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ABSTRACT 

Background: Generating locomotion for characters is a complex field with many challenges 

remaining for researchers to tackle. Whilst there has been various research undertaken into 

how to create diverse motion using physical simulation, inverse kinematics and motion 

capture, there is still little research on how to relate changes in virtual characters’ body 

shape to the way they walk. This is important as audiences are capable of detecting 

repetition of character appearance and walking styles. By relating generated walk cycles to 

the body morphology of characters we can improve their believability. And to achieve this 

using a dynamic and automated system would save animators time when needing to create 

a variety of believable characters. 

 

Objectives: This study will explore how people perceive gait to change over variations in 

body shape, how gait actually varies and whether it is possible to build a framework that 

believably correlates changes in gait parameters over changes in anthropometric 

parameters.  

Implementing this framework could then produce a tool for animators that generates a 

variety of virtual characters with believable variations in walking styles. 

The goal of this project is to improve the believability of virtual characters by relating virtual 

character’s body shapes to an appropriate walk cycle.  

 

Methods: 8 papers were analysed to generate 8 empirical appearance to motion trendline 

formulas. These formulas formed the basis of the scripted animation tool. 

The animation tool was then used to create a point light survey testing 6 motion parameters 

to test people’s perception of changes in motion over appearance.  

n= 59 participants completed the perceptual online video surveys.  

The animation tool’s formulas were updated with the results of the point light survey and 

another survey was created using character meshes.  

n= 69 participants completed the perceptual online video surveys.  

28 adult male gait patterns were motion captured and analysed using a Vicon motion 

capture suite. 
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5 parameters were analysed to have the strongest appearance to motion correlation and 

were sorted by order of perceptual dominance. These parameters were implemented in the 

scripted animation tool and a final perceptual poll was conducted.  

n= 96 participants validated the final animation tool using an online video survey. 

 

Findings: The empirical data analysis identified speed, stride length, step width, stance/ step 

phase and foot progression as motion parameters that change over increases in Body Mass 

Index (BMI).  

The point light perceptual survey found that changes to arm abduction, average arm bob 

and arm swing all produced motions associated with obese body morphologies. 

The character mesh perceptual survey verified that speed and walking base were motion 

parameters associated with changes in body morphology, whilst verifying previous 

parameter strengths and combinations. 

The actual motion capture sessions produced a framework of 5 appearance to motion 

formulas, ordered by perceptual dominance. The predictive correlations include: 

1. Preferred walking speed over height 

2. Average arm abduction over chest circumference 

3. Walking base over waist-to-height ratio 

4. Arm bob magnified over height 

5. Arm swing over body fat percentage 

A final perceptual video poll found that when asked to rank 4 different types of obese 

generated motion, participants voted the framework of anthropometric to locomotive 

parameters tool to be the most believable by a 38% majority. 

  

Conclusions: This study identifies 5 gait parameters that people have identified as being 

perceptually dominant. The motion capture analysis highlighted 5 gait parameters with 

significant correlations to appearance parameters. When implementing the chosen 

combination of appearance to gait parameters a significant majority of people ranked this to 

more believably represent an obese character walk, than a lean, obese and keyframe obese 

walk. An efficient and believable method for generating diverse locomotion that relates to 

the body morphology of the character has been created and validated. 
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1. INTRODUCTION  
In the field of animated films and games, there are often main characters that are 

individually modelled, animated or motion captured to imbue them with a sense of weight 

and believable motion. 

 

However there is usually the need to populate these scenes with a range of cloned 

background characters. To give the impression of a believable range of different characters, 

we can take a single character and vary it in a number of different ways to save on 

modelling and animation time. These variations can include by texture (Thalmann et al., 

2009), skin colour, clothing (Tecchia et al., 2002; Gosselin et al., 2005; de Heras Ciechomski 

et al., 2005; Dobbyn et al., 2006; Maïm et al., 2007) and  motion (McDonnell et al., 2008).  

 

However whilst much progress has been made into varying characters appearance and 

motion, a visual dissonance can occur when a cloned character has its body shape enlarged 

but its walking style is not adapted to match that change in a believable manner. A 

prominent researcher identified this as an area that is ripe for further study: 

 

'Future challenges in Animation Variety [include] the adaptation of animation clips to the 

various morphologies. This means for example the adaptation of walking to tall people, to 

fat people.' 

(Thalmann et al., 2009) 

 

We therefore investigate how to vary a character’s walking style to more naturally fit the 

shape of the bodies they are animating. For example modifying the walk cycle of a lean 

character to look like that of an obese one. This would retain the nuance of the base walking 

motion but modify it to look obese in an automated and efficient manner, saving animators 

time whilst retaining believability in the characters and the scene. 

 

The intended use shall be for pre-rendered animation scenes, not real-time interactive 

environments, so we present a semi-automated approach to generating locomotion related 

to appearance.  
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1.1. Research Problem  
The problem at the core of this investigation is how to automatically generate a variety of 

walking motions that believably relate to body shape. This is challenging as currently virtual 

characters reuse the same walking clips irrespective of their body shape as it is costly and 

time intensive to generate original and matching clips from scratch. However, applying a 

thin character’s walk cycle onto an obese character can look incongruous and break the 

audience’s belief in the realism of the animation.  

 

To make this adaptation of one motion to another character (retargeting) more believable 

we need to understand the perceived and actual relationships between changes in body 

shape and gait. We can then modify gait parameters of that lean character’s walk, like speed 

or step width, to give the moving perception of a differently weighted character. 

Thalmann et al., (2009) highlighted that there is a limited understanding in how changes in 

people's body shape affects their walking gait, therefore there is a need to study and test 

these relationships to improve the dynamic generation of diverse, virtual characters’ 

walking styles. 

1.2. Why it is Important 
Understanding the relationships between changing body morphology and walking gait is 

important, as animated films and games need to generate diverse characters that walk in a 

believable manner relating to their body shape. Walking is the motion primarily investigated 

as it is commonly used in many animation and crowd simulation systems and it has already 

been heavily researched in the field of gait analysis. 

 

Humans are adept at identifying the naturalness of human motion (Ren et al., 2005) so 

when a lean character’s walk animation is simply retargeted onto an obese character, the 

incongruity breaks their suspension of disbelief, in terms of the realism of the motion and 

the believability of the character. By studying these relationships we can assist animators by 

generating more believable characters driven by actual data, so that viewers are more likely 

to remain immersed within the virtual scenes and not become distracted by mismatched 

animation. 
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1.3. Research Contribution 
By studying the perceived and actual changes in locomotion over increases in body 

morphology we can define the most perceptually dominant motion parameters and 

quantify the actual relationship between body shape and movement. This forms the basis of 

the locomotion model, which is a framework that predicts motion parameters based on 

given appearance parameters. Finally this can be implemented into an animation tool that 

automatically and believably generates locomotion based on real world data. This research 

therefore makes three main contributions to knowledge.  These include:  

 

Figure 1-1 - Contribution to Knowledge 

1. An empirical study defining the perceived and actual changes in full body gait over 

increases in obesity. By understanding the trends that relate changes in body shape 

to changes in locomotion, animators can improve their practise when creating a 

diversity of characters and their respective animations. 

2. A relaxed model of locomotion that determines how changes in specific and 

generalised body anthropometrics affects generalised and specific aspects of walking 

gait. This model could be applied in a variety of fields and software uses to simulate 

a range of body shapes and walking styles. These appearance-to-gait relationships 

shall also be prioritised in order of those that are perceived to be most perceptually 

believable. This helps animators understand the most perceptually effective aspects 

of gait to focus on when creating or modifying characters. 

3. An animation software tool developed, tested and validated that successfully 

implements the locomotion model to believably retarget lean walk cycles to appear 

to match the gait of an obese and/or taller looking characters. This will assist 
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Study

1. Empirical 
Study

2. Locomotion 
Model

3. Animation 
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animators and motion capture artists to efficiently retarget lean locomotion clips to 

more obese or taller characters in a scientifically accurate and believable manner. 

1.4. Hypotheses   
To address the research problem of how to automatically generate a data-driven variety of 

walking motions that believably relate to their body shape, a number of hypotheses are 

posed to focus the direction of the research project and methodologies: 

 Some locomotive gait parameters are more perceptually dominant when viewing 

characters with different body morphology (e.g. obese /taller). 

 A simplified model of locomotion can be derived from the analysis of walking gait 

data. 

 A scripted animation tool can use the data-driven model of locomotion to 

automatically modify the walk cycle of a lean character to appear to be that of a 

character with differing body morphology. 

 A data-driven model of locomotion can modify lean locomotion to a different body 

morphology, more efficiently and as believably using a scripted animation tool than 

motion capturing or key-framing new walk cycles. 

1.5. Scope of Research 
The primary research questions to be addressed by this project include: 

 What is the order of priority for the most perceptually dominant motion 

parameters? 

 What aspects of gait change over increases in body appearance? 

 Is it possible to modify aspects of walking gait to efficiently and believably match the 

appearance of increasingly deformed character morphology? 

 

Areas that are outside of the scope of this current research are:  

 Complex non-locomotive motions such as jumping, fighting, dialogue etc.  

 As work has already been undertaken in modelling internal muscular (Kohout et al., 

2012), skeletal (Magnenat-Thalmann et al., 2004; Lee et al., 2009) and fat structures 
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(Lee, 1995; Boulic, 1995; Scheepers, 1997; Aubel, 2000) this shall not be necessary to 

explore.  

 The generation of diverse characters and motions has applications in crowd 

simulation, however, the techniques related to this field such as path planning, 

steering, and decision making are outside of the scope of this current research.  

1.6. Structure of Thesis 
This document reports on the research conducted in exploration and support of the 

research problem and thesis. Chapter 2. analyses the current research in the related fields 

of Appearance Diversity, Motion Diversity and the Effects of Obesity on Gait. Chapter 3. 

explains early research using previously published data on the relationships between 

appearance and locomotion. Chapter 4. and 5. both assess the dominance of certain 

locomotion parameters on the perception of obese gait. Chapter 6 analyses the actual 

correlations between appearance and locomotion parameters. Chapter 7. compares the 

results from the previous three chapters to create the simplified, data-driven model of 

locomotion, ordered by perceptual dominance. Chapter 8. details the implementation of the 

animation framework into a scripted animation tool, its perceptual testing and validating 

results. Chapter 9. summarises all findings and potential for future work whilst Chapter 10. 

recommends areas for future work. 
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2. LITERATURE REVIEW  
The following Literature Review explores research in the related field of virtual agents’ 

diversification to provide an overview of its approaches, evaluation and necessity. Current 

research about techniques for varying appearance diversity and motion diversity, motion 

retargeting, human motion perception and the effects of obesity on gait are all reviewed.  

 

The aim for virtual character diversification is to reduce the audience’s ability to detect 

cloned characters and increase audience immersion. Whilst locomotion diversity not 

appearance diversity is the main focus of this research project, it is reviewed as it has a 

strong influence on the perception of variety. The most effective and adaptive approach to 

appearance diversity also needs to be determined as this needs to be modelled in 

conjunction with modelling motion diversification. 

 

The latest research into motion diversification is then extensively reviewed to assess the 

most effective and adaptive, method to modify locomotion for the scripted animation tool. 

This is needed to test out our framework of anthropometric to locomotive parameters.  

 

Perception of human motion is reviewed to prioritise the gait parameters that have the 

most dominant effects. This is to ensure we build a framework that can create diverse and 

believable motion. 

 

Effects of obesity are subsequently reviewed to catalogue the previously recorded changes 

of gait parameters over increases in body morphology. This forms the first contribution to 

knowledge; an empirical study of the changes in gait over increases in body morphology. 

These trends are later analysed to inform the basis of the scripted animation tool and are 

tested for their perceptual strengths. 

 

After summarising the limitations of the material reviewed, an extensive catalogue of 

metrics are reviewed to assess their appropriateness for measuring real world participants 

and for modelling on virtual characters. 
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2.1. Appearance Diversity 
This section reviews the current research about people’s ability to detect appearance clones 

and the techniques that have been explored to differentiate agents’ appearance within 

virtual environments.  

By reviewing appearance diversification techniques this can inform our methodology to 

change body morphology in a dynamic way that can drive changes to walking gait. 

 

The perceptual impact of homogeneity in virtual crowds can lead to a break in viewers' 

suspension of disbelief as they identify repeated cloned patterns. We propose that this is 

important as a lack of belief in the authenticity of virtual characters undermines the belief 

and purpose of the scene and media that it is being used in. 

 

Research has shown that modifying agents’ appearance has an impact on viewers’ 

perception and speed at detecting identical looking clones (McDonnell et al., 2008). In a 

matrix of twelve identical agents, the appearance clones could be picked out in an average 

time of 5.7 seconds whereas a modulation of garment colour more than doubled this time 

to 12.3 seconds. Diversification of appearance is proved to be important in reducing clone 

detection and therefore improving believability. 

 

A method in varying agent appearance includes texture (Thalmann et al., 2009) and colour 

modulation of skin or clothing (de Heras Ciechomski et al., 2005; Dobbyn et al., 2006; 

Gosselin et al., 2005; Maïm et al., 2007; Tecchia et al., 2002). This is computationally 

efficient and effective at bringing perceptual variety to crowds, however, these techniques 

do not address body shape or motion variety so the agents are of the same shape and 

movement. 

 

Thalmann et al., (2009) highlighted the problem of variety in order to simulate realistic 

crowds. Thalmann varied the height of human meshes by scaling the skeleton, bones and 

mesh. He discussed a FatMap technique to modify the body shape. This required the user to 

paint an extra grayscale UV texture of the character with darker areas representing 

increases of body fat and where the mesh would be deformed. 
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Figure 2-1 - Model and greyscale FatMap texture (Thalmann et al., 2009) 

Whilst this saves time rather than manipulating each vertex, it is still a manual modification 

per character and is based only on the user’s intuition of how characters vary in weight as 

opposed to any biological constraints. As the texture is grayscale this limits only 256 height 

values for each texel which means that the user must predefine maximum values on the 

‘fatScale’, as opposed to having the freedom to select any value or by biological constraints. 

Theoretically these simplified height values could be used to modify the walk cycle. 

Direction of vertex deformation was also based upon the weighted normal of the bones 

influencing it. The drawback to this approach is that deformations are not necessarily 

rounded or based upon biologically realistic adiposity deposition patterns or topographies. 

Thalmann et al., (2009) concludes that the future challenge remains of how to modify body 

shape, gait and animation style to the ‘fatWeight’. 

 

Lyard and Magnenat‐Thalmann (2008) presented methodologies to automatically create 

human body surfaces using a database of externally and internally scanned human bodies. A 

template model was used to identify landmarks and topographies of the scanned models. It 

was then possible to interpolate between all of these models. An algorithm then fits and 

rescales the template skeleton based on the distance between landmark areas. This, 

however, relies on cumbersome medical scanning technology and a variety of subjects 

available to be scanned to create a sample set. Also whilst the skeleton is rescaled to 

accommodate the interpolated models, there are no other correlation between increases in 

body mesh volume and its effects on locomotion. 

  



22 
 

Magnenat-Thalmann et al. (2004) explored methods for capturing the shapes of people, 

parameterization techniques to model the variety of body shapes and how the body moves. 

One method for modelling body shape variety, Spreadsheet Anthropometry Scaling System 

(SASS) (Azuola et al., 1994) used anthropometric data in spreadsheet form to automatically 

create characters. Similarly Seo et al. (2003) used statistics to drive body modifications using 

shape parameters like fat percentage. The technique of using body size data is to also be 

utilised in our proposed solution by using anthropometric data to scale body mesh regions. 

 

The work of Kasap et al. (2007; 2008; 2009; 2010) has proven to be relevant as Kasap 

continues to explore the generation of human body models using anthropometric 

measurements. Kasap’s approach is to divide the template into body segments 

corresponding to ISO-7250 and ISO-8559 standard clothing measurement landmarks. These 

segments are deformed using different methods depending upon their region and blended 

to the desired shape with the skinning information kept intact and the skeleton scaled 

accordingly. However, there is no guide as to the rates by which to deform body segments 

according to adiposity or muscle gain. Whilst Kasap’s techniques for body segment 

deformations are useful, this approach still only generates a variety of agent body shapes, 

and does not address how increases in body deformation affects locomotion. 

