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Abstract— Physically based animation of virtual characters 
is an attractive technology for computer games. It enables 
characters to dynamically react to interactions with the 
environment. Existing dynamic simulation controllers are often 
complex to understand and manipulate, and so are of limited 
use for animators. This paper presents an extended spline-
based control strategy similar to splines used in standard 
keyframe animation techniques. Unlike existing dynamic 
control strategies, this allows animators to modify the control 
system parameters in a manner similar to traditional kinematic 
animation techniques. A genetic algorithm is employed to 
produce the initial control parameters for the desired gait, and 
extend the parameters to enable sensory feedback. The 
controllers are simulated in a 3D environment and 
demonstrated for bipedal, tripedal and snake-like characters. 

I. INTRODUCTION 
Developing animations for the locomotion of a virtual 

character is a time consuming task. Typically, the animated 
motion is created by hand using keyframes, or collected 
from a motion capture system.  Data collected from a motion 
capture system is then interpolated with splines to produce 
smooth transitions through the keyframes. Similarly, splines 
are often employed to interpolate hand-crafted animation 
data.  

The advantage of these approaches is that it provides 
animators direct control over the characters’ motions, 
enabling them to specify exactly the motion they desire.  
However, these kinematic approaches are simply snapshots 
of the dynamics of the character at a given point in time. As 
a result, the animations are well suited to non-interactive 
applications where the expected dynamic reactions from any 
interaction between the characters and the environment (or 
other characters) can be manually added to the animation. 

Interactive applications differ in that the interactions 
between objects cannot be reliably generated prior to 
execution and must be calculated as they occur. There are a 
number of approaches that can be taken to alleviate this 
problem. One approach is to emulate the physical 
plausibility of the motion by combining a suitable subset of 
transitions between frames from an existing key framed 
motion database [1]. Although this approach provides the 
ability to emulate a pre-recorded range of motions, it does 
not provide the full motion responses that a dynamically 
simulated character can provide [2].   
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An alternative approach is to employ the pre-generated 
kinematic animations until a situation occurs where a 
dynamic response is required. At this point, the state of the 
kinematic system is transferred to a full dynamic simulation. 
A simple form of this is commonly seen in computer games 
where rag-doll simulations (ie: uncontrolled dynamic 
characters) are employed when a character dies. This allows 
a physically realistic animation of a character falling down. 
Coupling a control system to the virtual character allows for 
a greater range of motions to be described.  Zordan [3] used 
a feed back control system to blend motion capture 
animations with dynamic motions.  

The switch from kinematic motions to dynamic motions 
requires instantaneous impulses to be applied at the 
beginning of the dynamic simulation. This creates 
difficulties in developing an appropriate control structure 
that can set the appropriate controller responses for matching 
and tracking the kinematic animation [2][3][4]. 

Finally, kinematic based animation can be completely 
replaced with a full dynamic simulation [4,5]. This allows a 
fully interactive animation and eliminates the problems 
encountered when trying to merge kinematic and dynamic 
animations.  Furthermore, this enables the automated 
generation of motions (eg: locomotion) and allows the 
animation and interaction of fantasy characters (eg: multi-
legged characters) [6]. Full dynamic simulation typically 
requires more complex control structures and makes the 
integration of existing kinematic animation techniques 
troublesome [4]. 

II. LOCOMOTION CONTROL SYSTEMS  
Human and animal gaits have been extensively studied, 

starting in the late 18th century with notable researchers 
such as Eadweard Muybridge [7]. The demand for control 
systems for legged locomotion was initially driven by 
robotics research [4]. As early walking robots were 
constructed, a system for balancing the robots was required. 
The most difficult legged system to balance are bipeds as 
they are generally unstable, especially in humanoid 
configurations. 

Statically balanced robots maintain balance by ensuring 
that the center of mass is within the supporting leg base area. 
As a result, statically balanced robots feature a small 
footstep, and slow speed. With further research into walking 
robots, dynamic walking was realized [8]. During dynamic 
walking, the center of gravity may lie outside the supporting 
leg base area during some periods of the walk cycle. The 
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removal of the static balance constraint allows for a greater 
range, faster and more realistic gaits to be achieved [8]. 

