement and background Poisson noise (Huang et al., 2011).
Noise corruption from individual frames can be addressed by extending the SSD objective to
simultaneously calculate the SSD for all frames using group-wise registration. Cross corre-
lation and correlation coe�cient metrics are useful when the appearance of objects changes
during the transform. This may be the case in long duration studies where tracer uptake
and distribution is changing, however this is not significant for short duration PET studies
whereby any e↵ect would be averaged out over many respiratory cycles. Aligning CT to PET
images requires information theoretic approaches, where the relationship between grey scale
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Figure 2.10: An ideal objective function is a smoothly varying function for which a minimum
can be reliably estimated using image registration. Many di↵erent objective functions have
been proposed which are suitable for measuring similarity given the characteristics of PET
images and CT images. A summary of approaches is shown in the table 2.4.

Table 2.4: A list of objective functions used for measuring image similarity in image regis-
tration.

Direct correlation
PET to PET Correlation Coe�cient: Bai and Brady (2009a)

Normalised Correlation: Thorndyke and Xing (2006)
CT to CT SSD: Vandemeulebroucke, Rit, Kybic, Clarysse, and Sarrut (2011)
PET to CT n/a

Histogram based
PET to PET n/a
CT to CT Mutual Information: McClelland et al. (2006)
PET to CT Mutual Information: Mattes et al. (2003)
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values in the PET and grey scale values in the CT are partial (in some cases independent)
and non-linear. The relationship between grayscale values in target and source image can
be expressed using a joint image histogram between target and source images. This joint
histogram is then used to calculate the normalised mutual information (NMI). The greater
the NMI, the more significant the relationship between target and source images. This ap-
proach has been used as a metric in the past to identify attenuation mismatch (Dawood,
Buther, Lang, Jiang, & Schafers, 2006). Image-based registration using NMI is more robust
than feature-based image registration because there is no need to track features in the PET
image and find corresponding features in the CT. A drawback of image-based registration
is that NMI and other histogram based objective functions can be corrupted by noise. The
presence of noise leads to local maxima of the objective function confounding the estimate
of the transform.

2.4.2 A�ne Transforms

A�ne transforms are often referred to as global transforms because all voxels are transformed
uniformly at all points in the image. A 3D dimensional a�ne transform allows for rotation,
translation and zooming and is described by 9 parameters. Even if the misalignment is non-
rigid, an a�ne transform is often performed as a first step in image registration. In this
case a�ne is a first order approximation of the transform which can be further refined by
introducing a deformation model with a large number of parameters.

For intra-modality registration, a�ne registration has been demonstrated as robust for
brains and has been used for motion compensation in PET by realigning the reconstructed
PET frames and robust to noise allowing for registration of frames with a duration as short as
30 seconds (Costes et al., 2009). The motion of semi-rigid objects can be tracked using a�ne
transforms and this is useful for localised corrections of motion of the heart (Livieratos et
al., 2005) and tumours (Liu et al., 2011). A�ne transforms can be applied to reconstructed
gated images provided that there is approximately 30 seconds worth of data per sinogram.
Alternatively, the transforms can be applied to detected events prior to reconstruction using
event by event motion correction without the need for gating (Liu et al., 2011).

For inter-modality registration a�ne transforms have been used to address attenuation
mismatch in the lung. Although, a�ne transforms are inadequate to capture multiple spa-
tially non-uniform movements, the simple rigid-body approximation was found to account for
many types of PET-CT mismatch errors (Alessio et al., 2010). A�ne registration can also
be incorporated into motion correction of PET scans to align dynamic frames during PET
image reconstruction (Verhaeghe et al., 2010). Despite the suitability of a�ne registration to
PET rigid motion correction, it is not able to capture the complex nature of respiratory mo-
tion (Lamare et al., 2004). More recent work modelling the lungs expanding and contracting
alongside the heart and diaphragm has shown that non-rigid deformations are necessary to
address PET-CT mismatch errors (McQuaid, Lambrou, & Hutton, 2011).

2.4.3 Non-Rigid Transforms

Non-rigid image registration requires an objective function, a deformation model and an
optimiser to match the target and source images. The deformation model is a transform of

29



every point in the source image to a location in the target image. The most suitable choice
of deformation model is dependent on image quality, tissue properties and physiological
variations of organs being imaged. Rather than reviewing all possible representations of the
deformation model, this thesis focuses on deformation models which have been widely used for
respiratory imaging. A more comprehensive summary of geometric transformations for non-
rigid body registration can be found in recent literature such as an excellent review by Holden
(2008). Expressing deformation as an independent transform for every voxel in the image
requires a large number of parameters, in fact it requires at least 3 transform parameters per
voxel in 3 dimensions. Such a scheme is referred to as a local representation because it allows
for arbitrary local transforms. Alternatively, the deformation can be expressed as compact
function with less degrees of freedom by assuming that the transform is smooth and piecewise
within the spatial neighborhood (Buerger, Schae↵ter, & King, 2011). The transform of each
voxel is represented using a function that is confined to the semi-local area. Transforms need
to be resampled to the voxel resolution in order to deform every voxel in the image.

Each deformation model can only be used with a limited set of optimisers and objective
functions. For example, inter-modality registration for PET/CT often uses a mutual informa-
tion cost function, however, there is no straightforward way to implement this cost function
for some deformation models (Holden, 2008). In order to succinctly compare deformation
models this review only considers several registration algorithms identified in literature (Mc-
Clelland, Hawkes, Schae↵ter, & King, 2013) as applicable to respiratory motion.

2.4.4 Regularisation

Even the most suitable choice of deformation model and objective function in a registration
algorithm may not produce the correct deformation. The reason for this is that image
registration is an ill-posed inverse problem and it is impossible to distinguish the correct
deformation from the other deformations which also minimise the objective function. Sensible
limits to the solution of the inverse problem can be imposed through a regularisation penalty
term.

Such regularisation can be introduced into image registration by adding a penalty term,
R, to equation 2.9.

argmin�S(I
Fixed

, T (✓, I
Moving

)) +R(✓) (2.9)

A straightforward approach to regularisation is to set R as a least squares penalty term,
�||T (✓)||2, known as Tikhonov or L2 regularisation. L2 regularisation allows the image regis-
tration to find the smallest deformation that also satisfies minimising the objective function.
The amount of regularisation can be tuned with the � which forces the transformation model,
T , to stay within sensible limits. Regularisation is also a way to incorporate prior assump-
tions into the registration framework such as favouring spatially smooth transforms. For
example, schemes which model deformations using a local representation often require the
use of a Gaussian filter to enforce spatially smooth transforms. In fact, any mathematical
or physical property can be penalised, provided a penalty can be devised. The spatially
smooth assumption has implications in the kind of deformation field produced and this issue
is revisited at the end of this chapter in light of attempts to improve regularisation.
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An alternative form of regularisation is to simply avoid capturing the local variation of
the deformation field. This can be achieved by limiting the number of parameters used in the
deformation model by reducing the resolution of the field. Although this is a suitable method
for obtaining an initial estimate of the deformation, there are numerous possible constraints
presented later in this chapter that provide an improved model of respiratory motion.

2.4.5 Implementations of Deformable Registration

There are many di↵erent methods of implementing deformable registration. This section
reviews four deformation models which have been used to perform deformable registration
of lung images. These have been chosen based on their usefulness for constructing more
elaborate respiratory motion models.

Hierarchical A�ne

A straightforward extension of a�ne registration is to model deformation as di↵erent a�ne
transforms at di↵erent points in the image space. Hierarchical a�ne registration decomposes
the transform into multiple locally a�ne transforms. A�ne registration is used to find these
local transforms which are subsequently combined to form an overall non-rigid deformation.
Hierarchical a�ne registration has been shown to be suitable for estimating respiratory mo-
tion from MRI sequences (Buerger et al., 2011). In this scheme a coarse representation of
respiratory motion is initially modelled by registering large sections of the image assuming
the motion of the section can be described by an a�ne transform. The image being registered
is successively split into smaller rectangular blocks, each associated with an a�ne registra-
tion. Although, this method is highly computationally e�cient, the alignment of fine image
structures may not be accurate (Buerger et al., 2011)

Demons Method

Another approach of image registration is to use the di↵erences in voxel grayscale values to
estimate an imaginary force which would align the source image, s, with the moving image, m
(equation 2.10). This method is reasonably straightforward to implement using the gradient
of the moving image, rm, and the voxelwise di↵erence between images, s�m. Each iteration
of the algorithm allows each voxel to move one pixel in the direction indicated by ~f

m

(Wang
et al., 2005).

~f
m

=
(s�m)~rm

|~rm|
2
+ (s�m)2

(2.10)

One of the problems with this method is that it only works within a single modality. This
has not been typically applied to PET because of the sensitivity to noise. The algorithm is
quite sensitive to spatial variations in image counts due to Poisson noise.

The demons method of image registration is adaptable by modifications to the ’active’
force equation 2.10. An alternative formulation of equation 2.10 is to define a ’passive’ force
for which the direction of force is determined from rs. A recent review found that using
a combination of both forces is the more accurate method (Wang et al., 2005). Demons
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registration has remained popular for respiratory imaging in 4DCT because only a small
amount of deformation smoothing is required to overcome image noise.

Optical Flow

The optical flow registration method is similar to the demons method in the sense that it
models highly local voxelwise transforms. Optical flow is based on a di↵usion equation that
governs the transport of grayscale values, I, of an image undergoing registration (Dawood,
Buther, Jiang, & Schafers, 2008). Images are registered by finding the optical flow velocity,
~v, that satisfies equation 2.11.

rI · ~v + @I

@t
= 0 (2.11)

Minimising the LHS of this equation is an ill posed problem, thus additional regularisation
is applied through the use of smoothness constraints (Dawood et al., 2010). Conventional
optical flow does not preserve counts upon transformation. In order to preserve counts an
additional constraint is added (Dawood et al., 2010). Constraining grayscale values to satisfy
equation 2.12 preserves counts even in the presence of the partial volume e↵ect.

r · (I~v) + @I

@t
= 0 (2.12)

Optical flow registration has been used to estimate respiratory motion from both simu-
lated and clinical PET scans (Dawood et al., 2008). A significant limitation of the optical
flow method is that it cannot be applied to multimodality registration because it relies upon
local di↵erences in grayscale values. It is also not straightforward to incorporate prior infor-
mation about respiration unless the constraint can be expressed in terms of the variables in
Equation 2.11 and 2.12.

Free Form Deformation

Free form deformation (FFD) image registration is a versatile approach where basis func-
tions restrict the localised properties of deformations (Holden, 2008). Semi-localised models
support basis functions which assume that deformation is smooth and continuous in between
control points. For example, sparsely distributed control points, P

ijk

, are interpolated using
cubic B-Splines to estimate and the transform, T , at intervening voxel positions, x, y, z where
 is the B-Spline basis function at each control point (equation 2.13).
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X
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k
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(2.13)

It has been shown that semi-localised models of deformation encourage free form registra-
tion to converge to the correct solution (Rueckert, Aljabar, Heckemann, Hajnal, & Hammers,
2006). FFD allows for arbitrarily large deformations, making it suitable in a broad number
of circumstances and imaging modalities.
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2.4.6 Improvements to Image Registration

Mass Preserving Image Registration

Non-rigid registration in CT lung images can be improved by accounting for local tissue
volume changes. Hounsfield Units (HU) are used to measure radiographic-density, therefore,
if tissue changes its volume as a result of deformation, then the HU must change, provided
that tissue mass is conserved. Changes in density are contributed by two factors. The largest
is the change in the regional volume due to deformation and a smaller change is the change in
the fractional tissue content within a region due to respiration (Yin, Ho↵man, & Lin, 2009).
Yin et al. (2009) assumed that the HU consists of two components: tissue, which includes
parenchyma and blood, with approximately 55HU, and air with -1000 HU. Any unit of lung
volume may be considered a linear combination of these two compartments.

The accuracy of registered PET images is also a↵ected by local tissue volume changes in
the lung. These changes can be accounted for by using a method to preserve the total activity
in the image. Changes in the volume of a voxel must be accompanied by a change in activity
density. The changes in activity due to voxel size can then be corrected for after image
registration by finding the amount of stretching and shrinking due to deformation. This
change can be estimated from the determinant of the Jacobean of the deformation transform
(Thielemans, Asma, & Manjeshwar, 2009). Activity can be preserved by multiplying by the
Jacobean at each voxel in the image. Some studies have shown that incorporating activity
preservation into the image registration algorithm has the additional benefit of avoiding
mis-registration due to the partial volume e↵ect (Dawood et al., 2010). Both free form
deformation (Thielemans et al., 2009) and optical flow image registration (Dawood et al.,
2010) have been adapted to incorporate activity preservation.

Groupwise Registration

Although it is possible to separately register each frame in a gated acquisition, it is useful to
draw upon the similarities of deformations across sequential frames. A groupwise approach to
registration simultaneously aligns all frames using a combined registration algorithm which
finds the set of all transforms. A groupwise approach allows the use of more robust defor-
mation models and objective functions. The voxelwise variance objective function has been
used to visualise the e↵ect of motion for short duration PET scans with a low signal to
noise (Huang et al., 2011). In equation 2.14, the voxelwise variance, sigma, is the squared of
di↵erence between the voxel in each frame, I

f

and the average over all frames, Ī.

�2
i

=
X

f

(I
i,f

� Ī
i

)2 (2.14)

In practice, groupwise registration can be accomplished by iteratively aligning all frames
to the running average of all registered frames (Costes et al., 2009), thereby minimising
the voxelwise variance. Although this form of registration may require significantly more
computing resources, it is more robust to noise.
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Spatiotemporal Registration

Spatiotemporal registration is a method of modelling both the spatial and temporal prop-
erties of a transform for a sequence of dynamic or gated frames. This can be accomplished
by parameterising the transform as a function of both space and time (Metz, Klein, Schaap,
van Walsum, & Niessen, 2011). The spatiotemporal approach has been reported to be more
robust to error caused by CT artefacts in individual frames as well as robust to the influence
of noisy or corrupted frames on registration accuracy. Metz et al extended the spatiotemporal
approach into a groupwise registration algorithm to jointly parameterise both spatial and time
variations of the transform. The trajectory of a point in the spatiotemporal transform can be
expressed as either a velocity or a displacement. It is more common to express the trajectory
as a displacement from a reference point and this is known as the Lagrangian approach. For
example, Castillo, Castillo, Martinez, Shenoy, and Guerrero (2009) used a polynomial to de-
scribe the displacement trajectory over time. Vandemeulebroucke et al. (2011) demonstrated
a trajectory model based on cubic splines imposing piecewise smooth constraints over the
respiratory period. Alternatively, the trajectory of a point can be expressed as the instanta-
neous velocity between time points, however, this is typically more di�cult to parameterise
in a way suitable for group-wise registration. Spatiotemporal registration requires fewer tem-
poral parameters than separate pairwise registration for every frame. For example, a study
of spatiotemporal registration of frames from thoracic 4DCT scans required only two time
points to adequately estimate the trajectory of each point (Metz et al., 2011). The reduc-
tion in the number of parameters in spatiotemporal registration increases the robustness to
noise. However, fewer parameters can pose challenges with characterising sliding motion,
especially at the pleural wall (Ruan, 2009). Inaccurate modelling of sliding motion at the
lung boundaries can be partially addressed using a lung mask (Vandemeulebroucke et al.,
2011).

Rigidity Based Constraints

An alternative approach to increasing the accuracy of registration is to introduce a soft con-
straint through regularisation. Regularisation is accomplished such that increased weighting
of the penalty term favours local a�ne transforms in regions where the organ may be con-
sidered rigid (e.g bone) (Staring, Klein, & Pluim, 2007). The same constraint also ensures
that registration satisfies orthonormality conditions (robust to noise) and suppresses folding
in the deformation transform (properness). The usefulness of this constraint is demonstrated
through the way it prevents non-physical transforms such as the ribs being disconnected or
twisted during the registration process (Ruan, Fessler, Roberson, Balter, & Kessler, 2006).

There are many ways to introduce a rigidity based constraint into image registration.
For example, in CT image registration a local rigidity penalty term has been incorporated
into registration in order to penalise the deformation of segmented rigid objects (Staring et
al., 2007). Another method of enforcing local rigidity is to calculate a rigidity index from
the Jacobean determinant. This voxelwise rigidity index is then multiplied by a sti↵ness
weighting factor derived from the Hounsfield units providing a substantial sti↵ness weighting
for bone (HU > 250). Equation 2.15 describes the penalty term, R, to be minimised as a
function of voxelwise intensity, I, and the Jacobean determinant of the transform, |J(T )|.
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R = I ⇥ (|J(T )|2 � 1) (2.15)

These approaches are yet to be fully validated, however, preliminary results show that
the constraint prevents non-physiological (or impossible) deformations (Ruan et al., 2006).
Rigidity based constraints may be especially important for registration of solid lesions (Yip,
Chen, Aerts, & Berbeco, 2014).

2.5 Parametric Models for Respiratory Motion

2.5.1 Sources of Variation in Respiratory Motion

Respiration is the action of breathing in (inspiration) and out (expiration) whereby outside air
travels in and out of the lungs due to a change in pressure in the thorax. During inspiration,
the intercostal muscles (between the ribs) and diaphragm contract to expand the chest cavity
(Ehrhardt et al., 2013). The action of breathing is irregular whereby the volume of air which
fills the lungs may vary from cycle to cycle. The volume of air during inspiration is the most
prominent characteristic of respiration (Ehrhardt, Werner, Schmidt-Richberg, & Handels,
2011). Accurate motion correction requires parameterisation of the deformation of organs
such as the rise and fall of the diaphragm. Although breathing is irregular, parametric
models can be extended to encompass the variables associated with irregular breathing (e.g.
breathing with a deeper amplitude). This requires additional surrogate measurements whose
amplitude is related to the volume of air in the lungs, such as the position of the chest
surface. Although useful, surrogate measurements are not necessarily accurate because the
action of breathing does not instantaneously fill the lungs with air as there is a time lag
between diaphragm contraction and when alveoli expand and fill (Kyriakou & McKenzie,
2011). This leads to a phase di↵erence between the external surrogate measurements and
the internal lung volume.

Irregularities in breathing can confound attempts to register PET and CT if there are
long periods of shallow breathing in the PET but deep inspiration breath hold for the CT.
A promising way to ensure that the breathing pattern is the same during the PET and CT
scan is to train the patient to breathe consistently using biofeedback (George et al., 2006).

Despite there being multiple sources of variation in respiratory phase and amplitude,
several studies have shown that motion can be adequately approximated with remarkably
simple parametric models of respiratory motion (McClelland et al., 2013).

2.5.2 A Surrogate Model for Respiratory Motion

A direct correspondence model establishes internal deformation as a function of an external
surrogate measurement. For example, a direct correspondence model can relate the observed
internal motion in a patient’s 4DCT scan to the external movement of a respiratory gauge
(Q. Zhang et al., 2007). A direct correspondence approach establishes a relation between
coe�cient values and an external surrogate measurement. Once a correspondence has been
established, it is then possible to extrapolate the relation to predict motion states based on
the external surrogate measurement alone. For example, it has been demonstrated that it is

35



possible to establish a direct correspondence model between the motion observed in a 4DCT
scan and the respiratory trace (McClelland et al., 2006). Direct correspondence models may
be appropriate for external beam radiotherapy due to the increased use of 4DCT data and
surrogate measurements to estimate variations in tumour position during respiration (Keall
et al., 2005).

2.5.3 Statistical Models for Respiratory Motion

A further alternative approach to estimating deformations due to respiratory motion is to
consider a statistical model of respiration. A statistical motion model is more sophisticated
than a surrogate model because it can adapt to individual breathing patterns observed in
respiratory imaging such as in 4DCT (R. Li et al., 2011). A statistical model is also able to
draw upon both temporal and spatial correlations in the deformation in addition to using
smooth basis functions such as B-Splines (Q. Zhang et al., 2007) and polynomials (King,
Buerger, Tsoumpas, Marsden, & Schae↵ter, 2012).

Patient Specific Modeling

Although there are several techniques for parameterising the time evolution of respiratory
motion, an increasingly popular alternative is to use a motion model based on principal com-
ponents analysis (PCA) (R. Li et al., 2011). The PCA approach has been favoured because
it has been shown to adapt to patient specific variations better than a direct correspondence
model. PCA can also be implemented as a post-processing step without the need to modify
the image registration algorithm. Several authors have demonstrated the use of PCA to find
a correspondence between external surrogates and internal deformation (King et al., 2012;
R. Li et al., 2011; Q. Zhang et al., 2010). This has wide uses for respiratory motion correction
in medical imaging and tumour tracking in external beam radiation therapy.

The application of PCA to make predictions about respiratory motion is an example of
machine learning. In this case, the PCA model is supplied with a set of patient specific
training samples to isolate commonalities in lung displacement within a sequence of gated
frames. The machine learning algorithm can subsequently be used to make a prediction about
respiratory motion which is yet to be observed. PCA motion modeling has been successfully
used to address attenuation mismatch in gated-PET/CT. In this case, the training samples
are derived from a 4DCT scan of the patient and are used to make a prediction about
respiratory motion during the gated PET scan. The advantage of machine learning algorithms
is that unlike current methods for motion correction (Bai & Brady, 2011) they can predict
motion which cannot be otherwise estimated from acquired data (Ehrhardt et al., 2011).

Equations 2.16, 2.17 and 2.18 describe how a patient specific PCA model is computed via
the Eigen-decomposition of displacement vectors corresponding to lung motion. The lung
motion states are expressed as a matrix, X, of which each row represents the displacement
vectors for a particular time sample.

XT = [d1, d2, d3, . . . dr] (2.16)

The displacement vectors. d, for every voxel in the lung at all time points (1 . . . r) are
obtained from three dimensional deformable image registration. The number of rows in
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matrix X is the number of voxels in the lung times three, and the number of columns is the
number of sampling points in time. PCA decomposition is performed on matrix X giving
rise to a new approximation.

XT ⇡ [d̂1, d̂2, d̂3, . . . d̂r] (2.17)

where each motion state, d̂
t

, is a linear combination of eigenvectors, u
k

, with a coe�cients
vector, v

t

, (Q. Zhang et al., 2007).

d̂
t
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rX

k=1

u
k

· v
t

(2.18)

It is common to approximate lung motion using the first two eigenvectors (R. Li et al.,
2011) and this has been found to be adequate to accurately describe respiratory motion in
4DCT scans.

Rather than considering correspondence at each time point individually, a PCA motion
model can be improved by taking into account the history of previous surrogate measure-
ments. A Bayesian filter has been incorporated (Smith, Rahni, Jones, & Wells, 2012) into a
PCA motion model by estimating the probability density of the relation between PCA coef-
ficients and external surrogates. The Bayesian filter approach may be useful for estimating
motion from surface measurements during a PET scan (Abd. Rahni, Lewis, Wells, Guy, &
Goswami, 2010) due to its ability to adapt to irregular breathing (Smith et al., 2012).

Indirect Correspondence Models

An indirect correspondence model involves adapting the model in some way to optimise the
relationship between either image data or external surrogates and internal deformation. For
example a PCA motion model can be optimised by adjusting the PCA weights to improve
correspondence. One way to validate such an optimisation is to check that the predicted
motion is consistent with the images acquired (figure 2.11). Optimisation of a correspondence
model was demonstrated by King et al. (2012). A sequence of 3D-MRI images from a PET-
MRI scanner was used to construct a PCA respiratory motion model. A PET-MRI scanner
can also simultaneously acquire a time sequence of navigator images, of which each image has
a small number of spatial samples in 2 dimensions. King et al utilised the navigator image
as a surrogate to find the PCA weights in the motion model and establish a correspondence
model between internal deformation and the 2-D navigator. The same correspondence model
was then tested with the original 3D-MRI image sequences and the model was continually
adapted in an iterative fashion. The advantage of this approach was that the correspondence
model was checked for consistency in making motion predictions from the observed surrogate
data.

The indirect correspondence approach can be used to eliminate the need for surrogate
signals altogether. For example it is possible to construct a PCA motion model in the
absence of surrogates and then adapt the motion model to be consistent with another set
of acquired images. An example of this is modifying a PCA motion model to be consistent
with a sequence of respiratory gated images acquired from a PET scanner. Whilst the PET
images may be unsuitably noisy for constructing a motion model, they can be used to adapt
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Figure 2.11: A flowchart representation of an indirect correspondence model (Adapted from
McClelland et al. (2013))
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Figure 2.12: Calculation of a mean image which can serve as an atlas in a cross population
model (Adapted from Ehrhardt et al. (2011)).

an existing model. A recently published approach constructed a PCA motion model from
MR derived motion fields and then adapted the model to be consistent with acquired PET
images (Balfour, Polycarpou, Marsden, & King, 2013). Balfour et al. (2013) adjusted the
PCA weights to maximise the expectation of the correspondence of the PCA motion model
with the PET images.

