Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

Abstract

The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch

    Similar works