 

Assassi et al. (2012) presents an alternative to the skin deformation method using body 

scans, MRIs, motion capture data and physics simulations. Whilst the multi-layered 

approach sounds comprehensive, the muscles and fat are combined into a single tetrahedral 

mesh, which may not be accurate when modelling the motion of obese characters. No 

attempt at avoiding self-penetration of meshes is considered as the underlying motion is not 

altered. 

 

Ramos & Larboulette (2013) presents a method where the movement of bones drives 

muscle contractions which dynamically deform and slide under skin surfaces. Whilst 

computationally efficient, the effect is not particularly novel and fails to take into account 

adipose tissue. Changes in body morphology or muscle mass are not reflected in changes to 

gait parameters. However this method could combine with our appearance to motion 

framework as part of a multi-layered approach encompassing bone, muscle, fat and skin. 
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Koo et al. (2015) proposes a statistical framework for parametric modelling of human body 

shapes. This uses linear anthropometric parameters for example-based synthesis. A 

database of 80 male and 80 female body scans was used for training to derive 63 landmarks 

and 15 joints to segment the body, parameterize body shapes and eventually generate a 

variety of poseable, body shape models. This combination of anthropometric landmarks 

derived from the large 'SizeKorea' database is undoubtedly richer than our sample set 

however crucially, no corresponding motion capture locomotion data is included for 

analysis. 

 

Iwamoto et al. (2015) presents a voxel-based lattice model to deform characters at the 

bone, muscle, fat and skin layers. Whilst the multi-layered approach is more comprehensive 

than attempts by the likes of Assassi et al. (2012) the end result appears gelatinous and not 

structurally robust. Tension parameters could still be tightened however this method still 

fails to model biomechanical effects such as COM, balance and avoidance of self-

penetration. 

  

A review of these techniques demonstrates a range of methods to effectively create a 

diversity of characters that appear different. However, each technique to create or diversify 

appearance has no influence or relationship with the characters’ walking style. By 

completing an empirical study into appearance diversification techniques we can create an 

appearance-locomotion model and apply it to an animation tool that not only diversifies 

appearance but also walking style.  

2.2. Motion Diversity 
This section reviews the current research about diversifying character motion within a 

virtual environment. Human’s ability to identify cloned motion presents a challenge in how 

to bring believable locomotion amongst virtual crowds. Whilst creating new walk cycles, 

modifying existing ones or recording more motion capture data is time consuming, there is 

research into animating walk cycles procedurally. These techniques are assessed to 

understand their limitations and where there is opportunity to improve upon them and 

relate them to appearance. 
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Procedural animation is automated, flexible and less memory intensive than motion 

capture, however, it is also considered less believable and more CPU intensive than motion 

capture or animation (Hertzmann et al., 2009), so we shall not currently explore this 

approach. 

 

Lyard and Magnenat‐Thalmann (2008) tried to address deformations of motion based on 

deformations to the character’s body. This approach adapts the template motion to avoid 

self-penetration with some added character rebalancing i.e. avoiding model clipping when a 

body is deformed, the way an obese person might adjust their movements to avoid chafing 

around their limbs. Ho et al. (2013) built on this with an IK system that avoids self mesh 

penetration by monitoring and regulating topology changes. This approach emulates some 

of the issues that obese face in avoiding real world chafing of body parts. However not all 

gait adjustments are due to this problem; e.g. increased step width, foot progression, spinal 

erectness and reduced walking speed may all be to better maintain balance and conserve 

energy. This is still an interesting approach that could marry our data driven framework with 

topology-based motion synthesis. Oshita (2017) proposed a lattice based method to deform 

human motion to avoid collision with objects. Whilst an interesting approach, this deals with 

external objects and not avoiding mesh self-penetration. 

 

Gu et al. (2011) created dynamically changeable variations for motion captured clips such as 

walking, running and waiting, using the publicly available motion capture database from 

Carnegie Mellon University. This proved computationally expensive so the number of 

motion 'styles' was limited and they focused on how to spread motion styles contextually 

throughout a crowd. This approach is novel and effective in making clone detection more 

difficult, however, the motion variations bore no relation to the height or weight of the 

character, an area we are looking to improve. 

 

Thalmann et al. (2009) used a motion capture based locomotion engine developed by 

Glardon to generate and adapt many different animations. Lack of crowd variety proved 

most noticeable in the foreground so Level of Detail (LoD) with the appearance of meshes 

was used. Thalmann deformed human meshes in the forefront, used pre-computed static 

meshes in the mid-ground and used pre-computed 'imposters' in the background. This 



25 
 

principle was dynamic and scalable and could be used to improve computational efficiency, 

however, by Thalmann’s admission this method still did match the motion of certain 

characters to their appearance or weight. 

  

A review of these techniques demonstrates a range of methods to modify motion or give 

the illusion of motion diversity. However, these techniques do not diversify a range of gait 

parameters in relation to anthropometric parameters.  

2.3. Motion Editing 
As we have previously reviewed techniques to modify appearance and motion we shall now 

focus further on the technique, limitations and opportunities of motion editing to see how it 

can be related to body morphology. 

 

Motion editing is the act of changing the movement of an object (Gleicher, 2001). Through 

the process of changing an existing motion it would be necessary to preserve the original 

motion as well as adding new features to it. Constraint-based motion editing defines some 

of the features that are to be preserved or changed. Extending or adapting this technique 

when modifying motion by weight parameters would be useful to consider. A blending 

operation applied to a motion does change it (and is therefore an editing operation) 

preserving some aspects of the original, but does not explicitly describe the operation in 

terms of features of the motion. As we are initially focussing on locomotion we do not need 

to blend or concatenate different motion clips, however, this is worth considering for future 

use. 

2.3.1. Key Frame Animation/ Densely Keyed Motion capture Animation 

Traditional animation systems allow users to set key poses to be interpolated between. 

Gleicher (2001) refers to this as per-key inverse kinematics as the solver tackles the spatial 

constraints on each key, changing each pose individually and independently of other frames 

(although other frames may be considered). This method does not enforce or guarantee any 

constraints other than the keyframes. The animator can use a small number of key frames 

to describe the motion which can then be smoothly interpolated. However, this can prove 

problematic as these key frames are not always at semantically relevant places, making 
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temporal controls somewhat artificial. Whilst this may prove a useful approach when 

working with sparsely, and meaningfully keyed animation, this would prove a challenge to 

produce smooth modifications on densely keyed motions such as motion capture data. 

 

Bindiganavale (2000) develops a representation for the unstructured data by identifying 

extreme motions as key poses, applying IK to them and interpolating between them. This 

means events can be preserved and not destroyed. However, this approach may overlook 

some of the believable subtleties of motion outside of extreme poses. As motion capture is 

densely keyed and we are aiming to modify gait parameters such as stride length then we 

shall need to identify extreme poses. 

2.3.2. Motion Warping 

Motion warping (Witkin and Popovic, 1995) is a technique for editing motion capture or key 

framed animation by warping the motion parameter curves using just a few keyframes. The 

modification can be efficient and radical. Gleicher (2001) describes it as motion warping plus 

inverse kinematics (MW+IK), as an IK solver must handle the spatial constraints once the 

motion warp is keyed. Whilst efficient there is only spatial control at keyframes and 

temporal constraints are also tied to the amount of spatial constraint keys. As motion 

warping is a geometric technique without any understanding of the motion’s structure some 

warps can look distorted and unnatural. It can also be difficult to enforce geometric 

constraints between keys. Animation systems such as Softimage (2015) do provide simple 

curve fitting and control point adjustments for animation clips as a whole, but not 

deformation of individual limbs, which could limit our ability to fully relate motion 

diversification to body appearance. 

 

Perlin (1995) used a motion blending technique to smoothly concatenate procedural 

motions using curves. Perlin suggested that this approach could be applied to motion 

captured data too. Whilst this was a consideration, the library of extreme motion clips that 

would be needed to be recorded, traversed and transitioned would be inefficient. 

 

Rose et al. (1996) explored the generation of motion transition between segments of human 

body basis motions using spacetime and inverse kinematic constraints. Wang and 
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Bodenheimer (2004) went on to develop a method for determining a believable length for 

these motion transitions, finding that viewers preferred their automatically generated blend 

lengths over a fixed-length blend.  

 

Hsu et al. (2005) developed a technique to translate motions into a different style by 

learning from input similar motions, matching similar poses and using iterative motion 

warping to modify them. Without accompanying anthropometric data we cannot 

understand and replicate the correlations with body morphology. Whilst this method allows 

the training for modification on trained generalised styles, specific gait parameters are not 

directly analysed or extracted. 

 

Motion transitions are necessary for large libraries of different types of motion clips. 

However, we are immediately interested in only one type of motion; a looping two-step 

locomotion clip whose start and end point should be matched up with minimal linear 

blending.  Once we have identified extreme poses we shall then use motion warping to 

evenly stretch the inbetween keyframes. 

2.3.3. Per- Frame (sample) Method 

Gleicher (2001) likens this method to the per-key method but where the keys are densely 

and regularly sampled such as an algorithmically generated animation or a motion capture 

recording keyed at every frame. The challenge in the per-frame method is to enforce 

constraints whilst modifying each frame individually. As our research is looking to record 

and then edit densely sampled motion capture data this presents a challenge that may need 

to consider hybridising some of the currently discussed motion editing approaches. 

2.3.4. Online Motion Editing/ Retargeting 

In games systems, virtual environments or performance animation, motion needs to be 

captured and edited in real time (Choi & Ko, 1999). These systems must work per-frame 

with inverse kinematic constraints being solved through linearization. Where there are little 

constraints the system tries to match joint angles as closely as possible from one character 

to another (Gleicher, 1988). As we look to base obesity related motion diversification on 

motion capture data of real subjects, this per frame motion retargeting technique will likely 

be required. 
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Shin et al. (2001) shows how to apply motion data to characters of differing sizes in a real 

time system. A Kalman filter technique reduces noise and enforces temporal constraints, a 

high performance inverse kinematic solver ensures end-effector constraints are met, and an 

importance metric is used to prioritise between tracking the end-effectors and joint angles. 

Unlike the system of Choi & Ko (1999), this only tracks end-effector positions when they are 

relevant, preferring to match postures at other times. If believability is maintained this could 

be considered as a more efficient approach to diversifying motion. 

 

Hecker et al. (2008) introduced a system that retargets animated motions to characters 

created by users with highly varied morphologies and body structures. Animators create 

their animations and specify the semantic aspects of the animation. This data allows the 

motion to be generalized and then at runtime, specialized for retargeting onto different 

character morphologies. This method proved to be a highly sophisticated, flexible and 

effective animation system able to retarget animation to characters with completely new 

structures. The characters gaits, although tuned by animators and having procedural 

secondary motion added, were still synthesized using an inverse kinematic solver to pose 

the character at every frame. Whilst the motion adapted to new structural hierarchies this 

simulation did not reflect changes in body adiposity, as it did not recognise volume or 

boundaries. However, this method could possible by extended to incorporate such factors. 

 

Neff & Kim (2009) introduced a system to edit motion by style. This was achieved by 

rotating  wrist, ankle, COM and pelvis joints. Balance is adjusted with foot constraints. The 

system even allows correlations between modifying the position of body parts however this 

is more of an artistic or stylistic choice than one based on any kind of morphological trends.   

Whilst this is a flexible and accessible system even for non-animators, the number of 

editable motion parameters are limited for simplicity and the stylistic modifications are 

arbitrary and not based on any appearance to motion correlations. 

 

Feng et al. (2013) created an automatic character animation pipeline which included a 

skeleton joint mapping system, motion retargeter, constraint enforcer and the ability to 

transfer stylised behaviour sets. However no behaviour set exists that correlates 
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anthropometric and obese variations in body morphology to gait variations. This remains a 

potentially useful future application for our appearance to motion framework. 

 

For our research we will be looking to retarget the motion of lean character to an obese 

character with an identical structure (connectivity of limbs, types of joints degrees of 

freedom) whilst applying further motion editing and warping to it. 

2.3.5. Spacetime Constraint/ Optimization 

Spacetime constraints are a method for creating character animation. It does not look at 

individual frames but the solver computes an entire motion using equations considering 

constraints on the entirety of the clip. The animator specifies the character’s physical 

structure, the physical resources and forces available to accomplish the motion, the space 

and timing that the action must take place within, constraints specifying the action, any 

obstacles of movements and how the movement should be carried out. It is then up to the 

physical system to use the constraints and Newton’s Law to optimize a physically valid 

motion (Witkin and Kass, 1998; Gleicher, 1997). 

 

Spacetime constraints can be useful to constrain footsteps at a given place. As weight gain 

affects parameters such as stride length and step length, a footstep constraint may be 

useful to implement, as may the peaks of non-contact cyclical movement such as arm 

swings. For the needs of our research problem, improving believability is the goal so that 

motion must be retargeted by data and not physically driven. However, a constraint could 

be mathematically derived and expressed from data analysis. 

 

Simulating muscle forces is possible, however, the simulation of adipose tissue adds an extra 

layer of complexity in modelling the motion of the fat, its effect on the rest of the body and 

the muscular-skeletal reactionary forces involved. For larger crowd scenes this would 

continue to prove computationally taxing. The believability of motion depends on the 

correct modelling of all of the internal and external forces and constraints. Whilst we can try 

our best to model this as fully as possible, we would argue that only by recording actual 

motion captured data and modifying it based on trends can we provide a realistic and 

believable representation of motion changing over increases in weight. 
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Choi & Ko (1999) retargets the motion of one character to another in real-time using inverse 

rate control (Whitney, 1969) to compute the changes in joint angles according to the change 

in end effector positions. Kinematic redundancies of the animated model are used to 

minimize the joint angle differences in the original character, enabling Choi to preserve the 

original motion characteristics whilst performing slightly different motions to other 

character in real-time. This proved useful for previewing motion capture sessions on target 

characters to provide better results. Useful by-products of Choi’s OMR algorithm also 

appeared to be an improvement in preservation of high frequency detail, accuracy in 

measurement of joint angles and end effector positions. As our research will need to 

measure biomechanical parameters accurately this technique could help with our 

measurement procedure. 

 

Tak and Ko (2005) presents a constraint-based motion editing technique that converts a 

captured or animated motion to a physically plausible motion according to specified 

kinematic and dynamic constraints. This works on a Kalman filter per-frame basis rather that 

the whole of the clip which means it is much quicker and more suitable for real time 

applications. The Kalman filter handles position, velocity and acceleration as separate 

variables which can create errors in motion so a least-squares filter is added to smooth out 

jerkiness as it is a curve fitting procedure. This flexible method is worth exploring as the 

motion capture data we will capture will be sampled and modified per frame and may need 

to be modified by certain constraints. 

 

Torresani et al. (2007) explores a method of motion sequences generated from space-time 

interpolation of motion capture data to learn motion styles. These motion styles are 

described using the Laban Movement Analysis notation form. Whilst this approach can 

generate stylistic variations of a given action, the LMA theory is not precise enough to meet 

spatio-temporal constraints or morphology to gait parameter correlations. 

 

Kim & Neff (2012) generate new motion paths for input locomotion clips that adjust feet 

and blend lengths for the loops based on input walks. Their system automatically detects 

walk cycle loops based on foot -plants. This derives phases of locomotion, warping the 
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motion to paths and constraining foot placements to these phases. As our research focuses 

on simple locomotion clips, theoretically this could extend the use of our framework by 

allowing variations in paths, turns and speed. However without meaningful correlations 

between body morphology and gait parameters, these motion variations might appear 

unrealistic. There is the opportunity to complement this system with our appearance-

motion framework 'style' to provide a greater degree of realism and flexibility. 

 

As Perlin (1955) ultimately noted, physical based simulation is considered less natural. 

Whilst a hybrid data-driven, spacetime constraint method is an area worth further 

investigation, until further comparative studies are made we shall focus on data-driven 

methods. 