Cross-Population Models

Cross-population motion models are formed from motion data acquired from many di↵erent
subjects, and attempt to capture the nature of breathing motion across the population (Mc-
Clelland et al., 2013). These cross-population models are also referred to as global models
(H. Fayad, Clement, et al., 2009).

Unlike patient specific models, cross population models need to also account for the
anatomical variation between subjects. This is usually done by registering each subject’s
image to a population mean image (figure 2.12). The mean image acts as a global atlas and
the cross population model parameterises motion at each spatial position in the atlas.

A simple example of the use of a cross-population model is to establish a mean velocity
field and assume that the amplitude of motion can be found by scaling the velocity field by
an exponential function (Ehrhardt et al., 2011). This model is only approximate because it
assumes constant velocity of motion whereas the velocity field changes magnitude as the lungs
fill and empty. This limitation partially addressed by Ehrhardt et al. (2011) by calculating
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separate velocity fields for end expiration, end inspiration and mid inspiration.
Another type of cross-population model is the statistical shape model. Statistical shape

models have a demonstrated use in image segmentation. Such a shape model can be used to
refine the boundaries of a segmented region. Shape models have also been used to analyse
organ motion. For example, statistical motion model of the heart was created and then used
to characterise the most probable deformation of heart tissue during the cardiac cycle. It
was then possible to establish a time-dependent deformation field which characterised heart
motion of a set of subjects in a population.

Statistical shape models utilise eigenvectors which are derived from statistical analysis
of the displacement fields of multiple subjects drawn from a population. A straightforward
application of the shape model is to express motion as a linear combination of these com-
ponent eigenvectors. In the statistical motion model proposed by Chandrashekara, Rao,
Sanchez-Ortiz, Mohiaddin, and Rueckert (2003), the direction of the eigenvectors describes
the direction of heart motion, whilst the scaling coe�cients parameterise the amplitude of
motion in each direction. Chandrashekara et al. (2003) use the following equation (2.19) to
create a time dependent deformation field, dS(0,t)

dS(0,t)(x̀, ỳ, z̀) =
3X
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3X

m=0

3X

n=0
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where the B-Spline coe�cients, B
l

(u), B
m

(v)andB
n

(w) are used to interpolate between
positions where the displacement model has been calculated. The initial position of the
control points in the displacement model is Ĉ. The variation in motion within the population
is arranged into a matrix of component eigenvectors �. A new set of scaling coe�cients, b
is then approximated using a gradient descent solver. The practical advantage of this model
is that when a new patient scan is encountered it is only necessary to calculate a new set of
scaling coe�cients, bnew. i.e. this can then be used to build a new correspondence model, K

dnew(0,t)(x̀, ỳ, z̀) = K(bnew) (2.20)

where dnew is the new deformation.
McQuaid et al. (2008) proposed that a population model could be used to approximate

the shape of the diaphragm in the lung. The population model was created by the analysis
of diaphragm shape observed in high resolution images of several patients. The diaphragm
vertical position, s

z

(x, y), was expressed as a linear combination of component eigenvectors
as shown in 2.21.

s
z

(x, y) =
rX
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b
k

· u
k

(x, y) (2.21)

The model was then used to estimate the shape of the diaphragm for patients who were
not used to create the population model. This was accomplished by estimating the scaling
coe�cients, b

k

, for each new patient at each time point in the respiratory cycle. Their work
presented a method of estimating the coe�cients, and analysed the accuracy of the method
for tracking the rise and fall of the diaphragm with respiration. The rise and fall of the
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diaphragm is the main contributor to attenuation correction inaccuracies when radionuclide-
imaging the myocardium. Using the model to implement motion compensation had a clinical
significance, even though the expansion and contraction of the chest wall was not modeled.

The PCA approach to a correspondence model exploits the relation between externally
measured signals and internal organ deformation. Imaging the deformation of internal organs
is challenging, thus the idea of exploiting this correspondence in a cross population model is
attractive. H. Fayad, Pan, et al. (2009), proposed a relation between the surface deformation
as measured by an optical time of flight (TOF) camera and the internal motion described by
a deformation field. A matrix X was constructed in which each row was the concatenation
of internal deformation, d, and external surface measurements, s.

XT = [d1|s1, d2|s2, d3|s3, . . . dr|sr] (2.22)

X was then decomposed into a linear combination of component eigenvectors, u
k

, such
that the displacement field, d

p

, and surface map, s
p

for every patient could be expressed as
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H. Fayad, Pan, et al. (2009) considered cases when the external surface measurements,
s, for a patient, p, were known, but the internal deformation, d and scaling coe�cients,
c
p

, were unknown. They manipulated the eigen-decomposition method to infer the internal
deformation, d, from the observed surface motion. A limitation of this model is that it
relies on very accurate surface tracking measurements and assumes that the internal-external
correlation holds true for all patients in the population model, which may not be a valid
assumption.

A commonality between cross population models is that they parameterise deformation
such that it can be expressed as a function of an external or internal measurement. It even
appears possible to construct a cross-population model using a single parameter (Ehrhardt
et al., 2011), correlated with lung volume, and achieve surprising accuracy.

There is no consensus about the number of patients required to construct a population
model, nor the number of surrogate measurements required. Some models account for indi-
vidual variability within a population by incorporating the tracking of hundreds of surface
location measurements (H. Fayad, Pan, et al., 2009) and relate them to the internal deforma-
tion field. A similar technique has been successfully demonstrated with as few as five patient
datasets (H. Fayad, Buerger, Tsoumpas, Cheze-Le-Rest, & Visvikis, 2012).

The clinical application of cross-population models remains to be thoroughly validated
(McClelland et al., 2013). A cross-population motion model is essentially a way of bypassing
the problem of obtaining patient specific motion data. This may be the only option when it
is impracticable to construct a patient specific motion model with the imaging modality.

2.5.4 Physiological Models of Respiratory Motion

Explicitly modelling the physics of respiratory motion is a promising approach to improving
the accuracy of parametric models. A distinct example is the use of finite element models
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Table 2.5: Adaptations of FEM to image registration

Modality Method
MR Application of FEM to image registration.

Sundaram and Gee (2005)
CT Application of FEM to 4D image registration.

Werner, Ehrhardt, Schmidt, and Handels (2008)
CT Improvement of deformable image registration using FEM.

Zhong et al. (2012)
CT Spatially varying FEM properties.

M. Li et al. (2013)
CT Novel adaptive mesh refinement.

J. Zhang, Wang, Wang, and Feng (2013)

(Sundaram & Gee, 2005) to analytically model lung mechanics. A drawback of such ap-
proaches is that it is approximate and some aspects of mechanics or image acquisition are
not correctly modeled. This is evident because physiological models of respiratory motion
often perform poorly in comparison to voxelwise image registration algorithms (Murphy et
al., 2010).

These drawbacks have since been addressed by restricting the modelling of lung mechanics
to areas where image based registration may be inaccurate. For example finite element
modelling (FEM) has been used to avoid inaccuracies in areas of low image contrast (Zhong
et al., 2012). Further adaptive approaches that have been proposed to improve the accuracy
of modelling are summarised in table 2.5.

Finite element modelling requires an approximation of the elasticity parameters of lung
tissue. A shortcoming of FEM is that it is di�cult to predict the model properties needed
for accurate registration. FEM registration for respiratory motion generally requires the
estimation of lung boundaries and other organ boundaries in the thorax. FEM registration is
possible in CT because segmentation of pulmonary cine CT images is fairly straightforward.
However, it is di�cult to determine lung boundaries accurately from a gated PET image.
Although gated PET images can be used to track tumours, there appear to be no investigation
tests that accurately capture the deformation of the diaphragm in the absence of a model of
respiration. It is possible that FEM may need to be coupled with another form of registration
before it could be applied to gated PET images.

2.6 Application of Image Registration to Attenuation
Correction in PET/CT

Although many di↵erent methods of non rigid registration can be applied to PET/CT, the as-
sumptions and information used within the algorithm determine the accuracy of registration.
The next section of this chapter reviews recent attempts at addressing attenuation misalign-
ment including some methods which have focused on combining consistency conditions with
image registration.
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2.6.1 Using Deformable Registration to Address Attenuation Mis-
alignment

An initial attempt to use image registration to address attenuation misalignment highlighted
issues which a↵ect the robustness of the solution (Mattes et al., 2003). An iterative non-linear
optimiser was used to maximise the mutual information between the PET and CT using a
multi-resolution strategy. Deformations have been modelled using B-splines (Dawood, Lang,
Jiang, & Schafers, 2006), however, the resolution of the deformation was limited to spacing
the control points by approximately 61mm. Despite the poor resolution of deformation due
to coarse spacing of control points, it was shown that attenuation misalignment could be
reduced based on a human observer validation scheme. The coarse spacing of control points
limiting the degrees of freedom was seen as a necessary compromise for working with very
low count data with a large number of degrees of freedom.

Given the wealth of options for parameterising respiratory motion many authors have
considered approaches that are more suited to PET imaging. For example, a higher resolution
solution has been proposed using optical flow to parameterise respiratory motion (Dawood et
al., 2008). Here, the optical flow was regularised by smoothing the image and also smoothing
the derivatives used in the optical flow equations. This approach was applied to gated studies
by correcting for motion in both emission and attenuation sinograms. Further attempts at
addressing attenuation misalignment have focused on parameterising respiratory motion in
PET with spatiotemporal splines (Bai & Brady, 2011). A spatiotemporal approach was
shown to be more robust because it included temporal smoothing which was a plausible
assumption for respiratory motion (Bai & Brady, 2009b).

Both spatiotemporal approaches used the same mechanism, initially reconstructing the
image, registering each frame to a reference frame and then adding all frames together to
form a motion free image (P. Kinahan et al., 2006). In these methods a gated PET frame
was identified as a reference frame in which the timing interval of the frame closely matched
the respiratory phase of the spiral CT. An advantage of this approach was the ability to use
a wider range of objective functions as it was not necessary to choose an image registration
package capable of multimodality PET/CT alignment. The disadvantage of using a reference
frame is that mismatch errors could still arise because a CT scanner takes time to traverse the
thorax, and although newer scanners are much faster, there is not always a single PET frame
which accurately matches the helical CT image. Even after correction for misalignment, any
spiral CT motion artefacts encountered (as discussed in section 2.3.1) would still propagate
into the attenuation map for each PET frame.

Deformable image registration has been combined with surrogate data to develop a corre-
spondence model (Liu et al., 2011). Although this method is appropriate for tumour tracking,
there is di�culty interpreting the motion of other structures in the lung from the gated PET
images. It has been suggested in a few studies that regularisation of image registration may
improve the tracking of non-involved structures in gated PET (H. J. Fayad, Lamare, Rest,
Bettinardi, & Visvikis, 2013) (Dawood, Lang, et al., 2006), however, the level of accuracy in
such approaches for the attenuation correction of such structures in clinical scans remains to
be fully validated. In place of surrogate data, non-involved structures such as the diaphragm
can be tracked using a population model (McQuaid et al., 2011). This has an advantage over
other methods as the objects do not need to be clearly visible on PET to obtain an estimation
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of motion. The motion of many attenuating organs, such as the dome of the liver, can be
interpreted from the population model and the resulting deformation estimates can be used
to correct for attenuation misalignment.

Deformable Image registration has been combined with PET imaging in several di↵erent
ways in an attempt to obtain a motion free image (Blume, Martinez-Moller, Keil, Navab,
& Rafecas, 2010). Despite these attempts, there is little certainty about whether PET data
contain enough information to perform motion correction (Cloquet et al., 2010). Deformable
image registration is typically di�cult to validate because the only benchmark is a human
observer. In some cases an alternative objective function can be used as an independent
metric to validate the image registration. For example, it was shown that the optical flow
approach was validated by showing that it reduced the NMI between frames (Dawood et
al., 2008), however, the question then arises as to whether NMI would be a better choice
of objective function. A lack of validation may be one of the reasons why using image
registration for motion correction has not been widely accepted in clinical imaging. What
is needed is an independent measure of the accuracy of motion correction other than the
objective function used in image registration.

2.6.2 Using Consistency Conditions to Address Attenuation Mis-
match

Although consistency conditions can be used to jointly estimate attenuation and emission
(MLAA), they can also be used to address attenuation mismatch (Alessio et al., 2010). By
combining Natterer’s consistency conditions with image registration it is possible to improve
the alignment of PET/CT.

Initial attempts to implement this approach used rigid or a�ne registration in the local
area of a tumour (Alessio et al., 2010). An alignment metric was devised as the sum of
Fourier transforms of the sinogram. Alessio et al. (2010) used a 9 degree of freedom (DOF)
a�ne model to transform the CT to the PET image. Unlike conventional implementations of
image registration, this method uses a simplex algorithm and may not converge since there
is no way to incorporate a gradient descent solver. This limitation also means that it is not
straightforward to extend the same methodology to deformable registration. The consistency
metric is a sum of Fourier transforms of the sinogram making it very susceptible to noise.
Despite these issues the method was found to work reliably across a wide range of patients
(Alessio et al., 2010). A reason why it was robust may be that it did not rely solely on image
registration to match image features.

An alternative to using Natterer’s consistency equations as a metric is to consider the
maximum likelihood as a function of attenuation alignment. Maximum likelihood has been
previously used in MLAA to estimate the attenuation image, however, there some promising
studies that indicate it can be used to estimate attenuation alignment. A recent example
of this approach is to use the consistency equations for TOF-PET to address attenuation
alignment during reconstruction (Rezaei, Michel, Casey, & Nuyts, 2016). This method used
a demons registration algorithm, however, the quality of registration was a↵ected by the low
counts in PET image. An alternative parameterisation of patient and/or breathing motion
may be more appropriate for PET scanners which do not have TOF capability.
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Whilst the use of consistency conditions to correct for attenuation misalignment is promis-
ing, the implementations are sensitive to noise and are not necessarily practical to incorporate
into existing clinical reconstruction algorithms. An alternative possibility is that consistency
conditions may be a useful tool for tuning and evaluating the parameterisation of respiratory
motion. This thesis proposes that consistency conditions can be used to quantitatively eval-
uate attenuation mismatch. Thus, di↵erent methods of deformable image registration can be
compared for their accuracy when used to align PET/CT for attenuation correction.
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Chapter 3

Improving The Accuracy of
Attenuation Correction in Gated PET
Images Using Image Registration
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3.1 Introduction

3.1.1 Compensating for Attenuation Misalignment

The misalignment of the attenuation correction map often degrades the quantitative ac-
curacy of PET images in the thorax. Respiratory motion is the most significant cause of
misalignment and there are several approaches to compensating for this (Berker & Li, 2016).
Although misalignment can be addressed in many ways, parameterising respiratory motion
is a useful approach to compensation since it can be used to model the deformation which
causes the PET and CT misalignment. In addition to that, the models can be used to esti-
mate deformation in all gated PET frames and subsequently used to generate a motion free
image whilst also compensating for attenuation mismatch (Bai & Brady, 2011).

This investigation builds on previous attempts at using deformable image registration to
address attenuation misalignment by systematically comparing each method and devising
an optimal approach. The comparison is restricted to methods which use deformable image
registration of non-attenuated corrected (NAC) gated PET images to estimate deformations
to compensate for PET/CTmisalignment. In this case it is necessary to perform an additional
image reconstruction for each frame using the aligned CT for attenuation correction (Dawood,
Lang, Jiang, & Schafers, 2006). Methods for estimating deformations generally draw from
one of two distinct approaches. One is to use multimodality registration to align the PET
image to the CT image prior to AC correction (Dawood et al., 2006). The second approach
is to find the gated PET reference frame which is best aligned to the CT and then use
mono modality registration to align the remaining gated PET frames to the reference frame.
There are many methods of motion compensation in respiratory gated PET which use mono-
modality registration (Kinahan et al., 2006) and these methods can also be extended to
gated PET/CT for compensating for attenuation misalignment. Provided that breathing
style doesn’t change significantly during the PET scan or CT scan this approach to motion
compensation can be extended to attenuation correction. This is achieved by deforming the
CT image or attenuation map with the same deformation used for motion compensation
(Dawood et al., 2006) and then reconstructing each frame with the aligned attenuation map.
In both mono-modality and multimodality approaches the NAC gated PET images have more
noise than attenuation corrected images (McQuaid, Lambrou, & Hutton, 2011), although the
noise in the NAC images can be addressed through improved forms of registration (Bai &
Brady, 2009). Simulated NAC PET scans have been used to investigate the impact of
image noise on aligning attenuation maps using image registration (Fayad, Lamare, Rest,
Bettinardi, & Visvikis, 2013).

The accuracy of image registration is largely dependant on the quality of the images which
are to be aligned. Although registration accuracy is di�cult to determine, the robustness of
image registration can however be determined through the simulation of potential deforma-
tions (Kybic, 2010; Tsui et al., 2001). Despite this, it is di�cult to realistically simulate the
e↵ect of respiratory motion on the acquisition of both PET and CT images. It is also chal-
lenging to simulate abnormal anatomy which may be observed in diseased patients. Rather
than simulations, real patient data has been used to compare image registration algorithms
where the ground truth is specified through the localisation of landmarks by an expert oper-
ator (Murphy et al., 2011). Such comparisons evaluate the robustness of image registration
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to real abnormalities and artefacts which are found in routine clinical images. Even the more
realistic simulations may not include image corruption due to changes in breathing style.
Using such gated PET images may lead to perturbations in the apparent displacement of
organs. For example, the ratio of abdominal to thoracic displacement may change and this
cannot be compensated for with respiratory phase gating.

The aim of this thesis is to improve the accuracy of attenuation correction, yet most meth-
ods of compensating for misalignment make use of deformable image registration methods
for which the accuracy cannot be determined. Given the significant challenges in validating
deformable image registration, it is suspected that the accuracy of attenuation correction is
largely a↵ected by the accuracy of the registration method used.

Although there is evidence that image quality can be improved using amplitude based
gating, phase gating remains the predominant approach for clinical gated PET/CT scans .
Finding the timing interval of the gated PET frame which matches the respiratory phase of
the spiral CT is technically challenging. The surrogate respiratory signals from both PET
and CT modalities must be initially synchronised (Bruyant et al., 2007) and then amplitude
or quiescent gating of the PET data must be adapted to produce a PET image which is
aligned with the CT image (Dawood et al., 2006; Liu et al., 2010). An alternative to this
method is a data driven approach whereby the phase interval of the CT acquisition in the
respiratory cycle is found by selecting the gated PET frame which has the maximum mutual
information (MI) with the CT image (Nam, Ahn, Kim, Kim, & Ra, 2013). A shortcoming of
using the mutual information metric for gated interval selection is that it may be a↵ected by
noise from the gated PET image. Without investigations into the accuracy of this method it
is not possible to rule out a negative impact of interval selection on methods for addressing
attenuation mismatch.

3.1.2 Tumour Quantification

Accurate tumour quantification requires the alignment of the attenuation map and emission
image. Although phase gating partially compensates for motion in the PET image, it does
not guarantee accurate alignment with the attenuation map. In respiratory gated PET there
are two main expected contributions to such inaccuracies:

1. Emission: Distortion of tumour shape due to motion blur of the emission image. In
phase gating, the amount of tumour blur is proportional to the range of respiratory
amplitude in each frame.

2. Attenuation: Application of incorrect attenuation correction factors due to mismatch
of the tumour mass in the attenuation map with the apparent tracer uptake in the
emission image.

Both e↵ects can be mitigated using either amplitude gating (Dawood, Buther, Lang, Schober,
& Schafers, 2007) or Registered and Summed Phases (Kinahan et al., 2006). In addition to
this as the lung expands density decreases and objects may appear brighter at end inspiration
and darker at end expiration. Correcting for density of the attenuation map should reduce
this e↵ect (Thielemans, Asma, & Manjeshwar, 2009) leading to a reduced variance in the
tumour uptake from the average uptake over the respiratory cycle.
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3.1.3 Validating Attenuation Correction Accuracy

Validation of a PET attenuation map can be achieved prior to PET image reconstruction
by exploiting symmetries in Natterer’s formulation of the consistency equation that was
presented in chapter 2. The attenuation correction factors (ACF) and the emission sinogram
are said to be consistent when Natterer’s equation holds true (Alessio, Kinahan, Champley,
& Caldwell, 2010). Alessio et al used this equation to develop a metric which measures
the alignment of both gated PET image and static PET image with a single helical CT
image. Simulation studies have demonstrated that there is a global minimum in the metric
that corresponds to the a�ne translation which aligns the two images (Alessio et al., 2010),
however, this approach has not been extended to deformable image registration.

Maximum likelihood of activity and attenuation (MLAA) was reviewed in chapter 2 as
an alternative to CT derived attenuation correction through the use of consistency condi-
tions. MLAA has also been extended to compensate for attenuation misalignment in the
myocardium (Presotto et al., 2015) without the need for image registration, however, there
was no quantitative analysis of image accuracy. Although MLAA is promising as a method
to compensate for attenuation misalignment, there are as yet no investigations which use
consistency to validate existing methods of compensating for misalignment.

This chapter examines whether validation of attenuation correction accuracy can be
achieved through an extension of image reconstruction. Given the multitude of possible
approaches to image reconstruction, both maximum likelihood approaches and least squared
approaches have been considered. The proposed validation method is loosely based on find-
ings that inconsistent system models in iterative reconstruction often do not converge (Alessio
et al., 2010). Attenuation correction mismatch will lead to inaccurate attenuation correction
factors (ACF) and it is suspected that this will result in a significant inconsistency in the
system model. The remainder of this chapter outlines the evaluation of some novel met-
rics which are able to detect this inconsistency and thus provide a means of validating and
comparing methods of compensating for misalignment.

3.2 Methods

3.2.1 Consistency Conditions and Comparison Metrics

We propose a novel method which builds upon conventional approaches to assessing attenua-
tion alignment including Natterer’s consistency equation (Alessio et al., 2010) and the image
similarity of PET and CT images (Nam et al., 2013). The proposed method involves initially
reconstructing attenuation corrected gated PET images. The PET images are then forward
projected with all corrections applied and it is hypothesised that the sinogram should best
match the detected emissions when the attenuation map is correctly aligned. In iterative
reconstruction the di↵erence between projected and the detected emissions is often used to
calculate an update term, however, in this method the di↵erence was summed as a metric
for the assessment of attenuation alignment.

Each gated PET frame was reconstructed with attenuation correction for 3 iterations and
24 subsets of Expectation Maximisation (OSEM), as further iterations did not improve image
quality. All reconstruction settings were kept consistent across all studies as any variations
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Figure 3.1: Comparison of forward projections with emission data applying attenuation factor
following the projection of the reconstructed image

would have a significant impact on the derived metrics. Lines of response which did not pass
through the body were assumed not to contain any information about attenuation alignment.
In a similar approach to Nuyts et al, these LORs were identified by regions on the sinogram
with low counts (approximate background level from LSO crystal) and were thresholded to
zero. The Biograph mCT has 400 detector elements, 168 views and 621 sinogram planes
which were rebinned into a smaller 2D sinogram to ensure that the signal due to attenuation
mismatch outweighed noise. The down-sampled sinogram had 100 elements, 42 views and
109 axial planes and each element in the emission sinogram, e

j

, was compared to the forward
projected data, p

j

using equation 3.1. Our devised metrics were very sensitive to inaccuracies
in the system model, thus we produced each projected sinogram element, p

j

, using the same
ray tracing algorithm used for OSEM image reconstruction and we applied scatter correction,
randoms subtraction and detector normalisation. Incorrect attenuation factors, ACF

j

caused
by attenuation mismatch were anticipated to contribute to an increased value of the summed
metric, ⌦S1 provided that S increased due to the di↵erence between emission sinograms and
projected data (figure 5.8).
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j
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p
j
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j

) (3.1)

Some implementations of OSEM pre-correct the sinogram with the attenuation correction
factor, ACF

j

, although this should make minimal di↵erence in an iterative reconstruction it
does change the statistical distribution of the estimated image values. We investigated pre-
correction because it weights values in the sinogram which contribute to the metric and could
be favourable for detecting misalignment (equation 3.2). The precorrected metrics identified
using a subscript for the summed metric, ⌦S2.
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The log likelihood metric was calculated by summing the log likelihood comparator for all
LORs which had a positive number of net trues in every gated frame. Both the unweighted,
⌦

LL1, and weighted, ⌦
LL2, log likelihood metrics were calculated using the equations 3.3 and

3.4.
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Although maximum likelihood is suited to image reconstruction of PET images, alterna-
tive metrics which might be more sensitive to detecting attenuation mismatch were investi-
gated. For example, the weighted least squares (WLS) iterative reconstruction is suited to
iterative estimation of images a↵ected by Gaussian noise (Jing Wang, Tianfang Li, Hongbing
Lu, & Zhengrong Liang, 2006). It was suspected that a least squares approach may be a
sensitive metric as it was calculated from the sum of squared di↵erences (SSD) between the
emission and projection data using equations 3.5 and 3.6.
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We also tested the Chi square statistic as a metric using equations 3.7 and 3.8 because it
is an unbiased estimator when testing the goodness of fit of a Poisson distributed variable.
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We calculated these metrics in addition to calculating Natterer’s consistency conditions
which have already been shown to be sensitive to attenuation misalignment (Alessio et al.,
2010).

