2,768 research outputs found

    Motion constraint

    Get PDF
    In this paper, we propose a hybrid postural control approach taking advantage of data-driven and goal-oriented methods while overcoming their limitations. In particular, we take advantage of the latent space characterizing a given motion database. We introduce a motion constraint operating in the latent space to benefit from its much smaller dimension compared to the joint space. This allows its transparent integration into a Prioritized Inverse Kinematics framework. If its priority is high the constraint may restrict the solution to lie within the motion database space. We are more interested in the alternate case of an intermediate priority level that channels the postural control through a spatiotemporal pattern representative of the motion database while achieving a broader range of goals. We illustrate this concept with a sparse database of large range full-body reach motion

    A multimedia package for patient understanding and rehabilitation of non-contact anterior cruciate ligament injuries

    Get PDF
    Non-contact anterior cruciate ligament (ACL) injury is one of the most common ligament injuries in the body. Many patients’ receive graft surgery to repair the damage, but have to undertake an extensive period of rehabilitation. However, non-compliance and lack of understanding of the injury, healing process and rehabilitation means patient’s return to activities before effective structural integrity of the graft has been reached. When clinicians educate the patient, to encourage compliance with treatment and rehabilitation, the only tools that are currently widely in use are static plastic models, line diagrams and pamphlets. As modern technology grows in use in anatomical education, we have developed a unique educational and training package for patient’s to use in gaining a better understanding of their injury and treatment plan. We have combined cadaveric dissections of the knee (and captured with high resolution digital images) with reconstructed 3D modules from the Visible Human dataset, computer generated animations, and images to produce a multimedia package, which can be used to educate the patient in their knee anatomy, the injury, the healing process and their rehabilitation, and how this links into key stages of improving graft integrity. It is hoped that this will improve patient compliance with their rehabilitation programme, and better long-term prognosis in returning to normal or near-normal activities. Feedback from healthcare professionals about this package has been positive and encouraging for its long-term use

    What do Collaborations with the Arts Have to Say About Human-Robot Interaction?

    Get PDF
    This is a collection of papers presented at the workshop What Do Collaborations with the Arts Have to Say About HRI , held at the 2010 Human-Robot Interaction Conference, in Osaka, Japan

    Real-Time Character Rise Motions

    Full text link
    This paper presents an uncomplicated dynamic controller for generating physically-plausible three-dimensional full-body biped character rise motions on-the-fly at run-time. Our low-dimensional controller uses fundamental reference information (e.g., center-of-mass, hands, and feet locations) to produce balanced biped get-up poses by means of a real-time physically-based simulation. The key idea is to use a simple approximate model (i.e., similar to the inverted-pendulum stepping model) to create continuous reference trajectories that can be seamlessly tracked by an articulated biped character to create balanced rise-motions. Our approach does not use any key-framed data or any computationally expensive processing (e.g., offline-optimization or search algorithms). We demonstrate the effectiveness and ease of our technique through example (i.e., a biped character picking itself up from different laying positions)

    Learning to Navigate Cloth using Haptics

    Full text link
    We present a controller that allows an arm-like manipulator to navigate deformable cloth garments in simulation through the use of haptic information. The main challenge of such a controller is to avoid getting tangled in, tearing or punching through the deforming cloth. Our controller aggregates force information from a number of haptic-sensing spheres all along the manipulator for guidance. Based on haptic forces, each individual sphere updates its target location, and the conflicts that arise between this set of desired positions is resolved by solving an inverse kinematic problem with constraints. Reinforcement learning is used to train the controller for a single haptic-sensing sphere, where a training run is terminated (and thus penalized) when large forces are detected due to contact between the sphere and a simplified model of the cloth. In simulation, we demonstrate successful navigation of a robotic arm through a variety of garments, including an isolated sleeve, a jacket, a shirt, and shorts. Our controller out-performs two baseline controllers: one without haptics and another that was trained based on large forces between the sphere and cloth, but without early termination.Comment: Supplementary video available at https://youtu.be/iHqwZPKVd4A. Related publications http://www.cc.gatech.edu/~karenliu/Robotic_dressing.htm

    Morphology independent dynamic locomotion control for virtual characters

    Get PDF
    Physically based animation of virtual characters is an attractive technology for computer games. It enables characters to dynamically react to interactions with the environment. Existing dynamic simulation controllers are often complex to understand and manipulate, and so are of limited use for animators. This paper presents an extended spline-based control strategy similar to splines used in standard keyframe animation techniques. Unlike existing dynamic control strategies, this allows animators to modify the control system parameters in a manner similar to traditional kinematic animation techniques. A genetic algorithm is employed to produce the initial control parameters for the desired gait, and extend the parameters to enable sensory feedback. The controllers are simulated in a 3D environment and demonstrated for bipedal, tripedal and snake-like characters
    • …
    corecore