 

A review of these techniques to modify locomotion shows a range of possible approaches to 

build upon when relating walking styles to body shapes. A solution for modifying motion in 

the animation tool would need to work with densely keyed data like motion capture. 

However, as our animation tool shall be based on specific motion parameters defined by our 

locomotion model, our approach shall also need to identify key poses and motion edit 

between them. Where there are spacetime constraints our tool shall need to use an IK 

solver to manipulate keyframes in a non-destructive manner. 

 

We have reviewed a range of methods to effectively modify motion. However, each 

technique has little relationship with the characters’ body morphology. By completing an 

empirical study into this relationship we can create an appearance-locomotion model and 

apply it to an animation tool that not only diversifies appearance but also walking style. 

  

2.4. Perception of Human Motion  
Understanding human perception is also important as we are trying to relate perceivable 

differences in walking styles to body shapes in a believable manner. This can help us 

prioritise which body areas have most perceptual impact when analysing and modifying 

their motion in our empirical study and locomotion model. As humans can detect identical 

looking characters in a crowd and are also able to detect characters with identical 
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movements, it is important we move beyond cloning walk cycles to creating more diverse 

and believable ones.  

 

Research has shown that modifying agents’ motion has an impact on perception, albeit to a 

lesser degree than appearance. This research also showed that particular characteristic walk 

cycles were significantly easier to detect (McDonnell et al., 2008). This indicates that the 

more extremely modified the characters, the more attention needs to be paid to 

differentiating or randomizing aspects of their movements. To optimize the process, fewer 

differentiations between motion modifications in more generic appearance modified 

characters may be less noticeable. This could be experimented with further to improve the 

speed of the animation tool. 

 

We can perceive people’s gait by the dimensions of their underlying skeleton and the 

dynamic qualities of its movement on point light figure displays, also referred to as 

biological motion stimuli, (Pittenger and Shaw, 1975; Shaw et al., 1974; Pollick et al., 2003). 

Humans are so adept at identifying locomotion that they can identify walk cycle styles from 

particular walkers (Cutting and Kozlowski, 1977; Kozlowski and Cutting, 1977; 1978) from 

twelve moving dots and can even identify the gender of such walkers (Johansson, 1973; 

1976). As viewers can identify walking styles we see this is an opportunity to retarget 

motion not by gender but by weight gain to improve crowd diversity. These point light 

techniques shall be implemented within the empirical study to test viewers’ abilities to 

identify obese locomotion parameters. 

 

Familiarity cues can also have an effect on perception. These could include size and shape 

cues or the context of the environment (Cutting and Kozlowski, 1977). Viewers in Cuttings’ 

experiment mentioned clues such as speed, bounciness, rhythm of the walker, arm swing 

and length of steps. Interestingly whilst many of these factors have since become staple 

measurements for lower body gait, bounciness (vertical hip variance) and arm swings do not 

appear to have been measured. These could be looked at again as parameters in our 

empirical study to determine perceptual changes in motion for our locomotion model. 
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Hodgins et al. (1998) tested motion perception of human figures comparing a variety of 

modelling and rendering styles. Hodgins et al. also measured torso rotation because it can 

provide cues for gender and subject recognition (Cutting et al., 1978). Their results indicate 

that the ‘realer’ the representation of the human character, the more sensitive the viewer 

was to changes in motion. This makes our research more challenging but useful to photoreal 

visualisations of crowds as opposed to abstract or stylized representations. 

 

Reitsma and Pollard (2003) looked to develop a metric to measure human sensitivity to 

errors in animated human motion based on detection theory (Macmillan and Creelman, 

1991). This could be utilised in the evaluation of our empirical study, particular if the sample 

size of testers is small. This study found that viewers were more sensitive to errors in 

acceleration than decelerations, which may prove useful for motions that are slowed down 

due to increases in obesity. 

 

Ren et al. (2005) looked at whether it is possible to develop a machine learning based 

measure that quantifies the naturalness of human motion. The aim was to verify that a 

motion editing operation had not destroyed the naturalness of a motion capture or 

synthetic motion clip. Their test sets included edited motion capture clips, keyframed 

motions, clips with motion noise, motion transitions and un-cleaned motion capture data. If 

we had access to Ren’s approach this could be useful to evaluate the naturalness of our 

modified locomotion clips, however, one of the drawbacks of this approach was that whilst 

it could judge perceptually unbelievable artefacts like foot-skating as unrealistic, it had 

trouble detecting motion that had been slowed down, particularly for behaviours that do 

not include a flight phase. As several of the parameters we will be measuring will likely need 

slowing down for the modifications, this evaluation approach may prove to be more 

difficult. 

 

McDonnell et al. (2008) validated crowd simulations on their believability by testing how 

quickly appearance and motion clones could be detected against matrices of other clones. 

McDonnell found that appearance clones are easier to detect than motion clones but are 

harder to find when combined with random motions. She noted that whilst appearance 

clones were easier to detect in a close-up, in a larger crowd scenario the effect of motion 
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may have a stronger perceptual effect as individual appearances may be harder to detect. 

This indicates that we could expand our testing procedure from close-up comparisons to 

medium or wider angled, denser crowd scenes. She also found that appearance clones could 

be masked by randomising their orientation and motion. McDonell’s methodology is highly 

relevant in isolating and testing aspects of character modifications so will form the basis of 

our methodology when conducting our empirical study. 

 

Pražák et al. (2009) presented a perception based metric comparing human skeletal poses 

during locomotion. It described perceptually important differences of the data-driven 

locomotion between different subjects. Pražák et al. (2010) followed this research up with a 

perceptual evaluation of human animation timewarping, reinforcing McDonnell’s earlier 

findings that speeding up motion produces perceptual artifacts whilst slowdown appears to 

be perceptually acceptable, however, his experiments looked at timewarping entire 

locomotion clips. Our research will look into the slowdown and modification of motion clips 

on a limb-by-limb basis. 

 

Following our review of perception of human walkers we can summarise that whilst humans 

are more adept at identifying walkers with similar appearance, we are still very adept at 

differentiating between humans when viewing their isolated locomotion. In addition we can 

also identify changes in individual motion parameters. This shall enable us to modify gait 

parameters to test which are more perceptually dominant and therefore effective to modify 

to give the impression of distinctive, new motion.  

2.5. Effects of Obesity on Gait 
The research on the effects of obesity on gait provides some insight into the factors that are 

affected by real world changes in body shape. The following section explores those effects 

that obesity has on locomotion. The intention is not to simply offer the alternative of normal 

or obese characters but gradations between. Future research could be undertaken to 

discover the effects of emaciation on locomotion, so that we can deform motion in the 

opposite end of the scale. 
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The research presented on obesity related changes to gait are based on Body Mass Index, as 

opposed to Waist-Hip ratio or Waist Circumference, because this was the commonly used 

measurement in biomedical research (Spyropoulos et al., 1991; da Silva-Hamu et al., 2013; 

Hulens et al., 2003; DeVita and Hortobágyi, 2003; McGraw et al., 2000). However, BMI is an 

imprecise measurement of body weight (Deurenberg et al., 2001) so our research shall look 

to adopt an additional more representational metrics such as Body Fat Percentage. 

 

Whilst there has been research conducting into modifying characters’ body shape and 

motion for greater variety in crowd simulations, what is missing is the modification of 

motion in relation to the modification of body morphology. To start to understand to what 

extent body shape affects locomotion in the real world we looked at the following research. 

Research has demonstrated that the following locomotive parameters are affected by 

increases in obesity in adults: 

 

 Slower preferred walking speed (Spyropoulos et al., 1991; DeVita and Hortobágyi, 

2003; Hulens et al., 2003; Vismara et al., 2007; Tompkins et al., 2008; Lai et al., 2008; 

Browning, 2012; da Silva-Hamu et al., 2013; Pataky et al., 2014) 

 Cadence- full walk cycles per minute (Spyropoulos et al., 1991; DeVita and 

Hortobágyi,, 2003; De Souza et al., 2005a; Browning and Kram, 2007; Vismara et al., 

2007; da Silva-Hamu et al., 2013) 

 Reduced step frequency (DeVita and Hortobágyi, 2003) 

 Reduced step length (De Souza et al., 2005a; DeVita and Hortobágyi., 2003; Lai et al., 

2008;) 

 Shorter stride length (Hulens et al., 2003; Lai et al., 2008; da Silva-Hamu et al., 2013; 

Pataky et al., 2014) 

 Wider step width (Spyropoulos et al., 1991; Browning and Kram, 2007; Sarkar et al., 

2011; Wu et al., 2012; Vartiainen et al., 2012) 

 Shorter swing phase (Spyropoulos et al., 1991; Lai et al., 2008) 

 Longer stance phase duration (3%) (Spyropoulos et al., 1991; Lai et al., 2008) 

 Wider lateral leg swing (Spyropoulos et al., 1991) 

 More erect posture (McGraw et al., 2000) 

 Wider Foot Progression (Sarkar et al., 2011) 
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2.6. Summary 
The three key issues that emerged as a result of our literature review were believability, lack 

of relation between appearance and motion and the lack of automation and efficiency. 

These limitations are summarised below as opportunities for the proposed solution to fulfil. 

 

Our ultimate goal is to improve believability of crowds of characters through diversity, 

however this has shown to be an issue which manifests in some of the methods for motion 

editing, warping and IK interpolation. The most significant limitation across all of the 

literature has been the lack of relation of body appearance to body motion. Approaches 

tend to modify appearance or motion separately but with limited correlation. After 

identifying some of the locomotive parameters that change as BMI increases we look to 

expand these with more detailed data capture, to unify them as a model and apply them to 

increasingly obese virtual characters to believably diversify their motion parameters. The 

other main limitation identified is the lack of automation and efficiency in certain 

techniques.  
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3. DATA-DRIVEN METHODOLOGY 
To identify and simulate perceptually dominant correlations between body anthropometrics 

and motion parameters we first investigated what existing data and trends had been 

published previously. Some basic trendlines were analysed across these multiple sources to 

form the basis of our own perceptual investigation. By understanding published data that 

relates changes in body shape to changes in locomotion, we can use these as the basis for 

our animation tool but also verify these trends after assessing our own data. This forms the 

first contribution to knowledge; an empirical study of the changes in gait over increases in 

body morphology. 

 

The next stage was to create a set of scripted appearance and motion modifiers. This 

enabled modifications to the base lean motion captured walk to test perceived changes to 

obesity. This set of scripted modifiers also serves as a prototype for future enhancements 

and uses. This forms another contribution to knowledge; the development of a scripted 

animation tool that implements the locomotion model to retarget walk cycles to appear to 

be those of larger people. 

 

Once we had the means to modify appearance and motion, the next stage was to create a 

series of perceptual video surveys to validate previously established and hypothesised 

correlations between appearance and motion. By analysing the results of these perceptual 

video surveys this could then inform the perceptual priority and strengths of motion 

parameters. 

 

Finally, real world appearance and motion data was collected using motion capture 

techniques. Correlations between the real world appearance and locomotion data was 

analysed to then compare and contrast with the results of what correlations people 

perceived to exist from the video surveys. This informed the creation of a model of 

locomotion that determines how changes in specific and generalised body anthropometrics 

affects generalised and specific aspects of walking gait. This model, which is the major 

contribution to knowledge, could be used to simulate a variety of body shapes and walking 
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styles. The results of these perceptual and actual data analyses could then inform the 

parameters of a scripted animation modifier. 

 

The methodology was therefore comprised of seven main parts that shall be detailed 

further:  

Empirical Data Analysis 

Scripted Appearance and Motion Modifier 

Point-Light Perceptual Survey  

Character Mesh Perceptual Survey  

Motion Capture Kinematic Gait Analysis 

Data-driven Animation Modifier 

 

This multifaceted approach was designed to not only test people’s perceptual expectations 

of gait but to also compare it to actual gait data. Our methodology can be visualised as: 
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Figure 3-1 - Overview of the Perceptual and Practical Recordings of Gait Parameters  

Figure 3-1 visualises this approach. A single lean participant’s gait was motion captured used 

as the basis of all modifications. Empirical research observing changes of gait over increases 

in body morphology was analysed for overall trendlines for 5 parameters. Using these 

trendlines, 5 strengths of gait exaggeration were selected and fed into the scripted 

animation tool as part of the first point-light video survey. 

 

Motion capture a base lean subject 

Use scripted modifier to 

exaggerate 5 motion parameters at 

STAGE A 

Deploy video survey 1 isolating 

motion to Point-Light Displays 

Analyse preliminary results to  

refine motion parameters 

STAGE B  

Deploy video survey 2  

with character meshes 

Analyse results to determine 

dominant motion parameters 

STAGE C  

Motion capture 28 subjects to  

analyse actual changes in gait  

 

Compare actual motion parameters  

to perceived motion parameters,  

to script into final Animation Tool 

STAGE D 

Deploy final video survey 

Assess framework and tools 

effectiveness 

Analyse Literature for Appearance to 

Motion Correlations 
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Figure 3-1 represents the testing of the framework of anthropometric to locomotive 

parameters. 

The results of the point-light survey were analysed and the results were used to inform the 

second character mesh survey. At the same time 28 participants had their appearance and 

gait captured. The analysis of the character mesh survey was then compared to the analysis 

of the motion captured participants. 

 

A framework of affecting and perceptually dominant appearance to motion parameters was 

compiled and input into the scripted animation tool. A final poll was then conducted to test 

the effectiveness and efficiency of the scripted animation framework and tool at generating 

obese motion versus other methods. 

 

3.1. Empirical Data Analysis 
A review of previous publications on the correlations between obesity and gait surfaced a 

range of findings as summarised in Section 2.5. The first stage in our methodology was to 

analyse motion parameters over multiple papers to verify their trends and to create 

averaged trendlines. This would help inform strengths of the first perceptual survey. The 

following motion parameters were found to cover multiple motion parameters: 

 

  



41 
 

Table 3-1- Motion Parameters across Published Papers 

Velocity (m/s) 

Spyropoulos (1991) 

de Souza (2005a) 

DeVita (2003) 

Hulens (2003) 

Tompkins (2008) 

Vismara (2007) 

Lai (2008) 

Pataky (2014) 

 

Swing Phase % 

Spyropoulos 
(1991) 

Browning (2007) 

DeVita (2003) 

Vismara (2007) 

 

 

 

 HIP flexion° [HS] Spyropoulos 
(1991) 

 Hip ROM° Vismara (2007) 

Cadence 

(steps/min) 

Spyropoulos (1991) 

Browning (2007) 

de Souza (2005a) 

DeVita (2003) 

Vismara (2007) 

 
Pelvic Girdle 

de Souza 

(2005b) 

 Knee ROM° Vismara (2007) 

 
Knee flexion° [HS] 

Spyropoulos 
(1991) 

DeVita (2003)  

 
Ankle plantar flexion° 

[HS] 

Spyropoulos 
(1991) 

DeVita (2003) 

Vismara (2007) 
Step Length (m) de Souza (2005a) 

DeVita (2003) 

 

 

Stride Length (m) 

Spyropoulos (1991) 

de Souza (2005a) 

Vismara (2007) 

Lai (2008) 

Pataky (2014) 

 Ankle ROM° Vismara (2007) 

 

Foot progression ° 

de Souza 

(2005a) 

Vismara (2007) 

Sakar (2011)  

Step Width (m) 

Spyropoulos (1991) 

Browning (2007) 

Sakar (2011) 

Wu (2012) 

Vartiainen (2012) 

 

Cervical, Lumbar & 

Thoracic spine 

curvature 

McGraw (2000) 

de Souza 

(2005b) 

   

Stance Phase % 

Spyropoulos (1991) 

Browning (2007) 

DeVita (2003) 

Vismara (2007) 

Lai (2008) 

   

   

   

   

  

Motion parameters were only analysed if they had more than one published source. These 

were: velocity, cadence, stride length, step length, step width, stance phase, swing phase 

and foot progression. 