3.2.2 Acquisition of Respiratory Gated PET/CT

Scans were acquired and reconstructed using a Biograph mCT PET/CT. Phase based res-
piratory gating was performed following a conventional whole body static PET and spiral
CT. Each patient had been injected with approximately 350 MBq of F18-FDG. The count
statistics achieved with the Biograph mCT PET/CT permitted short duration gated acqui-
sitions with a total duration of 3 minutes (sensitivity was 8 cps/kBq). The phase based
respiratory gating system AZ733 V (Anzai Medical, Tokyo, Japan), was employed as previ-
ously described by Pönisch (Pönisch, Richter, Just, & Enghardt, 2008). The system utilises
a pressure sensor inserted into the pocket of an elastic belt to detect external respiratory
motion. Previously acquired clinical gated PET/CT scans were selected for which list mode
PET data was available from patients who had undergone PET/CT investigations for the
staging of single pulmonary nodules. The set of 11 scans were used to compare methods
of reducing attenuation mismatch. Patients were instructed to breathe out during the CT,
increasing the likelihood that the CT would image the quiescent phase of the respiratory
cycle.
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Figure 3.2: Multi-modality deformable registration (top) independently aligns the attenua-
tion map image to each gated PET frame. Mono-modality deformable registration (bottom)
aligns a reference frame (green) to each gated PET frame. In both cases the deformable
transform is subsequently used to deform the attenuation map.

3.2.3 Compensation for Attenuation Misalignment

Each respiratory gated PET scan was initially reconstructed without attenuation correc-
tion (NAC). Some organ boundaries are visible on the NAC gated PET images indicating
that it may be feasible to find the deformation between a gated PET frame and the at-
tenuation map. Each approach to compensating for attenuation misalignment used either
mono-modality deformable image registration (PET only) or a multimodality registration
(PET/CT) or a combination of both (figure 3.2). A variety of di↵erent options for im-
age registration were used for both mono-modality and multimodality approaches including
mass preserving registration, similarity metrics, masks and regularisation tuning parameters.
Mass-preservation was implemented through a weighting which was applied to attenuation
maps following registration (P15 in table 3.2, P16 in table 3.1, P18 and P20 in table 3.3).
The e↵ect of each combination of options for image registration were initially investigated
by using the deformed attenuation maps in a final OSEM reconstruction and subsequently
assessing the final images for accuracy of attenuation correction.
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A Multimodality Approach to Compensation

The first approach taken was to align the attenuation map image to the emission image us-
ing multimodality image registration with various options summarised in table 3.1. In this
study, the respiratory gated PET scan contained multiple frames and thus the attenuation
map image was independently registered to each frame. The deformable image registration
algorithm involved aligning the attenuation map with each gated PET frame by maximising
the NMI between them (Modat et al., 2010). Two registration packages were investigated
including two sets of regularisation tuning parameters, P5 and P6, for niftyreg image regis-
tration (Modat et al., 2010) and two sets of regularisation tuning parameters, P51 and P52,
for elastix image registration (Metz, Klein, Schaap, Walsum, & Niessen, 2011). The niftyreg
registration package was extended to correct for the redistribution of attenuating tissue dur-
ing deformation. Mass preservation required the use of a di↵erent set of tuning parameters,
P16, whereby the attenuation map was corrected by weighting the map with the Jacobean
of the transform.

Table 3.1: Registration options and parameters used in independent multi-modality align-
ment of the attenuation map to each frame.

Method P5 P6 P16 P51 & P52
Package Niftyreg Niftyreg Niftyreg Elastix
Spatiotemporal No No No No
Mass preserving No No Yes No
Similarity metric NMI NMI NMI NMI
Mask None None None None

Identifying a Reference Frame

The reference frame was the frame in the gated PET scan with the most accurate attenuation
map. Several data driven methods were devised for finding a suitable reference frame in the
gated PET scan (labelled green in figure 3.2). Initially a similar approach to Nam et al
(Nam et al., 2013) was used to choose the reference frame by finding the PET frame that
maximised the NMI with respect to the CT-derived attenuation map.

Several approaches were developed based on metrics for sinogram comparison including
Natterers consistency, SSD, Chi Squared as well as the negative Log Likelihood. It was
suspected that choosing a reference frame by finding the PET frame where these metrics
were minimised may be a more accurate approach. The movement of activity in and out of
the field of view may lead to a fluctuation in the total number of counts in each sinogram
(He et al., 2008). We analysed each metric for its independence from total count level and its
suitability to select the best visually matching frame. The number of patients, N

Q

, for which
the reference frame fell within the quiescent phase was recorded. The quiescent phase of the
respiratory cycle was determined from the respiratory trace using a 33% window centred at
end expiration.Each metric was compared to the amplitude of the respiratory trace, although
the evaluation was limited because the respiratory trace amplitude during the CT was not
recorded.
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A Mono-Modality Approach to Compensation

A mono modality approach to attenuation alignment was taken by estimating deformation
due to respiratory motion during the gated PET scan. In a similar way to Bai and Brady
(2011), deformation was estimated through the registration of PET frames reconstructed
without attenuation correction (NAC). The reference frame was assumed to have have the
most accurate attenuation map. The transformation of each remaining PET frame was
found with respect to the reference frame (Figure 3.2). Attenuation mismatch was then
compensated for by deforming the attenuation map according to the transform to each NAC
PET frame relative to the reference frame.

The accuracy of image registration was compared with two measurements of similarity
between NAC PET frames. Image similarity was maximised in the mono-modality approach
using the NMI objective for methods P1, P2 and P15 and sum of squared di↵erences (SSD)
objective for method P3 (table 3.2). These methods were also compared to spatiotemporal
group-wise registration method, P3, which finds a set of transforms which simultaneously
minimises the voxelwise variance across all frames (Metz et al., 2011). Due to the compu-
tational complexity of spatiotemporal registration, a larger pixel size (4mm) was used and a
coarse control point spacing of 26mm x 26mm x 26mm with a temporal control point spacing
of 3 frames. Mass preservation was used for method P15, to correct for changes in density
due to the redistribution of attenuating tissue.

Table 3.2: Registration options and parameters used in mono-modality registration of each
gated PET frame to the reference frame and subsequent deformation of the attenuation map.

Method P1 & P2 P3 P15 P53
Package Niftyreg Niftyreg Niftyreg Elastix
Spatiotemporal No No No Yes
Mass preserving No No Yes No
Similarity metric NMI SSD NMI Variance
Mask None None None None

Combining Mono-Modality and Multimodality Approaches

An approach was devised which comprised of both a multimodality and a mono-modality
step (figure 3.3). The first step was to align the attenuation map image to the reference NAC
PET frame using multi-modality image registration with a NMI image similarity metric. The
reference frame was anticipated to be a close initial match to the attenuation map, thus, the
regularisation tuning parameters in multi-modality registration were chosen to allow only for
minimal deformation. The second step was to align the reference NAC PET frame to all
other PET frames using mono-modality registration. Image similarity was maximised in the
second step using the NMI objective for methods P7, P8, P9, P10, P12, P18 and P20 and
SSD objective for method P11 (table 3.3). Mass preservation was used for two methods, P18
and P20, to correct for changes in density due to the redistribution of attenuating tissue.
Deformation due to respiratory motion was assumed not significantly a↵ect patient posture
or be related to the movement of surrounding objects such as the patient bed palate. To
avoid spurious estimates of deformation in areas with little or no motion, a mask was applied
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Figure 3.3: Multimodality registration (step 1) is performed in combination with mono
modality registration (step 2). The multi modality registration finds the transform between
the attenuation map and the PET reference frame. The mono-modality registration finds
the transform from the reference frame to each other frames in the gated PET.

in methods P9, P10, P12 and P20 to ensure that any objects outside of the mask did not
contribute to the deformation estimate ( in table 3.3)

Table 3.3: Registration options and parameters used a combination of multi-modality and
mono-modality registration subsequent deformation of the attenuation map.

Method P7 & P8 P9 & P10 P11
Package Niftyreg Niftyreg Niftyreg
Spatiotemporal No No No
Mass preserving No No No
Similarity metric NMI NMI NMI & SSD
Mask None Lung None

Method P12 P18 P20
Package Niftyreg Niftyreg Niftyreg
Spatiotemporal No No No
Mass preserving No Yes Yes
Similarity metric NMI NMI NMI
Mask Whole body None Lung

‘

3.2.4 Segmentation and Tracking of Lesions

Each PET/CT study had visible lung lesions with increased FDG uptake on the respiratory
gated PET image of the thorax. The lesions were segmented from the spiral CT and the
volume of the lesion was recorded in millilitres. The position of the lesion was tracked
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by transforming the region with the displacements estimated from image registration of
sequential gated PET frames. This moving region, referred to as the tumour tracking region,
was analysed by recording both the mean (Bq/mL) and total (Bq) activity segmented from
the sequence of gated PET frames. Tumour uptake was quantified using a simplified approach
of aligning all frames and recording the spatial mean of the activity (Bq/mL) in the tracking
region. This approach di↵ered from the registered and summed phases approach (RASP)
as the texture and appearance of the lesions were not considered. The e↵ect of respiratory
motion on quantification was assessed by measuring the variance of the activity in comparison
to the mean of all frames. In addition to this, the tumour motion extent was determined
from combining the sequence of tumour tracking regions to form a single tumour volume, TV,
which encompasses tumour in every frame. The variation in quantitative parameters of the
TV were assessed including the mean (Bq/mL) and total (Bq) TV activity (a

t

) through the
gated PET sequence. A high standard deviation of the TV activity, �

TV

, was also indicative
of variations which could be caused by respiratory motion.

3.3 Results

3.3.1 Metrics for Identifying a Reference Frame

Initially the criterion for the reference frame was identified by the maximum NMI. For patients
with the reference frame at end expiration we expected correlation of the NMI with the
respiratory trace amplitude, however this was not consistent across all patients. Figure
3.4 shows that both SSD2 and NMI were correlated with the amplitude of the respiratory
trace for study 16 with Pearson’s correlation being R = 0.85 for NMI and R = 0.65 for SSD2.
However, when study 14 was analysed negative correlation between NMI and respiratory trace
amplitude was observed as shown in figure 3.5, with Pearson’s correlation being R = �0.51
for NMI and R = 0.83 for SSD2. The reason for the opposite correlation in study 14 was
not known, however, it is known that using NMI to match image features can be misleading
because organ boundaries on the attenuation map do not always appear on the PET image
(Alessio et al., 2010). Despite the shortcomings of NMI as a metric, alternative methods for
identifying the reference frame were suspected to produce similar results to using NMI in a
majority of studies. Figure 3.6 shows a systematic analysis of the NMI between the emission
image and attenuation map for alternative methods of finding the reference frame. Finding
the reference frame using the SSD2, ChiSq2 and Natterers metrics resulted in the greatest
average NMI. Reference frames identified with the SSD2 metric had close to the maximum
NMI with an average NMI of 0.227. It was expected that methods would frequently select a
reference frame from the quiescent phase of the respiratory cycle, yet this was only observed
in 50% of the studies for the NMI metric (see table 3.4). It was suspected that the NMI
metric may be inaccurate due to the lack of similarity between emission images and the
attenuation map. The SSD2 metric frequently selected the most quiescent frame making it
a suitable alternative for selecting a reference frame in cases where there was limited mutual
information.

The number of events per sinogram in a gated study varies from frame to frame and
this was found to impact metrics used to identify a reference frame since a high count rate
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Figure 3.4: The NMI (Negative), Natterers, SSD1 and SSD2 metrics scaled between 0% and
100% for study 16. The metric values were temporally smoothed with a 3 frame boxcar
kernel. The attenuation map similar to the emission image when negative NMI is minimum.
The NMI (Negative) metric was correlated with respiratory amplitude R = 0.85 and a line
of best fit (black) shows the direction of the correlation.
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Figure 3.5: The NMI (Negative), Natterers, SSD1 and SSD2 metrics scaled between 0% and
100% for study 14. The metric values were temporally smoothed with a 3 frame boxcar
kernel. The attenuation map similar to the emission image when negative NMI is minimum.
The SSD2 metric was correlated with respiratory amplitude R = 0.82 and a line of best fit
(black) shows the direction of the correlation.
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Figure 3.6: The NMI of the designated reference frame with the attenuation map when using
various metrics to find the reference frame. The NMI was compared for all 11 studies and the
minimum (least similar) and maximum (most similar) results are shown. The SSD2 metric
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Figure 3.7: The correlation of metrics with the total number of emissions in each respiratory
gated bin. The Pearson’s correlation (R) was calculated separately for each study (n=11)
and the mean, minimum and maximum correlation coe�cient was plotted. The Natterers
and SSD2 similarity metrics had the lowest correlation with total number of emissions.

frame might result in a higher than expected metric value. It was assumed that there should
be minimal correlation between the number of events and the metric values, however, it
was found that some metrics such as the log likelihood metrics were highly correlated with
the total number of events in each frame. Pearson’s correlation between the count level for
each frame versus the metric value was calculated for each frame for all 11 studies (Figure
3.7). A significant correlation (R > 0.9) ruled out log likelihood metrics because they were
disproportionately likely to identify frames with low counts as a reference frame.

The quiescent phase of the respiratory cycle was defined as the portion of the cycle
when the respiratory trace amplitude was less than 33% of the end inspiration value. It
was expected that the attenuation map would be a reasonably accurate representation of
the anatomy during the quiescent phase because the CT acquisition protocol involved the
operator directing the patient to breathe out during the scan. Table 3.4 shows that the SSD2
metric designated the reference frame as during the quiescent phase of the respiratory cycle in
88% of studies. 3 studies were excluded from this analysis due to di�culties in synchronising
the respiratory trace with the gated PET scan. The study for which the reference frame was
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not in the quiescent phase had a respiratory motion artefact on the whole body PET/CT
image (Figure 1.2). The NMI, Natterers, and ChiSq2 metrics were ruled out for identifying
the reference frame because they designated the reference frame as during quiescent phase
of the respiratory cycle in only 50% of studies.

Table 3.4: A comparison of 8 studies analysed with various metrics. N
Q

is the number of
studies where the metric designated a frame in the quiescent phase of the respiratory cycle.
The SSD2 metric was most likely to identify a frame in the quiescent phase.

Metric N
Q

NMI 4
SSD1 5
SSD2 7
ChiSq1 6
ChiSq2 3
LL1 6
LL2 5
Natterers 4

3.3.2 Metrics for Evaluating the Accuracy of Attenuation Align-
ment

The same metrics used for identifying a reference frame were used to compare registration
methods, however, some metrics needed to be excluded. It was shown in section 3.2.1 that the
metrics defined by equations 3.1 - 3.8 increase due to attenuation mismatch. Upon further
analysis, we excluded the use of log likelihood metrics based on the previously identified
correlation with the total number of counts per frame because the correlation may confound
attempts to compare studies with significantly di↵erent count levels.

When an attenuation map is deformed, the average ACF value per frame is likely to
change. If the metric is sensitive to changes in the magnitude of the average ACF, then an
overall change in the ACF as a result of deformation would potentially be mistaken for a
misalignment. Analysis of the equation 3.6 for SSD2 and equation 3.8 for ChiSq2 revealed
a linear dependance of the metric on the magnitude of the average ACF. The correlation of
the metrics with the average ACF value was confirmed for all studies and a scatter plot for
the SSD metric for study 14 is shown in figure 3.8. Although SSD2 was the optimal metric
for finding the reference frame it was necessary to rule out both SSD2 and ChiSq2 metrics
for measuring the accuracy of the alignment of emission images and deformed attenuation
maps.

Although it is possible to use NMI as a measure of the alignment of attenuation maps
with emission images, it is not possible use NMI as an independent measurement of accuracy
if NMI has already been used for estimating the deformation. We used NMI extensively
in registration methods presented in tables 3.1, 3.2 and 3.3, thus NMI was excluded as an
evaluation metric.

This analysis of metrics ruled out the use of log likelihood, SSD2, ChiSq2 and NMI
metrics. The results of SSD1, ChiSq1 and Natterer’s as a metric for evaluating alignment
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Figure 3.8: A scatter plot showing the relationship between SSD, Chisq and Natterer’s metrics
and the average attenuation correction factor for study 14. A correlation with the ACF was
observed for both the SSD2 and ChiSq2 metrics.
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Figure 3.9: The respiratory amplitude where end inspiration is at frame 11 and end expiration
is between frame 6 and 7. Frames 2, 5, 8 and 11 are highlighted with the same colours as the
segmented regions in figure 3.10. The plot on the right shows centre of mass (COM) of the
segmented tumour region for each frame. The tumour moves predominantly in the superior
and inferior direction (z direction) over a 15mm range. There is also anterior and posterior
motion (y direction) over a range of 7mm.

methods are presented in the final section.

3.3.3 Analysis of Lesion Deformation

An analysis of lesion deformation was completed following the compensation for attenuation
misalignment. Figure 3.9 shows that the centre of mass of segmented lesions moved in the
superior direction at end expiration (EE) and to the inferior extent at end inspiration (EI).
Although it was possible to trace the tumour volumes separately for each frame, we found it
reliable to use a larger region (TV), shown in figure 3.10, to measure total activity (in kBq)
using the same segmented volume in every frame.

An analysis of the apparent activity concentration (Bq/mL) in the tracking region was
performed for multimodality, mono-modality and combined approaches (figure 3.11). Mass
preserving image registration was applied by correcting for density changes following the
deformation of the attenuation map and the e↵ect on apparent activity concentration was
recored. In each approach to registration it was found that mass preservation decreased the
variance and decreased the mean activity in the emission image. Mass preserved attenuation
maps at end inspiration (EI) appeared to have a lower density in comparison to end expiration
(EE). The decrease in density caused the average amount of attenuation to decrease and was
likely responsible for the corresponding decrease in average tumour activity.

3.3.4 Optimal Methods for Compensating for Attenuation Mis-
alignment

Table 3.12 summarises the results of compensating for attenuation misalignment using several
methods of image registration for study 14. The change in Natterers, SSD1 and ChiSq1
metrics using compensated attenuation maps varied significantly in comparison to CTAC.
In cases where image registration accurately compensated for alignment it was expected
that the metrics would decrease relative to the CTAC value. For example, multimodality
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Figure 3.10: The segmented tumour in study 16 is superimposed on a coronal cross section of
the attenuation map for PET/CT. Subfigure (b) shows the reference frame (frame 8) with no
transform applied to the tumour or the attenuation map. Subfigure (a) shows the deformed
tracking region for frame 2 (Green), frame 5 (Light blue), frame 8 (White) and frame 11
(Purple). Subfigure (c) shows the tumour volume (TV) extent which is a larger region that
encapsulates the movement of the tumour over the entire respiratory cycle.
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Figure 3.11: Tumour lesion activity in the tracking region for selected registration parameter
sets for study 14. The activity is a function of respiratory amplitude with results for no attenu-
ation alignment shown in gray (CTAC). The blue plots show the lesion activity without mass
preservation using multimodality (P6), mono-modality (P2) and combined multi-modality
and mono-modality (P10) parameters. The orange plots show the lesion activity with mass
preservation using multimodality (P16), mono-modality (P15) and combined multi-modality
and mono-modality (P20) parameters leading to a decrease in average tumour activity.
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Table 3.5: Attenuation alignment metrics calculated from the median metric di↵erence for
each frame study 14. Di↵erences are expressed as a percentage of the metric when CTAC was
used without attenuation alignment. The last two columns compare tumour lesions using
the standard deviation of the TV activity and the volume of the TV. Each row has metric
values for a di↵erent registration parameter set described in tables 3.1, 3.2 and 3.3.

Multimodality Natterers SSD1 ChiSq1 �
TV

(kBq) TV vol (mL)
P5 -7.1% -1.6% 2.2% 2.92 9.4
P6 -11.9% -2.1% 2.4% 3.60 9.3
P16 45.8% -0.7% 3.9% 3.30 9.3
P51 -31.4% 0.3% 1.5% 6.04 12.8
P52 -48.3% -8.6% -3% 5.79 16.6
mono-modality Natterers SSD1 ChiSq1 �

TV

(kBq) TV vol (mL)
P1 1.9% -0.3% 1% 5.47 11.3
P2 7.1% 0.2% 1% 6.16 10.9
P3 -1.1% 1.8% 1% 6.54 11.8
Combined Natterers SSD1 ChiSq1 �

TV

(kBq) TV vol (mL)
P7 71.0% 0.2% 3.5% 5.82 16.1
P8 27.2% -2.0% 1.4% 4.83 15.4
P9 -94.7% -2.1% -0.1% 4.03 21.4
P11 -23.9% 5.1% 2.2% 7.03 14.5
CTAC 3.53 9.1

registration method, P52, reduced both Natterers and SSD1 metrics by 48.3% and 8.6%
respectively, yet alternative methods such as P7 increased all metrics. Compensating for
misalignment did not significantly a↵ect the variation of radioactivity concentrations across
frames as seen in methods P5, P6 and P16 in table 3.12. However, for two methods, P51
and P52, the registration algorithm estimated large deformations leading to variations in TV
activity (6.04kBq and 5.79kBq) which were large in comparison to methods P5, P6 and P16.
Multi-modality method P52 led to estimates of substantial deformation, hence motion, of
the tumour. This was evident by the size of the TV which had increased from 9.1mL (for
CTAC) to 16.6mL (for P52). Our analysis of table 3.5 indicated that method P52 was the
best performing multi-modality method reducing Natters and SSD1 metrics by 48.3% and
8.6% respectively. The mean activity was noticeably higher for method P52 (figure 3.12),
however, this was thought to be related to the size of the TV and not related to the uptake
of the tumour.

Compensating for attenuation misalignment using a combination of both mono-modality
and multi-modality registration led to the most significant improvements. The best perform-
ing method reduced Natterer’s and SSD1 metrics by 94.7% and 2.1% respectively. Method
P9 in table 3.5 shows that size of the TV was larger than any other method (21.4mL). How-
ever, despite the large estimation of tumour motion, the variance in TV activity was lowest
(�

TV

= 4.03kBq).
The median metric di↵erences are shown in table 3.6 and expressed as a percentage

of the metric for CTAC. We found that three multimodality registration methods P5, P6,
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Figure 3.12: Tumour lesion activity in the TV for selected registration parameter sets for
study 14. The activity is a function of respiratory amplitude with results from no attenuation
alignment showen in black (CTAC). A comparison of lesion activity using multimodality
parameters P5 (blue), P6 (orange), P16 (yellow) and P51 (green) is top left. A comparison
of lesion activity using mono-modality parameters P1 (blue), P2 (orange), P3 (yellow) and
P52 (green) is top right. A comparison of lesion activity using a combined multi-modality
and mono-modality P7 (blue), P8 (orange), P9 (yellow) and P11 (green) is bottom.
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Figure 3.13: Tumour lesion activity in the TV for selected registration parameter sets for
study 14. The activity is a function of respiratory amplitude with results from no attenuation
alignment shown in black (CTAC). A comparison of lesion activity using multimodality
parameters P5 (blue), P6 (orange), P16 (yellow) and P51 (green) is top left. A comparison
of lesion activity using mono-modality parameters P1 (blue), P2 (orange), P3 (yellow) and
P52 (green) is top right. A comparison of lesion activity using a combined multi-modality
and mono-modality P7 (blue), P8 (orange), P9 (yellow) and P11 (green) is bottom.

