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Advances in 4D Gated Cardiac PET Imaging

for Image Quality Improvement and Cardiac

Motion and Contractility Estimation

Benjamin M.W. Tsui, Tao Feng, Jizhe Wang, Jingyan Xu,

M. Roselle Abraham, Stefan L. Zimmerman, and Thomas H. Schindler

Abstract Quantitative four-dimensional (4D) image reconstruction methods with

respiratory and cardiac motion compensation are an active area of research in ECT

imaging, including SPECT and PET. They are the extensions of three-dimensional

(3D) statistical image reconstruction methods with iterative algorithms that incorpo-

rate accurate models of the imaging process and provide significant improvement in

the quality and quantitative accuracy of the reconstructed images as compared to

that obtained from conventional analytical image reconstruction methods. The new

4D image reconstruction methods incorporate additional models of the respiratory

and cardiac motion of the patient to reduce image blurring due to respiratory motion

and image noise of the cardiac-gated frames of the 4D cardiac-gated images. We

describe respiratory motion estimation and gating method based on patient PET list-

mode data. The estimated respiratory motion is applied to the respiratory gated data

to reduce respiratory motion blur. The gated cardiac images derived from the list-

model data are used to estimate cardiac motion. They are then used in the cardiac-

gated images summing the motion-transformed cardiac-gated images for significant

reduction in the gated images noise. Dual respiratory and cardiac motion compen-

sation is achieved by combining the respiratory and cardiac motion compensation

steps. The results are further significant improvements of the 4D gated cardiac PET

images. The much improved gated cardiac PET image quality increases the visi-

bility of anatomical details of the heart, which can be explored to provide more

accurate estimation of the cardiac motion vector field and cardiac contractility.
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1.1 Introduction

The development of quantitative image reconstruction in medical imaging, includ-

ing emission computed tomography (ECT) and x-ray CT [1, 2], has recently shifted

from three-dimensional (3D) to four-dimensional (4D), i.e., the inclusion of the

time dimension. There are two major goals for this development. First is to reduce

reconstructed image artifacts due to patient motion. In particular, compensation of

involuntary patient motion, e.g., respiratory motion, that causes resolution loss has

received much attention [3–6]. Second is to improve the temporal resolution of

dynamic images for improved detection of global and regional motion abnormal-

ities [7, 8]. An important application is gated myocardial perfusion (MP) ECT

imaging. Despite extensive research in other imaging modalities over the last two

decades, MP ECT, especially gated SPECT and more recently PET, has continued

to be the major biomedical imaging technique for the assessment of MP in clinical

practice. The potential of extracting additional quantitative information, such as

abnormalities from existing data without additional clinical studies, radiation dose

or discomfort to the patients, has great significance in biomedical imaging [9–13].

The long-term goal of the study is to integrate the two aforementioned goals of

the current quantitative 4D imaging reconstruction methods, i.e., to improve the

quality and quantitative accuracy of the 4D cardiac gated MP PET images while

reducing the blurring caused by respiratory motion (RM) and cardiac motion (CM).

This is in addition to compensation of other image degrading factors, e.g., statistical

noise, photon attenuation and scatter, and collimator-detector blur, to improve both

spatial and temporal resolution. In this work, we present the development of a data-

driven RM estimation method and quantitative 4D statistical image reconstruction

methods that compensate for RM and CM separately, and for dual respiratory and

cardiac (R&C) motion for improved lung and cardiac PET imaging. We hypothe-

size that by applying a statistical 4D image reconstruction method that accurately

compensates for RM and CM and other image degrading factors, we would be able

to minimize image artifacts caused by the image degrading factors, improve image

resolution and reduce image noise. This would result in two significant clinical

benefits, i.e., (a) reduction of false positives and false negatives for improved

diagnosis, and (b) reduction of imaging time and/or radiation dose to the patient.

In addition, the much improved 4D gated cardiac PET image quality increases

the visibility of details of cardiac structures. The information can be explored in a

feature-based motion estimation method to determine the cardiac motion vector

field and cardiac contractility.
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1.2 Materials and Methods

1.2.1 Data-Driven Respiratory Motion Detection and Gating
Method

There are two general approaches to obtain respiratory gated PET data [14]. One is

to use an external tracking device that directly measures a RM surrogate [3, 15].