 



42 
 

Spyropoulos et al. (1991) sampled 12 men aged 31 to 47 years whose body weight ranged 

from 105.6kg to 151kg. Spyropoulos found obese persons walked slower, taking shorter 

strides and wider steps than non-obese persons. Obesity was 70% to 99% above ideal body 

weight (Metropolitan Life Insurance Table, 1956, cited in Spyropoulos et al. (1991). These 

were compared to 9 non obese men. This is a difficult metric to translate into BMI or Body 

Fat Percentage as the values were simply grouped into obese and non-obese. The motion 

parameters for these groups were also not presented in full but as mean and standard 

deviation values. For this reason we classified non-obese as 21 kg/m2 and obese as 38 kg/m2 

on the BMI scale (Ravussin et al., 1982). Another potential limitation is that obese 

participants were aged 31 to 47 skewing results to middle aged men as opposed to a 

broader range or younger average. Gait can change with age (Seung et al., 2012) so a 

concentration on older males may skew the results. 

 

De Souza et al. (2005a) sampled 34 obese adults, and found obese persons walked slower, 

with wider steps and reduced cadence and stride length than non-obese persons. However, 

32 of them were female and gender affects gait so the results are less comparable with 

other sources. The mean age of participants was 47, so the results were once again skewed 

to older gaits. Individual walk data was not available but the mean BMI was 40.1 kg/m2. 

 

DeVita and Hortobagy (2003) sampled 21 obese adults (8 males and 13 females) and 18 lean 

adults (7 males and 11 females) and found obese persons reduced their walking speed, 

cadence and step length. As gender affects gait and because the results were not split by 

gender this makes them less comparable with other sources. BMI ranged from 32.4 to 58.7 

kg/m2. The obese group had a mean age of 39.5 which was significantly older than the lean 

group which were 20.8, however, the authors claim that there is no evidence that gait is 

effected within those age ranges. 

 

Hulens et al. (2002) sampled 82 lean (BMI <_ 26 kg/m2), 85 obese (BMI >_ 27.5 kg/m2) and 

133 morbidly obese (BMI >_ 35 kg/m2) and found obese women walked significantly slower 

than lean women. Participants were aged between 18 and 65. Whilst the quantity and age 

range is broad, all participants were female which are not comparable with male gait. Body 
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fat percentage was also recorded, however, body fat composition is not directly comparable 

with male body fat composition. 

 

Tompkins et al. (2008) sampled 28 women and 2 men aged 31 to 58 with a mean BMI of 

45.5 kg/m2. They were then retested after gastric bypass surgery at the 3 month stage with 

a mean BMI of 35.7 kg/m2 and then the 6 month stage with a mean BMI of 30.1 kg/m2. As 

participants were mostly women, and gender affects gait, this makes it less comparable to 

publications that focus on males or separate genders. Participants were aged from 31 to 58 

with a mean of 44. This skews to middle-aged walkers which could slightly differentiate gaits 

from young adults. 

 

Speed was measured by recording the distance in metres walked in 6 minutes. Calculated 

walking speed was found to reduce over BMI. Walking speed was measured, but using the 6 

minute walk test (6MWT) which is widely used by physical therapists as a measure of 

functional exercise tolerance (Gibbons et al., 2001). This could induce a degree of fatigue 

and slowdown in comparison to simply measuring participants preferred walking speed. 

 

Vismara et al. (2007) sampled 5 male and 9 female obese patients with mean BMI of 39.2 

kg/m2 and 10 male and 10 female lean subjects. 19 Prader-Willi Syndrome (PWS) patients 

with a mean BMI of 41.3 kg/m2 were also sampled, however, their obesity inducing 

condition is accompanied by a number of disorders such as scoliosis that were shown to 

affect gait, so they were not included in this study. Vismara found obese persons walked 

slower, had a reduced cadence and shorter stride length than non-obese persons. 

 

Browning and Kram (2007) sampled 5 obese male with mean BMI 34.1 kg/m2 and 5 obese 

female patients with mean BMI of 37 kg/m2. 5 lean males (BMI 23.1 kg/m2) and 5 lean 

female (BMI of 21.0 kg/m2 were also sampled. They found obese persons had wider step 

widths and longer stance phases. 

 

Lai et al. (2008) sampled 14 obese people mean age 35.4 (8.8) with BMI 33.06 (4.2) kg/m2 

and 14 non-obese subjects mean age 27.6 (8.6) with BMI 21.33 (1.5) kg/m2. They found 
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obese persons reduced their walking speed and stride length. More time was spent on 

stance phase and double support in walking.  

 

Pataky et al. (2014) sampled 36 women with a mean BMI 37 kg/m2 and 10 women with a 

mean BMI 21.5 kg/m2 . They found obese persons reduced their walking speed, cadence 

and stride length. Age ranges weren’t disclosed but participants were all female. 

 

Sarkar et al. (2011) sampled 15 men with a mean BMI 21.97 kg/m2 and 15 obese men with a 

mean BMI of 35.21 kg/m2 aged 20-30.  Sarkar et al. found obese males increase their step 

width and widened the degree of foot progression. They also sampled 15 lean and 15 obese 

women with similar findings in foot progression but no significant change in step width. We 

shall just analyse the male findings. 

 

Vartiainen et al. (2012) sampled 13 people of a mean age 45.5(10.3) walking at 1.2m/s 

before weight loss BMI 42.2(3.9) kg/m2 and after weight loss BMI 33.1(3.1) kg/m2. Step 

width was observed to decrease over step width from 0.12m to 0.09m but this was 

considered anomalously low so it was not analysed. 

 

3.1.1. Empirical Data Analysis 

Multiple sources strongly correlate the trend that preferred walking speed is reduced over 

increases in BMI (Figure 4). Vismara et al. (2007) trendline appears anomalous in its 

gradient, as the listed walking speed was normalised by height. 

 

Multiple sources correlate the trend that cadence is reduced over increases in BMI (Figure 

3-3). Browning and Kram (2007) appears weak in its gradient, as preferred walking speed 

was not recorded but six walks at regular set speeds ranging from 0.5m/s to 1.75m/s. The 

mean cadence of all six speeds were used for obese and normal-weight participants. DeVita 

and Hortobágyi (2003) also demonstrated an even gradient, however, this may be because 

walking speeds for obese and lean were standardised at 1.5m/s.  
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Figure 3-2- Empirical Analysis of Speed over BMI  Figure 3-3- Empirical Analysis of Cadence over BMI 

Multiple sources correlate the trend that Stride Length is reduced over increases in BMI (

Figure 3-4). Vismara et al. (2007) may appear anomalously low as their data was normalized 

by height. Both sources demonstrate a decrease in step length over BMI (Figure 3-5). 

Further sources may have demonstrated this trend more clearly. 

   

Figure 3-4- Empirical Analysis of Stride Length over BMI Figure 3-5- Empirical Analysis of Step Length over BMI 

Both sources strongly correlate a widening in step width over BMI (Figure 3-6). Further 

sources may have demonstrated this trend more clearly. Multiple sources strongly correlate 

the trend that walkers spend longer in the Stance Phase over increases in BMI (Figure 3-7). 
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Figure 3-6- Empirical Analysis of Step Width over BMI Figure 3-7- Empirical Analysis of Stance Phase over BMI 

Multiple sources strongly correlate the trend that walkers spend less time in the Swing 

Phase over increases in BMI (Figure 3-8). Multiple sources strongly correlate increases in 

Foot Progression over increases in BMI (Figure 3-9). 

    

Figure 3-8- Empirical Analysis of Swing Phase over BMI Figure 3-9- Empirical Analysis of Foot Progression over 

BMI 

The regression formulas that resulted from this analysis formed the basis for the scripted 

motion deformations that were deployed in the perceptual video surveys. 

3.1.2. Summary 

By analysing published literature on the observed changes in gait parameters over increases 

in body morphology, we could verify eight trends against each other and provide a 

predictive formula. The main limitation of analysing these previous published data was that 

most listed data under two to three mean classifications of obesity as opposed to tracking 
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motion parameter changes over increments of BMI. This means richer trends are harder to 

map out.  

3.2. Scripted Appearance and Motion Deformation 
Tool 

3.2.1. Base Lean Motion Captured Locomotion 

Once a round of early empirical data analysis had been conducted, the next stage was to 

implement the motion parameter trendlines into a scripted animation tool that could 

deform a lean character to have an increasingly obese appearance and gait parameter. 

An early motion capture session provided walk data for an adult male 21 years old and 

1.76m tall, the average height for an English male (Moody, 2013). He was also an ideal 

12.1% body fat and a BMI of 23 kg/m2 therefore suitable to utilise as the base motion 

capture data. 

The base lean motion capture walk was captured using six MX13 Vicon cameras and using 

the Validated Vicon Marker Set (Kadaba et al., 1990; Winter et al., 1990; Davis et al., 1991). 

This process including calibration, range of motion tests, multiple takes and cleanup is 

described further in section 6.3.2. 

 

Figure 3-10- Captured and Cleaned Gait within Vicon Nexus 1.8.5 
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The base motion capture walk was exported from Vicon’s Nexus 1.8.5 software as a .c3D file 

containing global positional marker data. This locomotion data was imported into Autodesk 

MotionBuilder where it was characterized onto the widely used default Forward Kinematic / 

Inverse Kinematic MotionBuilder rig. The characterization process interpreted the global 

marker positions from the motion capture data into local rotations on the following bones: 

 

1. Hips 

2. LeftUpLeg 

3. LeftLeg 

4. LeftFoot 

5. RightUpLeg 

6. RightLeg 

7. RightFoot 

8. Spine 

9. LeftArm 

10. LeftForeArm 

11. LeftHand 

12. RightArm 

13. RightForeArm 

14. RightHand 

15. Head 

 

 

 

Figure 3-11- Characterization process with Autodesk's MotionBuilder 2013 

 

The local bone rotations were exported using the .fbx file format. The lean motion captured 

walk animation was imported within Softimage (2015) and used to drive a MotionBuilder rig 

smoothly for five steps over two seconds. The walk was edited into a loopable walk cycle so 

as to retain as much data as possible. 

3.2.2. Deformable Character Mesh 

The lean motion captured walk cycle then needed to be applied to a lean character model.  
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Figure 3-12 - Obese deformation of virtual human 

The stock Softimage (2015) male character model was modified by height to fit the average 

height from the lean participant, which matched the average British male height (Moody, 

2013). Abdominal muscles were also smoothed out to avoid visual exaggeration in body 

shape deformations. This modified male character model represented a base average lean 

body shape of 12% body fat. 

An appearance deformation tool was then developed to enable the creation of a variety of 

differently shaped characters over increasing body fat percentage. Little research was 

uncovered about the linearity of adipose accumulation in certain body areas so we had to 

refer to photographic references of males at 3-40% body fat (Figure 3-13).  

Using standard shape modelling and expert reference photography such as Perry (2012), the 

lean character model was deformed to look as though it had increased to approximately 

35% body fat percentage (Figure 3-14). 
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Figure 3-13- Photographic references of male body fat 

percentages (Perry, 2012) 

 

Figure 3-14 - Obese deformation of virtual human 

A slider was then created within Softimage (2015) to linearly blend between the lean model 

and the deformed obese model. There is no published evidence accurately defining or 

categorising the rates and areas where males put on weight, so a linear blend was chosen as 

a suggested profile. The deformation slider ranged from 12% to 35% as seen in Figure 3-15. 

Figure 3-16 demonstrates on the left; the stock Softimage (2015) male character model with 

smoothed abdominal muscles representing 12% body fat, the character in the centre is 

deformed to represent 23.5% body fat and on the right; deformed to represent 35% body 

fat. 

http://www.builtlean.com/2012/09/24/body-fat-percentage-men-women/
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Figure 3-15- Appearance Deformation Slider Figure 3-16- Character Mesh Linearly Deformed 

The character mesh was fitted and weight painted onto the standard MotionBuilder skeletal 

rig with the intention to maximise compatibility with future imported motion capture walk 

files or keyframed animations. 

The lean motion capture data from section 3.2 could then drive the lean character mesh. 

The appearance deformation slider was then driven by a series of motion deformation 

scripts. 

3.2.3. Motion Deformation Scripts 

Following early empirical data analysis a number of motion parameters were decided upon 

as being perceptually significant to modify and worth of scripted modification.  

Average arm abduction, bob and twist, whilst not heavily researched, represents a large 

range of movement in the upper body half. As this is an area of the body that might be more 

visible than the lower half, we wanted to invest time into testing its perceptual effect and 

actual variance. Whilst spinal curvature was only measured by McGraw et al. (2000) and de 

Souza (2005b) it also represented a potentially variable and perceptually strong parameter 

in the upper half of the body. This included thoracic curvature but not abduction – 

adduction. For this reason torso twist was tested. As hip twist could move in contralateral to 

torso twist so this was also included. Speed was also modelled as it had been measured so 

frequently in literature it could prove to be of perceptual dominance. 
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A number of parameters were not scripted for a variety of reasons. Foot progression was 

considered too small and low to be perceptually visible. Varying stride length would also 

affect forward speed and cadence so it was opted to only change the latter two in unison. 

Percentage of time spent in stance and swing phase would have demanded motion warping 

phases of movement which if done incorrectly could create an unnatural stocatto effect of 

locomotion. This is a more demanding challenge for future iterations of the scripted tool. 

Pelvic Girdle tilt was tested but deemed perceptually hard to read. Knee range of motion 

was not modelled as we wished to free this up for the IK legs to allow the flexibility of other 

parameters. And finally ankle plantar flexion and range of motion were not modelled as 

they too were considered too small and low to be perceptually visible.   

A full copy of all JavaScripts are available in Appendix D. All motion retargeting was 

performed on a per-key basis. 

 

Average Arm Abduction 

Average arm abduction was selected to be modified as the previous literature had not 

tracked these changes over obesity. As believability of character diversity is more important 

in small to medium sized crowds or camera shots (Zhou et al., 2010) we posit that upper 

body movement would be more visible than lower body. Abduction of the arms could 

produce the largest and most visible amount of movement. This parameter was also chosen 

as casual observation of obese people appears to show increased arm abduction. 

Average arm abduction in biomechanical terms is more often referred to as average Lateral 

Shoulder Abduction. This is measured as the average upward movement of the arms away 

from the midline of the body. The scripted modifier was applied to the MotionBuilder rig in 

a manner analogous to how the real world measurement is taken. 

The scripted modifier creates a duplicate of the base character so that changes to the 

original character are reversible, providing a non-destructive workflow. 

Average arm position is defined as dataPosAvgDiff:  
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Figure 3-17 - Average Arm Position Variable 

Six absolute values were defined for the purpose of rendering multiple deformations for the 

perceptual video survey. This approach was followed for all of the scripts. These values were 

decided by manually raising the virtual arms to a level that represented a morbidly obese 

walker at 35% body fat as predicted by the trendlines from the empirical data analysis. One 

underweight value and two more extreme values above obese were used with even 

increases in arm abduction defined.  

In this example the function ssModKey loops through each key on the duplicated character’s 

left and right arm and adds the average arm position in the z rotation axis.  

 

Figure 3-18 - ssModKey Algorithm 

 Line 40 shows the average value being subtracted, however, this demonstrates an oddity of 

the MotionBuilder rig. 

The MotionBuilder rig was chosen as it was assumed that it represented a commonly used 

and compatible rig. However, upon development of the scripted mechanism, it became 

apparent that the orientation of multiple limbs appeared correct, but were working on 

inverted axes. The reasoning for this is unclear, however, the scripted mechanism had to 

compensate with multiple flipped axes. 

Spinal Erectness 

Spinal Erectness was selected to modify as McGraw et al. (2000) had claimed that posture 

changes over obesity but this was measured in prepubescent boys not adult males, 

therefore it was worth further investigation. Erectness of the spine could produce a 

significant change in upper body movement. This parameter was also chosen as casual 

observation of obese people appears to show distinctive increased spinal curvature in some, 

but not all walkers. 
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Spinal erectness in biomechanical terms is sometimes referred to as spinal curvature or 

erect posture, representing a combination of parameters including posterior thoracic tilt, 

lumbar lordosis, and anterior pelvic tilt.  

The ssModKey function was reapplied to the lumbar bone to tilt the upper torso backwards.  

Upper Magnitudes 

Upper Magnitudes was a set of scripts that modified aspects of upper body movement as 

the previous literature had not tracked these changes over obesity.  