P16 did not reduce the median Natterers metric after attenuation alignment. The metric
di↵erences between attenuation alignment versus CTAC were analysed for all 11 studies. The
optimal multimodality method was P52 in table 3.6 which reduced Natters metric by 10.1%
and the SSD1 metric by 8.4%. Using mono-modality registration to align frames resulted
in a reduction in Natterers metric by up to 9.5%. Combining both mono-modality and
multi modality registration led to almost no reduction in Natterers consistency and SSD1
metric. P9 in table 3.8 was the best performing combined approach leading to a reduction
in the Natterers consistency and SSD1 metric by 1.8% and 3.0% respectively. The optimal
multimodality (P52), mono-modality (P1) and combined (P9) approaches are compared in
figure 3.14).

Attenuation image alignment using multi-modality registration method P52 reduced Nat-
terer’s consistency, SSD1 metric and ChiSq1 metric for mono-modality by the largest magni-
tude. A boxplot analysis (figure 3.14) showed that the SSD1 metric and ChiSq1 metrics had
the most significant statistical di↵erence when comparing methods. Although the magnitude
of the changes in Natterer’s consistency were larger, the results appeared equivocal when
comparing di↵erent methods for multiple studies.

For both multi-modality and combined approaches, mass preservation decreases the vari-
ance and decreases the mean activity. This makes sense as most CTs are taken at EE and
then stretched to EI. In this case the density of the AC map should decrease overall.
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Table 3.6: Attenuation alignment metrics for multi-modality alignment calculated from the
median metric di↵erence over 11 studies. Di↵erences are expressed as a percentage of the
metric when CTAC was used without attenuation alignment. Each row has metric values for
a di↵erent registration parameter set described in table 3.1.

Multi-modality Natterers SSD1 ChiSq1
P5 17.3% -3.2% -1.9%
P6 18.2% -2.4% -1.3%
P16 22.1% -1.4% -0.7%
P51 -5.0% 0.6% 0.5%
P52 -10.1% -8.4% -4.9%

Table 3.7: Attenuation alignment metrics for mono-modality alignment calculated from the
median metric di↵erence over 11 studies. Di↵erences are expressed as a percentage of the
metric when CTAC was used without attenuation alignment. Each row has metric values for
a di↵erent registration parameter set described in table 3.2

Mono-modality Natterers SSD1 ChiSq1
P1 -9.3% -1.9% -1.4%
P2 -7.1% -2.1% -1.6%
P3 -9.5% -1.8% -1.4%
P15 -5.3% -1.4% -0.8%
P53 -4.2% 0.0% -0.2%

Table 3.8: Attenuation alignment metrics for combined alignment calculated from the median
metric di↵erence over 11 studies. Di↵erences are expressed as a percentage of the metric when
CTAC was used without attenuation alignment. Each row has metric values for a di↵erent
registration parameter set described in table 3.3.

Combined Natterers SSD1 ChiSq1
P7 24.5% -1.9% -1.4%
P8 17.1% -3.5% -2.6%
P9 -1.8% -3.0% -1.6%
P10 2.3% 2.5% 0.9%
P11 7.1% -1.3% -1.0%
P12 42.4% 5.9% 2.3%
P18 20.5% -2.0% -1.1%
P20 1.3% 1.5% 1.5%
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Figure 3.14: A comparison of multimodality (P51), mono-modality (P52) and combined (P9)
approaches with attenuation alignment metric di↵erences. Comparisons are made using the
Natterer’s consistency (bottom), SSD1 (top left) metric and ChiSq1 (top right) metrics. Each
box and whisker shows the metric di↵erence in 11 studies expressed as a percentage of the
metric when CTAC was used without attenuation alignment.
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3.4 Discussion

Seven di↵erent metrics were devised for the purposes of validating methods of image regis-
tration to address attenuation mismatch. The SSD2 metric was found to perform best at
finding the reference frame in a gated study when CTAC is applied. The SSD1 or ChiSq1
metrics were suited to validation of the alignment of attenuation maps to each frame in
a gated study. We used these metrics to investigate attenuation alignment in an example
gated study and found that attenuation alignment using multi-modality registration was the
optimal method. We analysed 11 studies to find that multi-modality elastix registration of
the attenuation map to the emission image reduced the SSD1 and ChiSq1 metrics (p <0.05).
Mono-modality and combination approaches were also promising, but did not result in sig-
nificant metric improvements. It is suspected that mono-modality registration performed
poorly because the respiratory motion signal in the PET data was confounded by Poisson
noise. Further work is presented in chapter 5 in improving the estimation of motion from the
PET data by regularising image registration so that it is robust to the poor SNR in gated
PET images. The analysis of tumour lesions revealed that some alignment methods led to
an underestimation of the tumour volume extent. A smaller than expected TV volume was
likely due to image registration inadequately modelling the deformation due to respiratory
motion. Further work on modelling respiratory motion is presented in chapters 4 and 5. A
complete investigation of mass preservation could not be completed since mass preservation
had not been fully implemented for all cost functions in the Elastix and Niftyreg registration
packages. Further work may reveal more promising results with this approach, however, it
would require a significant amount of software development. Although a limited investigation
into mass-preserving registration was performed (Barnett, Fulton, & Meikle, 2013), those re-
sults were not conclusive enough to rule out that the encountered benefits didn’t arise due to
unrelated di↵erences in the implementation of the registration algorithm. In some cases the
Natterer’s consistency condition result conflicted with the SSD1 and ChiSq1 metrics, how-
ever, further analysis showed that Natterer’s consistency had a wide distribution of values
when comparing multiple studies in figure 3.14. This could be due to Natterers consistency
condition being oversensitive to certain symmetries in the sinogram (Alessio et al., 2010)
meaning that the metric may not be adequate as a method of validation of attenuation cor-
rection. The work in this chapter forms a basis for using the SSD1 metric in chapter 5 to
pursue further improvements.
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Chapter 4

Cross Population Respiratory Motion
Modelling for Improving Attenuation
Correction
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The following chapter is published as, Barnett R, Meikle S, Fulton R . Cross population
motion modeling applied to attenuation correction of respiratory gated F18-FDG PET. IEEE
Transactions on Nuclear Science, Volume: 63, Issue: 1, 170-179, Feb. 2016 with minor
editions to reduce length.

4.1 Introduction

Attenuation correction relies on the PET and attenuation maps being spatially aligned and
thus any mismatch between the PET and CT a↵ects the diagnostic accuracy of the PET/CT
scan. Positron emission tomography and computed tomography are typically acquired using
a single gantry (PET/CT). Although mismatch is significantly reduced because the patient
is not required to move from the bed between each scan, compensation for mismatch due
to involuntary respiratory motion was demonstrated to be beneficial in chapter 3. A typical
clinical implementation of PET respiratory gating in PET/CT is to use the same spiral CT
image to generate an identical attenuation map for all respiratory gated PET frames. CT
imaging takes only a few seconds to traverse the thoracic region so it is a↵ected by respiration
to a lesser degree. In this case respiratory motion leads to the appearance of attenuation
mismatch artifacts in the reconstructed PET image (Hamill, Bosmans, & Dekker, 2008;
McQuaid, Lambrou, & Hutton, 2008).

There are many promising methods for motion compensation during a PET scan (Chan et
al., 2013; Lamare et al., 2007), however, few address the e↵ect of respiratory motion on CT-
based attenuation correction (Bai & Brady, 2011). One approach to mitigating CT motion
artifacts in the thoracic region is to perform a breath hold CT image (Nehmeh et al., 2007).
Alternatively, it is possible to use 4DCT to capture the motion of organs by acquiring a cine
of the respiratory cycle. Organ motion can then be corrected through analysis of the 4DCT
frames (Zhang et al., 2010). A common challenge to all of these approaches is that they
require identifying a reference frame when the gated PET image matches the CT derived
attenuation map.

A more accurate attenuation map can be obtained by acquiring a 4DCT which is phase
correlated with the gated PET such that each frame in the 4DCT matches the corresponding
frame in the gated PET scan (Pönisch, Richter, Just, & Enghardt, 2008). Unfortunately,
the 4DCT frames may not match the gated PET frames because the 4DCT is only acquired
over 4-5 respiratory cycles and the breathing motion during these cycles may be significantly
di↵erent to the breathing motion during the PET scan which is averaged over many respira-
tory cycles. The 4DCT is also a↵ected by motion causing the appearance of image artifacts
such as distorted organ boundaries. Such artifacts are typically mitigated through additional
time sampling (Pan, Lee, Rietzel, & Chen, 2004), alternatively it is possible to address the
same issue using motion compensated reconstruction (Ehrhardt et al., 2007).

4DCT derived attenuation correction may be promising if the radiation dose from the
scan can be reduced significantly such that it is preferable to a conventional low dose spiral
CT scan. Even if the dose can be reduced, 4DCT acquisitions that have been localized to
the thoracic region usually require an additional spiral CT acquisition to apply attenuation
correction if it is to be combined with a whole body PET scan.

An alternative approach to 4DCT is to merely apply accurate attenuation correction
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for a single PET frame (Daouk, Fin, Bailly, & Meyer, 2008). In this approach attenuation
mismatch is avoided by finding a single frame in the gated PET which best matches the spiral
CT and discarding the remainder of the PET data. However, it would be preferable to be
able to apply attenuation correction for all PET frames. Chapter 2 proposed and compared
methods of deformable image registration as a promising solution for this problem whereby
the attenuation mismatch is compensated by deforming the spiral CT image in such a way
that it matches each frame of a respiratory gated PET.

An alternative approach to correcting for respiratory motion is to consider a patient
specific model of respiration in which the motion model is tailored to the patient. This
approach has been proposed as a suitable model for identifying individual breathing patterns
(Li et al., 2011; Zhang et al., 2007). Patient specific models find underlying patterns in
respiratory motion and can be used for the prediction of arbitrary phase and amplitude of
respiration (Thielemans et al., 2013). Without a model, motion estimation would normally
require accurate time sequence images for many respiratory cycles.

A direct correspondence model can relate the observed internal motion in a patients
4DCT to the external movement of a respiratory gauge. Although correspondence has been
demonstrated in PET imaging for single tumors (Chan et al., 2013), it is yet to be reliably
demonstrated for attenuation correction for which motion needs to be modeled in the entire
thoracic region.

Cross population motion models are formed from motion data acquired from many di↵er-
ent subjects, and attempt to capture the nature of breathing motion across the population
(McClelland, Hawkes, Schae↵ter, & King, 2013). A cross population model may be consid-
ered in cases where it is impracticable to construct a patient specific correspondence model.
Although this method was shown to allow comparison of breathing motion between subjects
(Ehrhardt, Werner, Schmidt-Richberg, & Handels, 2011), it was not applied to predict the
motion of the entire thorax.

Cross population models have a demonstrated use in image segmentation. Once such type
of cross population model is the statistical shape model used for refining the boundaries of a
segmented region (Heimann & Meinzer, 2009). Cross population models can also be used to
analyze the motion of a segmented region. For example, a statistical shape model was used
to approximate the shape of the diaphragm in imaging the radionuclide uptake of the my-
ocardium (McQuaid et al., 2008). The rise and fall of the diaphragm is the main contributor
to attenuation correction inaccuracies. Using the model to implement motion compensa-
tion improved diagnostic accuracy, even though the model could have been improved by
considering expansion and contraction of the chest wall.

The cross population model this chapter builds on a model proposed by Chandrashekara,
Rao, Sanchez-Ortiz, Mohiaddin, and Rueckert (2003) which was presented in section 2.5.3.
Rather than parameterize at every voxel location, B-Spline coe�cients were used to inter-
polate between parameterized positions (equation 2.19). The direction of heart motion in
the population was captured through a set of eigenvectors which were then scaled with time
dependent coe�cients (b). The practical advantage of this model was that the nature of
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heart motion was captured in a single function K (equation 4.1) and when a new patient
scan was encountered it was only necessary to calculate a new set of scaling coe�cients (b).

dS(0,t)(x̀, ỳ, z̀) = K(b) (4.1)

The parameterization overcame issues caused by the poor SNR in images acquired using
fast sequences in dynamic MR. Our implementation of a cross population model for lung
motion is an adaptation of this parameterization with the purpose of overcoming the poor
signal to noise ratio in PET imaging.

Our aim is to address attenuation mismatch due to respiratory motion in order to improve
the accuracy of attenuation correction. In this paper we build on existing methods for
deformable image registration to estimate motion from respiratory gated images. Rather than
using deformable image registration alone, we explore the possible use of a cross population
motion model to calculate a set of patient specific deformation fields due to respiratory motion
during a gated PET scan. We build on previous work which utilizes a cross population model
for the heart (Chandrashekara et al., 2003) and the diaphragm (McQuaid et al., 2008). We
combine our cross population model with a correspondence model to estimate motion of the
whole thorax from a sequence of gated images in the PET scan.

4.2 Methods

Cross population modeling involves analyzing a collection of input scans to find similarities of
breathing motion across the population. Our method of utilizing a cross population model is
summarized in Figure 4.1. We pre-processed a collection of 4DCT images from which frame by
frame deformations were estimated to establish a cross population model (denoted byK). The
cross population model, K, was used to address the issue that estimating deformation from
gated PET using frame-by-frame image registration (denoted by Q) was adversely a↵ected by
poor signal to noise (SNR). We extended the cross population model to ensure correspondence
with the initial deformation estimate, Q, and produced an improved deformation estimate,
V . The following sections describe our proposed joint correspondence and cross population
model and how we used the deformation estimate, V , to address mismatch between each
gated image and the spiral CT.

4.2.1 Data Acquisition and Image Reconstruction

A set of 10 individual 4DCT thorax scans were acquired in cine mode using GE LightSpeed
RT 16 scanner in a similar way to the method adopted by Nemeh (Nehmeh et al., 2004). Cine
mode was implemented by acquiring repeated axial CT images for a specified period of time,
at each table position. The 10 4DCT thorax scans were from a cohort of oncology patients un-
dergoing a respiratory gated CT for the purposes of radiation treatment planning. Breathing
motion was tracked by monitoring the vertical displacement of two infrared reflective markers
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Figure 4.1: A collection of 4DCT scans are used to construct a motion model. We use a
combination of the motion model and an sparse estimation from the gated PET scan to
construct a refined deformation field.

on the patient’s chest using the Varian real-time position management (RPM). The phase
in the respiratory cycle was measured relative to the time when the RPM marker had max-
imum displacement (End inspiration). Each axial CT slice was retrospectively binned into
10 frames based on the phase in the respiratory cycle.

Eleven PET scans were acquired and analyzed with respiratory gating on a Biograph 16
PET/CT using a phase based gating system. All of these gated PET scans were independent
from the 4DCT scans used to train the population model. The phase based respiratory
gating system AZ733V (Anzai Medical, Tokyo, Japan) was employed as previously described
by Pönisch et al. (2008). The system utilizes a pressure sensor inserted into the pocket of an
elastic belt to detect external respiratory motion.

Each patient was injected with approximately 350MBq of F18-FDG. A single bed list
mode scan with total duration of 5 minutes and an approximate sensitivity of 4cps/kBq
was performed after a conventional whole body static PET and spiral CT. The list mode
data were binned into 6 frames to produce a set of respiratory gated images. Conventional
attenuation correction of each respiratory gated image was implemented from the spiral CT
for comparison with our proposed method.

4.2.2 Image Pre-processing

Segmentation

Before being used as training data in the cross population model the 4DCT images were
segmented to mask out internal features within organs. Due to the significant variation of
organ appearance across the population, ignoring such features was expected to minimize
the number of required training scans. A simple classification scheme based on a threshold
of Hounsfield Units (HU) was used to select lung (-1024HU to -800HU), abdominal tissues
(-800HU to -100HU) and bone (above 200HU).
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Figure 4.2: A reference frame was selected from each 4DCT scan. The reference frame image
from each subject was registered to the spiral CT (common target) and summed to create
an average intensity and shape atlas.

Global Atlas

To build a cross population model of respiratory motion, anatomical correspondence between
di↵erent scans had to be established. In a similar way to Ehrhardt (Ehrhardt et al., 2011),
an atlas was used to provide an anatomical reference for the comparison between di↵erent
scans. This provided an average snapshot of the lung anatomy for a particular time range
during the respiratory cycle.

The atlas image was constructed by selecting a single reference frame from each 4DCT
scan and registering that frame to the common target. The common target image was
chosen as the spiral CT from the PET/CT scan which is to be corrected for attenuation.
The reference frame from each 4DCT was selected such that it reflected the same phase
o↵set of the common target in the respiratory cycle. In order to capture non-rigid respiratory
motion we chose to construct the atlas image by using free-form deformation, cubic B-Splines
interpolation and a mutual information cost function. Performing an a�ne registration as
an initial step accelerated the registration to the common target. All registered frames were
added together to form an average image which was then referred to as the atlas image
(Figure 4.2). Although it is usually desirable to be able to re-use the same atlas for many
applications, we found it more practical for the common target to be the Spiral CT from
the newly encountered PET/CT scan and because it was not severely a↵ected by respiratory
motion since it passes over the thoracic region in a few seconds.

In a similar way to Ehrhardt et al. (2011), the reference frame from each 4DCT scan was
registered for a second time to the atlas image and the deformation field was stored. For
each 4DCT scan the stored deformation was then applied to all other frames in each 4DCT.
The deformed frames of each 4DCT then represented one of the many possible ways the lung
could expand or contract relative to the atlas image. The deformed 4DCT scans could then
be used in a cross population model to make an inference about how the spiral CT could
deform during the newly encountered PET/CT scan.
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Figure 4.3: Parameterisation of displacement using free form image registration. A grid
represents the original position of all voxels before deformation (left). Control points (solid
red circles) were displaced and the new position of all voxels (black grid) was calculated using
cubic B-Splines interpolation. This displacement of control points (right) was parameterized
as displacement vectors (black arrows).

Estimating Frame by Frame Deformations

The deformation between consecutive frames in each 4DCT training scan was used as an
estimate of respiratory motion. Deformation was represented as displacement vectors to
describe the vector mapping of a voxel in a frame at end inspiration to a voxel in a frame
at a later time. Estimation of every displacement vector at every voxel was found to be
computationally expensive, thus we used a free form image registration algorithm which
estimated the deformation on a coarse grid with a grid spacing of 5mm. The free form
image registration was initialized by placing the freely adjustable control points at the grid
vertices (Figure 4.3). The displacement at intervening voxels was approximated using cubic
B-Splines interpolation. For the purposes of training the cross population model frame-by-
frame respiratory motion was parameterized as U(x, y, z, f)

p

, where U was the displacement
of the control points from their initial position at the end inspiration frame, x, y, z was the
coarse sampling position, f was the frame and p was the training scan number.

We also used this method of frame-by-frame respiratory motion parameterization to estab-
lish an estimate of the motion in the gated PET scan. We used free form image registration to
estimate the displacement of every control point in each frame in the gated PET with respect
to the end inspiration frame. The estimation was expected to only be reliable for a sparse
set of positions with su�cient radio-tracer uptake to identify features in each gated PET
frame (Mattes, Haynor, Vesselle, Lewellen, & Eubank, 2003), thus limiting the accuracy of
the registration. We identified the sparse positions using a mask based on the signal to noise
ratio (SNR), described in a later section, to retain only those estimates which were reliable.
Respiratory motion in the gated PET scan was then parameterized as the displacement of
control points, Q(x̀, ỳ, z̀, f), where the sparse positions were x̀, ỳ, z̀ in each frame f .

4.2.3 Correspondence and Cross Population Model

A joint correspondence and cross population model was devised to improve the sparse esti-
mates Q, to estimate a complete set of control point displacements V (x, y, z, f). As described
in equation 4.2, we expressed our model as a function K, which produced the estimate,
V (x, y, z, f), when supplied with a set of cross population model coe�cients, �, and corre-
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Figure 4.4: The parameterized motion fields for each training scan (Top Left) were arrange
into a matrix (Top Right). Principal Components Analysis (PCA) produced a decomposed
matrix whose eigenvectors were motion components (Bottom right). Motion was then param-
eterized as an average vector plus a linear combination of the motion components (Bottom
left).

spondence model coe�cients, µ.

V (x, y, z, f) = K(µ0, µ1, µ2, ...�0,�1,�2...) (4.2)

We found the coe�cients for K such that V (x, y, z, f) best matched the sparse and noisy
estimates, Q(x̀, ỳ, z̀, f), derived from the acquired PET data from a patient. The following
sections describe how K was constructed using a linear combination of eigen-vectors.

Cross Population Model

The cross population model K, was devised from N
p

individual 4DCT scans from di↵erent
patients to provide prior knowledge of respiration necessary for motion prediction. The
displacement of control points U(x, y, z, f) were used to parameterize the motion for each
patient (p) in the cross population model. The parameterized motion field U(x, y, z, f)

p

was
arranged into a 2 dimensional matrix where each column represented the displacement of
all control points for a given patient at all positions x, y, z, f (Figure 4.4). A set of PCA
component vectors was found by performing the eigen-decomposition of the covariance matrix
(UTU) which represents the variance of control point displacements over each training scan
(p). We have chosen to represent these vectors as continuous on x, y, z, f as the control point
displacements can be discretized arbitrarily depending on the required resolution.

We decomposed the control point displacement field, U (Equation 4.3), for every train-
ing scan (p) into an average displacement field (w̄) plus a linear combination (

c

) of the
components of motion (w(x, y, z, f)

c

).

w̄(x, y, z, f) +
NcX

c


c

w(x, y, z, f)
c

⇡ U(x, y, z, f)
p

(4.3)

86



where

w̄(x, y, z, f) =
1

N
p

NpX

p

U(x, y, z, f)
p

(4.4)

The first N
c

components of motion (w(x, y, z, f)
c

) and their coe�cients (
c

) were calcu-
lated from the Principal Components Analysis (PCA) algorithm. In practice it was found
that (w(x, y, z, f)

c

) was unchanged regardless of whether motion was parameterized as the
control point displacement (U) optimized by the registration software or the displacement
vector mapping used for image deformation.

We created an individualized displacement field, W (Equation 4.5), which was adapted
to the estimation of deformation between end-inspiration and end-expiration in the PET/CT
scan.

W (x, y, z, f) = w̄(x, y, z, f) +
NcX

c

�
c

w(x, y, z, f)
c

(4.5)

The coe�cients (�
c

) for each patients individualized displacement field were derived by a
function minimization procedure. A downhill simplex algorithm was used to vary �

c

until the
individualized displacement field (W ) was a close fit to the sparse control point displacements
(Q) estimated from the gated PET frames (Equation 4.6).

argmin
�c

8
<

:
X

x̀,ỳ,z̀

|W (x̀, ỳ, z̀, f
max

)�Q(x̀, ỳ, z̀, f
max

)|

9
=

; (4.6)

We computed the coe�cients (�
c

) only at the extreme of motion (f
max

) meaning that
we only estimated the displacement (W ) between end-inspiration and end-expiration during
the PET scan. This constraint was necessary to ensure that the amplitude of displacement
was larger than errors induced by image noise, but had the disadvantage of not optimizing
control point displacement for intervening frames.

Correspondence Model

A correspondence model was used in combination with the estimated displacement from the
cross population model to estimate control point displacement for all frames (including in-
tervening frames) in the gated PET scan. W was expressed as a matrix with N

f

columns
where each column represented the control point displacement for a particular frame. In a
similar way to the cross population model, principal components analysis (PCA) was per-
formed on the matrix to isolate commonalities of control point displacements across di↵erent
frames within W . The PCA algorithm produced eigenvectors (v

m

) in order of their preva-
lence. Thus, the first few eigenvectors represented the most prevalent modes of motion that
were common to all frames. We selected the N

m

most prominent eigenvectors from the PCA
algorithm to be the modes of motion (v

m

). The outcome of using PCA to decompose W is
described in equation 4.7 where W was approximated as the average displacement (v̄) plus
a linear combination (⌘(f)

m

) of the modes of motion (v
m

).

v̄(x, y, z) +
NmX

m

⌘(f)
m

v(x, y, z)
m

⇡ W (x, y, z, f) (4.7)

87



where

v̄(x, y, z) =
1

N
f

NfX

f

W (x, y, z, f) (4.8)

The correspondence model described by Equation 4.7 di↵ers from the cross population
model described in Equation 4.3 because it is used to analyze control point displacement of
all frames (W ) in an individual patient. The cross population model was not used to predict
displacement of all frames because of di↵erences in respiratory phase and amplitude between
the 4DCT training scans used to construct the cross population model and the gated PET
scan. The correspondence model was found to be more suited to account for the variation
in respiratory phase and amplitude between the 4DCT training scans and the gated PET
scan. Equation 4.9 describes how we used the correspondence model to create a refined
displacement field (V ) which could have an arbitrary respiratory phase and amplitude.