The other is to derive RM information from the acquired data [16–19]. These data-

driven RM detection methods can avoid the cost and effort and directly provide a

surrogate RM signal. We developed two data-driven methods that estimated the

RM from 13NH3 and
18F-FDG cardiac gated list-mode PET data. In Fig. 1.1a, b, the

13NH3 images show more liver uptake than the 18F-FDG images. Our data-driven

method for the 13NH3 was based on the total counts in each consecutive short

segment (200–500 ms) of PET data. For the 18F-FDG, RM signal was extracted

based on the axial center-of-mass of the short segment PET data. Figure 1.1c shows

the relative RM gating signal amplitude as a function of time obtained from the
13NH3 list-mode data. The estimated RM signal compared well with that obtained

from an external tracking device. It was used to divide the RM into multiple

respiratory gates. The respiratory gated image data were used to estimate the

motion vector field of the RM and incorporated in the 4D image reconstruction

method to achieve motion compensation.

From the estimated RM signal in Fig. 1.1c, we divided the list-mode data into six

equal-count respiratory frames, each of which is further divided into eight cardiac-

gated frames using the ECG R-wave markers. The result was a full set of dual

six-frame respiratory gated and eight-frame cardiac-gated dataset. We then applied

the RM compensation method described in Sect. 1.2 to the six-frame respiratory-

gated dataset.
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Fig. 1.1 Sample respiratory-gated projection images from (a) 13NH3 cardiac and (b) 18F-FDG

cardiac images. (c) Comparison of a RM signal derived from an external tracking device and from

the total count variation of the short segment projections of the 13NH3 cardiac PET data
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1.2.2 4D PET Image Reconstruction Methods
with Attenuation, and Respiratory and Cardiac Motion
Compensation

The 4D PET image reconstruction methods used in this study were applied to the

respiratory-gated and cardiac-gated projection data. Specifically, for the 4D PET

image reconstruction method with dual R&C motion compensation, we divided the

acquired list-mode data into six equal-count respiratory frames each with eight

cardiac-gated frames as described in Sect. 1.2.1. Image reconstructions without

attenuation correction were performed on this dataset to estimate the RM in lung

PET studies and both RM and CM in cardiac PET studies. A special feature of our

method was the modeling of the RM-induced deformations of the PET image and

CT-based attenuation map in RM estimation and during PET image reconstruction

for accurate and artifact-free attenuation corrected PET images.

1.2.2.1 4D PET Image Reconstruction with Respiratory Motion

and Attenuation Compensation

We developed a 4D PET image reconstruction method with RM and attenuation

compensation to improve the image quality of 18F-FDG PET images for improved

small lung lesion detection [20, 21]. First, a reference respiratory gated frame was

chosen from the six equal-count respiratory frames. Then the PET image at the

reference frame and the RM from the reference frame to the other respiratory-gated

PET frames were estimated by minimizing the Poisson log-likelihood function. As

shown in Fig. 1.2, the RM-induced deformations of both the PET image and

CT-based attenuation map were modeled in the RM estimation and during PET

image reconstruction. Our method is applicable to respiratory-gated PET data from

current clinical PET/CT imaging procedures with only one CT-based attenuation

map. We solved the image reconstruction problem in two steps: (1) estimated the

RM using an iterative approach, and (2) modeled the estimated RM in a 4D OS-EM

image reconstruction algorithm [21] that achieved 6 ~ 10 times acceleration over

the 4D ML-EM algorithms proposed by others [22, 23]. The final estimated

RM-induced deformations were applied to transform and registered all the respi-

ratory gated frame images to the reference frame. The corresponding eight cardiac-

gated frames from within the transformed respiratory-gated frames were summed

resulting in the eight cardiac-gated image with respiratory compensation, that is,

without RM blurring effect.

In a practical implementation of the above method [24], the RM was estimated

from the 4D respiratory- gated PET images obtained without attenuation correction.

The estimated RM was used in the 4D image reconstruction shown in Fig. 1.2

without further update. It provided respiratory-gated attenuation effect that matches

the respiratory-gated PET images for accurate attenuation compensation.
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1.2.2.2 4D Image Reconstruction with Cardiac Motion Compensation

In CM compensation, a reference frame was chosen from the eight-frame cardiac-

gated images. As shown in Fig. 1.3, a B-spline non-rigid transformation and

registration was applied to each cardiac-gated image and registered it to the

reference frame and summed. The procedure was repeated at different cardiac-

gated frames in the cardiac cycle to form the CM compensated gated cardiac image

set.