Torso twist in biomechanical terms is referred to as Torso or ‘Thorax Axial Rotation 

ROM’.  

Torso bob is referred to as Torso or ‘Thorax Lateral Flexion ROM’.  

Arm bob is referred to as ‘Lateral Shoulder Abduction and Adduction ROM’.  

Whilst Arm swing is referred to as ‘Shoulder Flexion and Extension ROM’. 

These parameter were chosen as it was hypothesised that increased adiposity on the 

abdomen and torso produced larger ranges of inertia in their swing to counteract and 

maintain a steady centre of mass. 

These functions required the average position of the swing to be found and then each 

keyframe position to be magnified along the local axis of rotation. 

Average Arm Abduction and Arm Bob  

This combined the average abduction of the shoulder with its Range of Motion (ROM) of the 

lateral abduction and adduction. 

Average Arm Abduction and Swing 

This combined the average abduction of the shoulder with its ROM of the arm flexion and 

extension. 

Speed and Cadence 
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Walking speed is a product of cadence and step length. In the virtual world forward velocity 

can also be manipulated, however, if not done in tandem with cadence or step length, foot 

sliding will occur.  

forward velocity (m/s) = cadence(steps/s) x step length(m) 

Equation 1 - Forward Velocity 

For this reason we chose to manipulate forward velocity and cadence together whilst 

keeping step length the same. 

Walking Speed in biomechanical terms is referred to as preferred walking speed or self-

selected speed. Multiple sources, seen in Figure 3-2, had tracked its reduction over 

increases in obesity therefore it was a crucial parameter to model.  

Cadence in biomechanical terms refers to the number of steps taken per minute. It was 

chosen as a motion parameter as da Silva-Hamu et al. (2013) had tracked these changes 

over obesity. If the number of steps per minute did decrease with obesity this could also 

drive a counterbalancing reduction in all other keys which would have a significant 

perceptual effect on the walking style of the character.  

The scripted modifier for reducing the number of steps per minute involved duplicating the 

lean character and deleting all keyframes from the clone. A new function ssRetimeKey was 

then used to copy all of the keyframes from the lean bones rotational axes (and the Hips 

positional data), multiply it by the speedMod value and then to copy it onto the second 

character. 
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Figure 3-19 - ssRetimeKey algorithm 

Hip Twist 

Hip twist was selected to modify as casual observation of obese walkers indicated some 

change in pelvic movement that could be a result of needing to maintain a counteractive 

balance to their centre of mass, or as a result of increased ground reaction force to heavier 

body mass. 

Hip twist in biomechanical terms is referred to as the lateral and medial pelvic rotation 

ROM. 

The scripted modifier for hip twist and the following lower body parameters required 

additional work to modify the motion capture data to avoid the problem of footskating. 

When importing the FK/IK MotionBuilder data into Softimage (2015) the local bone rotation 

data is baked onto the rig with forward kinematics.  

To manipulate hip twists without moving feet positions the lower body had to be replaced 

with Inverse Kinematics legs. This was achieved by creating an IK leg chain in the same 

global position as the FK legs. The root of the IK legs were attached to the hips, as were the 

feet.  

 

Figure 3-20 - Inverse Kinematic Leg Generation 

The script then looped through and saved the global position of the IK ankles, matched to 

the global position of the FK ankle positions. The IK knees were then afforded some 

flexibility when the IK hips or feet were modified. The original FK leg keys were then 

removed.  

A global position control box was also parented to the character and all positional and 

rotational data from the hips were copied to it, and then deleted from the hips. The hips 
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were then parented to the global position control box. This was to allow independent 

manipulation of the character’s forward velocity and movement of the hips. 

Walking Base 

Walking base was selected to modify as it was hypothesised that as obesity or abdominal 

girth increased, a wider walking base would be needed to maintain a steadier centre of 

gravity.  

Walking base in biomechanical terms is also known as stride width. It is the sum 

perpendicular distance between the two heels and the midline of the body. 

The scripted modifier used the IK legs to increase the distance between the ankles and toes 

from their midline. 
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Combinations 

The scripts were then able to have their values modified for testing purposes, multiple 

surveys and to combine parameters into multiples. 

When speed and cadence were part of the multiple parameters this modification would 

have to be made on a third character duplication to avoid other modifier keys from being 

overwritten. 

3.2.4. Summary  

By taking the results of the early empirical data analysis, it was possible to use these 

trendlines as the base strengths and formulas for the scripted animation tool. 

This required the development of an appearance deformer built using photographic 

reference. And a motion deforming script. This maintained the base motion capture data 

whilst using duplicate characters, FK retiming and IK translations across multiple 

parameters. 

This was developed to enable the following phase of perceptual video survey tests as well as 

laying the technical foundation for the scripted animation tool.  
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4. POINT LIGHT PERCEPTUAL SURVEY 
A video test was developed to assess the most perceptually dominant motion parameters. 

The first iteration of this video test involved the use of point-light walkers (Johansson, 1973) 

so that participants could try to identify motion without the bias of appearance. This test 

required a base lean model and five duplicates with one or more parameter exaggerated to 

varying strengths. Viewers then had to select which point-light walker most resembled an 

obese person’s gait.  

 

The lean motion capture walk was reused as a base model and then modified using the 

previously described scripted modifier. However, instead of using a character mesh, fifteen 

point-lights were attached to the skeleton. Troje (2002) determined that fifteen point lights 

located around joints of the body was enough to communicate the structure and dynamic 

movement of a human walker. This was done to disambiguate appearance bias: 

 

 

Figure 4-1- Point Light Walker configuration 

The point-lights were spheres of 1.5 Softimage unit (SI) size that were comparable in relative 

prominence to the experiments by Cutting and Kozlowski (1977) and were judged to be 

visible enough against a black background. The spheres had a white constant texture 
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applied and were rendered against a black background with no external lighting to maximise 

contrast, clarity and readability of motion. 

 

They were attached at the centre of the following locations on the MotionBuilder rig, which 

is similar to Troje (2002) configuration: 

1. Hips 

2. Left Upper Leg 

3. Left Knee 

4. Left Heel 

5. Right Upper Leg 

6. Right Knee 

7. Right Heel 

8. Left Shoulder 

9. Left Elbow 

10. Left Wrist 

11. Right Shoulder 

12. Right Elbow 

13. Right Wrist 

14. Torso 

15. Head

4.1. Motion Parameter Strengths 
The light perceptual survey tested five motion parameters and five combinations. Five 

motion parameters were selected based on availability of multiple sources of data and their 

representation of upper and lower body gait parameters. As velocity, cadence, step length 

and stride length are all related, we compounded them into walking speed and chose not to 

initially vary step/stride length. Cervical, lumbar & thoracic spine curvature was tested. Hip 

flexion (twist) was included but pelvic girdle was not as it was deemed too small and subtle 

a range of movement. As the virtual legs were made using inverse kinematics, this did not 

allow the direct manipulation of knee ROM, and knee flexion. Ankle plantar flexion and 

ROM was not altered to avoid issues of inaccurate foot plantation. Finally foot progression 

was not tested as it was lowest on the body therefore likely to have the least perceptual 

impact especially in a crowd. The five combinations were then paired by limb group, upper 

and lower body to see which had the strongest perceptual effect and then a complete 

combination to test their overall effectiveness. This combinations helped rank the 

comparative strength of perceptual dominance of each parameter and their combined 

effectiveness. 

 

The number of parameter strengths was six as anymore produced confusion in early video 

tests. This range of strengths was designed to allow an under-exaggerated value, a value 

with no change from the base walker of 12% body fat, an overweight exaggeration, a target 

obese exaggeration of 35%, an over exaggeration and an extreme exaggeration. 25% body 
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fat on males is classified obese (ACE, 2003; Phillips et al., 2013) in males so 35% was 

selected to represent a morbidly obese level. 

 

To test these motion parameters, relative bone rotations and global positions needed to be 

exaggerated. This was achieved within the Softimage (2015) scripting environment by 

writing JavaScript code to manipulate the bone rotation by average position, offset position, 

swing magnitude and the timing of all keyframes.  

 

Analysis was made on quantitative data from eight existing, cited dataset (Spyropoulos, 

1991; de Souza, 2005a; de Souza, 2005b; DeVita and Hortobágyi, 2003; Hulens et al., 2003; 

Tompkins et al., 2008; Vismara, 2007; Browning and Kram, 2007) on the changes in motion 

parameters over increases in BMI. The most common BMI values were 22 (lean) and 38 

(severe to morbidly obese) which we consider to be equivalent to 35% Body Fat.  

As velocity and cadence had the most sources to derive a regression formula this was used 

to calculate the expected reduction in speed for an obese walker from the base lean 

walker’s speed:  

 

Walking speed = -0.0269 x BMI + 2.3185 

Equation 2 - Prediction of Walking Speed 

 

The other 35% body fat values were created by manually adjusting each relevant gait 

parameter of the lean character’s walk cycle to appear to be that of an obese person from 

the animator’s perception. Values were then interpolated between an unchanged value at 

12% body fat (the original lean walker’s position) and this value set at 35%. The 

combinations then reused the values from the other individual parameters. Table 4-1 lists 

the motion parameters, the bone names (and corresponding references in software 

packages) movement axes, modification type and strength values: 
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Table 4-1 - Point Light Survey’s Motion Parameter Strengths 

 Body Fat Percentage Values 

Surve
y No. 

Angl
e 
View Video Test Parameters Bone  

Moveme
nt Mod Type 

0.5% 12% 23.5% 35% 46.5% 58% 

1 45° 
Increased Hip (twist) & Torso 
(twist)                   

  
a.       Increased hip (twist) 

Hips local.roty 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  
b.       Increased torso (twist) 

Chest local.rotx 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

2 45° Upper body combination                   

  
a.       Increased hip (twist) 

Hip local.roty 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  
b.       Increased torso (twist) 

Chest local.rotx 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  
c.      Increased arm abduction 

Upper 
Arm local.rotz Average Position -3.19355 0 

3.1935
5 6.3871 

9.5806
5 

12.774
2 

  
d.       Increased arm (bob) 

Upper 
Arm local.rotz 

Swing 
Magnitude 0.6 1 1.4 

1.89568
1 2.3 2.8 

  
e.      Increased arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 0.5 1 1.5 2 2.5 3 

3 
45°F
L 

Lower body combination 
                  

  
a.       Reduced walking speed 

Hips 
global.pos
z Retime 1.1 1 0.9 

0.80502
6 0.7 0.6 

  
b.       Reduced cadence 

ALL ALL Retime All 1.1 1 0.9 
0.80502
6 0.7 0.6 

  
c.      Increased hip (twist) 

Hips local.roty 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  d.       Increased walking base Heels local.posx Offset -1 0 1 2 3 4 

4 45° 
Increased Arm Abduction & 
(swing)                   
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a.      Increased arm abduction 

Upper 
Arm local.rotz Average Position -3.19355 0 

3.1935
5 6.3871 

9.5806
5 

12.774
2 

  
b.      Increased arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 0.5 1 1.5 2 2.5 3 

5 
45°F
L 

Whole body combination 
                  

  
a.       Reduced walking speed 

Hips 
global.pos
z Retime 1.1 1 0.9 

0.80502
6 0.7 0.6 

  
b.       Reduced cadence 

ALL ALL Retime All 1.1 1 0.9 
0.80502
6 0.7 0.6 

  
c.       Increased hip (twist) 

Hips local.roty 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  
d.       Increased torso (twist) 

Chest local.rotx 
Swing 
Magnitude -0.8 1 2.8 

4.64404
1 6.5 8.3 

  e.      Increased walking base Heels local.posx Offset -1 0 1 2 3 4 

  
f.       Increased arm abduction 

Upper 
Arm local.rotz Average Position -3.19355 0 

3.1935
5 6.3871 

9.5806
5 

12.774
2 

  
g.       Increased arm (bob) 

Upper 
Arm local.rotz 

Swing 
Magnitude 0.6 1 1.4 

1.89568
1 2.3 2.8 

  
h.      Increased arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 0.6 1 1.3 1.6 1.9 2.2 

            

            

            

  
 
          

6 90° 
Increased Arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 0.5 1 1.5 2 2.5 3 

7 90° 
Increased Spinal Erectness 

Lower 
Spine local.roty Average Position -5 0 5 10 15 20 

8 
45°F
L 

Reduced Walking Speed/ Cadence 
ALL                 

  a.       Reduced walking Hips global.pos Retime 1.1 1 0.9 0.80502 0.7 0.6 
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The code for all motion modifying scripts can be found in Appendix D. 

speed z 6 

  
b.       Reduced cadence 

ALL ALL Retime All 1.1 1 0.9 
0.80502
6 0.7 0.6 

9 0° Increased Arm Abduction & (bob)                   

  
a.      Increased arm 

abduction 
Upper 
Arm local.rotz Average Position -3.19355 0 

3.1935
5 6.3871 

9.5806
5 

12.774
2 

  
b.       Increased arm 

(bob) 
Upper 
Arm local.rotz 

Swing 
Magnitude 0.6 1 1.4 

1.89568
1 2.3 2.8 

10 0° 
Increased Arm Abduction 

Upper 
Arm local.rotz Average Position -3.19355 0 

3.1935
5 6.3871 

9.5806
5 

12.774
2 
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4.2. Survey Design 
The video survey was developed using Google Forms; a flexible, free, online method that 

enabled survey results to be directly output to Google’s spreadsheets for analysis. An online 

survey was used as it was an efficient method to reach a larger number of participants in a 

short amount of time and reduced the requirements on participants’ time and travel. The 

survey was promoted through social media channels such as Facebook, Twitter and email 

with the incentive of a randomly selected animation or games related prize. The survey was 

anonymous, however, those who wished to participate in the random prize draw supplied 

their email address, which was stored securely in accordance with the Data Protection Act 

(1998). 

 

Whilst viewing conditions could not be controlled it was possible to fix video dimensions to 

585 x 573 pixels. The video surveys can be viewed online at (Shewhorak, 2014a; 2014b). 

 

The survey consisted of fourteen linked webpages, which were estimated to take 

approximately 10 minutes to complete. Previous prototypes were longer but feedback 

included complaints at the length as it induced viewer fatigue that could be detrimental to 

the quality of responses. A progress bar also helps participants track their completion 

progress. 

 

The first two pages briefly introduced the project and required participants to list their age. 

Under eighteens were not permitted to continue due to ethical requirements. Participants 

were introduced to the survey format with an example video of five point light walkers and 

a visual representation of the obese target weight they were attempting to identify. 

Accompanying text instructed participants without inferring expected responses.  

 

Following the introductory pages were the testing pages containing embedded YouTube 

videos. Twenty videos were initially tested but early feedback reduced this to ten as testers 

noted the survey length was too fatiguing. Their design and layout is detailed further in 

section 4.3. Videos were set to play at the maximum page dimensions possible with 

instructions to click and watch the videos at full screen, before selecting a radio button to 
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indicate which walker looked like an obese person. The radio buttons allowed only one 

selected option. 

 

The final page also had options for participants to type feedback notes and to enter their 

email addresses if they wished to be entered into the prize draw.  

4.3. Video Design 
For the ten pages of video tests a row of six point-light walkers were centred in each video 

frame with bold, capitalised, red lettering beneath each identifying them to their radio 

button response. One point-light walker was the unchanged lean walker whilst the other 

five were exaggerated by different strengths. The order of the six walkers were randomised 

so that participants would not be able to select the lean walker through relative ordering. 

The base lean walk cycle lasted three seconds and involved five steps. The entire clip was 

looped to a length of thirty seconds, as opposed to trimming a two-step walk cycle to retain 

as much visual information possible, however, this did introduce a slight jump when 

transitioning from the end of the clip to the start of it. Forward movement along the z-axis 

was typically deleted so the walker appeared to be walking on the spot. To capture each 

walker the virtual camera was distanced so that the walker filled the frame and was angled 

slightly below eye level for a distortion less, natural gaze. To most clearly demonstrate each 

parameter or combination of parameters, the camera was rotated slightly differently.  