V (x, y, z, f) = v̄(x, y, z) +
NmX

m

µ
m

(f)v(x, y, z)
m

(4.9)

The coe�cients µ(f)
m

represented the contribution of displacement from each frame in
the selected modes of motion,m, to each frame, f , in the refined motion field V . We estimated
the control point displacement for all frames in the gated PET scan by varying µ(f)

m

until
V fitted our sparse estimate Q using a minimization procedure shown in Equation 4.10. This
method was similar to finding optimal coe�cients for the cross population model, however,
there were fewer variables, thus we expected the function minimization procedure to be less
a↵ected by noise.

argmin
µm(f)

8
<

:
X

x̀,ỳ,z̀,f

|V (x̀, ỳ, z̀, f)�Q(x̀, ỳ, z̀, f)|

9
=

; (4.10)

All displacements had been calculated on a coarse grid to reduce computational demands.
The refined displacement field (V ) was interpolated to produce a voxel wise deformation
which was at the resolution of the CT image.

Signal to Noise Ratio Mask

Estimation of motion at the axial edges of the PET image appeared inaccurate due to image
noise. We avoided these areas of low camera sensitivity by only considering areas where
the axial sensitivity of the PET scanner had adequate signal to noise (SNR) to estimate
motion. Estimation of small displacements were also inaccurate due to PET image noise,
leading to a situation where the model was fitted to image noise rather than useful signal
(over-fitting). We overcame both e↵ects by establishing a voxel-wise metric of the SNR
as a product of magnitude of displacement and camera sensitivity. We used this metric
by applying a threshold to determine the masked region where the SNR was adequate to
use to the PET to measure organ deformation. The mask was then applied to the PET
displacement field (Q) so that it was only defined for a restricted set of positions x̀, ỳ, z̀ in
each frame f . We calculated the mean amplitude of displacement in the SNR masked region
for the PET displacement field,

P
Q(x̀, ỳ, z̀), to the fitted displacement field,

P
V (x̀, ỳ, z̀),
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and then adjusted the SNR mask cut-o↵ until the ratio of
P

Q(x̀, ỳ, z̀) to
P

V (x̀, ỳ, z̀) was
95%.

4.2.4 Model Evaluation

Model Cross-Validation

In order to quantitatively assess the robustness of the joint correspondence and cross popu-
lation model (K), we determined how well the model could predict changes in lung volume.
The lung volume was estimated directly from a 4DCT via the segmentation algorithm used
to construct the global atlas. We measured the change in the segmented lung volume in
milliliters and expressed it as a percentage of the volume at end-inspiration. We used a
leave-one-out cross-validation method (McQuaid et al., 2008) for which one 4DCT data set
was removed from the cross population model (K). A single static frame was chosen from
the removed 4DCT data set. We then used the model (K) to estimate the deformation and
applied it to the single static frame to predict the deformation of the remaining frames. We
determined the change in lung volume due to the deformation by segmenting the remaining
frames and comparing it to lung volume at end-inspiration. We compared the changes in lung
volume predicted by the cross population model to the changes observed from the segmented
4DCT.

Attenuation Correction

The CT image was deformed to account for mismatch between the spiral CT and each PET
frame. We used the cross population model to find the deformation of each PET frame and
then applied the deformation to the CT image to produce phase correlated PET and CT
frames. Each correlated CT frame was scaled from Hounsfield Units (HU) to a voxel-wise
attenuation map. Each phase correlated attenuation map was then used to correct for photon
attenuation during the reconstruction of each gated PET frame.

We evaluated PET image contrast as a measure of whether attenuation mismatch had
been addressed. Inadequate correction for counts lost due to attenuation can be responsible
for a reduction in image contrast. We specifically investigated attenuation mismatch at the
diaphragm boundary because it is known to lead to a reduction in image contrast of the
myocardial wall (McQuaid et al., 2008).

In each of the 11 gated PET studies we either segmented the heart (n=4) or a pulmonary
nodule (n=7) and measured the counts per voxel in the segmented regions for each gated
PET frame. We calculated the maximum range of count levels over all gated frames in the
segmented regions of each gated PET. We compared the maximum range after applying no
correction (NAC), applying correlated attenuation correction (Corr. AC) and using a static
spiral CT for attenuation correction (CT AC). A large range has been shown to be associated
with attenuation mismatch (Hamill et al., 2008).
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Figure 4.5: The bars show the cumulative variance for each component of motion expressed
as a percentage of the total variance in the population.

M
agnitude*of*displacem

ent*

Average*Mo5on* 1st*Component*

2nd*Component* 3rd*Component*

Figure 4.6: The components of motion (w(x, y, z, f)
c

) for frame 3. The displacement field is
represented using a sparse vector field with arrow color indicating the amplitude of motion
(red - large, blue small).

4.3 Results

4.3.1 Training the Cross Population Model

The results of performing principal components analysis on 10 patients who underwent a
4DCT scan (Fig. 4.5) showed that the first eigenvector accounted for 29% of the total
variation of motion and that we must use at least the first 5 eigenvectors to model 85% of
the variation in patient scans.

The average motion, w̄, for all 10 patients was a continuous rise from the base of the
diaphragm in the superior direction. Figure 4.6 shows the magnitude and direction for the
first few principal components, w(x, y, z, f)

c

, which can be interpreted as a departure from
the population average motion, w̄.
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Figure 4.7: The segmented lung volume for a selected data set compared to the lung volume
estimated using the cross population model, expressed as a percentage of the lung volume
at end inspiration using the original CT data. The model volume curve was reasonably
correlated with the original removed data set (R=0.95).

4.3.2 Population Model Cross-Validation

Our results of cross-validation using the leave-one-out method demonstrated consistency be-
tween the cross population model and new motion data not previously encountered. This
consistency can be seen in Figure 4.7 where there was good correspondence of lung volume
between each frame in the model and each frame in the data. We quantified the correspon-
dence in lung volume using the Pearson correlation coe�cient and identified an R value for
each patient data set ranging from R=0.68 to R=0.99 with a median of R=0.97. 9 of 10
datasets had acceptable consistency (R > 0.85) implying that the cross population model
may account for variations in patient anatomy and breathing patterns for approximately 90%
of patients.

4.3.3 Estimates of Control Point Displacement

Without cross population modeling the PET displacement field (Q) was found to be excep-
tionally noisy. The noise produced a dampening e↵ect which reduced the mean displacement
of control points and thus an underestimate of motion. This was in contrast to the estimate
produced using the joint correspondence and cross population model (V ) which had a much
larger amplitude of displacement. Prior to motion modeling the PET deformation field (Q)
typically consisted of large displacements in the center of the field of view as opposed to small
and seemingly random displacements at the edge of the field of view (Figure 4.8 top). This
was addressed using the SNR masked region and ensured that the cross population model
was much less a↵ected by noise (Figure 4.8 bottom).

4.3.4 Attenuation Correction

The 11 PET/CT scans for which we were comparing methods of attenuation correction were
assigned the labels A-K.

We initially investigated the use of a cross-population model to address attenuation mis-
match by measuring myocardial uptake from the images in Figure 4.9. An axial profile was
drawn on the image in Figure 4.9 to determine the ratio of counts at the myocardial wall
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Figure 4.8: The displacement field estimated from a single gated PET (Study D) and the
result after fitting it to a cross population model. The displacement field is represented using
a sparse vector field with arrow color indicating the amplitude of motion (red - large, blue -
small). The fitted displacement appears to be less a↵ected by noise and the directions of the
vectors make more physiological sense.
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Figure 4.9: A coronal slice of a single respiratory PET scan (Study B) with myocardial
uptake to show a comparison of correlated AC (top) with using spiral CT AC (bottom). All
frames in the respiratory gated FDG PET were summed after Attenuation Correction (AC).
An axial profile was taken through the myocardium (point B to point A). The profile was
used to determine the ratio of counts at myocardial wall to the ventricle cavity.
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Figure 4.10: The ratio of counts per voxel in the segmented heart region for each frame
of Study D. The counts are scaled as a ratio of the mean counts per voxel over the entire
respiratory cycle (100%). The vertical lines show the maximum range of each ratio when
using Correlated AC (2.5%), Spiral CT based AC (5.8%) and No AC (4.3%).

Table 4.1: Heart: Maximum range (%) of variation over respiratory cycle.

Study B D F J

NAC 3.3% 4.3% 4.2% 3.4%
CT AC 7.4% 5.8% 6.7% 5.5%
Corr. AC 3.9% 2.5% 2.8% 3.0%

to the ventricle cavity when using both phase correlated attenuation correction and spi-
ral CT alone for attenuation correction. The results demonstrated an increase in contrast
(1.47 ! 1.66) through the myocardium when using the phase correlated attenuation map.
These images are a summation of all gated frames because individual gated PET frames are
highly variable and very noisy.

We further assessed the accuracy of attenuation correction near the heart in a subset of
the PET/CT scans with significant apparent myocardial uptake (studies B, D, F and J).
We calculated the counts per voxel in the segmented heart region and determined the ratio
of counts per voxel in each frame versus the mean counts per voxel for the entire respiratory
cycle. Figure 4.10 compares count ratios for Study D when using Correlated AC, Spiral CT
AC and No Attenuation Correction (NAC). The maximum range of the count ratio over the
entire respiratory cycle for Study B, D, F and J were between 2.5% and 7.4%. Table 4.1
shows that, relative to applying no correction (NAC), the maximum range decreased when
applying correlated attenuation correction (Corr. AC) but increased when using a static
spiral CT for attenuation correction (CT AC).

The images in Figure 4.11 demonstrate an increase in contrast near the lung-diaphragm
boundary in Study A. A line profile has been drawn crossing that boundary. Attenuation
correction utilising a phase correlated attenuation map resulted in higher contrast between
the lung and diaphragm.

We observed significant uptake of single pulmonary nodules in 7 PET studies included in
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Figure 4.11: A coronal slice of the respiratory PET scan (Study A) with diaphragm and
lung tissue uptake to show a comparison of correlated AC (top) with using spiral CT AC
(bottom). All frames in the respiratory gated FDG PET were summed after Attenuation
Correction (AC). An axial profile was taken through the lung-diaphragm boundary to present
the changes in contrast (point B to point A).
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Table 4.2: Single Pulmonary Nodule: Maximum range (%) of variation over respiratory cycle.

Study A C E G H I K

NAC 8.6% 2.6% 7.5% 13.8% 24.3% 6.5% 3.2%
CT AC 13.2% 2.2% 7.3% 17.5% 15.5% 7.1% 2.9%
Corr. AC 4.8% 4.1% 4.7% 6.6% 11.3% 6.4% 2.3%

our investigation. The segmented counts per voxel in the nodules varied over the respiratory
cycle partially because they altered position relative to surrounding tissue and thus were
subject to variations in photon attenuation. We calculated the counts per voxel in the
segmented nodule region as a ratio of the mean counts per voxel over the entire cycle and
reported the maximum range. The maximum range over the respiratory cycle was between
2.2% and 24.3%. Table 4.2 lists 6 studies (A,E,G,H,I,K) for which the maximum range was
lower with correlated attenuation correctionthan for other methods of correction. In Study C,
the diaphragm was outside the PET field of view and there was an increase in the maximum
range when using correlated AC in comparison to simply using the spiral CT for AC.

4.4 Discussion

These results indicate that attenuation mismatch during a gated PET scan may be addressed
using a cross population respiratory motion model trained with 4DCT. In gated PET, static
spiral CT AC fails to account for variations in photon attenuation over the respiratory cycle.
The resulting variations of count levels between di↵erent gated frames were mitigated using
our method of correlated attenuation correction. McQuaid et al. (2008) suggest that the
accuracy of a population model is a↵ected by the uptake of moving organs, such as the
diaphragm, being visible in both the end-inspiration and end-expiration PET frames. Further
investigation is also required to determine if our method is still accurate in less than optimal
imaging conditions such as when there is inaccurate respiratory gating.

Some authors (Bai & Brady, 2011) argue that incorporating regularization into the non-
rigid image registration algorithm is the best way of addressing image noise, however, some
questions have been raised as to whether it is realistic to penalize sudden changes in dis-
placement (Ruan, 2009). Our results using the proposed respiratory cross population model
demonstrate that the noise may be significantly reduced such that the model can be used
to deform the spiral CT for the purposes of attenuation correction. We are yet to evaluate
promising registration methods which establish a more physically realistic model of motion
such as regularized mass-preserving image registration (Gigengack et al., 2010).

Although our leave-one-out analysis results are promising, further work is required to
determine the optimal number of training data sets. There is a large variation in respiratory
motion across patients, especially those with lung pathology (Liu, Pierce II, Alessio, & Kina-
han, 2009). Although our training data included oncology patients with lung pathology, our
leave-one-out cross validation suggested that the population model may successfully predict
motion in about 90% of cases. We are optimistic since population models have been used for
model-based prediction of tumour motion with a very limited number of patients (Ehrhardt
et al., 2011).
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The proposed method of constructing a cross population model of respiratory motion is
a way of estimating respiratory movement from gated PET without the need for a 4DCT
from the same patient. The model was successfully adapted to produce a phase correlated
attenuation map. The cross population approach to attenuation alignment demonstrated less
variation in count density due to respiratory motion. The correlated attenuation correction
also produced an improvement in image contrast in some circumstances.
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Chapter 5

1D Respiratory Motion Models for
Improving Attenuation Correction
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5.1 Introduction

Alignment of the attenuation correction map in PET/CT could be addressed if there was a
way to ascertain the internal organ deformation during both the PET and CT scans. For this
reason it is desirable to estimate motion during a PET scan in an attempt to compensate for
the contribution of respiratory motion to attenuation misalignment. Although a single cycle
of respiratory motion can be captured using CT, this is not practical in PET imaging. In
PET each frame may not contain enough counts for accurate estimation of respiratory motion
thus, assumptions about respiratory motion are required to construct a model of respiration.
Respiratory motion during a medical imaging procedure is complex and leads to challenges
in developing a model of respiratory motion (McClelland, Hawkes, Schae↵ter, & King, 2013).
These challenges were discussed in chapter 4 and were mainly due to the variations between
di↵erent patients.

Respiratory motion can be estimated from respiratory gated images whereby temporal
samples are partitioned into distinct phases of the respiratory cycle. Respiratory gating is
common in CT, MR and PET and can be used to produce a sequence of images, each of which
are a snapshot of the phase position at various parts of the respiratory cycle. It is a useful
technique which means that the PET image can be acquired over multiple respiratory cycles
thereby avoiding the trade o↵ between image quality and temporal resolution. Unfortunately
gating is significantly a↵ected by breathing irregularities (George et al., 2006) and this can
further complicate attempts to estimate internal organ motion from gated PET data.

The technical limitations of capturing respiratory-gated images contribute significantly to
the problem of modeling the motion of lung tissue. There has been significant investigation
into respiratory models which can be created from medical images and the practicalities of
using such models to accomodate for unexpected variation in the breathing (Liu, Alessio, &
Kinahan, 2011).

Although the motion of lung tissue is di�cult to model, the physics of respiration can
be considered in a very simple and rudimentary way. In a model proposed by Kyriakou,
McKenzie, Suchowerska, and Fulton (2007) the lung was represented by a simple mechanical
analogue in which a piston drives the lung tissue, expelling air, considered as incompressible,
from the top. Given this assumption it was found that respiratory motion approximately
satisfied a one-dimensional equation in the superior-inferior direction.
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(5.1)

u is the superior displacement due to respiratory motion, z is the height above the di-
aphragm, t is the time point of the frame in the respiratory phase, c is a constant determined
by the speed of propagation of a pressure wave in air, µ is the lung mass density, �V is the
air volume element size, and P is the pressure at position z. The meaning of these terms are
further explained in the methods section in figure 5.4. This simple model has an advantage
over the population model presented in chapter 4 in that each patient can be independently
modelled by solving for the coe�cients in equation 5.1. However, this equation doesn’t ac-
count for the time lag between the displacement, u, and the external surrogate measurements
used for phase or amplitude gating.

The motion of lung tissue can be analysed by finding the deformation of the image from
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one time point to the next. By convention, the deformation map is often implemented as a
spatial mapping of voxel locations in a reference frame to the voxel locations in a subsequent
frame. The mapping from one frame to the next may not be a 1:1 map, because the size
of tissue features will change as a result of the deformation. The Jacobean of the transform
is the amount by which tissue expands or compresses due to deformation and this attribute
has been used to consider whether the deformation of tissue is physiologically plausible.

There are a variety of approaches to image registration that have been applied to respira-
tory motion (Murphy, 2011). The basic principles of image registration have been covered in
chapter 2, however, a complete review of all registration methods that have been proposed
as applicable to respiratory motion is beyond the scope of this thesis. There are several
methods which include potentially useful assumptions which constrain image deformation to
ensure the robustness of image registration. In general, all of these methods seek to both
reduce the number of parameters being estimated whilst also ensuring that the constraints
are physically realistic.

The simplest approach to constraining image registration is to penalise non-smooth de-
formations. The reason why this may be advantageous is because the registration algorithm
is very sensitive to noise. It has been suggested (Mattes, Haynor, Vesselle, Lewellen, & Eu-
bank, 2003) noise significantly corrupts the measurement of the similarity between image
features and thus the deformation field becomes corrupted in the process of trying to match
features. This e↵ect can be mitigated through a simple penalty term which favours smooth
deformation fields. Despite its wide use, penalising non-smooth deformations has been shown
to be ine↵ective (Ruan, 2009). In chapter 3 it was found that regularising the registration of
gated PET images provided limited improvements to the accuracy of tracking the motion of
attenuating lung tissue.

It appears to be plausible that following the deformation of tissue, there should also exist
an inverse deformation which would restore the tissue to its former state. This property
of a deformation is known as di↵eomorphism, however, this is only one of many possible
assumptions that can be made about a deformation. Some other assumptions, also known as
priors include spatial smoothness of deformation, continuity of deformation (Holden, 2008),
direction dependent smoothness (Ruan, 2009) and mass preservation (Thielemans, Asma, &
Manjeshwar, 2009) after deformation. Not only are there many possible priors, there is also
variability in the way priors are implemented. For example, spatial continuity of deformation
can be modeled using a constant velocity framework (Ashburner, 2007), however, spatial
continuity of deformation can also be encouraged by penalising transforms such that the
Jacobean is always positive (Holden, 2008).

Temporal constraints are possible when registering multiple frames from a gated or dy-
namic study. Example constraints include using a time based spline parameterisation (Metz,
Klein, Schaap, van Walsum, & Niessen, 2011) and enforcing periodic motion. Time based
parameterisation makes the assumption that motion is smooth between frames. The low
temporal resolution of scanners means that the sampling rate is not su�cient to fully cap-
ture respiratory motion and time based spline parameterisation therefore can only provide
an approximate model for continuous respiratory motion. Temporal constraints are espe-
cially useful in situations where it is necessary to make approximations about the motion in
between frames, such as when applying transforms to list mode events (Liu et al., 2011).

Investigation into the methods of constraining image registration has been predominantly
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focused on the accuracy of deformation for high resolution and high contrast images such
as those attained from CT (Murphy, 2011). These approaches are general and not specific
to the characteristics of lung tissue or respiratory motion. It was suspected these methods
could be improved by finding unique characteristics of lung tissue which are not present in
other tissues.

Modeling the physics of respiration has been proposed as an adjunct to relying on im-
age features used for image registration (Sundaram & Gee, 2005). Finite Element Models
(FEM) have been demonstrated as a way of estimating respiratory motion from CT images
(Werner, Ehrhardt, Schmidt, & Handels, 2008). A shortcoming of the FEM method is that
the accuracy of the model is largely dependent on the material properties used to construct
the model in the first place. Thus, it is di�cult to reproduce similar results even if two very
similar FEM models are used.

Previous investigations have cited considerable di�culties in attaining accurate image
registration in areas of low image contrast (Mattes et al., 2003). A recent study proposed
that this problem can be mitigated by using FEM in areas where there is low image contrast.
More recently it has been proposed to combine FEM modeling with image registration,
so as not to rely wholly on the accuracy of the FEM model (Samavati, Velec, & Brock,
2015). Although FEM models are promising, they require the adjustment of many di↵erent
tuning parameters. It is di�cult to explain why FEM based registration may fail in some
circumstances and thus di�cult to determine what model properties are necessary to get an
accurate registration.

The review of existing state-of-the-art registration packages in chapter 2 demonstrated
that there are several methods which are applicable to PET imaging. In chapter 3 image
registration was marginally improved by smoothing the deformations and PET images. In
chapter 4 a population approach was used to estimate a large number of internal variables
which could then be used to model deformation. In contrast to the previous two chapters
the work described in this chapter focuses on developing a method of registration which
incorporates a simple 1 dimensional physiological model of respiratory motion. The purpose
of the model is to improve motion estimation from PET frame data such that it can be used
to address attenuation mismatch.

5.2 Method

This section introduces a novel method of image registration which was initially developed
by modelling respiratory motion in 4DCT. This new method was then used to estimate
motion in respiratory gated PET images and subsequently used to compensate for attenuation
correction misalignment.

5.2.1 Data Acquisition and Processing

This section describes the data acquired for the evaluation of models (section 5.2.4) and the
optimisation of registration for both CT and PET registration (sections 5.2.6 and 5.2.7)

4DCT scans of the thorax were selected from a cohort of oncology patients undergoing
a respiratory gated CT for the purposes of radiation treatment planning. The selection of
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8 4DCT scans was based on images for which the lung was acquired from apex to base for
a complete respiratory cycle. The 4DCT scans had been acquired in cine mode using a GE
LightSpeed RT 16 scanner and were subsequently used in this investigation and optimisation
of several candidate respiratory motion models. The scans were originally intended for the
purposes of radiation treatment planning and were provided for the purposes of retrospective
analysis. The phase in the respiratory cycle was measured relative to the time when the
chest surface had maximum displacement (End inspiration). Cine mode was implemented
by acquiring repeated axial CT images for a specified period of time, at each table position.
Each axial CT slice was retrospectively binned into 10 frames based on the phase in the respi-
ratory cycle. There are several publications comparing the performance of image registration
for respiratory motion estimation from 4DCT images. In order to analyse the candidate
respiratory motion models the displacements estimated from state of the art registration of
4DCT were considered as a gold standard. The motion estimates were obtained using free
form image registration which is described in the next section.

Methods of image registration were compared by retrospectively analysing 27 PET/CT
scans. Phase based gating was performed after a conventional whole body static PET and spi-
ral CT. The phase based respiratory gating system AZ733 V (Anzai Medical, Tokyo, Japan)
was employed as previously described by Ponisch, Richter, Just, and Enghardt (2008). The
system utilises a pressure sensor inserted into the pocket of an elastic belt to detect ex-
ternal respiratory motion. The first 16 PET scans were acquired and reconstructed using
respiratory gating on a Biograph 16 PET/CT the remaining 11 PET scans were acquired
and reconstructed using respiratory gating on a Biograph mCT PET/CT. Each patient was
injected with approximately 350 MBq of F18-FDG. The Biograph 16 PET/CT had an ap-
proximate sensitivity of 4 cps/kBq and the duration of the scan was 5 minutes. Improved
count statistics were achieved with the Biograph mCT PET/CT which had approximate
sensitivity of 8 cps/kBq and the duration of the scan was 3 minutes. CT derived attenuation
correction was used as a baseline and compared to proposed methods of compensating for
attenuation mismatch.

5.2.2 Estimation of Motion Using Free Form Image Registration

The motion between successive gated frames was approximated as a transform at each point
(x, y, z). The approximate deformation transform ~T was found using image registration soft-
ware (Modat et al., 2010). The deformation transform ~T was the new position, (T
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Free form registration allowed for arbitrary deformation ~T , through the adjustment of
the position of control points (Modat et al., 2010). The deformation of individual voxels is
interpolated using a spline basis approximation (figure 5.1).

The estimation of deformation was significantly influenced by noise, thus a first step was to
apply image smoothing before using the frames for registration. Frames were pre-smoothed
using a 3D gaussian kernel, however, to avoid missing image features, the kernel FHWM
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Control	pointDisplaced	grid	
(Interpolated)

Original	grid

Vertical	displacement	(Dz)ZZ

Figure 5.1: Left: A grid of voxels (orange) is displaced using free from registration. The
new transformed grid positions (black) are determined through spline interpolation between
control points (red). Right: The vertical displacement of each voxel is D

z

and corresponds
to the displacement of the grid from the original location.

was chosen to be smaller than the approximate system resolution of the PET (4mm) or
CT (1mm). Although pre-smoothing could have been avoided using sparsely spaced control
points, our experience was that noise at frequencies greater than the system resolution propa-
gated into the objective function depending on how the optimisation had been implemented.
Pre-smoothing ensured that the estimation was less dependent on the implementation of
registration algorithm.