1.2.2.3 4D Image Reconstruction with Dual Respiratory and Cardiac

Motion Compensation

The 4D image reconstruction with dual R&C motion compensation was achieved

by combining the RM and CM compensation described in Sects. 1.2.2.1 and

1.2.2.2. After estimating the accurate RM and respiratory gated attenuation maps

based on Sect. 1.2.2.1, 48-frame dual R&C gated images were obtained. For each

cardiac gate, the RM compensation described in Sect. 1.2.2.1 was used. The result

was RM compensated cardiac-gated images. Cardiac motion compensation was

achieved by applying the same approach in Sect. 1.2.2.2. The resultant eight-frame

gated cardiac images shown in Fig. 1.3 thus included both RM and CM

compensation.
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Fig. 1.2 A flowchart of the 4D image reconstruction method with RM and attenuation compen-

sation. A snap-shot CT image was acquired from which a static attenuation map was derived. A

reference respiratory gated frame was chosen. The updated PET image at the reference frame and

the RM from the reference frame to the other respiratory-gated PET frames were jointly estimated

by minimizing the log-likelihood function
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1.2.3 Evaluation of the 4D PET Image Reconstruction
with Respiratory and Attenuation Compensation

We evaluated the 4D image reconstruction method with respiratory and attenuation

compensation to two clinical applications. They were the detection of small lung

lesions and the improvement of image quality in gated cardiac PET images. In the

lung lesion detection study, we used realistic simulated 4D respiratory gated lung

PET projection data. In the gated cardiac study, patient data from a 13NH3 MP PET

study and a 18F-FDG cardiac PET study were used. The goal was to assess the

reduction of image resolution from blurring due to RM.

1.2.3.1 Evaluation Using Realistic Simulated PET Study with Small

Lung Lesions

We evaluated the 4D PET image reconstruction with respiratory and attenuation

compensation method using a realistic Monte Carlo (MC) simulated PET dataset

from the 4D XCAT (eXtended CArdiac Torso) phantom [25]. The 4D XCAT

phantom is an extension of the 4D NCAT (Nurbs-based CArdiac Torso) phantom

[26], which provides realistic models of the anatomical structures of the entire

human body based on the visible human data [27]. In addition, the 4D XCAT

phantom includes realistic models of normal RM based on respiratory-gated CT

data [28], and normal cardiac motion based on tagged MRI data. The cardiac

motion model in the new 4D XCAT is based on state-of-the-art high-resolution

Frame #1 Frame #2 Frame #3 Frame #4 Frame #5 Frame #6 Frame #7 Frame #8 

B-spline non-rigid transform and registration of all 8-frame 
gated cardiac images to each frame of the final gated 
cardiac image set with cardiac motion compensation 

8-frame gated cardiac images 

Frame #1 Frame #2 Frame #3 Frame #4 Frame #5 Frame #6 Frame #7 Frame #8 

8-frame gated cardiac images with cardiac motion compensation 

Fig. 1.3 In the CM compensation, a B-spline non-rigid transformation and registration was

applied to each cardiac-gated image and registered it to the reference frame and summed
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cardiac-gated CT and tagged MRI data [29]. A 4D activity distribution phantom

that modeled the uptake of the PET tracer in the different organs and a

corresponding 4D attenuation coefficient distribution phantom that modeled the

attenuation of different organs at the 511 keV photon energy were generated based

on the 4D XCAT phantom. In addition, three small lung lesions with increased

activity uptakes were inserted at different locations in the lung. The 4D activity

distribution also served as the truth in the quantitative evaluation study.

Realistic respiratory-gated PET projection data were generated from the 4D

activity and attenuation distributions using a combined SimSET [30] and GATE

[31] MC simulation software that took advantage of the high efficiency of the

former in computing the photon transport in the voxelized phantom and the ability

of the latter to model the complex detector geometry and imaging characteristics of

a clinical GE PET system [32]. The 4D PET image reconstruction method with RM

and attenuation compensation was applied to the simulated RM-gated projection

data. The results were compared to those obtained with conventional 3D and 4D

image reconstruction methods without motion compensation.