 

Early prototype video designs displayed a 2 x 6 matrix of the parameter from 0° front view 

on the top row and the same parameter but with the camera rotating 360° on the bottom 

row. This was designed in reference to McDonnell et al. (2008) with the purpose to show 

the parameter from multiple angles. 
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Figure 4-2- Point light walker matrix prototype 

However, feedback was negative with users noting that the rotating camera view was too 

fast and confusing and the set of twelve point-light walkers became a “less distinguishable 

cloud of points”, with the fatiguing effect worsening with each new video. Therefore a 

switch to a row of six point-light walkers with a fixed camera angle was implemented.  

 

 

Figure 4-3 - Simplified point light walker matrix 
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Most videos showed characters walking at 45° from the camera (as seen above in to give a 

view of the front and side profiles. Two videos were at 45° but took up the Full Length (FL) 

of the horizontal frame, as they needed to demonstrate changes in speed so the walkers did 

not walk on the spot. Two videos were orthogonal side on at 90° and two front on at 0°. 

Those parameters and their angle of view is listed in Table 4-2: 

Table 4-2 – Angle and order  of point light walker matrices 

Survey 

Order 
Point Light Video Parameters Angle of View 

1 Increased Hip (twist) & Torso (twist) 45° 

2 Upper body combination 45° 

3 Lower body combination 45° FL 

4 Increased Arm Abduction & (swing) 45° 

5 Whole body combination 45° FL 

6 Increased Arm (swing) 90° 

7 Increased Spinal Erectness 90° 

8 Reduced Walking Speed/ Cadence 45° FL 

9 Increased Arm Abduction & (bob) 0° 

10 Increased Arm Abduction 0° 

 

Early prototype designs featured a single loop of the walk cycles but the feedback response 

was that the clips were too short and some effort was needed to keep pressing the replay 

button. So the walk cycles were rendered again with loops extended to thirty seconds, 

which prototype feedback had estimated would be enough time to make an informed 

selection. Participants were also free to loop the embedded thirty second video multiple 

times. 

4.4. Point-Light Perceptual Survey Results 
This section presents the results of our point light perceptual survey to try and discern the 

strengths and order of perceptual dominance for motion parameters. 
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We do this by analysing the number of respondents who associated a motion parameter 

exaggeration (or combinations of) with the character deformed to represent 35% Body Fat 

Percentage. These are presented in the forms of categorical bar charts. 

  

Individual motion parameters that feature a single value of offset or magnitude 

amplification may feature those values across graphs x axis. However, when multiple motion 

parameters are tested, analysed and presented, the x axis features categorical labels such as 

A, B, C, D, E, F or the 0.5%, 12%, 23.5%, 35%, 46.5% or 58% Body Fat values the combined 

parameters are being tested as a representative of. 

 

The video survey was promoted from 13/02/14 through social media and in classes at 

Teesside University with a £20 voucher incentive. Participants’ (n=59) mean age was 23.3, 

31 who identified as having experience in animation or games development, one identified 

as having experience in sports sciences or biomechanics and twenty seven who identified 

themselves as simply members of the public (layman viewers).  

 

The first perceptual survey tested the following motion parameters listed previously in Table 

4-2. This mixture of parameters was chosen to represent the potentially large ranges of 

movement or perceptually outstanding aspects of the upper body; arm abduction, swing, 

bob, spinal erectness. They were also chosen to represent the more traditionally studied 

lower body gait; walking speed/ cadence and hip and torso twist. Further justifications for 

their selection for surveying and scripting can be found in section 3.2.3 and 4.1. 

 

Modification values of offset or multiplications are listed on each graphs horizontal axis. 

When multiple parameters are tested, their results are categorised into ‘A’ – ‘F’ or ‘0.5%’ – 

‘58%’ bars, whose values can be found in Table 4-1. The results, however, shall be discussed 

in a more logical order of upper body, lower body then combined parameters as follows: 

4.4.1. Increased Average Arm Abduction   

It was hypothesized that as body morphology increased, viewers expected average arm 

abduction to increase to avoid chafing with the torso. The results, as seen in Figure 4-4, 
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confirm this hypothesis with significant identification of obese walkers with increased angle 

of arm abduction. 

4.4.2. Increased Spinal Erectness   

It was hypothesized that as body morphology increased, viewers expected spinal erectness 

to increase, as observed by McGraw et al. (2000) and de Souza (2005b). The results, as seen 

in Figure 4-5, are mixed. Removing strengths -5 and 5 as outliers could present an upward 

trend of viewers perceiving increased spinal erectness in obese walkers. Upon reviewing the 

videos, however, it would appear that spinal erectness was poorly modelled using flexion-

extension of only the lowest spine bone. A better representation of the motion parameter 

may have been Spinal Curvature that includes flexion-extension of multiple spinal bones. 

For this reason, the motion parameter and survey results for spinal erectness are no longer 

to be considered valid. 

  

Figure 4-4- Increased Arm Abduction point-light results Figure 4-5- Spinal Erectness point-light results 
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4.4.3. Increased Arm Flexion - Extension (swing)   

It was hypothesized that as body morphology increased, viewers expected arm swing to 

increase. 

The results as seen in Figure 4-6 show a significant trend of identification of under 

exaggerated arm swing with an obese walk. This indicates that viewers perceive obese 

walkers to reduce their arm swing magnitude. This could be to reduce the movement of the 

COM to maintain balance and conserve energy. 

4.4.4. Increased Average Arm Abduction & Abduction - Adduction (bob)
   

It was hypothesized that as body morphology increased, viewers expected average position 

of arm abduction and bob magnitude to increase. The results as seen in Figure 4-7 shows a 

significant increase in preference for positively exaggerated arm abduction and bob in the 

perception of obese gait. Increasing arm abduction to avoid chafing with the torso and 

increasing arm bob could be a passive kinematic reaction to increased ground reaction 

forces. However, as the arm abduction has already been shown to be more believable when 

increasing, increasing arm bob may simply be a less dominant parameter. For this reason, 

arm bob needed to be tested in isolation in survey two. 

     

Figure 4-6- Arm Swing point-light results Figure 4-7- Average Arm Abduction and Bob point-light 

results 

4.4.5. Increased Average Arm Abduction & Extension – Flexion (swing)  

It was hypothesized that as body morphology increased, viewers expected average arm 

abduction and swing magnitude to increase. The results, as seen in Figure 4-8, show mixed 

results. Previous survey results had demonstrated viewer preference for increased arm 

abduction, and decreased arm swing magnitude, which explains the mixed results. 
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4.4.6. Reduced Walking Speed/ Cadence 

It was hypothesized that as body morphology increased, viewers expected preferred 

walking speed to decrease. The results as seen in Figure 4-9 were inconclusive with no 

trending preference. As previous research by Spyropoulos et al. (1991) had determined a 

correlation between increases in obesity and decreases in walking speed this suggests that 

the full length 45° angle of the video experiment did not allow viewers to compare changes 

in distance and needed retesting at a different angle in survey two. 

 

     

Figure 4-8- Arm Abduction and Swing point-light results Figure 4-9- Speed and Cadence point-light results 

4.4.7. Increased hip twist & torso twist (thorax axial rotation) 

It was hypothesized that as body morphology increased, viewers expected hip and torso 

twist magnitude to increase. The results, as seen in Figure 4-10, appear mostly mixed with 

some preferences at the under exaggerated and over exaggerated strengths with the largest 

choice being the unchanged original. This suggests that viewers possibly expect no change, 

or a decrease in hip and torso twist. The spike at 8.3 magnitude could have been selected as 

an outlier. As the hip and torso body parts exhibit less movement than other limbs, the 

point-light method abstracts a lot of the effect of this subtler motion parameter. For this 

reason this parameter was retested in survey two using surface topology. 

4.4.8. Upper body combination 

It was hypothesized that as body morphology increased, viewers expected hip and torso 

twist, arm abduction, bob and swing to increase. The results as seen in Figure 4-11 shows a 

mixed preference with seventeen people selecting under exaggeration and seventeen 

people selecting over exaggeration. This suggests that more than one parameter is 

contradictory. Increased arm abduction and bob had previously shown to be perceptually 
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preferable whilst decreased arm swing had been shown to be preferable. Isolating or 

reversing arm swing magnitude exaggeration in survey two would clarify this. 

 

      

Figure 4-10- Hip and Torso Twist point-light results Figure 4-11- Upper Body Combination point-light results 

4.4.9. Lower body combination 

It was hypothesized that as body morphology increased, viewers expected walking speed to 

decrease, hip twist and walking base to increase. The results as seen in Figure 4-12 show a 

strong preference for the most exaggerated combination of values configured at ‘58%’. As 

walking speed and hip twist had not yet appeared to be dominant (given the angle and 

presentation) the results suggest that increased walking base has a significant effect of the 

perception of obese walkers. 

  

0

5

10

15

20

-0.8 1 2.8 4.6 6.5 8.3

N
o

. o
f 

R
es

p
o

n
d

en
ts

Magnitude of Multiplier

13 Hip and Torso twist 

0

5

10

15

20

A B C D E F

N
o

. o
f 

R
es

p
o

n
d

en
ts

Category of Modification Values

15 Upper COMBO 



74 
 

4.4.10. Whole body combination 

It was hypothesized that as body morphology increased, viewers expected walking speed to 

decrease and hip twist, torso twist, walking base, arm abduction, arm bob and arm swing to 

increase. 

    

 

Figure 4-12- Lower Body Combination point-light results Figure 4-13- Total Combination point-light results 

It was hypothesized that as body morphology increased, viewers expected walking speed to 

decrease and hip twist, torso twist, walking base, arm abduction, arm bob and arm swing to 

increase. The results as seen in Figure 4-13 show a strong preference for the most 

exaggerated combinations. 

 

Considering some parameters needed to be presented differently, this suggests that 

parameters such as arm abduction, arm bob and walking base were more dominant than 

others. Or it could suggest that the combination of these and weaker presented parameters 

was enough to provide a strong visual perception of obese walkers. 

4.5. Summary 
With the prototyping of a scripted animation deformation tool, it became possible to modify 

5 individual and 5 combinations of parameters at 6 strengths of exaggeration. This was 

deployed in a survey with the intention of better understanding people’s perception of 
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obese gait and potentially how it may differ to actual variations in real life. Whilst this 

chapter presented the results of the point-light survey, they shall be analysed in comparison 

to the character mesh survey in Chapter Error! Reference source not found.. The following 

chapter shall describe the process of a second round of perceptual surveys using character 

meshes as opposed to point light displays.  
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5. CHARACTER MESH PERCEPTUAL SURVEY 
Following the first point-light survey another survey was developed. Two surveys were used 

to test a wider range of parameters without fatiguing the same participants with one 

excessively long survey. The first point-light survey was also analysed to optimise the second 

survey’s presentation format, angle of viewing, to verify questionable parameters, introduce 

new parameters and combinations. 

 

Whilst the first survey used point-light walkers some users’ feedback had noted that they 

found it difficult to differentiate motion amongst the cloud of lights. Certain parameters 

such as torso twist were also much more difficult to perceive from just the point lights. For 

this reason a switch to displaying character meshes was made.  

 

 

Figure 5-1 - Obese deformation of virtual human 
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The scripted parameter modifications still worked on the new character in the same way as 

before, however, now the movement could be seen through surface topology as opposed to 

fifteen point lights. 

5.1. Motion Parameter Strengths 
The mesh based perceptual survey tested five motion parameters and five combinations. 

Following analysis of the results from the first survey, a number of parameters were 

retested, reoriented, isolated or modified as summarised in Table 5-1:  

 

Table 5-1 - Motion parameter changes 

 Video 

Parameter 
Parameter Changes from Point Light Survey 

1 
Upper body 

combination 

Torso twists and arm swing magnitude decreased in strengths 

2 
Lower body 

combination 

Hip twists decreased in strengths 

3 
Increased 

walking base 

Walking base was isolated as a parameter as it had not previously 

been tested on its own 

4 Torso (swagger) 
Torso swagger was added as this parameter was observed in a 

distinctive overweight motion capture participants. 

5 
Increased Arm 

(bob) 

Arm bob was isolated as a parameter as the first surveyed tested 

arm bob and abduction combined, so there was a need to test the 

perceptual dominance of arm bob alone. 

6 

Reduced 

Walking Speed/ 

Cadence 

Preferred walking speed and cadence was retested from a front-

on view as the previous 45° full length view returned feedback 

that it was hard to judge. 

7 

Increased Hip 

(twist) & Torso 

(twist) 

Increasing hip and torso twist was retested. The point light 

version may have been too subtle for participants to read the 

changes so the test was repeated with the 3D character mesh 

with the hope that surface topology deformations would be 

easier to see. 

8 
Decreased Hip 

(twist) 

Hip twist magnitude decreased in strengths. 

 

9 
Whole body 

combination 

Hip and torso twists and arm swing magnitude decreased in 

strengths 

10 

Increased Arm 

Abduction & 

(swing) 

Arm swing magnitude decreased in strengths 
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Arm abduction and swing was retested as the scripted tool had failed to implement the 

changes correctly. Spinal erectness was tested in the first survey but on reflection the 

modelling was judged to be too simplistic whereas a curvature to the whole spine would 

have been more accurate. Whilst McGraw et al. (2000) and de Souza (2005b) states that 

spinal curvature increases over obesity, the constraints of the motion capture process 

meant capturing spinal curvature over taut areas of the compression suit, especially with 

obese participants, would have been highly inaccurate. For these reasons, this parameter 

was abandoned in this second survey. 

 

Table 5-2 lists the motion parameters, the bone names (and corresponding references in 

software packages) movement axes, modification type and strength values. Whilst the 

combination values carry over values from the previous survey or other parts of the survey, 

the individual parameters being tested or retested had their values decided as follows: 

 

Walking base is tested again on its own with values manually modified in to be a perceived 

obese width of 4 Softimage units from the line of progression at 35% body fat, and then 

other values were interpolated equally between that and the unchanged base value of 0 

offset at the lean 12%. 

 

Torso swagger was a distinctive movement noticed anecdotally in one person so its 

magnitude in the lateral y axis was manually exaggerated to a degree that was believed 

could be an obese person at 35% body fat and then other values were interpolated equally 

between that and the unchanged multiplication of 1 at the lean 12% base value. 

 

Arm bob was retested on its own with 35% set at an expanded magnification of 3.7 and 

0.5% dipping into the negative direction of -0.8. This was manually altered to try and detect 

a preference trend in one direction or the other for what was seeming to be a perceptually 

weak parameter. 
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Hip twist was retested on its own but now on a decreasing scale with 35% body fat 

magnifying rotation by only 0.25. This was manually altered to see if people perceived less 

movement over body fat percentage. 

 

The combinations were an opportunity to retest parameters, the direction of their 

exaggeration or scales of modification.  

 

Increased arm abduction was retested but with arm swing now decreasing over a smaller 

scale as the previous survey gave inconclusive results. The values were decided by 

decreasing from a subtler scale of 1.25 magnitude of amplification at 0.5% body fat down to 

unchanged at 58% we hoped to see some more refined results. 

 

Lower combination kept the speed values and walking base but we opted to try the newer 

values from the hip twist test to compare the combined effectiveness 

 

Upper combination utilises the values for the decreased hip twist and also keeps them for 

torso twist assuming a contralateral action would change in unison. Arm abduction’s values 

are kept unchanged as the results indicated they were effective. Arm bob values were kept 

the same as they were being tested separately, and arm swing reuses the newer values. 

 

Whilst the total combination utilised values from the lower and upper body combinations to 

test their overall effectiveness. 
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Table 5-2 - Obese Mesh Survey’s Motion Parameter Strengths 

 Body Fat Percentage Values 

Survey 
No. 

Script 
No. 