The predominant motion during respiration was displacement, D
z

, in the superior and
inferior direction. Image registration was used to make an initial estimate of 3D transforms
allowing for motion in all directions, but the investigation of respiratory motion was confined
to a single direction. The directional model was used in a fully 3D registration framework
which allowed for fully 3D transforms.

A velocity framework was used to address the issue that displacement from end inspi-
ration to end expiration was much larger than the small displacements between adjacent
frames (Ashburner, 2007). Large displacements were approximated with a series of smaller
displacements between successive frames and then composed them together to estimate mo-
tion with respect to the reference frame (Figure 5.2). In the velocity framework, the velocity
( ~v

D

) was defined as the displacement between sequential frames. The velocity was assumed
to be constant for the duration of the frame (�t). The equation for obtaining the velocity
from a displacement was

~v
D,z

⇡ @ ~D
z

@t
�t (5.3)

where �t was the frame duration and ~v
D,z

was the vertical displacement between se-
quential frames. Image registration was used to estimate the velocity at each frame. The
displacement for a given frame was then estimated by composing together each transform.
When successive transforms were composed together, the spatial location of each velocity
vector (~v

D,z

) was itself transformed (Figure 5.2). For example, the transform from frame
number 3 to the reference frame number 0 was approximated as

~T0 3 = ~T0 1 � ~T1 2 � ~T2 3 (5.4)

The velocity vector was always expressed as a displacement from the reference frame
(Figure 5.3). The current frame was aligned to the reference frame and then the transform
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Figure 5.2: The vertical displacement for successive frames where frame 0 is the reference
frame. T

z

is the vertical displacement from the reference frame. v
z

is the vertical velocity

Z
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vz
vz
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Figure 5.3: The vertical displacement for successive frames where every frame has been
deformed to the reference frame before calculating the displacement to the subsequent frame.
v
z

is the vertical velocity

to the next frame was determined by image registration. The alignment to the reference
frame was found by combining successive velocity transforms in reverse order.

~T0 3 = ~T2 3 � ~T1 2 � ~T0 1 (5.5)

5.2.3 Candidate Models

A range of methods were developed to incorporate a simple 1 dimensional physiological model
of respiratory motion into image registration. The initial candidate model considered was
the piston model of breathing in an elastic permeable medium as proposed by Kyriakou et
al. (2007). In this model the vertical position (D

z

) of a permeable barrier in the lung was
determined by the forces applied to the barrier (Figure 5.4). In this model, only two acting
forces were considered:

1. the force of the air flow through the permeable barrier and

2. the elastic force of the medium arising from volume change.
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Dz =	Displacement
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Figure 5.4: A representation of respiratory motion using a piston model. A piston is made
up of a series of vertically stacked compartments.

The vertical position of the permeable barrier, D
z

. was substituted into the derivative of
equation 5.1:

µ�V
@3D

z

@t2@z
= �V

 

E
@3D

z

@z3
� @2P

@2z

!

(5.6)

where E was the energy (related to tissue elasticity), P was the pressure, µ was the density
and �V was the volume of the compartment. Equation 5.6 was simplified by assuming that
there was no change in the derivative of the pressure and by integrating both sides along the
vertical direction (z).

µ
@2 ~D

z

@t2
= E

@2 ~D
z

@2z
(5.7)

A first order solution to the wave equation (equation 5.7) was found through the separation
of variables into a linear combination of spatial (A(x, y, z)) and temporal factors (B(t)).

~D
z

=
X

i

A
i

(x, y, z).B
i

(t) ⇡ A0(x, y, z).B0(t) (5.8)

A higher order solution may have permitted more complicated modes of motion, however,
this was avoided to keep the model simple. One solution to the wave equation while holding
A0(x, y, z) constant was a harmonic oscillator where the first order equation had coe�cients
(�
µ

) which were position dependant.

@2 ~D
z

@t2
=

 
�

µ

!
~D
z

(5.9)

Another solution to the wave equation while holding B0(t) constant was to solely model
the elasticity of the medium where the first order equation had coe�cients ( 

E

) which were
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time dependant.
@2 ~D

z

@x2
=
✓


E

◆
~D
z

(5.10)

The harmonic oscillator and elasticity models were investigated in isolation because they
were also solutions to the wave equation. Substituting these solutions into the wave equation
led to the simplification.

(�� ) ~D
z

= 0 (5.11)

Although the original formulation of the wave equation was in terms of displacement,
it was also possible to express each solution as the instantaneous velocity over the frame
duration (�t):

~v
D,z

⇡ A0(x, y, z)
@B0(t)

@t
�t (5.12)

Since ~D
z

was separable into A0(x, y, z)B0(t), it was straightforward to take the time
derivative of both sides of the wave equation and substitute terms A0 and B0 giving:

µ
@2~v

D,z

@t2
= E

@2~v
D,z

@2z
(5.13)

The advantage of expressing the wave equation in terms of ~v
D,z

was that it was an estimate
of the transform between successive frames. Fitting ~D

z

required the choice of an arbitrary
reference frame for which the magnitude of transforms would change depending on the choice
of reference frame.

The piston model of breathing simplified to the wave equation with the assumption that
E and µ were homogenous and did not vary from voxel to voxel. If E and µ were permitted
to vary in this way then it may have been accurate to not integrate equation 5.6. In this case
it was necessary to calculate the Jacobean (J

z

) rather than using the displacement (D
z

).

J
z

=
@

@z

⇣
~D
z

+ s
z

z
⌘

(5.14)

Where z0 was the voxel position before being transformed. J
z

was a constant for the
identity transform. Furthermore, the velocity of the Jacobean was computed as

~v
J,z

=
@

@t

0

@@
~T
z

@z

1

A�t (5.15)

Thus, another set of solutions to the piston model of breathing was found by solving the
wave equation of the Jacobean:

µ
@2~v

J,z

@t2
= E

@2~v
J,z

@2z
(5.16)

In order to adequately investigate all possible variations of the piston model of breathing,
nine di↵erent candidate model equations were considered.
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Table 5.1: Candidate model equations

Displacement Velocity Velocity of Jacobean

Oscillator @

2
~

Dz
@t

2 =
⇣
�

µ

⌘
~D
z

@
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~vD,z
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⇣
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Wave @
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Dz
@t

2 =
⇣
µ

E

⌘
@

2
~

Dz
@

2
z

@

2
~vD,z

@t
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⇣
µ

E

⌘
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2
~vD,z

@

2
z

@

2
~vJ,z

@t

2 =
⇣
µ

E

⌘
@

2
~vJ,z

@

2
z

The purpose of these models was to address inaccuracies in the estimated deformation
across frames due to image noise which corrupts image registration. A statistical analysis of
these candidate models would reveal whether the constraints on estimates of ~D

z

or ~v
D

or ~v
J

are plausible.

5.2.4 Evaluation of Models

Pearson’s goodness of fit to gold standard data allowed us to rank the appropriateness of each
model. Both Pearson’s R and Chi squared were intended to reveal if the candidate model
could make a prediction about unknown displacements given a set of existing displacements
and thus was suitable for incorporating into image registration.

The fitting process of candidate equations in table 5.1, involved rearranging terms into
the form y = mx. For example, the wave equation was rearranged into a linear equation
y = mx where y = @

2
~

Dz
@t

2 , x = @

2
~

Dz
@

2
z

and the model coe�cient m = µ

E

. Two scenarios were
considered for fitting the model:

1. The model coe�cient is the same for the Whole organ

2. The model coe�cients are independent for each voxel, thus allowing for Voxelwise
variations in the air flow and tissue properties.
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Figure 5.5: A coronal cross-section of the lung showing fitting coe�cients, m, for the whole
lung (left) and voxelwise (right).

An individual fit for every voxel was achieved by finding the coe�cient m
i

for every voxel
i through least squares minimisation.
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argmin
mi

X

t

(y
i,t

�m
i

x
i,t

)2 (5.17)

where x
i,t

and y
i,t

were functions of displacement at voxel i and frame t.
Outlier detection was used to only include voxels which fell within a range, �2, of the

linear model.
(y

i,t

�m
i

x
i,t

)2

(y
i,t

� ȳ
i

)2
< �2 (5.18)

This accounted for the possibility that some voxels completely depart from the linear
model y = mx even though a majority of voxels demonstrate a pattern. Less than 1% of
data was excluded by setting �2 to 8.

The chi squared statistic, �2, was used to test the assumption that x
i,t

and y
i,t

satisfy the
model. �2 was used to determine the probability that x

i,t

and y
i,t

could have been obtained
by chance alone (The null hypothesis). When reporting �2, it was assumed that the number
of degrees of freedom as N

t

� 1, where N
t

is the number of time points being used for the fit.
A candidate model was considered as plausible if �2 was small:

�2

N
t

� 1
< 1 (5.19)

�2 relies on an accurate estimate of variance, however, such estimates were di�cult within
voxelwise models because each voxel was fitted independently over a small number of time
points, N

t

. The �2 for each voxel, i, was:

�2
i

=

P
t

(y
i,t

�m
i

x
i,t

)2

1
Nt

P
t

(y
i,t

� ȳ
i

)2
(5.20)

To produce a single statistic for the voxelwise model, the average �2
i

was computed. In
order to prevent inaccuracies caused by a poor estimate of the variance of individual �2

i

the
average variance over the whole organ was computed rather than individual variances for
each �2

i

.

�2
voxelwise

=
1
Ni

P
i

P
t
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1
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(y
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� ȳ
i

)2
(5.21)

Pearson’s correlation coe�cient, R2, was used to test whether the assumptions satisfied
the model and considered a candidate model as plausible if R2 > 0.6. Pearson’s correlation
for the voxelwise model, r

i

, was used to test that the hypothesis that the x
i,t

and y
i,t

were
independent.

r
i

=

P
t

(y
i,t

� ȳ
i

)(x
i,t

� x̄
i

)
qP

t

(y
i,t

� ȳ
i

)
qP

t

(x
i,t

� x̄
i

)
(5.22)

The voxelwise pearsons correlation was collated into a single statistic, r
voxelwise

using a
method inspired by (Nikolic, Murean, Feng, & Singer, 2012). In order to prevent inaccuracies
caused by a poor estimate of the covariances of individual r

i

, the average covariance over the
whole organ was calculated.
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The r
voxelwise

and �2
voxelwise

statistics were computed for all candidate models in table 5.1
and used the results to decide if the models were plausible and thus suitable for implementing
as a regulariser.

5.2.5 Regularisation of Image Registration

Each frame in the gated study was registered to the reference frame, for the purposes of
estimating the transform (~T ) corresponding to respiratory motion. Each implementation
of image registration found the transform for which the intensity values of a frame (I

float

)
corresponded to the intensity values of a reference frame I

ref

. There were many di↵erent
possible transforms ~T which can account the same apparent motion between I

float

and I
ref

.
This problem has been previously identified as ill-posed since it is not possible to distinguish
which transform ~T is a more accurate estimate of motion (Zitov & Flusser, 2003). Initially,
a fairly common method for addressing the ill-posedness was used by adding a regularisa-
tion weighting term l2 which penalises large displacements ( ~D). The implementation image
registration algorithm minimised the following:

argmin
~

T

⇢
C(~T ; I

float

, I
ref

) + l2
���
��� ~D
���
���
2
�

(5.24)

where C was a measure of the voxelwise similarity between I
ref

and the transformed I
float

.
Our chosen implementation of image registration used a gradient descent algorithm to

minimise C. We suspected that it would be inaccurate to use image registration to resolve
displacements which were smaller than the system resolution. Image I

float

and I
ref

were
smoothed, as well as the gradient of C using a gaussian filter which was of similar width to
the system resolution.

Motion modelling was introduced into image registration by altering equation 5.24 to
include ⌦(~T ), which was a penalty term due to a departure of ~T from one of the candi-
date models from table 5.1. The altered implementation of image registration algorithm
minimised:

argmin
~

T

⇢
C(~T ; I

float

, I
ref

) +
���⌦(~T )

���
2
�

(5.25)

Initially the wave equation (equation 5.7) was used as a penalty term, ⌦(~T )
wave

.

���⌦(~T )
wave

���
2
=

0

@E
@2 ~D

z

@t2
� µ

@2 ~D
z

@2z

1

A
2

(5.26)

The penalty term was simplified by substituting � and  from equations 5.9 and 5.10 after
dividing both sides by ~D. The penalty term became the sum of two independent variables,
one which varied with time () and one which varied with space (�). The penalty term was
weighted by z2.
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���⌦(~T )
wave

���
2
= z2(�� )2 ~D2

z

(5.27)

It was proposed that if ⌦(~T )
wave

was small then it did not vary significantly with ~D
because it was the sum of the two independent variables. Using this approximation allowed
us to avoid recalculating ⌦(~T )

wave

for every estimate of ~T .
Previous work on directionality constraints (Ruan, 2009) led to the suspicion that over-

penalising ~D
z

could lead to slipping of ~T in the ~D
x

and ~D
y

directions. In order to avoid this,
orthogonal directions were penalised with a uniform weighting factor l2 and combined into a
single voxelwise penalty term.

���⌦(~T )
wave

���
2
= l2( ~D

2
x

+ ~D2
y

) + z2(�� )2 ~D2
z

(5.28)

A multi resolution approach was used, whereby image registration was iteratively applied,
but the spacing between control points was decreased at each iteration (Table 5.2). The
gated frames were grouped into time intervals and summed. The number of intervals (n

i

)
was increased at each iteration of resolution until the number of intervals equaled the number
of frames (Figure 5.6).

Table 5.2: Control point spacing and the number for intervals using 3 multi resolution levels

Spacing X Y Z n
i

Level 1 80mm 80mm 40mm 3 time intervals
Level 2 40mm 40mm 20mm 6 time intervals
Level 3 20mm 20mm 10mm 12 time intervals

ni=12

Level	1 Level	2 Level	3

ni=12ni=12

Spatial	multiresolution

ni=3 ni=6 ni=12

Level	1 Level	2 Level	3
Spatio-temporal	multiresolution

Figure 5.6: The control point grid using 3 spatial multi resolution levels (left) and 3 spa-
tiotemporal multi resolution levels (right). The first spatiotemporal level had 3 time intervals
with coarse control point spacing, the second level had 6 time intervals and the third level
had 12 time intervals with fine control spacing

The algorithm for the multi resolution approach began with the first level of registration
which was initialised at z2 = 0. � �  was fitted and then used as a penalty term in the
subsequent iteration in the loop. Table 5.3 shows the algorithm used for resampling the
control point positions at each resolution level.
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Table 5.3: The multi-resolution algorithm

Level 1
Registration with z2 = 0
Loop 3 times:
Use fitting to calculate �� 
Level 1 Registration with z2 > 0

+
Level 2
Resample control points to Level 2
Loop 3 times:
Use fitting to calculate �� 
Level 2 Registration with z2 > 0

+
Level 3
Resample control points to Level 3
Loop 3 times:
Use fitting to calculate �� 
Level 3 Registration with z2 > 0

As the number of time intervals increased, the size of the transform between each individ-
ual interval decreased and the noise within each summed frame increased. To minimise the
e↵ect of these changes the transform penalty was multiplied by n

i

such that a larger penalty
was applied to small transforms between closer time intervals.

���⌦(~T )
���
2
= n2

i

⇣
l2( ~D

2
x

+ ~D2
y

) + z2(�� )2 ~D2
z

⌘
(5.29)

It was suspected that in some cases a very large (�� )2 could lead to sideways shearing.
This issue was prevented by making the penalisation of ~D

z

conditional such that ~D
z

was not
penalised more than ~D

x

or ~D
y

.
Where z2(�� )2 < l2 :

���⌦(~T )
���
2
= n2

i

⇣
l2( ~D

2
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+ ~D2
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) + z2(�� )2 ~D2
z

⌘
(5.30)

otherwise: ���⌦(~T )
���
2
= n2

i

l2
⇣
~D2
x

+ ~D2
y

+ ~D2
z

⌘
(5.31)

The regulariser was altered to include a variation of the piston model of breathing using
the wave equation of the Jacobean from table 5.1. The Jacobean was estimated using the
derivative of the displacement from equation 5.14. A penalty term, ⌦(~T )

wave

, was devised by
integrating equation 5.15 from the base to the height (h) of the voxel undergoing respiratory
motion

���⌦(~T )
���
2
=

�����
1
~D
z

Z
h

0
E
@2J

z

@t2
� µ

@2J
z

@2z
dz

�����

2

~D2
z

(5.32)

⌦(~T )
wave

was expressed as a weighting of the displacement ~D2
z

to permit the use of the
same method of regularising estimates of the displacement from equations 5.26 and 5.27.
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5.2.6 Optimisation of Image Registration for Cine CT

The novel method of using the wave equation regularisation was incorporated into CT image
registration. Although the registration of frames within cine CT images is applicable to
techniques for tumour tracking it is necessary for the purposes of attenuation correction.
The purpose of analysing motion estimates from cine CT was to exclude poorly performing
models and devise a range of potentially optimal parameters.

A trial and error approach was used for finding the optimal image registration parameters.
Registration of each cine CT frame to the first CT frame was achieved by maximising the
normalised mutual information (NMI) between sequential frames. The negative NMI, �N ,
was substituted as the cost function C to be minimised through image registration (Pluim,
Maintz, & Viergever, 2003),

C = �N
⇣
I
t

, ~T
t

(I
t+1)

⌘
= �

H
⇣
~T
t

(I
t+1)

⌘
+H (I

t

)

H
⇣
I
t

, ~T
t

(I
t+1)

⌘ (5.33)

where H(...) was the Shannon entropy for a joint distribution, I
t

is an image of the first
frame and I

t+1 the next frame and ~T
t

is the transform estimate from image registration.
The inter-frame displacement ~v

D

was initially found using frame-by-frame registration.
The image registration was regularised by penalising the cost function with the size of the
displacement squared k~v

D

k2 weighted by l2 (equation 5.24). The proposed additional penalty
was compared to the cost function for departure from the wave equation model weighted by
z2 (equation 5.28). The registration parameters are summarised in table 5.4 and labelled as
C1 ... C8.

Table 5.4: CT image registration weighting parameters

C1 C2 C3 C4 C5 C7 C8
l2 10�9 10�7 10�11 10�9 10�11 10�9 10�11

z2 0 0 0 10�5 10�5 10�3 10�3

The goodness of fit to the wave equation model (�2
voxelwise

) and the NMI were used to
benchmark the robustness of registration when using weighting parameters from table 5.4.
The voxelwise average of the goodness of fit, �2

voxelwise

, was calculated using equation 5.21.
The NMI between each sequential frame after registration was found and the mean NMI, N̄
in equation 5.34, was also calculated by averaging over all frames, n

f

.

N̄ =
1

n
f

X

nf

N
⇣
I
t

, ~T
t

(I
t+1)

⌘
(5.34)

The mean NMI was used as a metric to choose optimal registration weighting parameters
from table 5.4. Image registration is an iterative process which minimises a cost function,
however, local minima may prevent the global minimum from being reached. Previous expe-
rience suggested local minima is often caused by noise and discontinuities in the cost function
as well as incorrect or large penalty terms. The mean NMI was used to check that registra-
tion was optimal and that the maximum NMI has been reached even after the inclusion of
additional constraints.
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Lets	try	corrupting	CTs
computedef107.43

Figure 5.7: A coronal cross-section of the corrupted reference frame used for image registra-
tion. Approximately 50% of the slices have been replaced with Poisson noise. The SNR for
the corrupted slices is approximately 0.5.

The absence of a ground truth for the accuracy of displacement estimates ~v
D

meant that
it was not possible to isolate the many causes of potential error. However, it was possible to
test for the robustness of registration by intentionally corrupting the CT. Image corruption
was simulated for the first frame in the cine CT to observe which combination of weighting
parameters were least e↵ected by the corruption. Image corruption was simulated (figure
5.7) by removing features from the image and replacing slices with poisson noise equivalents.
The NMI

mean

was recorded to measure the e↵ect of image corruption on registration when
using each of the weighting parameters in table 5.4.

5.2.7 Optimisation of Image Registration for Respiratory Gated
PET

Two retrospective studies were used to investigate image registration applied to gated PET
acquisitions from di↵erent models of PET/CT scanner. The initial study used 6 frames of
data from a Biograph 16 scanner, and then it was expanded testing to 12 frames of data from
a mCT scanner. Each study in table 5.5 and 5.6 required a di↵erent set of image registration
parameters because of di↵erence in image quality. The optimised registration parameters
have been identified with the labels P1, P2 ... P170 and are presented in the results section.

Table 5.5: Registration options for study 1 using a Biograph 16

Registration Parameters P1 - P20
Number of frames 6
Number of patients 16
Multiresolution Spatial
Cyclic No
�2
voxelwise

Cuto↵ 5
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Table 5.6: Registration options for study 2 using a Biograph mCT

Registration Parameters P101 - P111 P151 - P161 P164 - P170
Number of frames 12 12 12
Number of patients 11 11 11
Multiresolution Spatial Spatiotemporal Spatiotemporal
Cyclic No No Yes
�2
voxelwise

Cuto↵ 11 11 11

Image registration in gated PET was regularised by penalising the cost function (⌦ from
equation 5.24) with a weighting of l2 and z2. Registration of each floating gated PET frame
to the reference gated PET frame was achieved by minimising the sum of square di↵erences
between each voxel.

C =
X

allvoxels

⇣
I
ref

� ~T (I
float

)
⌘2

(5.35)

The noise in the PET images were addressed by smoothing both the reference and floating
gated PET image with a gaussian kernel of width w

I

. The gradient of the cost function was
also smoothed with a gaussian kernel of width wC. Given the large number of permutations
of registration parameters, optimising every combination of parameters l2, z2, wI

and wC
was impractical. The parameter search was stated by optimising l2 weighting factor in
isolation without applying any wave equation regularisation (P1, P2, P3 from table 5.10).
The parameter, wC, was then modified to see whether the smoothing complimented (lower
�2
voxelwise

) or hindered (higher �2
voxelwise

) fitting the model to the data (P4, P5, P6, P9 from
table 5.10).

Unlike previous approaches of spatiotemporal image registration (Metz et al., 2011), wave
equation regularisation did not explicitly constrain displacements to follow a smooth cyclic
variation. In order to ensure that displacements follow a continuous periodic function the
wave equation regularisation was extended to include a cyclic constraint by ensuring that
the composite of all sequential frame-to-frame transforms were the identity transform. The
rationale that displacements are a periodic function has been justified in previous investiga-
tions on respiratory gating (Metz et al., 2011). This approach imposed a cyclic constraint on
the 1 dimensional regulariser by assuming that ~v

D,z

for the last frame must be the same as
the inverse of the cumulative displacement to that time point ~D

z

.

(~v
D,z

)
nf�1 =

Z
t=nf�1

t=0
(~v

D,z

)�1
t

dt = ~D
z

�1
(5.36)

In addition to penalising the cost function, the e↵ect of a multiresolution strategy was
investigated. A multi-resolution strategy applied in only the spatial domain was compared
to multi-resolution in both a spatial and temporal domain (as illustrated in figure 5.6). A
new set of optimal registration parameters were found for each multi-resolution strategy (as
shown in table 5.3). The parameters optimised from the retrospective studies were evaluated
based on the average of the goodness of fit (�2

voxelwise

) of the voxelwise respiratory motion
model to the PET data. The cuto↵ for average goodness of fit was the number of degrees of
freedom for each voxel, which was calculated as the number of frames - 1. Both the median
�2
voxelwise

and the standard deviation of �2
voxelwise

across all patients were considered in the
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emission sinogram is corrected for attenuation during reconstruction using 3D OSEM.

investigation. Registration parameters were rejected if the median was above the �2
voxelwise

cuto↵ and these models were not considered as robust enough to apply motion estimation
and attenuation correction.