There are a number of control systems that are applicable 
to legged locomotion. Possible control systems range from 
simple oscillators [9] to control algorithms such as state 
machines [4], to neural networks [10][11]. The simplest 
oscillators consist of a set of sinusoidal function generators 
whose outputs are combined to generate the control signal 
for an actuator. These systems can represent a range of 
outputs by altering the phase and amplitude of the sinusoids 
[9]. Such systems are generally incapable of expressing the 
complexity required for sustained locomotion [12]. Thus, 
more sophisticated forms of control are desirable. 

A common technique for maintaining bipedal stability is 
the use of the Zero Moment Point (ZMP) constraint. The 
ZMP is the point where the sum of all moments is equal to 
zero. If the ZMP is within the support polygon formed by 
the feet, the character will be stable. If the ZMP leaves that 
region, the character will begin to fall. Using this constraint 
with the combination of pressure, sensors have been the key 
to the walking control of robots such as Honda’s ASIMO 
[13]. The disadvantage of this technique is that the ZMP 
constraint is too tight, resulting in limited gaits, and it will 
only apply to legged characters and cannot be applied to 
general morphologies (eg: snakes). 

Another common technique for locomotion control is the 
use of state machines [4]. This control strategy has been 
successfully demonstrated for a large range of morphologies 
and applications [4][14]. Yin et al. [4] presented a state 
machine based approach for the control of virtual bipedal 
characters. The disadvantage to the state based approach is 
that an appropriate number of states must be constructed for 
differing gaits and morphologies. Yin et al. inserted extra 
“dummy” states to the control system to enable the transition 
between different gaits for the same morphology. This 
approach would not scale to a general morphological 
configuration. 

Neural networks have demonstrated stable control for a 
variety of morphological configurations of both robots and 
virtual characters [10][11][15]. Typically neural control of 
legged characters mimics the central pattern generator seen 
in real animals. The automatic generation and optimization 
of locomotion gaits have been demonstrated for a variety of 
configurations [11][15]. This makes neural networks an 
attractive choice for controlling generic character 
animations. Tuning and tweaking the control system of a 
neural network is a very complex task, and it is not feasible 
to require animators to manually adjust the neural control 
parameters to achieve the motion they desire.  

III. SPLINE BASED CONTROLLER 
 
Each of the outlined control strategies has their 

advantages and disadvantages. Simple oscillators are not 
capable of expressing the range of motions required by most 
applications, and common algorithmic approaches are tied to 

the morphological or gait structure.  Neural networks 
provide flexible control, but are difficult to manually 
manipulate. 

A spline based control system provides a greater range of 
motions that can be expressed than simple oscillators, whilst 
also providing a control structure that is understandable and 
familiar to animators [16]. Like neural controllers, spline 
based controllers have been successfully demonstrated for 
the automated generation of gaits for simulated and real 
robots [16][17][18]. 

Splines are piecewise polynomial functions expressed by 
a set of control points [19]. There are many different forms 
of splines, each with their own attributes. There are two 
desirable properties for the control splines to posses: 

• Continuity, so that the generated control signal 
translates to smooth velocity and acceleration 
changes. 

• Locality of the control points, to reduce the 
influence of alterations of one control point to 
the overall shape of the spline. 

The spline controller comprises of a set of connected 
Hermite splines. Each spline can be defined by a variable 
number of control points allowing variable degrees of 
freedom. The function used to interpolate the control points, 
given starting point p1, ending point p2, tangent values t1 
and t2, and interpolation point s is shown below: 

 
f(s) = h1.p1+h2.p2+h3.t1+h4.t2 (1)

Where: 
h1=2s3-3s2+1 
h2=-2s3+3s2 
h3=s3-2s2+s 
h4=s3-s2 
 
Three connected splines are combined to form the overall 

control structure for one joint. The three splines are 
responsible for three different phases of the character’s gait. 
The initial phase is responsible for blending in the gait (eg: 
moving the character from a stationary position into a 
walking motion). The second set of splines contains the 
repeated cyclic information for the characters gait. And 
finally, the end spline is used to blend the gait out (eg: 
moving the character safely back to a stationary position). 