Angle 
View 

Video Test 
Parameters Bone  Movement Mod Type 

0.5% 12% 23.5% 35% 46.5% 58% 

1 15 45° Upper body combination                 

   

a.       Decreased 
hip (twist) Hip local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

   

b.       Decreased 
torso (twist) Chest local.rotx 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

   

c.      Increased 
arm abduction 

Upper 
Arm local.rotz 

Average 
Position -3.19355 0 3.19355 6.3871 9.58065 12.7742 

   

d.       Increased 
arm (bob) 

Upper 
Arm local.rotz 

Swing 
Magnitude 0.6 1 1.4 1.895681 2.3 2.8 

   

e.      Decreased 
arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

2 18c 0° FL Lower body combination                 

   

a.       Reduced 
walking speed Hips global.posz Retime 1.1 1 0.9 0.805026 0.7 0.6 

   

b.       Reduced 
cadence ALL ALL Retime All 1.1 1 0.9 0.805026 0.7 0.6 

   

c.       Decreased 
hip (twist) Hips local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

   

d.       Increased 
walking base Heels local.posx Offset -1 0 1 2 3 4 

3 16 0°  Increased walking base                 

   

a.       Increased 
walking base Heels local.posx Offset -1 0 1 2 3 4 

4 22 0° Torso (swagger)                 
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a.       Increased 
torso swagger Chest local.roty 

Swing 
Magnitude 0.8 1 1.2 1.4 1.6 1.8 

5 5 0° Increased Arm (bob)            

   

a.       Increased 
arm (bob) 

Upper 
Arm local.rotz 

Swing 
Magnitude -0.79136 0.104319 1 1.895681 2.791363 3.687044 

6 10 0° FL Reduced Walking Speed/ Cadence                

   

a.       Reduced 
walking speed Hips global.posz Retime 1.1 1 0.9 0.805026 0.7 0.6 

   

b.       Reduced 
cadence ALL ALL Retime All 1.1 1 0.9 0.805026 0.7 0.6 

7 13 45° Increased Hip (twist) & Torso (twist)                

   

a.       Increased 
hip (twist) Hips local.roty 

Swing 
Magnitude -0.8 1 2.8 4.644041 6.5 8.3 

   

b.       Increased 
torso (twist) Chest local.rotx 

Swing 
Magnitude -0.8 1 2.8 4.644041 6.5 8.3 

8 11a 45° Decreased Hip (twist)                  

   

a.       Decreased 
hip (twist) Hips local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

9 19 0° FL Whole body combination                 

   

a.       Reduced 
walking speed Hips global.posz Retime 1.1 1 0.9 0.805026 0.7 0.6 

   

b.       Reduced 
cadence ALL ALL Retime All 1.1 1 0.9 0.805026 0.7 0.6 

   

c.       Decreased 
hip (twist) Hips local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

   

d.       Decreased 
torso (twist) Chest local.rotx 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 
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e.       Increased 
walking base Heels local.posx Offset -1 0 1 2 3 4 

   

f.      Increased 
arm abduction 

Upper 
Arm local.rotz 

Average 
Position -3.19355 0 3.19355 6.3871 9.58065 12.7742 

   

g.       Increased 
arm (bob) 

Upper 
Arm local.rotz 

Swing 
Magnitude 0.55 1 1.45 1.895681 2.34 2.79 

   

h.      Decreased 
arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 

10 8 45° Increased Arm Abduction & (swing)               

   

a.      Increased arm 
abduction 

Upper 
Arm local.rotz 

Average 
Position -3.19355 0 3.19355 6.3871 9.58065 12.7742 

   

b.      Decreased 
arm (swing) 

Upper 
Arm local.roty 

Swing 
Magnitude 1.25 1 0.75 0.5 0.25 0 
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5.2. Video Design 
Whilst the survey design remained largely identical to the first. There were some slight 

alterations to the video design. 

The following parameters were changed from full length walks at 45° to full length walks at 

0°. This was because survey participants had noted that they had found it difficult to judge 

distance, especially with the point light displays. 

 

Table 5-3 - Obese Mesh Survey’s Change in Angle of View 

Obese Mesh Video Parameters 
Changed Angle of 

View 

Lower body combination  0° FL 

Reduced Walking Speed/ Cadence  0° FL 

Increased Arm Abduction & (swing) 0° FL 

 

The video matrix now featured full mesh characters instead of point-light ones. 

 

 

Figure 5-2- Obese mesh walker matrix 
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5.3. Character Mesh Perceptual Survey Results 
The second separate survey was developed and deployed a couple of months after the first 

survey, and a month after the second round of mocap data collection, from 25/04/14. This 

was to cover more parameters without fatiguing previous participants with one lengthy 

survey. It also allowed an iterative approach to testing the first set of parameters by 

allowing verification of parameters in the following ways: 

 

 The abstracted presentation method of point-light walkers was switched to surface 

topology, meshed obese characters. This was due to feedback that multiple point-

light walkers had appeared confusing and at times looked like a “cloud of points”. 

When testing hip and torso twist, the rotational effect on the two spherical lights 

was deemed too abstract and subtle. Deformation of surface topology would be 

more representational. 

 

 Initially arm bob magnitude was tested in combination with average arm abduction 

position.  

Whilst results were positive, it was deemed important to assess which parameter 

was more dominant and when separated, assess the weaker parameter’s effect in 

isolation. 

 

 Arm swing magnitude was to be tested in decreasing strength 

 

 Walking speed and upper and whole body combinations were to be retested in 

survey two from a front on angle so distance travelled in time could be more 

comparatively judged. 

 

The video survey was promoted through social media and in classes at Teesside University 

with a £20 voucher incentive. Participants’ (n=67) mean age was 28.3, thirty who identified 

as having experience in animation or games development, three identified as having 
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experience in sports sciences or biomechanics and thirty four who identified themselves as 

simply members of the public (layman viewers). 

 

The second perceptual survey tested the following motion parameters: 

 

Table 5-4 - Order of Obese Mesh Tests 

Survey 

Order 
Video Parameter 

1 Upper body combination  

2 Lower body combination 

3 Increased Walking Base 

4 Increased Torso Twist 

5 Increased Arm Bob 

6 Decreased Walking Speed/ Cadence  

7 Increased Hip & Torso Twist  

8 Decreased Hip Twist 

9 Whole body combination  

10 Increased Arm Abduction & decreased Arm 

Swing 

 

The values for each of these parameters and combinations of parameters can be found in 

Table 5-2. The results, however, shall be discussed in a more logical order of upper body, 

lower body then combined parameters as follows. 

5.3.1. Increased Arm Bob 

It was hypothesized that as body morphology increased, viewers expected arm bob to 

increase. The results as seen in Figure 5-3 are inconclusive with no apparent trending 

preference. In Figure 4-7 we saw an upward trend of preference for Increased Arm 

Abduction and Bob taken from the same front on view of 0°. This indicates that arm 

abduction is a more dominant motion parameter whilst increased arm bob does not 

contribute to the perception of increased obese morphology. 
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5.3.2. Increased Average Arm Abduction & Decreased Arm Swing 

It was hypothesized that as body morphology increased, viewers expected average arm 

abduction to increase and arm swing to decrease, as demonstrated in Figure 4-8. The results 

as seen in Figure 5-4 appear mixed which indicates a mismatch in the strengths of the two 

parameters. However, the viewer preference was for the strongest value ‘f’ which supports 

the trends presented. 

 

     

Figure 5-3 Arm Bob obese mesh results Figure 5-4- Arm Abduction and Arm Swing obese mesh 

results

5.3.3. Increased torso swagger (thorax lateral rotation) 

It was hypothesized that as body morphology increased, viewers expected torso swagger to 

increase. The results as seen in Figure 5-5 partially support this hypothesis with a preference 

for exaggerations of 1.6. However, the rest of the selections are approximately equal which 

suggests this is a perceptually less significant motion parameter. 

5.3.4. Increased Hip & Torso Twist 

It was hypothesized that as body morphology increased, viewers expected hip and torso 

twist to increase. The results as seen in Figure 5-6 appear too mixed to support this 

hypothesis or to indicate a trend in either direction. 
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Figure 5-5- Torso Swagger obese mesh result Figure 5-6- Hip and Torso Twist obese mesh results 
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5.3.5. Upper body combination 

It was hypothesized that as body morphology increased, viewers expected decreased hip 

and torso twist and increased arm abduction, bob and swing to increase. The results as seen 

in Figure 5-7 significantly support this hypothesis with an upward trend of identification of 

obese walkers. Looking at the results of previous parameter videos suggests an order of 

perceptual dominance of: arm abduction, swing, bob, hip and torso twist. 

5.3.6. Decreased Hip Twist 

It was hypothesized that as body morphology increased, viewers expected hip twist to 

decrease. The results as seen in Figure 5-8 shows mixed results with increased hip twist 

having the strongest identification with obese motion. 

    

Figure 5-7- Upper Body Combination obese mesh results Figure 5-8- Hip Twist obese mesh result

5.3.7. Decreased Walking Speed/ Cadence 

It was hypothesized that as body morphology increased, viewers expected preferred 

walking speed to decrease out of fatigue. The results as seen in Figure 5-9 supports this 

hypothesis with an upward trend of identification of obese walkers peaking at a slowdown 

rate of 80%. 

5.3.8. Increased Walking Base  

It was hypothesized that as body morphology increased, viewers expected walking base to 

increase to provide a wider and more stable base of support. The results, as seen in Figure 

5-10, support this hypothesis with an upward trend of identification of obese walkers with 

widened walking base. However, values 0 and 2 are reduced in preference. 
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Figure 5-9- Speed and Cadence obese mesh results Figure 5-10- Walking Base obese mesh results 

5.3.9. Lower body combination 

It was hypothesized that as body morphology increased, viewers expected walking speed 

and hip twist to decrease and walking base to increase. The results, as seen in Figure 5-11, 

appear to support this hypothesis with a significant increasing trend of identification of 

obese walkers with values at strongest preference peaking at ‘D’, which follows the results 

of preferred walking speed, suggesting that this is the more dominant parameter. Increased 

walking base skewed more results to the ‘e’ and ‘f’ values suggesting it as a strong 

secondary parameter. 

5.3.10. Whole body combination 

It was hypothesized that as body morphology increased, viewers expected walking speed, 

hip and torso twist and arm swing to decrease whilst walking base, arm abduction and bob 

to increase. The results, as seen in Figure 5-12, appear to strongly support this hypothesis 

with an upward trend of identification of obese walkers. 

  

Figure 5-11- Lower Body Combination obese mesh 

results 

Figure 5-12- Total Combination obese mesh results 
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5.4. Summary 
Following feedback from the point light survey a second character mesh survey was created 

to test new parameters, and retest previous parameters at different strengths and angles. 

This two-staged approach reduced visual fatigue and enable the validation of previous 

trendlines. By the end of this process we then had a set of motion parameters that could be 

listed by perceptual dominance and compared to the point-light results as well as the actual 

motion capture results. 
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6. MOTION CAPTURE GAIT ANALYSIS 
Following the two perceptual surveys for expectant changes in motion parameters, an 

empirical study of real world gaits was undertaken. Before undertaking this, a methodology 

was carefully devised based upon its requirements, and where possible, justified against 

comparable published research. Here we shall review a range of metrics, their 

appropriateness for measuring body shape and how they have been used in existing 

research. The key questions asked when reviewing each index were: 

a) How well does each index represent body shape? 

b) How well does each index measure physical people and virtual characters? 

c) Is the measurement convenient, accurate or comfortable to measure? 

 

The following sections shall review the different types of anthropometrics and kinematic 

measurements and summarise their suitability and selection.  

6.1. Anthropometrics 
Anthropometry is the measurement of physical properties and dimensions of the human 

body. When trying to assess the level of a person’s obesity there have been numerous 

indices developed to measure and categorise body shapes. Linear anthropometrics are used 

to measure or predict physical properties of the body. Sometimes this is a direct 

measurement or an index derived from population data. Linear anthropometrics have been 

established since Roman times, are quick and easy to measure and there is a huge range of 

anthropometric tables and recorded population data to take advantage of. 

A more recent alternative to linear anthropometry is surface anthropometry. This describes 

the size and shape of the 3D surface of the body but can also be used to measure internal 

structures. This type of anthropometry has only recently been made possible with modern 

technologies such as 3D, MRI, CT, CAT, ultrasound and laser scanners. Whilst more detailed, 

this approach is costlier and more complex. 

The usefulness of each index has improved over time with some being more relevant to 

different industries such as health insurance, paediatrics, bariatrics, garment fitting, sports 
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training and surgical procedures. These indices cannot only be judged on their correlations 

with body shape but also their accuracy and ease of measurement.  

For our purposes we shall be looking to record externally perceivable body shapes using the 

equipment available within Teesside University. We shall summarise some of these metrics 

as absolute masses, circumferences, ratios, linear anthropometry and surface 

anthropometry before deciding which are of use to measure body shapes. 

6.1.1. Mass 

Total Body Weight is actually body mass measured in (kg). This includes adipose tissue, 

muscles and skeletal mass. Strictly speaking this should be measured without clothing or 

shoes, however, in practicality it is typically measured with clothing. The average UK adult 

male weight is 84kg (Welsh Health Survey, 2009). The drawback of solely recording body 

weight is that it does not take height into account, which is an important perceptual factor 

when perceiving body shape. 

 

Fat Mass (FM) is the total mass of adipose tissue in the body, measured in (kg). This includes 

two different classifications of adipose tissue; Visceral Adipose Tissue and Subcutaneous 

Adipose Tissue.  

 

The following parameters are discussed further in Appendix C: 

 

Visceral Adipose Tissue (VAT) was considered in regards to its relation to Waist 

Circumference and Waist to Hip Ratio however since it is internal fat it is not visible. 

Subcutaneous Adipose Tissue (SAT) was considered as it is used in skinfold calliper pinches 

to estimate overall BF%. Whilst it has an effect of the perception of external body fat 

volume and circumferences, it is challenging to accurately measure. Fat Free Mass (FFM) 

was also considered, however as it is just one component of body morphology it was not 

used. 

6.1.2. Circumferences 

Another type of measurement for body shapes relates to circumferences of particular body 

areas. Circumferences of body areas can represent the volumetric size of characters and are 
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measurable in real life as well as virtually. The following measurements were considered 

and expanded in Appendix C: 

 

Hip Circumference (HC) also helps measure central abdominal fatness in (cm). It is 

measured around the widest portion of the buttocks, with the tape parallel to the floor 

(WHO, 2011).  

 

Waist circumference (WC) is measured midway between the uppermost border of the iliac 

crest and the lower border of the rib cage (WHO, 2008 cited in WHO, 2011). WC is a useful 

metric as it is more effective at predicting abdominal fat than WtHR or BMI. Waist 

circumference does not take into account height, which can bias people taller or shorter 

than the national average. 

 

Thigh Circumference (ThC) helps measure lower body shape in (cm). A tape measure is used 

to measure the midpoint of the thigh. Increased thigh muscles could have a direct effect on 

gait parameters. 

 

Sum of Five circumferences (CSum) is simply the sum total of the HC, WC, ThC, arm and calf 

circumference. These expand with, and can loosely represent body volume. Waist, hip and 

arm/ calf circumferences had the highest associations with whole-body VAT, SAT and 

skeletal muscle volumes respectively (Heymsfield et al., 2008). 

6.1.3. Ratios 

Aside from absolute measurements of mass and circumference lengths, there also exist 

ratios that can measure relative body shape. 

 

Waist-to-Hip Ratio (WtHR) is the ratio of the waist circumference to that of the hips. It is 

also abbreviated to WHpR or WHR. This ratio provides a useful estimation of the proportion 

of abdominal or upper-body fat (Kissebah and Krakower, 1994; Björntorp, 1984; Björntorp, 

1985). In medical terms this relative representation of body shapes with larger abdominal 

areas turns out to be a better indicator of cardiovascular diseases than BMI (Dobbelsteyn et 

al., 2001). Ashwell et al. (2012) also found WtHR to be a more reliable indicator of 
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cardiovascular disease than BMI or WC and devised a chart of norms as seen in Table 6-1. 

This is a useful measurement as it can assess body shape independent of height. WtHR has a 

stronger effect when it comes to the perception of a more attractive female body shape 

than BMI so it is of perceptual significance (Wetsman and Marlowe, 1999). 

 

Figure 6-1- Waist-to-hip Ratio (Simon, 2013) 

 

Table 6-1- Waist to Hip Ratio Norms 

 

 

Waist to Height Ratio (WHtR) is the ratio of the waist circumference to height. This ratio 

provides a useful estimation of the distribution of body fat over the whole body. It is also 

useful, as recommended boundaries can be classified independent of age, ethnicity or 

gender. Ashwell et al. (2012) created a Shape Chart which is expanded in Figure 12-1 in 

Appendix C alongside the Waist to Chest Ratio (WCR). 