5.2.8 Motion Estimation and Attenuation Correction for Respira-
tory Gated PET

The attenuation correction map was initially approximated using the bilinear scaling of the
spiral CT from Hounsfield Units (HU) to voxelwise linear attenuation coe�cients (Kinahan,
Townsend, Beyer, & Sashin, 1998). This approach was known to be sensitive to attenuation
mismatch artefacts, however, at least one frame in the respiratory gated PET was assumed
to be aligned to the spiral CT and thus, attenuation mismatch would be minimal for that
frame. A metric for the consistency of the attenuation map with the emission data from each
frame was devised. The metric described in figure 5.8 was used because of its robustness to
noise and reliability to identify the reference frame. The frame with the lowest metric was
assumed to have the minimal amount of attenuation mismatch. The frame with minimal
metric was identified as the reference frame because it was assumed to be aligned to the CT
and thus provide a spatial reference for transforms between the CT and other frames in the
PET. The sum of squared di↵erences (SSD) between emission and projection sinograms was
investigated in chapter 3 as a metric for attenuation alignment.

Motion between sequential gated frames in respiratory gated PET were estimated using
free form image registration. This registration of sequential frames was applied without
attenuation correction (NAC) and was used to find the displacements of each PET frame with
respect to the reference PET frame. Optimal image registration parameters were selected
from the results of motion model analysis and these were used to improve the accuracy of the
estimated displacements. The displacements were then used to transform the attenuation
map. The attenuation map was transformed using these displacements, so as to produce
a sequence of registered attenuation maps which were aligned to their corresponding PET
frame. However, the attenuation map for the reference PET frame was not transformed
because it was already aligned. The consistency between emission PET data and projection
sinograms was dependant on the accuracy of the ACF and therefore an indirect measure of
the alignment of the registered attenuation map to each corresponding PET frame. The ratio
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of the sum of squared di↵erences (SSD) was used to compare the di↵erence between using
the registered attenuation maps to just using a single spiral CT for attenuation correction.
The ratio (�SSD) was the squared di↵erence between emission sinogram elements (e

j,aligned

)
and projection sinogram elements (p

j,aligned

) using an aligned attenuation map divided by the
squared di↵erence between sinogram elements using a single spiral CT (e

j,ctac

and p
j,ctac

).

�SSD =

P
j

(e
j,aligned

� p
j,aligned

)2
P

j

(e
j,ctac

� p
j,ctac

)2
� 1 (5.37)

Each PET/CT study acquired on the Biograph mCT had visible lesions of FDG uptake on
the respiratory gated PET image of the thorax. The outline of the suspected tumours were
identified and segmented from the spiral CT and the volume of the tumour was recorded
in millilitres. The outline on CT was likely to also include necrotic regions of tumour,
and although it is often desirable to track the active portions of the tumour, segmenting
using a threshold for FDG uptake was likely to be a↵ected by the magnitude of respiration,
thus introducing an undesired source of variation between patients. The position of the
tumour was tracked by transforming the region with the displacements estimated from image
registration of sequential gated PET frames. The tumour tracking region was assessed for the
reliability of tracking moving FDG uptake by recording both the mean (Bq/mL) and total
(Bq) activity segmented from the sequence of gated PET frames. A sequence of centre of
mass (COM) measurements for tumour tracking region were recorded. A background region
with approximately the same volume as the tumour region was automatically drawn encasing
the tumour tracking region (figure 5.9). Tumour activity was calculated relative to both the
mean background (Bq/mL) and total background (Bq) activity.

The sequence of tumour tracking regions were combined into a single tumour volume, TV,
which encompasses the full motion of the tumour. The variation of the mean (Bq/mL) and
total (Bq) TV activity (a

t

) were assessed for all frames in the gated PET sequence. In order
to compare studies with varying tumour uptake, the standard deviation of the TV activity
was then calculated as a fraction of the mean TV activity over the entire cycle.
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The variation of the tracking region volume, v
t

, was assessed. In order to compare studies
with varying tumour size, the standard deviation of v

t

was calculated as a fraction of the
mean tracking region volume over the entire cycle.
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5.3 Results

5.3.1 Evaluation of Candidate Models

An initial evaluation was performed to see if the candidate oscillator, elastic and wave models
described in section 5.2.3 arose a real trends observed in patient data Pearson’s R2 correlation
coe�cient revealed the cases where the models made consistently inaccurate predictions in
the CT scans of 8 patients. At least one model was assumed to be a candidate for predicting
the Jacobean, Velocity of Jacobean and the Velocity. In order to ensure that at least one
model was considered, a cuto↵ for R2 was chosen as R2 < 0.6 (|R| < 0.77). A value lower
than the cuto↵ of was interpreted as meaning no relationship between the actual values and
the values predicted by the model (Cuto↵ show by red vertical line in Fig. 5.10) .

Pearson’s R2 correlation for the whole lung between the actual measurements of the
Jacobean and velocity and the predictions made by the wave model and oscillator model
were a↵ected by the spatial correlation of deformation. Fewer control points for the spline
parameterisation of the deformation field favoured a whole lung approach because there
was less spatial variance between adjacent voxels. Figure 5.11 is a visual representation
of measurements from 1000 voxels chosen at random. There was good correlation between
adjacent voxels for the oscillator model because the frequency of oscillation should be very
similar across all voxels (rate of respiration).

Pearson’s correlation coe�cient (Fig. 5.10) revealed that the Oscillator Model was a
candidate for predicting the Velocity (R2 = 0.83) and that the Wave Equation Model was
a candidate for predicting the Velocity of the Jacobean (R2 = 0.62). Outliers in the ap-
proximation of the Jacobean led to a value of Pearson’s R2 correlation coe�cient which was
either disproportionally high or low, particularly for the Elastic Model. The interpretation
of outliers was avoided by just considering the median R2 for all patients (Table 5.7).

Scaling Pearson’s correlation coe�cient reduced the e↵ect of the outliers, particularly
where R2 was disproportionally high in the elastic model. Scaling Pearson’s correlation
coe�cient excluded the covariance between voxels which increased R2 on average in the
oscillator and wave equation models. Scaling Pearson’s correlation coe�cient (Table 5.8)
revealed that the Wave Equation Model was a candidate for predicting both the Jacobean
(R2 = 0.61) and Velocity of Jacobean (R2 = 0.66) whilst the Oscillator Model was a candidate
for predicting the Velocity (R2 = 0.87).

Chi squared does not measure covariance, so most models were identified as potential
candidates (Table 5.9). A p-value cut o↵ of p=0.01 was used to identify models which

118



0" 0.2" 0.4" 0.6" 0.8" 1"

Wave"

Elas0c"

Oscillator"

Jacobean(

0" 0.2" 0.4" 0.6" 0.8" 1"

Wave"

Elas0c"

Oscillator"

Velocity(of(Jacobean(

0" 0.2" 0.4" 0.6" 0.8" 1"

Wave"

Elas0c"

Oscillator"

Sta0onary(Velocity(

R2
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Table 5.7: Median values of Pearson’s R2. *Candidate models were identified by R2 > 0.6

Pearsons R2

Wave Elastic Oscillator
Model Model Model

Jacobean 0.49 0.60* 0.05
Velocity Of Jacobean 0.62* 0.15 0.01
Velocity 0.44 0.46 0.83*

Table 5.8: Median Values of Scaled Pearson’s R2. *Candidate models were identified by
R2 > 0.6

Scaled Pearsons R2

Wave Elastic Oscillator
Model Model Model

Jacobean 0.61* 0.32 0.46
Velocity Of Jacobean 0.66* 0.06 0.48
Velocity 0.51 0.47 0.87*

could be ruled out as candidates. The number of degrees of freedom (⌫) was the number
of frames per voxel (10) minus the number of model coe�cients per voxel (1). Candidate
models were those for which �2/⌫ which fell within the confidence interval (0.19, 2.62). The
model with the lowest Chi squared was the Elastic model for predicting both the Jacobean
(�2/⌫ = 0.76), Wave Equation model for predicting the Velocity Of Jacobean (�2/⌫ = 0.69)
and the Oscillator model for predicting the Velocity (�2/⌫ = 0.19). �2 for using the Oscillator
model to predict the Velocity was exceptionally low implying that the number of degrees of
freedom (⌫) may actually be reduced due to some unaccounted symmetry.

Table 5.9: Median Values of Reduced �2(⌫ = 9). *Candidate models were identified by the
99% CI = (0.19, 2.62)

�2/⌫
Wave Elastic Oscillator
Model Model Model

Jacobean 1.15* 0.76* 27.79
Velocity Of Jacobean 0.69* 6.50 134.85
Velocity 1.12* 1.02* 0.19*

Although a high chi squared was useful for ruling out candidate models, there was a
bias when comparing the chi squared between velocity and displacement approximations.
~D
z

already contained a correlation in that each successive frame was a product of all the
transforms leading up to that frame. Thus, a lower chi squared was expected for the velocity
model making direct comparison to the Jacobean model di�cult.
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Figure 5.12: Comparison of NMI (left) and �2 (right) for various tuning parameters in all 8
patients. The barplot on the left shows median NMI for all patients and all frames and the
error bars are the standard deviation from the median value. The barplot on the right shows
the median �2 for all patients and the error bars are the standard deviation from the median
value. The median gives an overall comparison of tuning parameters C1, C2, C4, C5, C7 and
C8. C1 and C4 produce very the highest NMI, whereas C2, C7 and C8 produce a slightly
reduced NMI and a corresponding increase in �2.
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Figure 5.13: Comparison of NMI (left) and �2 (right) for various tuning parameters in patient
2. The barplot on the left shows median NMI over all frames of patient 2 and the error bars
are the standard deviation from the median value. The barplot on the right shows �2 for
patient 2. C2, C7 and C8 produce a slightly reduced NMI and a corresponding increase in
�2.
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Figure 5.14: Coronal slices of frame number 5 (A,B) after being registered to the reference
frame (C). The plot shows the Normalised Mutual Information (NMI) for each frame in
comparison to the reference frame. Regularisation was applied (A) using a weighting of
l2 = 10�9. Wave equation regularisation was applied (B) using a weighting of z2 = 10�3. l2
weighted regularisation led to smearing in the image (arrow in A). Some anatomical features
were only present after w2 weighted regularisation using the wave equation (orange arrow in
B and C).

5.3.2 Modelling Respiratory Motion in Cine CT

The results from modelling respiratory motion in cine CT allowed us to exclude poorly per-
forming models and devise a range of potentially optimal parameters. The results indicated
that NMI was not significantly a↵ected provided that the tuning parameter, z2, was small.
It was found that the NMI was highest if the penalty term was set to z2 = 10�5 ( C4 in figure
5.12) and that the NMI was decreased marginally when z2 was increased to z2 = 10�3 ( C7 in
figure 5.12). It was optimal to set l2 = 10�9 ( C1 in figure 5.12) as using a larger or smaller
l2 led to a decrease in NMI ( C2 and C3 in figure 5.12). It was suspected that NMI was
not sensitive to model fitting because large segments of each image remained stationary and
were not a↵ected by respiratory motion. Changes in the NMI were very marginal making the
results di�cult to interpret, thus the changes in the NMI were compared to the corresponding
changes in �2.

The �2 was observed to increase in circumstances where the NMI decreased for individual
patients (figure 5.13) as well as for the median across all patients (figure 5.12). In most cases,
�2 had a much smaller variation (standard deviation) across patients and thus was a more
sensitive metric than NMI. In one case �2 varied significantly due to poor fitting for a single
patient (C2 in 5.13). It was found that increasing z2 increased the �2, thus, over-weighting
the z2 penalty did not enforce the wave equation constraint.

Prior to corrupting the first frame of the cine CT, a qualitative assessment of robustness
of registration was completed. Using l2 regularisation in isolation led to image smearing in
figure 5.14 (A). The smearing of the image near significant structures was potentially due to
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Figure 5.15: Coronal slices of frame number 7 (A,B) after being registered to a corrupted
version of the reference frame. The plot shows the Normalised Mutual Information (NMI)
for each frame in comparison to the uncorrupted reference frame. Regularisation was applied
(A) using a weighting of l2 = 10�9. Wave equation regularisation was applied (B) using a
weighting of z2 = 10�3

over penalisation of l2. Using wave equation regularisation through z2 weighted penalisation
appeared to preserve image sharpness in figure 5.14 (B). Object boundaries were preserved,
especially at the diaphragm and cysts within the lung. Interestingly, the NMI when using
the z2 weighted regularisation was less than the NMI for l2 weighted regularisation alone,
however, the former produced a sharper image.

A qualitative assessment showed that after corrupting the first frame of the cine CT z2
weighted regularisation limited artefacts introduced from a corrupted target image. Figure
5.15 (B) shows that smearing artefacts were removed and boundary edges were preserved.
The z2 weighted regularisation led to an increase in NMI which may have been due to the
improved definition of boundary edges. It was suspected that wave equation regularisation
guided the registration in the corrupted regions, thus improving the robustness of the regis-
tration algorithm.

5.3.3 Modelling Respiratory Motion in Gated PET

Various registration parameter combinations were used in the first retrospective PET/CT
study (gated into 6 frames). �2 was measured and fell within the median �2 < 5 for 50% of
the parameter combinations. Table 5.10 shows the median �̃2 over all patients when applying
the l2 weighting factor in isolation. Although many parameter combinations were ruled out
as unsuitable (�2 > 5), the optimal �2 could be achieved with l2 = 10�7 and a smaller l2 was
optimal if further smoothing (wC) was applied.
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Table 5.10: Parameter combinations using l2 weighting factor and spatial smoothing. The
bottom row shows the median �̃2 fit of the wave equation model to 6 time point estimates
of ~v

J,z

.

P1 P2 P3 P4 P5 P6 P9
l2 10�9 10�7 10�5 10�9 10�7 10�5 10�9

wC 0 0 0 2 2 2 4
w

I

6.4 6.4 6.4 6.4 6.4 6.4 6.4
�̃2(⌫ = 5) 4.22 3.86 5.32 3.44 5.98 5.31 3.39

When wave equation modelling of ~v
J,z

was used the fitting analysis led to a small increase
in the median �̃2 as shown in table 5.11. It was found that a similar �2 could be obtained by
combining a smaller l2 weight and z2 = 10�5 weight , however, increasing z2 above 10�3 was
ruled out as it led to ~v

J,z

vanishing to zero. It was not clear whether it was useful to apply
further smoothing (wC).

Table 5.11: Parameter combinations using l2 and z2 weighting factors in combination with
spatial smoothing. The bottom row shows the median �2 fit of the wave equation model to
6 time point estimates of ~v

J,z

.

P12 P13 P14 P15 P16 P17 P18 P19 P20
l2 10�9 10�11 10�9 10�9 10�11 10�9 10�9 10�11 10�9

z2 10�3 10�5 10�5 10�3 10�5 10�5 10�3 10�5 10�5

wC 0 0 0 2 2 2 4 4 4
w

I

6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4
�̃2(⌫ = 5) 6.05 3.95 3.96 5.82 4.00 4.06 5.22 4.22 3.86

Despite measuring the mean frame to frame NMI for each parameter combination, it was
found that the NMI was not sensitive enough to distinguish the robustness of the motion
model. Figure 5.16 shows a patient where smaller �2 was weakly correlated with a larger
NMI, but the variation of NMI from frame to frame exceeded this di↵erence.

Various registration parameter combinations were used in the second retrospective PET/CT
study (gated into 12 frames). �2 was measured and fell within the median �̃2 < 11 for 74% of
the parameter combinations. A spatial multi-resolution approach was used to optimising the
wave equation motion model of ~v

J,z

, however, di�culties were experienced in finding param-
eter combinations which consistently had a median of �̃2 < 15. It was necessary to increase
z2 weighting substantially and the lowest �2 in table 5.12 was achieved with z2 = 10�5 and
smoothing the image with a 6.4mm gaussian (w

I

) and the cost function with a 4mm gaussian
(wC).
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Figure 5.16: A barplot of mean NMI (left) and �2 (right) values for a single patient in the
retrospective PET/CT study. The error bar is the standard deviation in values obtained
from the frame to frame NMI in the gated PET. Analysis of the �2 revealed that parameter
combinations P12 and P15 should be rejected, however, there was no significant pattern in
the NMI values.

Table 5.12: Parameter combinations using l2 and z2 weighting factors in combination with
spatial smoothing and spatial multiresolution. The bottom row shows the median �̃2 fit of
the wave equation model to 12 time point estimates of ~v

J,z

.

P101 P104 P107 P110
l2 10�9 10�7 10�9 10�5

z2 0 10�4 10�6 10�2

wC 2 2 2 2
w

I

5 5 5 5
�̃2(⌫ = 11) 16.27 13.79 17.71 12.34

P102 P105 P108 P111
l2 10�9 10�7 10�9 10�5

z2 0 10�4 10�6 10�2

wC 4 4 4 4
w

I

6.4 6.4 6.4 6.4
�̃2(⌫ = 11) 17.23 13.65 16.61 10.00

Applying a spatio-temporal multi-resolution approach improved fitting of the wave equa-
tion motion model of ~v

J,z

(Table 5.13) and ~D
z

(Table 5.14). In both cases it was optimal to
apply no weight to the model using the l2 weighting factor in isolation, however, it also found
that �2 was very sensitive to the magnitude of l2. It was possible to use a wider range of
weights when l2 and z2 were used in combination, thus this form of regularised registration
may be less sensitive to the chosen tuning parameters.
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Figure 5.17: Coronal and sagittal slices of the attenuation map after transforming frame 3 of
patient 21. The transforms were estimated with spatiotemporal multi-resolution registration.
Each column compares fitting the wave equation model using parameter combination P154
(bottom) to no fitting using parameter combination P151 (top). The position of the dome
of the liver was tracked and is marked indicated by the red crosshairs.

Table 5.13: Results of fitting the model to the velocity Jacobean, ~v
J,z

. Parameter combina-
tions using l2 and z2 weighting factors in combination with spatial smoothing and spatio-
temporal multiresolution. The bottom row shows the median �̃2 fit of the wave equation
model to 12 time point estimates of the velocity transform. The median is calculated over
all 11 patients in the study.

P151 P154 P157 P160
l2 10�4 10�5 10�5 10�6

z2 0 10�6 10�7 10�7

wC 0 0 0 0
w

I

6.4 6.4 6.4 6.4
�̃2(⌫ = 11) 6.55 10.21 9.06 8.04

Although �2 was lowest when setting weighting for the wave equation model to zero
(P151 z2 = 0 in table 5.13), a visual inspection of the transformed attenuation map revealed
discontinuities near the lung boundaries for this case (Figure 5.17).

Applying a spatiotemporal multi-resolution approach reduced noise when fitting larger
transforms, thus it became viable to consider every frame as an independent transform from
the reference frame. Fitting the wave equation model to ~D

z

(Table 5.14) resulted in a higher
median �̃2 than ~v

J,z

(Table 5.13).
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Figure 5.18: Displacement of the right dome of the liver using a velocity approximation for
patient 21. Displacements are relative to the position at the reference frame (frame 4). The
trace has been repeated to visualise its cyclic features. P151 has no wave equation constraint.
Each colour represents a varying level of constraint P154 (Orange), P157 (Gray) and P160
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Table 5.14: Results of fitting the model to the displacement transform, ~D
z

. Parameter
combinations using l2 and z2 weighting factors in combination with spatial smoothing and
spatiotemporal multi-resolution. The bottom row shows the median �̃2 fit to the wave equa-
tion model. The median is calculated over all 11 patients in the study.

P152 P155 P158 P161
l2 10�5 10�5 10�5 10�6

z2 0 10�6 10�7 10�7

wC 0 0 0 0
w

I

6.4 6.4 6.4 6.4
�̃2(⌫ = 11) 9.36 17.78 13.50 11.75

A comparison of fitting the model to the velocity displacement (Table 5.13) versus fit-
ting to the displacement (Table 5.14) was achieved by recording the magnitude of estimated
displacements at the dome of the liver. It was found that increasing z2 or l2 decreased the am-
plitude of motion, although the amplitude of motion increased with less regularisation (P151
and P160). It was suspected that displacements which were smoothly varying and cyclic
over the respiratory period may be preferable (P154 and P157). The large displacements at
the end of the cycle (frame 3 and 15 in figures 5.18 and 5.19) were due to the cumulation of
errors in successive transforms after the reference frame. Figure 5.18 shows that the e↵ect
of cumulative errors was minimised by determining each transform independently as a dis-
placement from the reference frame. It was suspected that the apparent lack of smoothness
over time is due to the poor statistics of a 12 frame gated study. Patient 21 was chosen in
figures 5.18, 5.19 and 5.20 because �2 was close to the median �̃2 for all patients.

Applying a cyclic constraint in combination with fitting the model to the velocity jacobian,
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Figure 5.19: Displacement of the right dome of the liver using independent registration for
patient 21. Displacements are relative to the position at the reference frame (frame 4). There
are 12 unique time points, however, the trace has been repeated over 2 cycles. P152 has no
wave equation constraint. Each colour represents a varying level of constraint P155 (Orange),
P158 (Gray) and P161 (Yellow)

~v
J,z

led to a lower median �̃2 (Table 5.15). The lower median �̃2 was expected because
many cyclic functions are also solutions to the wave equation. The magnitude of estimated
displacements at the dome of the liver were measured to observe the e↵ect of the cyclic
constraint in figure 5.20 in comparison to no cyclic constraint in figure 5.18. Applying a
cyclic constraint led to displacements that were temporally smoother and more symmetrical
about the reference frame.

Table 5.15: Results of fitting the model to the velocity Jacobian, ~v
J,z

with a cyclic constraint.
Parameter combinations using l2 and z2 weighting factors in combination with spatial smooth-
ing and spatio-temporal multiresolution and a cyclic constraint. The bottom row shows the
median �̃2 fit of the wave equation model to 12 time point estimates of the velocity transform.
The median is calculated over all 11 patients in the study.

P164 P167 P170
l2 10�5 10�5 10�6

z2 10�6 10�7 10�7

w 6.4 6.4 6.4
�̃2(⌫ = 11) 6.94 6.85 7.41

The transforms were visually assessed using an image of the magnitude of the displace-
ments shown in figure 5.21. The images showed that less regularisation using parameter
combinations P151, P152, P160 and P170 resulted in noticeable discontinuities in the defor-
mation field.
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Figure 5.20: Displacement of the right dome of the liver using a cyclic constraint for patient
21. Displacements are relative to the position at the reference frame (frame 4). There are 12
unique time points, however, the trace has been repeated over 2 cycles. P151 has no wave
equation constraint. Each colour represents a varying level of constraint P164 (Orange),
P167 (Grey) and P170 (Yellow).

129



F
ig
u
re

5.
21
:
C
or
on

al
sl
ic
es

of
an

im
ag
e
w
h
er
e
ea
ch

vo
xe
l
is
co
lo
u
re
d
w
it
h
th
e
m
ag
n
it
u
d
e
of

d
is
p
la
ce
m
en
t
fo
r
fr
am

e
3
in

p
at
ie
nt

21
.
T
h
e
fi
rs
t
ro
w

sh
ow

s
co
ro
n
al

sl
ic
es

w
h
en

u
si
n
g
a
ve
lo
ci
ty

m
od

el
(P

15
1,

P
15
4,

P
15
7,

P
16
0)
.
T
h
e
se
co
n
d
ro
w

sh
ow

s
co
ro
n
al

sl
ic
es

w
h
en

u
si
n
g
th
e
d
is
p
la
ce
m
en
t
m
od

el
(P

15
2,

P
15
5,

P
15
8,

P
16
1)
.
T
h
e
fi
n
al

ro
w

sh
ow

s
u
si
n
g
a
cy
cl
ic

m
od

el
(P

16
4,

P
16
7,

P
17
0)
.
A

co
ro
n
al

sl
ic
e
of

th
e
at
te
nu

at
io
n
m
ap

is
sh
ow

n
in

th
e
b
ot
to
m

le
ft

fo
r
co
m
p
ar
is
on

.
T
h
e
d
is
p
la
ce
m
en
ts

ar
e
re
la
ti
ve

to
th
e
p
os
it
io
n
at

th
e
re
fe
re
n
ce

fr
am

e
(f
ra
m
e
4)
.
T
h
e
ou

tl
in
e
of

th
e
lu
n
g
in

fr
am

e
4
h
as

b
ee
n
su
p
er
im

p
os
ed

on
th
e
d
is
p
la
ce
m
en
t

im
ag
es
.
D
is
co
nt
in
u
it
ie
s
in

th
e
d
ef
or
m
at
io
n
fi
el
d
ar
e
m
ar
ke
d
w
it
h
a
re
d
ar
ro
w
.