1.2.3.2 Evaluation Using Data from Clinical Gated Cardiac PET

Studies

We also evaluated the clinical efficacy of the 4D image reconstruction method with

RM and attenuation compensation using clinical 13NH3 MP PET and 18F-FDG

cardiac PET data. A GE Discovery VCT (RX) PET/CT system was used in the

patient studies. Prior to the PET scan, a low-dose CT scan was acquired from the

patient. In the 13NH3 MP PET study, ~370 MBq of 13NH3 was infused intra-

venously as a bolus over 10 s. List-mode PET data were acquired for 20 min. In

the 18F-FDG cardiac PET study of a different patient, ~370 MBq of 18F-FDG was

administered through IV injection. A list-mode PET data acquisition was performed

~60 min post injection. The 4D image reconstruction method with RM and atten-

uation compensation as described in Sect. 1.2.1 were applied to the acquired list-

mode data. The resultant MP PET and cardiac PET images were compared to those

obtained with the conventional image reconstruction method without RM compen-

sation. Specifically, they were evaluated for improved lung lesion detection from

the reduction of resolution loss due to RM blur.

1.2.4 Evaluation of the 4D PET Image Reconstruction
Method with Dual Respiratory and Cardiac Motion
Compensation

The evaluation of the 4D PET image reconstruction method with dual R&C motion

compensation was performed on the same clinical 13NH3 MP PET and 18F-FDG
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cardiac PET datasets used in Sect. 1.2.3.2. Here, the goal was to assess the

improvement of the quality of the gated cardiac PET images in terms of image

resolution and image noise.

1.3 Results and Discussion

1.3.1 Improvement of Small Lung Lesion Detection
with Respiratory and Attenuation Compensation

We evaluated the 4D PET image reconstruction with respiratory and attenuation

compensation method using a realistic simulated PET dataset from the 4D XCAT

phantom [19, 20] and the Monte Carlo (MC) method as described in Sect. 1.2.3. The

method included RM detection using the data-driven gating method as described in

Sect. 1.2.1. The results are shown in Fig. 1.4. The activity distribution of the 4D

XCAT phantom with three small lung lesions is shown in Fig. 1.4a. The

reconstructed PET images without RM compensation in Fig. 1.4b show the reso-

lution loss due to RM blur. Also the reconstructed images with RM and attenuation

compensation using the known RM from the 4D XCAT phantom (Fig. 1.4c) and

using the estimated RM (Fig. 1.4d) were compared. The results indicate the

effectiveness of the RM estimation method and the 4D image reconstruction

Fig. 1.4 Results from a simulation study to evaluate the 4D PET image reconstruction with

respiratory and attenuation compensation for improved lung lesion detection. A realistic MC

simulated PET dataset from the 4D XCAT phantom was used. A sample (Top row) coronal slice
and (Bottom row) sagittal slice through the lung showing three small lung nodules. (a) Activity

distribution of the 4D XCAT phantom. Reconstructed images obtained from using (b) the 3D

ML-EM method with no RM compensation, and the 4D ML-EM method (c) with modeling of the

true RM from the 4D XCAT phantom, and (d) with the RM estimation described in Sect. 1.2.1
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method with RM and attenuation compensation to reduce resolution loss due to RM

blur and to improve small lung lesion detection in lung PET images.

1.3.2 Improvement of Gated Cardiac PET Images
with Respiratory Motion and Attenuation
Compensation

We applied the 4D image reconstruction method with RM and attenuation compen-

sation to the clinical 13NH3 MP PET and 18F-FDG cardiac PET datasets described

in Sect. 1.2.3.2. The results are shown in Figs. 1.5 and 1.6, respectively. Figures 1.5a

Fig. 1.5 (a) Sample images from one of the six respiratory-gated frames and from selected sample

(Left) short-axis, (Middle) horizontal long-axis, and (Right) vertical long-axis slice images

obtained using a 3D OS-EM image reconstruction without any motion compensation from a
13NH3 MP PET study. (b) The sum of all six respiratory gated images from (a) showing the effect

of RM blur. (c) Corresponding sample images as in (b) obtained using the 4D OS-EM image

reconstruction with RM and attenuation compensation showing the reduction of RM motion blur

in the reconstructed images
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and 1.6a are sample images from one of the six respiratory-gated frames and from

selected sample short-axis, horizontal long-axis, and vertical long-axis slice images

obtained using a 3D OS-EM image reconstruction without any motion compen-

sation are shown. Figures 1.5b and 1.6b are the sum of all six respiratory-gated

frame images demonstrating the effect of RM blur. The corresponding images

obtained using the 4D OS-EM image reconstruction with RM and attenuation

compensation are shown in Figs. 1.5c and 1.6c. They show the reduction of

RM motion blur in the reconstructed images.