 

 
Fig. 1.  Example spline controller structure. 
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An example of a simple spline controller is illustrated in 
Fig. 1. The depicted spline indicates the controller’s output 
value for one degree of freedom (e.g.: joint servo). 

The number of control points required for the simple 
spline controller is given by:  
 

)( cia +⋅  (2) 
Where, 

a is the number of actuators 
 i is the number of control points in the initialization spline 
 c is the number of control points in the cyclic spline 
 

Cubic Hermite splines were implemented in the controller 
as they offer a number of desirable characteristics over other 
splines. The major advantage of the Hermite spline is that 
the curve passes through all the control points. As the 
position and tangent are explicitly specified at the end of 
each segment, it is easy to create a continuous cyclic curve. 
This allows for a control representation that is far simpler for 
humans to manipulate using a keyframing-styled approach, 
whilst still possessing the desired properties to allow fast and 
flexible gait generation. 

The output of the spline controller is coupled to a PID 
controller. A PID controller contains a proportional, 
derivative, and integral reaction to an error input, and is 
described in (3).  
   

(3) 

Where,  
   is the controller output, 

 is the error value given from the difference 
between the desired set point and the current value, 

   is the proportional term, 
   is the integral term, 
and is the derivative term 
 

If the spline control system is directly connected to the 
joint angles, then over time the accumulated errors from the 
open loop control causes the gait to deviate from the desired 
gait. This is illustrated in Fig. 2, where the characters torso is 
slowly dropping towards the ground. 

A. Sensory Feedback 
Without feedback the dynamic controller will animate in a 

manner very similar to that achievable by standard kinematic 
animation techniques. To produce an adaptive animation the 
control system must include feedback from the environment. 
This allows a character to react differently depending on 

whether it is walking along flat terrain, or walking up a steep 
incline. 

 In order to incorporate feedback information into the 
spline controller, another dimension must be added to the 
controller. The extended control points specify their 
locations within the gaits cycle time, and the feedback value. 
This results in a set of control surfaces for each actuator. The 
number of control points required for the extended controller 
is given by (4). Extending the controller in this form 
significantly increases the number of control points required. 
Fig. 3 illustrates a resulting control surface for one actuator.  

 
)( fcia ⋅+⋅  (4)

Where f  is the number of control points used to sample the 
feedback. 
 

The actuator evaluates the desired output value from the 
enhanced controller as a function of the cycle time, and the 
input reading from the sensor. The most appropriate sensory 
feedback was found to be the torsos inclination towards the 
ground plane. Thus, the resultant controller was expressed in 
terms of the percentage cycle time, the torsos inclination 
angle, and the output control signal. 

 

 
 
Fig. 3.  A spline controller extended to include feedback. 

IV. CONTROLLER EVALUATION 
A genetic algorithm was used to automatically generate 

and fit the desired characters gaits. To optimize the 
performance of the GA the gait was evolved in multiple 
phases [20]. 

The basic methodology for the genetic algorithm is 
presented below [21]: 

1. Randomly initialize a population of 
chromosomes 

Fig. 2.  Walking gait with open loop control 
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2. While the terminating criteria has not been 
satisfied 

a. Evaluate the fitness of each 
chromosome 

b. Remove the lower fitness individuals 
c. Generate new individuals, determined 

by a certain selection scheme, utilizing 
selected operations. 

Each of the splines control points values was encoded to 
an 8 bit fixed point number. The PID controller parameters 
were evolved in a separate phase, where each PID parameter 
was encoded to 16 bits. The spline control values were 
concatenated to create the chromosome. The genetic 
algorithm used roulette wheel selection, and a one point 
crossover and single bit mutate operator.  Each GA operated 
with a population of 50 individuals over 500 generations for 
automated gait generation, and 30 generations for gait fitting 
and PID generation.  