130



5.3.4 Attenuation Correction for Respiratory Gated PET

Compensating for misaligned attenuation correction improved the consistency of the atten-
uation map with the emission image in comparison to CTAC alone. The consistency was
quantified using the SSD metric between emission and reprojected sinograms for each frame
in the respiratory gated PET. Following compensation there was no change in SSD for the
reference frame, however, the SSD metric of other frames in the respiratory gated PET was
decreased. The reason for the decrease was solely attributed to the deformation of the atten-
uation map in accordance with the respiratory motion model. Respiratory motion models
used to deform the attenuation map and were considered based on when the SSD was less
than that for CTAC alone. Figure 5.22 shows a reduction in the SSD for models P154, P157,
P164 and P167 in patient 21 indicating that these are useful models for the deformation of
the attenuation map.

A systematic analysis of the SSD metric for all patients and all frames was used to quantify
the e↵ect of 12 di↵erent motion models on the SSD. Figure 5.23 shows an overall decrease
(�SSD) in the SSD when using various motion models versus CTAC alone. The SSD for
some models had a significant number of outliers from the median of the population and
a visual inspection of the SSD revealed sharp increases corresponding to inconsistencies in
the reconstruction. The respiratory motion models which had significant outliers in the SSD
were excluded on the basis that these models did not reliably provide an improved method
of attenuation correction.

As shown in table 5.16, the median �SSD for all patients and all frames was lowest when
using both the velocity model and the cyclic model of the wave equation. Using l2 = 10�5

in models P154, P157, P164 and P167 produced the lowest median and the least number of
outliers.

The activity concentration (uptake) of suspected tumour regions was highly variable
across all 12 frames and all patients. The standard deviation of uptake in the tumour region
was between 10% and 20% depending on the respiratory motion model applied. The TV
region encompassed the full motion of the tumour and had a smaller standard deviation of
between 8.2% and 10.9% depending on the respiratory motion model. The large standard
deviation was attributed to the many factors, including attenuation, which influence the
measured activity concentration. CV

act

was expressed as a fraction of mean uptake in the
TV region because it was less a↵ected by tumour size. Table 5.16 shows which respiratory
motion models produced a smaller variation in uptake (CV

act

).
Considering that lung tumours are typically less compressible than surrounding tissue

(Kyriakou et al., 2007), there were far greater changes in tumour size than expected. The
standard deviation in region size, CV

size

, was greater than 20% for models P151, P152, P160,
P161 and P170 and shown in figure 5.24. Increasing the penalty of z2 to 10�5 decreased the
standard deviation in region size for models P154, P155 and P160 in table 5.16. Figure 5.25
shows a tumour region which changed size from 13.1mL in frame 10 to 32.0mL in frame 12
when using no wave equation constraint (P151), however, this variation was reduced when
using a wave equation constraint (P154). Figure 5.26 compared the e↵ect of including the
wave equation constraint in the motion model for all frames in patient 10. The wave equation
model is based on a physical assumption that tissue cannot compress without a corresponding
flow of air to allow that compression to occur. The wave equation model constraint generally

131



2 4 6 8 10 122.
3e
+1
2

2.
5e
+1
2

2.
7e
+1
2

Frame

SS
D

CTAC
P151

2 4 6 8 10 12

2.
45
e+
12

2.
55
e+
12

Frame

SS
D

CTAC
P154

2 4 6 8 10 12

2.
45
e+
12

2.
55
e+
12

Frame

SS
D

CTAC
P157

2 4 6 8 10 12

2.
4e
+1
2

2.
8e
+1
2

Frame

SS
D

CTAC
P160

2 4 6 8 10 12

2.
5e
+1
2

2.
8e
+1
2

3.
1e
+1
2

Frame

SS
D

CTAC
P152

2 4 6 8 10 12

2.
50
e+
12

2.
60
e+
12

Frame

SS
D

CTAC
P155

2 4 6 8 10 122.
45
e+
12

2.
55
e+
12

2.
65
e+
12

Frame

SS
D

CTAC
P158

2 4 6 8 10 12

2.
5e
+1
2

2.
7e
+1
2

Frame

SS
D

CTAC
P161

2 4 6 8 10 12

2.
45
e+
12

2.
55
e+
12

Frame

SS
D

CTAC
P164

2 4 6 8 10 12

2.
45
e+
12

2.
55
e+
12

Frame

SS
D

CTAC
P167

2 4 6 8 10 12

2.
6e
+1
2

3.
0e
+1
2

Frame

SS
D

CTAC
P170

Figure 5.22: Sum of squared di↵erences (SSD) metric for consistency in gated PET recon-
struction for patient number 21. Each plot shows the total SSD between projection and
emission sinogram after attenuation correction has been applied. The SSD has been calcu-
lated for all 12 frames in the respiratory cycle. Each model of attenuation deformation (P151
- P170, green) has been compared to spiral CT attenuation correction (CTAC, blue - dotted).
The first row shows consistency when using a velocity model (P151, P154, P157, P160). The
second row shows consistency when using the displacement model (P152, P155, P158, P161).
The final row shows consistency when using a cyclic model (P164, P167, P170).
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Figure 5.23: A box and whisker plot of changes in sum of squared di↵erences (�SSD) metric
for consistency in gated PET reconstruction for every patient. Changes have been expressed
as a percentage di↵erence in total SSD when using a model (P151 - P170) versus using
CTAC alone. A negative change in SSD corresponds to a more consistent reconstruction.
The bounding box contains 50% of the values and the outliers have been individually plotted
as circles.
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Figure 5.24: A box and whisker plot of the tracking region size v
t

. The region size in each
gated PET has been plotted for every frame and for every patient. Changes have been
expressed as a percentage of the mean (CV

size

). The bounding box contains 50% of the
values and the outliers have been individually plotted as circles.
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Table 5.16: A comparison of metrics to evaluate the use of each model (P151 - P170) versus
using CTAC alone. The first row is the median �SSD and contains the median values of
changes in sum of squared di↵erences metric for consistency in gated PET reconstruction
from figure 5.23 where changes in SSD have been expressed as a percentage di↵erence in
total SSD. The second row is the variance in the TV activity CV

act

and is expressed as the
standard deviation of the activity concentration in the TV region as a percentage of the
mean uptake in the TV region. The third row is the variance in the region size CV

size

and is
expressed as the standard deviation of the size of the tracking region as a percentage of the
mean size of the tracking region.

Velocity Model P151 P154 P157 P160
Median �SSD -0.6% -1.2% -1.1% -1.2%
CV

act

8.7% 8.4% 8.5% 9.4%
CV

size

29.2% 12.7% 9.2% 31.8%

Displacement Model P152 P155 P158 P161
Median �SSD -0.7% -0.1% -0.2% -0.5%
CV

act

8.4% 9.0 % 9.0% 8.4%
CV

size

34.9% 7.8% 8.3% 26.8%

Cyclic Model P164 P167 P170
Median �SSD -0.9% -1.0% -1.1%
CV

act

8.2% 8.4% 10.9%
CV

size

10.8% 10.9% 28.5%

CTAC only CV
act

= 10.3%
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Figure 5.25: A maximum intensity projection of the activity in the tracking region volume,
v
t

, superimposed on the attenuation correction map. The attenuation correction map has
been sliced in the sagittal, transverse and coronal directions at the centre of mass of the
tumour. The first two rows are the 10th frame from Patient 10, and the second two rows
are the 12th frame from patient 10. The volume of the tumour is approximately 30mls in
the 12th frame, but decreases significantly (P151, first row), if not using the wave equation
model. The wave equation velocity model preserves the size of the tumour (P154, second
row).

constrained the expansion and compression of tumour regions for the cyclic and velocity
model.

The standard deviation of the TV region uptake (CV
act

) was between 8.2% and 10.9% and
was slightly decreased to about 8.4% when we applied the velocity model of the wave equation.
The decrease in the standard deviation of the TV region uptake was not significant. Models
P154, P157, P164 and P167 had the lowest median �SSD and also had a CV

act

between
8.2% and 8.5%. It was suspected that a contributor to both the decreased consistency metric
(�SSD ) and the reduced variation (CV

act

) was due to improved modelling of motion and
hence a more accurate attenuation map.

5.4 Discussion

The initial analysis of candidate models revealed that some models were more suited to esti-
mating spatial and temporal derivatives of the displacement. Many regularisers are expressed
as the first or second derivative of the displacement in order to enforce temporal and spatial
smoothness of the deformation field (Holden, 2008). The results showed that the model which
was most suited to predicting the velocity of the Jacobean was the wave equation model.
The results identified tuning parameters of the wave equation model for which regularising
the velocity of the Jacobean ensured that the deformation was both spatially and tempo-
rally continuous but also consistent with the physiological assumptions of the wave equation
model.

The implementation of the regulariser was an adaptive approach, penalising deformations
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Figure 5.26: A maximum intensity projection of the activity in the tumour region super-
imposed on the the attenuation correction map. The attenuation correction map has been
sliced in the coronal direction at the centre of mass of the tumour. The 3 rows on the left
are 12 frames from patient 10 when using no wave equation constraint (P151). The 3 rows
on the right are 12 frames from patient 10 when using the wave equation constraint (P154).
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in a voxelwise manner. The results demonstrated an advantage over conventional regularisa-
tion which treats all point displacements equally by either smoothing or penalising displace-
ment. The novel regulariser was also tested in combination with smoothing, however, it was
not clear whether smoothing displacements with a Gaussian of wider than 6.4mm was benefi-
cial. Alternatives to smoothing have been proposed such as using a Markov model solver (Bai
& Brady, 2009) and demons image registration (Vercauteren, Pennec, Perchant, & Ayache,
2009). Future work could involve investigating whether smoothing could be avoided by using
a solver for image registration other than the conjugate gradient descent.

This novel approach is mainly beneficial for imaging modalities similar to PET with a low
signal to noise. The results from CT imaging showed that if lung boundaries or features were
well defined then the benefits of wave equation regularisation were reduced. In such cases it
might be worthwhile investigating other forms of image registration as well an assessment of
the accuracy of registration of fine structures within the lungs.

The potential benefits of a cyclic constraint in addition to the wave equation model
were investigated. Initially, a cyclic constraint was avoided by allowing for non-periodic
expansion, although this is not physiologically possible in a gated study such expansion
may have been observed due to inaccuracies in respiratory gating or acquisition because the
complete respiratory cycle may not have been fully captured. The results indicated that this
was not a concern as including a cyclic constraint had little e↵ect.

The investigation of tumour regions revealed that the tuning parameters for the model
had a significant e↵ect on the expansion and contraction of the region over the respiratory
cycle. It was found that a larger penalty term reduced the variance in region size. Tumours
are much less compressible than normal lung tissue (Kyriakou et al., 2007), so it was expected
that realistic models would limit the expansion and contraction of tumour regions. Another
limitation of this investigation was that it did not reveal local changes, such as changes in
activity distribution within the tumour.

The chi squared statistic was used to identify the most suitable model for the physics
of respiration. Although the wave model had some similarities to finite element modelling
(FEM) a key di↵erence was that this method did not require the detection of lung boundaries
or features (Samavati et al., 2015). Further work on developing a FEM model which is less
reliant on the accuracy of lung boundaries or features may be of interest.

The wave equation is an analytical approach to respiratory motion modelling. The anal-
ysis of candidate models leaves scope for future work for using the same models in contexts
other than image registration alone, for example, jointly estimating deformation and emission.
Although 1 dimensional modelling is clearly useful, extending this approach to 3 dimensions
should lead to improved fitting because of the additional degrees of freedom. A 3D model
may also be less prone to discontinuities in the deformation field.

This work has demonstrated that a velocity model of the wave equation was optimal
for addressing attenuation mismatch. The consistency was estimated by measuring the SSD
between emission data and reprojected sinograms. This estimate of the consistency conditions
revealed whether the gated PET frames and attenuation map may be misaligned. It was also
found that a velocity model of the wave equation was more robust, with reduced variations in
results across patients. The population variance in tumour region size, TV uptake and SSD
consistency were all reduced when using a velocity model of the wave equation. It was also
found that Chi Squared can be used to provide online feedback on performance of motion
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model fitting and could be used to predict whether the model was robust.
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Chapter 6

Conclusion
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The purpose of this thesis was to develop methods to compensate for misalignment of
the attenuation map and the emission image in PET/CT. The validation of methods for
compensation were benchmarked against CT-derived attenuation. Although there are many
ways to improve gated-PET image reconstruction, the literature review in the background
chapter of this thesis provides evidence that the most significant image artefacts in respiratory
gated PET arise from attenuation correction mismatch.

Despite our e↵orts to implement previously published approaches as outlined in chapter
3 there was varying accuracy between di↵erent methods. Whilst this was concerning, it
was not unexpected given the variety of approaches to image registration. This varying
accuracy highlighted the need for feedback on the accuracy of image registration and guided
decisions on how to best model respiratory motion. For example, if feedback indicates that
a respiratory motion model lacks precision then the assumptions made by the model about
respiratory motion can be tuned to produce an improved result.

6.1 Compensating for Attenuation Correction Misalign-
ment

Multiple approaches to compensating for attenuation correction misalignment using image
registration have been presented in chapters 3, 4 and 5. Since much anatomy is not visible
on FDG PET, methods have been developed which are tailored to the accurate registration
of images in regions where organs have minimal FDG uptake. This has been accomplished
through improvements to image registration using statistical and physiological models as
presented in chapters 4 and 5. These models either favour plausible deformations during
the process of image registration or infer the most plausible motion in regions where image
registration could not derive an accurate deformation. It would be ideal to develop a method
which is not reliant on image features or assumptions about respiratory motion, however,
chapters 4 and 5 showed this was necessary in order to maintain accuracy. A limitation of
this study is that non-attenuated gated images have been used to estimate motion and while
recent investigates have shown that this limitation can be addressed using joint reconstruction
and registration (Rezaei, Michel, Casey, & Nuyts, 2016), the approach taken in this thesis
was to consider practical approaches to compensate for misalignment that do not require
significant modifications to the PET image reconstruction.

In chapter 3, multiple di↵erent image registration approaches to aligning the emission
and attenuation image were taken. The significant variation in results for each approach was
taken as an indication that the accuracy of attenuation correction is highly dependent on the
accuracy of registration. For example, the results in chapter 3 showed that multimodality
registration is more accurate than a mono-modality approach, or even a combination of both
of these approaches. This suggested that there could be a limitation with the PET only
approach that cannot be overcome. In some cases, poor accuracy may be an indication
of a problem with the implementation of registration rather than the approach taken. For
example, a spatiotemporal approach to mono-modality registration performed the worst out
of all approaches, yet, previous investigations suggested that this method should be robust
to noise (Metz, Klein, Schaap, van Walsum, & Niessen, 2011). This may have been an
indication that results could be improved if the spatiotemporal approach to registration was
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investigated with more rigour.
In chapter 5 the robustness of the mono-modality approach was improved by incorporating

a wave equation model into registration. Whilst the results were promising this approach
was only implemented by extending the niftyreg registration package. Some issues could
be specific to this package, particularly considering niftyreg registration performed poorly
as described in chapter 3. The limitation of using a single software package (niftyreg) as
described in chapter 5 could be overcome by using other packages such as elastix.

A cross-population approach to modelling respiratory motion was investigated in chapter
4. This method extended mono-modality registration as a means of fitting the population
model to the patient image. Cross-population models generally need a large cohort of patients
(more than 100) to be accurate, however, our results with 10 patients support findings that
a large cohort may not be required to model respiratory motion (Fayad, Buerger, Tsoumpas,
Cheze-Le-Rest, & Visvikis, 2012). Our approach to modelling respiratory motion was similar
to the statistical motion modelling introduced by Li et al. (2011) which was based on the
dimensionality reduction of displacement vector fields. This approach has since been im-
proved upon using manifold alignment strategies (Baumgartner et al., 2014), but the e↵ect
on attenuation mismatch has not been investigated. A limitation of our approach is that
it does not consider other methods of measuring respiratory motion. Measurements of the
chest surface have been shown to be a useful surrogate which can be incorporated into the
population model.

6.2 Further Work on Compensating for Misalignment

The aim of this thesis has been to compensate for misalignment, however, the methods
presented in chapters 3, 4 and 5 are similar to methods used for the motion compensation
of emission images. In addition to compensating for misalignment this method could also be
extended the correction of emission images.

Further work on the image registration methods introduced in chapter 3 is required in
refining the combined mono-modality and multi-modality approach. The combined approach
involves the calculation of the inverse deformation and this was found to be dependent on
the implementation provided by the image registration package. Further investigation of
alternative reconstruction packages may reveal more positive results

Given that inaccuracies in image registration may be specific to the niftyreg package,
further work is required to convincingly rule out that a mono-modality approach cannot be
improved upon. Some packages such as elastix provide the ability to combine mono-modality
registration in conjunction with other improvements such as groupwise registration

The calculation of SSD metrics were useful in evaluating the improvements to image
registration. Although this approach has merit, further work on developing online statistics
such as the goodness of fit introduced in chapters 4 and 5 may be more practicable in a
clinical situation where computational resources and time are limited.
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6.3 Evaluation of Attenuation Correction Methods

Compensating for attenuation correction misalignment was evaluated using both Natterer’s
and SSD consistency. The results in chapter 3 indicated that the SSD was sensitive to the
registration inaccuracies such as the misalignment of lung boundaries. In chapter 3, the
SSD decreased in comparison to CTAC following the use of multimodality registration to
compensate for the misalignment in 11 patients.

A method for identifying the reference frame was developed in chapter 3 using a weighted
SSD measure of consistency. The weighted SSD method was the best approach at identifying
the emission frame which was most similar to the CT. Unfortunately, there was no direct
way to measure the accuracy of this method without having prior knowledge of the timing
and position of the spiral CT relative to time intervals used for gating the PET image.

Further work could be to expand the evaluation of misalignment to a novel method for
the evaluation of motion compensation. A limitation of the current method is that it is not
sensitive to inaccuracies in the deformation field in areas of constant HU. Whilst this had
negligible e↵ect on the accuracy of attenuation correction, it may have a significant e↵ect on
the accuracy of motion compensation.

Online statistics on the goodness of fit were used in chapter 5 to investigate registration
parameter settings, however, it was challenging to compare alternative methods such as mod-
eling, versus multi-modality, versus mono-modality. There were also di�culties evaluating
the population model using leave-one-out analysis as it did not reveal the accuracy of corre-
lated attenuation correction. In chapters 4 and 5 various methods were used to estimate the
accuracy of deformation fields including leave-one-out analysis, simulations, and goodness of
fit. A limitation of these methods was that they were not particularly sensitive to attenuation
mismatch at organ boundaries.

The appearance of tumours and the variance of radio-activity in the tumour region were
used to evaluate attenuation correction. In some cases compensating for misalignment in-
creased this variance. Although this was unexpected, it is possible that the variance could
be introduced from other sources such as fluctuations in motion blur during phase based
respiratory gating. . The wave equation model esnforced the rigid motion of tumours and
this reduced variations in the apparent size of the tumour as a result of inaccurate image
registration. A limitation to the analysis of tumours was that it was not clear how much
variance needed to be mitigated.

6.4 Further Work on Evaluation Methods

The evaluation methods presented in this thesis were useful for detecting misalignment,
however, they did not indicate the extent of misalignment. This could be addressed by
further work to relate the SSD consistency to the physical extent of misalignment or the
quantitative uptake of tracer (SUV). For example, it would be feasible to simulate motion in
scans and establish a relation between the simulated motion and the SSD consistency values.

Natterer’s consistency had a large variation in values across the 11 patients evaluated in
chapter 3. This could be explained by the sensitivity to noise arising from high frequencies
in the consistency equation (equation 2.5), however, further work might involve investigating
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the source of the variance and why the alternative SSD consistency had a lower variation.
The information available in Time-Of-Flight (TOF) PET has been used in recent methods

for addressing attenuation correction (Rezaei, Defrise, & Nuyts, 2014). Our approach to
evaluating consistency has essentially summed all TOF bins into a single sinogram. The
sensitivity of our proposed consistency metrics could be significantly enhanced by using a
consistency which incorporates the TOF signal.
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Appendix A

Appendix

A.1 Anatomical Phantom Simulations

The following is an excerpt of the results of using human anatomical phantom simulations
to validate the 1D Respiratory Motion Model in Barnett R, Meikle S, Fulton R. Deformable
Image Registration By Regarding Respiratory Motion As 1D Wave Propagation In An Elastic
Medium. Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011
IEEE

These simulations have not been included in the thesis body because the implementation
of the 1D motion model in chapter 5 used a form of regularisation which improved upon this
method. Thus, these results have been excluded from the discussion and conclusion.
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I. METHOD 
 

A. Simulation of respiratory gated PET 
 
A human anatomical phantom, NCAT [13], was used to generate realistic emission images. The images were 
forward projected into singorams whilst applying poisson noise and attenuation modeling [14]. Six emission 
images were produced throughout a normal respiratory cycle of six seconds, thus each frame had a temporal 
resolution of one second. The sinograms were reconstructed using an implementation of OSEM [15] without 
attenuation correction (NAC). The performance of various image registration algorithms were tested on the NAC 
images to establish the accuracy of the registration with respect to the ground truth values used for the simulation. 
We chose not to simulate a lesion in the lung because we wished to test the performance of the image registration 
with limited distinguishable features when the image similarity metric is extremely noisy. 
 

II. RESULTS 

A. Validation using simulated respiratory gated PET 
 
The NCAT simulation synthesises a nearly constant tracer value in the lungs. Fig 2. demonstrates the absence of 
visible features in the lung.  
 

 
Fig. 2. Coronal cross sections from noisy PET simulated data. The heart and diaphragm are barely visible. The source frame (left) is to be 
registered to the target frame (right). These are frames 1 and 4 in a 6 frame simulated gated data set. 
 

 
Fig. 3. A coronal slice of the deformation field from the image registration overlaid onto the target PET frame. The deformation field is 
represented by arrows of varying color. Red represents large deformations. Blue and gray represent smaller deformations. The field produced 
using free-form deformation (left). The field produced after applying wave equation constraints (right). In both cases the bending energy 
penalty term was 1% . 
 
We  applied conventional free-form registration and found that the presence of noise in the PET image caused 
image registration to randomly fail. In figure 3 the deformation field for the entire left lung is grossly 
underestimated due to noise.  Applying the wave equation constraint produced increased superior-inferior 
deformation without requiring a change in the penalty term for bending energy. There is a good visual match 
between the registered frame and the target frame as a result of the increased deformation. 
 
The amplitude of motion can be recovered by decreasing the bending energy from 1% to 0.1%. The problem with 
decreasing the bending energy penalty term is that sharp local deformations are favoured. 



 
Fig 4. A coronal slice of the deformation field from the image registration using a lower bending energy (be) penalty term. Setting the be=0.1% 
(left) and be=0.1% with smoothing applied (right). The pink circles indicate sudden changes in the direction of motion to what is expected. 
 
In figure 4 the bending energy has been reduced to 0.1% and we observed sudden changes in the direction of 
motion in comparison to what was expected.  A practical solution was to apply regularisation such as smoothing 
the gradient of the objective function. Figure 4 (right) demonstrates that smoothing had a dampening effect on the 
deformation field but it did not completely remove the undesired motion. 
 
The ground truth deformation field was obtained from the motion parameters of the NCAT simulation. We 
measured the amplitude of motion by summing the absolute value of all superior-inferior motion, thereby creating 
a curve which is analogous to a respiratory motion trace. We compared the amplitude of the deformation field 
created from free form image registration with the amplitude in the ground truth results. Figure 5 shows a 
comparison of the amplitudes. 
 

 
Fig. 5. The sum of the superior-inferior deformation for each frame. Ground truth superior-inferior motion (black). Free form deformation 
(red) with wave equation constraints (blue) 
 
We measured the per-voxel difference between the deformation field and the ground-truth for each frame. The 
per-voxel difference followed a predictable Gaussian distribution as shown in Figure 6. We then tabulated the 
shift of this distribution from zero.  
 

 
 

 
 
Fig. 6. The difference between free-form deformation (red) and ground truth. The difference between free form deformation using wave 
equation constraints (blue) and ground truth. 
 



TABLE I. DIFFERENCES FROM GROUND TRUTH. 
 

Motion between frames Free form  Wave equation  
Difference (mm) FWHM (mm) Difference (mm) FWHM (mm) 

1 -> 2 1.6 3.9 0.0 4.9 
2 -> 3 -2.2 11.1 3.6 7.7 
3 -> 4 8.5 11.0 -0.1 4.7 
4 -> 5 -3.7 5.2 2.3 6.6 
5 -> 6 -7.1 4.7 -0.6 5.4 

 
Table I presents a summary of the differences from ground truth. The large differences have been highlighted in 
bold to demonstrate where the image registration is inaccurate. In frame 4 and frame 6 the deformation field for 
the entire left lung is grossly underestimated unless wave equation constraints are applied. 
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