Fig. 1.6 (a) Sample images from one of the six respiratory-gated frames and from selected sample

(Left) short-axis, (Middle) horizontal long-axis, and (Right) vertical long-axis slice images

obtained using a 3D OS-EM image reconstruction without any motion compensation from a
18F-FDG cardiac PET study. (b) The sum of all six respiratory-gated frames from (a) showing

the effect of RM blur. (c) Corresponding sample images as in (b) obtained using the 4D OS-EM

image reconstruction with RM and attenuation compensation showing the reduction of RMmotion

blur in the reconstructed images
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1.3.3 Improvement of Gated Cardiac PET Images with Dual
Respiratory and Cardiac Motion Compensation

We applied the 4D image reconstruction method with dual R&C motion compen-

sation to the clinical 13NH3 MP PET and 18F-FDG cardiac PET datasets described

in Sect. 1.2.3.2. The results are shown in Figs. 1.7 and 1.8, respectively. Figures 1.7a

and 1.8a and sample images from one of the eight cardiac-gated frames and from

selected sample short-axis, horizontal long-axis, and vertical long-axis slice images

obtained using a 3D OS-EM image reconstruction without motion compensation.

Figures 1.7b and 1.8b show the corresponding images obtained using the 4D

OS-EM image reconstruction with dual R&C motion compensation. They show

the significant improvement in image quality in terms of improved image resolution

from RM compensation and much lower image noise level from the CM

compensation.

Fig. 1.7 (a) Sample images from one of the eight cardiac gates from selected sample (Left) short-
axis, (Middle) horizontal long-axis, and (Right) vertical long-axis slices images obtained using a

3D OS-EM with no motion compensation from a 13NH3 MP PET study. (b) Corresponding images

obtained using the 4D OS-EM with R&C motion compensation
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1.4 Conclusions

Three-dimensional (3D) statistical image reconstruction methods using iterative

algorithms and with models of the imaging physics and imaging system character-

istics have shown to provide significant improvements in both the quality and

quantitative accuracy of static SPECT and PET images. They have led to improved

clinical diagnosis and, by trading off the improved image quality, for reduced

patient dose and imaging time. In this work, we described newly developed 4D

statistical image reconstruction methods that provided RM and CM compensation

for further improvement in image quality and quantitative accuracy in PET images.

We evaluated the effectiveness of the 4D image reconstruction methods using

simulation and patient data.

Our results showed that a 4D image reconstruction method with RM and

attenuation compensation provided quantitative lung PET images with reduced

resolution loss due to RM blur and improved the detection of small lung lesions.

We also evaluated a 4D image reconstruction method with dual R&C motion

compensation using data from a clinical 13NH3 MP PET and a clinical 18F-FDG

cardiac PET study. The results showed 4D gated cardiac PET images with

improved image resolution from RM compensation and much lower image noise

level from the CM compensation.

The improved 4D gated cardiac PET images reveal anatomical details, such as

the papillary muscle and interventricular sulcus, of the heart that were not possible

with conventional 3D image reconstruction methods. The anatomical details

allowed the development of feature-based myocardial motion vector estimation

methods [33, 34] that overcame the aperture problem in traditional motion

Fig. 1.8 (a) Sample images from one of the eight cardiac gates from selected sample (Left) short-
axis, (Middle) horizontal long-axis, and (Right) vertical long-axis slices images obtained using a

3D OS-EM with no motion compensation from a 18F-FDG cardiac PET study. (b) Corresponding

images obtained using the 4D OS-EM with R&C motion compensation
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estimation methods. The accuracy of CM estimation will be further improved with

continued improvement of the 4D image reconstruction methods and of the imaging

characteristics in the next generation PET scanners that are coming into the market.

It will allow extraction of new information about the contractility of the heart and

provide additional diagnostic information for improved patient care.
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