One of the most complex tasks in evolving a valid gait is 
the selection of an appropriate fitness function. The fitness 
function must return a single numerical value indicating the 
appropriateness of a solution with respect to the overall goal. 
Since there is no straightforward performance measurement 
for a good gait, the function must be expressed as a 
combination of the desired factors. 

Reeve [15] experimented with various legged robot 
configurations and investigated a number of fitness functions 
for evolving neural controllers. Although Reeve reports that 
the Speed5 fitness function (average speed of the walker 
over five seconds) performs adequately, improvement on the 
performance of the algorithm can be achieved through the 
use of more complex functions. Reeve proposed five 
different extended fitness functions: 

• FND – (forward not down): The average speed 
the walker achieves minus the average distance 
of the center of gravity below the starting height. 

• DFND – (decay FND): Similar to the FND 
function, except it uses an exponential decay of 
the fitness over the simulation period. 

• DFNDF – (DFND or fall): As above, except a 
penalty is added for any walker whose body 
touches the ground. 

• DFNDFA – (DFNDF active): This function 
incorporates features of the actual control system 
into its evaluation of the gait. The function 
evaluates the individual neurons and ensures they 
are active, and are not stuck at an on or off value. 

• DFNDFO – (DFNDFA oscillator): As above, 
with the added constraints that both the neurons 
and legs oscillate. 

 
Ziegler and Banzhaf [17] utilized fitness functions which 

compared the generated trajectory of a gait to the desired 
path. The trajectory was specified to include an initial 
acceleration, then a straight walk along the desired path, and 
a deceleration. The square difference of the actual walk from 

the desired was then summed over the duration of the gait 
and returned as the fitness value. In order to optimize the 
performance of the evolution algorithm, Ziegler and Banzhaf 
[17] introduced premature termination conditions to the 
fitness function. The premature termination condition 
ensured that the initial trajectory was within a valid range of 
the desired trajectory. Thus, if the desired trajectory were 
forwards movements, then any gait that produced backwards 
movement would be terminated. 

The basic fitness function implemented followed both the 
principles implemented by Reeve [15] and Ziegler and 
Banzhaf [17]. During the initial phases of evolution, the 
fitness is evaluated purely from the distance the character 
traveled forward minus the distance the character center of 
gravity lowered. This is a combination of aspects Reeve’s 
FND and Ziegler’s premature termination conditions 
[15][17]. During later phases of evolution, the average speed 
at which the robot moved and the distance the robot wavered 
from the desired path are incorporated. Finally, the distance 
the robot is at termination from its desired terminating point 
is taken into consideration to emulate the effect of Reeve’s 
DFND. 

The spline based control system was evolved for a number 
of robot morphologies. This included a basic bipedal 
character, a humanoid biped, a tripod and a snake character.  
The dynamics were simulated through the Physics 
Abstraction Layer [22][23] with Dynamechs [24], ODE [5], 
and Bullet physics library [26] as the back end simulators. 
The simple biped has large feet and lacks a complete torso. 
Each leg has three degrees of freedom: the foot, the knee, 
and at the hip. The android biped is a more realistic 
representation of human character, and has dimensions 
comparable to a human being. It has an additional degree of 
freedom at the hip allowing rotation around the sagittal axis. 
The tripod is a modification of the simple biped, with an 
additional leg and no feet. Finally, the snake is composed of 
a chain of rigid bodies, with 6 degrees of controllable 
freedom. 

The spline controllers were configured with four control 
points per cyclic phase and two for the blending phases. The 
number of control points was not altered for generating the 
locomotion in all the experiments. 

Fig. 4. illustrates an evolved walk cycle of a humanoid 
character. The character achieves locomotion by lifting and 
bending one of its legs, and stretching its other leg to propel 
it forwards. The bent leg is then placed on the ground, then 
the stretched leg is bent and the cycle repeats itself. 

TABLE I 
GENETIC ALGORITHM PARAMETERS 

Parameter Value 

Population Size 50 
Generations (automated, fitting) 500,30 
Crossover rate 70% 
Mutate rate 30% 

Selection scheme Fitness-proportional 
Encoding Binary, fixed point 
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Fig. 4.  Humanoid walking gait. 

 
A static walking gait for the simple biped is illustrated in 

Fig. 5. Fig. 6 demonstrates a dynamic jumping gait 
generated for the humanoid character. These results 
demonstrate that the spline based approach is capable of 
expressing simple walking animations, as well as more 
complex gaits such as jumping. Unlike other approaches, 
both spline controllers had the exact same configuration and 
did not require any changes to the controller structure (such 
as additional “dummy” states). They only differed in the 
control point parameters representing the spline control 
signals [4].  

This also demonstrates the ability for the spline control 
system to produce gaits that are not statically balanced, 
unlike control systems that enforce the ZMP constraint.  

 

Fig. 5. Static walking gait for a simple biped. 
 

 
Fig. 6. Jumping gait for a humanoid biped. 
 

Gaits for non-bipedal characters were also successfully 
evolved utilizing the spline control system. The most 
successful gait evolved for the tripod is illustrated in Fig. 7. 
The tripod achieves forward motion by thrusting its rear leg 
towards the ground, and lifting its forelimbs. The tripod then 
gallops with its fore limbs to produce a dynamic gait. Again, 
the controller structure was not altered to produce this 
motion, demonstrating that the spline based control system is 
independent of the characters morphology. 

 
 

 
Fig. 7. Galloping gait for a tripedal character. 
 

Since the spline control system is not dependent on 
particular rules (such as the ZMP, or foot contact conditions) 
it can be applied to non-legged characters as well. A snake-
like character’s movement was evolved. It produced the 
basic sinusoidal movement that is evident in real snakes.  
 

 
Fig. 8. Snake gait. 

 

 

 
Fig. 9. Walking gaits for a biped with altered morphology. 
 

Fig 9. depicts the same bipedal character based on the 
simple biped configuration. The dimensions of the biped 
have been altered to elongate the torso and legs to differing 
lengths.  The second set of illustrations show a walking gait 
for the same biped with longer legs. This demonstrates the 
ability of the spline controller to adapt to slightly different 
morphological configurations of the same character. 

Fig. 10.  illustrates the basic biped with an extended 
controller that incorporates the angular feedback from the 
torso. This enables the character to successfully navigate 
rugged terrain. 

The resultant spline control system is visualized in Fig. 
11. The control parameters in the spline directly represent 
the control points for the spline. This enables an animator to 
modify the resulting control signals directly in a manner 
already familiar to animators. Finally, Fig. 12 illustrates the 
increase in fitness for the evolution of a gait. 
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Fig. 10. Walking gait for a simple biped responding to alterations in the 
terrain surface. 
 
 

Fig. 11.  An example of the spline control signals for controlling the 
simple biped. 

 
Fig. 12. Increase in average and top fitness during the evolution of a 
walking gait. 

V. CONCLUSION 
A spline based control system is a flexible controller 

representation capable of expressing a variety of gaits for a 
number of different character morphologies. It is not limited 
to human-like bipeds, and can be applied to non-legged 
characters. A genetic algorithm can be employed to optimize 
manually created gaits, or to autonomously generate 
complete gaits. The controller can be extended to 
incorporate sensory feedback, and provides an intuitive 
representation that enables easier manual tweaking of the 
control parameters.  

There are many avenues to investigate further. Whilst the 
control system provided acceptable gaits for simple 
morphologies with simple sensors, more investigation is 
required for generating locomotion for complex 
morphologies and complex sensor configuration.  A number 

of enhancements and investigations could be made to the 
genetic algorithm and fitness functions to determine the 
optimal configurations. A fitness function system with a 
multiobjective evolutionary algorithm could provide users 
an intuitive method for generating gaits. Methods for quickly 
adapting the control splines to slight changes in morphology 
could be explored, and the ability to blend a wider range of 
behaviours together needs to be developed. 
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