6.1.4. Linear Anthropometric Indecises 

Numerous formulas exist that are meant to represent body shape and create a scale 

towards ideal body weight. Formulas such as the Quetelet Index (QI) and the Metropolitan 

Life tables are expanded in Appendix D. 

 

Body Mass Index (BMI) was based on the Quetelet Index , however, it was re-termed BMI in 

1972 when it was reviewed in the context of increasing health concerns over obesity (Keys 

et al., 1972).  
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BMI = Mass / Height2 

Equation 3- Body Mass Index 

 

At the time it was found to be the best proxy for body fat percentage and due to its 

simplicity it overtook the insurance tables as the most popular measurement for body 

measurement. 

Table 6-2 - BMI adult male classifications (WHO, 1995; 2000) 

BMI Classification 

Below 18.5 Underweight 

18.5–24.9 Normal weight 

25.0–29.9 Pre-obesity / Overweight 

30.0–34.9 Obesity class I / Obese 

35.0–39.9 Obesity class II / Morbidly Obese 

Above 40 Obesity class III / Extremely Obese 

 

From BMI BF% can be predicted, using age and sex-specific formulas (Durnin-Womersley, 

1974; Deurenberg et al., 1991; Gallagher et al., 1996; Deurenberg-Yap et al., 2000). The 

formulas are, however, specific to ethnic populations (Deurenberg et al., 1998).  

 

However, a number of problems persist with BMI. Keys et al. (1972) noted that it was more 

appropriate for population studies and inappropriate for individual evaluation. A study by 

Deurenberg et al. (2001) found that 8% of all men and 7% of all women were incorrectly 

classified as obese using standard BMI cutoff points. BMI does not scale well to body frame 

size meaning people with a small frame but more fat may be classified as normal whereas a 

person with minimal fat mass but a larger frame may be erroneously classified as 

overweight. It does not take into account body circumferences to determine classification 

for a given height. BMI does not take into account the differences between muscle and fat 

mass, meaning that short bodybuilders will be misclassified as overweight. As it does not 

provide information on body fat distribution it is also not a great proxy for body shape. 
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Body Fat Percentage (BF%) is the percentage of fat mass per total body mass. This fat mass 

includes essential fat and storage fat such as visceral (VAT) and subcutaneous (SAT). As 

women have sex-specific fat in the breasts, pelvis, hips and thighs, the classifications for 

body fat ranges differ as seen below in Table 6-3: 

Table 6-3 - Recommended Ranges of BF% (Muth, 2009) 

Description Women Men 

Essential fat 10–13% 2–5% 

Athletes 14–20% 6–13% 

Fitness 21–24% 14–17% 

Average 25–31% 18–24% 

Obese 32%+ 25%+ 

  

A minimum level of fat is required to function effectively which is listed as ‘Essential fat’ in 

Table 6-3 above. It is noteworthy that higher levels of BF% increases the risk of 

cardiovascular diseases (Christou et al., 2005). SAT distribution also differs with ethnicity as 

Wang et al. (1994) observed that Asians had more subcutaneous fat and different fat 

distributions than Caucasians. There are numerous methods to measure BF% that vary in 

accuracy, convenience, and comfort. These include Underwater Weighing (UWW), Whole-

body Air Displacement Plethysmography (ADP), Dual energy X-ray absorptiometry (DXA), 

estimation from BMI, estimation from BAI, skinfold testing, bioelectrical impedance analysis 

(BIA), and height and circumference methods. The first three methods for body fat 

measurement required facilities that were not available at Teesside University.  In some 

cases a combination a multi-compartment model can be used to avoid systematic bias of 

each method e.g. measuring FM, FFM, SMM (Baumgartner et al., 1991; Gallagher et al., 

1996). 

 

Densitometry is the measurement of body density (mass/volume) and distinguishes FM and 

FFM on the assumptions that their densities are constant at 0.9kg/l and 1.1 kg/1 

respectively. Its accuracy is affected by sex, age and race (Wang et al., 1991).  
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Both underwater weighing (UWW) and air displacements are methods for densitometry. 

These, along with Internal Body Composition measuring techniques such as DXA, MRI and 

CAT scans, are explored further in Appendix C. 

6.1.5. Body Shape Scales / Surface Anthropometrics 

A variety of indices and scales have been developed over the years to measure and classify 

body shape, volume and surface. Some of these build upon previous linear anthropometrics 

by including a third dimension such as hip or waist circumference that better models body 

shape.  

 

The following anthropometrics were considered and are expanded upon in Appendix C: 

 

 Somatypes (Sheldon et al., 1940)  

 Body Build and Posture Scales (Douty, 1968)  

 Body I.D. Scale (August and Count, 1981)  

 Body Surface Area (BSA) (Boyd, 1935; Dubois and DuBois, 1916; Gehan and George, 

1970; Haycock et al., 1978; Mosteller, 1987)  

 Volume Height Index (VHI)  

 Body Adiposity Index (BAI) (Bergman et al., 2011) 

 A Body Shape Index (ABSI) (Krakauer and Krakauer, 2012).  

 Body Roundness Index (BRI)  

 Body Shape Assessment Scale (BSAS©) (Connell et al., 2006)  

 Body Volume Index (BVI) (Tahrani et al., 2008) 
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6.1.6. Measurements 

To measure body shape and composition there are numerous methods we can employ. 

Dissecting and examining a cadaver is the most accurate method of determining total body 

composition, however, there are obvious impracticalities.  

 

There are numerous methods to record body weight, however, analogue or digital scales are 

sufficient. Care must be taken when processing self-reported data as people have a 

tendency of underreporting their actual weight, waist and hip circumference (Rimm et al., 

1990). BMI and height measurement errors are difficult to quantify, but parametric 

prediction models can be used to address these biases (Stommel and Scheonborn, 2009). 

 

There are cheap and easy techniques to measure linear anthropometrics in-vivo such as BF% 

using BIA and skinfold calipers. Imaging technologies such as MRI and CT scanners can help 

us visualise and analyse internal body compositions, whilst BVI scanners can help measure 

external body shape volumes.  

 

Skinfold testing is a viable option for accurately predicting BF%. It involves pinching the SAT 

with Skinfold Calipers (Figure 6-2) at seven standardized body landmarks and entering their 

width (mm) through formulas such (Durnin-Womersley, 1977; Jackson and Pollock, 1985; 

Siri, 1961; Brožek, 1963).  

   

Figure 6-2 - Harpenden Skinfold Calipers (Baty, 2015)  
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Figure 6-3 - Bioelectrical Impedance machine (Inbody 720, 2014) 

However, ISAK  training is required to consistently measure accurate readings and in 

severely obese patients it can become harder to find landmarks and to differentiate 

between SAT and muscle mass. Skinfold measurements also go through two measurements 

methods (Durnin and Womersley, 1977; Jackson and Pollock, 1985; Siri, 1961; Brožek, 1963) 

carrying the cumulative error of both. 

 

Furthermore these formulas are based on population data so that individuals often simply 

track their skinfold widths as a direct measure of fatness rather than attempting to convert 

it into BF% estimations. The use of skinfold calipers also requires costly IZAK training for 

accurate readings as inconsistent compression can affect skinfold measurements (Ward and 

Anderson, 1993). Skinfold compressibility is affected by water levels at different times of 

measurement (Becque et al., 1986) and also varies between individuals (Martin et al., 1992). 

Large measurement errors can be problematic for interpretation (Ulijaszek and Kerr, 1999). 

In addition, pinching participant’s bodies can be embarrassing and it can get more difficult 

to differentiate between SAT and muscle mass with increasingly large rolls of adipose tissue. 

 

Bioelectrical Impedance Analysis (BIA) predicts an individual's BF% as well as VAT, SAT, 

WtHR and WC. To achieve this, the meter passes a small, harmless, electric current through 

the body and measures the resistance (NIH, 1994). It then calculates an approximate value 

taking into account the person's weight, height, age, and sex. The calculation measures the 

total volume of water in the body (lean tissue and muscle contain a higher percentage of 

water than fat), and estimates the percentage of fat by understanding the density of body 

tissue masses. BIA machines (Figure 6-3) can provide a convenient, automated estimation of 

BF% and a variety of other body composition parameters. It also minimises the discomfort 

of disrobing or physical contact with the examiner.  

 

Yet, its estimations are based off population data and the accuracy can vary depending upon 

how much liquids have been consumed. A study by Deurenberg et al. (2001) found that 5% 

of all men and 4% of all women were incorrectly classified as obese, however, this is an 

improvement upon BMI’s error rates.  
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6.1.7. Summary 

The following table of metrics categorises the availability of resources to measure them, 

whether the metrics can be applied to virtual characters, pros and cons as well as how well 

they represent body shape. 

Table 6-4- Table of Body Shape Metrics and Suitability for Modelling 

Metric Avail
able 

Virtua
l 

Advantages/ Disadvantages 

Mass Yes No Simple but no differentiation between FM & FFM. 
Can’t measure/ model virtually. 

Hip Circumference Yes Yes Direct measurement of lower body shape.  
Doesn’t represent shape of abdominal obesity. 

Waist 
Circumference 

Yes Yes Direct measurement of abdominal adiposity. 
Only a single metric representing upper body. 

Thigh 
Circumference 

Yes Yes Direct measurement of upper limb.  
Only a single metric representing lower body. 

CSum Yes Yes Sum value could be considered volumetric but 
without definition of body parts. 

Waist-to-Hip Ratio 
(WtHR) 

Yes Yes Abdominal obesity shape independent of height. 
Stronger perception of female attractiveness than 
BMI. 

Waist-to-Height 
Ratio (WHtR) / 
Ashwell Chart 

Yes Yes Abdominal obesity shape estimates distribution 
over height. Shape categories not validated. 

Waist-to-Chest 
Ratio 
(WCR) 

Yes Yes Estimates upper body/ torso shape. Stronger 
perception of male attractiveness than BMI or 
WtHR. 

Metropolitan Life 
Insurance Tables 

Yes No Sourced from large but specific sample population.  
No longer used as frame size too difficult to 
measure. 

BMI Yes No Simple. But doesn’t differentiate frame size, SMM 
& FMM. Doesn’t indicate shape or distribution. 
Virtual shape requires estimation. 

Body Fat 
Percentage 

Yes Yes Distinguishes between FM and FFM. Doesn’t 
indicate shape or distribution of fat or muscle 
tissue. Virtual shape requires estimation. 
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Body Surface Area 
(BSA) 

Yes Yes Simpler than measuring volume.  
Physical calculation estimated on weight. 

Volume Height 
Index (VHI) 

No Yes More related to shape than weight based indices 
Physical measurement requires water 
displacement. 

Body Adiposity 
Index (BAI) 

Yes Yes Estimates body fat using HC & Height. 

A Body Shape 
Index (ABSI) 

Yes No Like BMI but takes WC into account as a 
representation of body fat and shape. 

Body Roundness 
Index (BRI) 

Yes Yes? Estimates body shape using height, WC & HC 

BSAS No No Estimates body shape on multi parameter scale 
Not available. 

Body Volume 
Index (BVI) 

No No Automatically measures and assesses body shape 
and volume. Not available. 

 

To decide which indices to use in the research project, it was necessary to review them 

against the initial stated criteria: 

a) How well does each index represent body shape? 

b) How well does each index measure physical people and virtual characters? 

c) Is the measurement convenient, accurate or comfortable to measure? 

 

Linear anthropometrics can’t usually measure or model body surface or shape geometry, 

however, they are the easiest to record and can rely on a large range of published data for 

comparison. These anthropometrics include Mass, Height, BMI and BF%. Measuring mass 

alone cannot differentiate between FM and SMM, nor can it represent body shape 

distribution, however, when combined with height it can provide BMI, which is not a perfect 

representation of body fat or shape but it is supported by a large body of published data. 

BF% is a better representation of FM than BMI, however, it still does not provide the 

clearest definition on body shape distribution. Whilst a variety of methods for estimating 

BF% are available, skinfold callipers and U.S Naval equations are too inaccurate whilst most 

densitometry methods are too costly or inaccessible. BIA is the most suitable method to 
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easily, consistently and automatically acquire BF% data. It also has the benefit of providing a 

range of other body composition data such as FM, FFM, SMM and others. 

If our primary criteria is to utilise indices that represent body shapes then CSum, WtHR, 

WHtR, WCR, BSA, VHI, ABSI, BRI, BSAS, BVI all take into account more than one dimension to 

measure anthropometrics such as height, surface or volume.   

CSum is easy to measure and could represent body shape, however, the five circumferences 

are summed and lose their individual measurements. A more defined model would combine 

all five circumferences into separate virtual cylinders with the height measurement.  

WtHR is easy to measure and can represent abdominal adiposity, which is a prominent 

feature of obese body shape but does not take height into consideration. WHtR is easier to 

measure and does takes height into consideration, which is a dimension that can alter the 

perception of body shape, when only looking at one index such as waist circumference. In 

some ways BRI combines these three measurements of WC, HC and Height into a somewhat 

elliptical based metric. However, no other supportive studies have utilised this metric.  

WCR is easy to measure but not commonly tracked in literature which makes early analysis 

of published data much more difficult.  

BSA is analogous to a volumetric measurement, however, it cannot differentiate body 

composition or distribution and it would require uncomfortable water displacement. VHI 

would be a more direct measurement of volume but would still not measure adipose 

distribution and would also require uncomfortable water displacement or inaccurate 

volume estimation.  

BAI estimates body fat using HC and Height, however, it has been challenged as not being as 

representative as BMI (Freedman et al., 2012). Body fat can be more directly measured 

physically. 

ABSI is a body shape index that takes into account WC, Height. However, as virtual 

characters have no discernible mass this would be difficult to apply. BSAS and BVI are also 

direct measurements of body shape, however, their body scanning hardware is not readily 

available.  
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The following anthropometrics shall therefore be recorded:  

1. Five Circumferences 
2. Mass 
3. Height 
4. BMI 

5. HC 
6. WC 
7. WtHR 
8. BF%  

 

With the capability to analyse the additional parameters if needed: 

 CSum 

 WHtR 

 WCR 

 BSA 

 BAI 

 ABSI 

 BRI

 

6.2. Gait Parameters 
Gait is a series of rhythmical, alternating movements of the trunk and limbs resulting in the 

forward movement of the centre of gravity and body. Walking is also described as a series of 

controlled falls (Rosenbaum, 2009) 

Gait analysis is often used for identifications of health related abnormalities. In our instance 

we shall measure aspects of gait that change over variations in body shape. To do this we 

must understand the components of gait and select those that shall most perceptibly 

change and can be modified on virtual characters. The key questions asked when reviewing 

each parameter were: 

 How perceivable is each parameter when altered? 

 How accurately can each parameter be measured using the techniques available? 

 How effectively can each parameter be modified on virtual characters? 

 

The following sections shall review the different types of gait parameters. In section 3.1 we 

review the published research on the parameter changes over increases in obesity. 

Gait parameters can be classified as either spatial or temporal which are expanded upon 

below. 
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6.2.1 Spatial Parameters /Distance Variables  

 

Figure 6-4- Distance Variables (Kaur, 2014) 

Step Length is the distance between the point of initial contact of one foot and the point of 

initial contact of the opposite foot. In normal gait, right and left step lengths are similar. 

Stride Length is the distance between successive points of initial contact of the same foot. 

Right and left stride lengths are normally equal. Step length and stride length are both 

related to each other and show the positional differences of the feet, which are easily 

measured using motion capture. Changes in step length and steps per minute produce a 

change in walking speed which is perceptibly significant (Pražák et al., 2010) These 

parameters are not easily modified on densely keyed motion captured characters, however, 

it is possible by replacing the lower body with an IK rig.  

Walking Base or Step Width is the sum of the perpendicular distances from the points of 

initial contact of the right and left feet to the line of forward progression. This is easily 

measured using the spatial differences between the feet and if the virtual character’s lower 

body has been replaced with IK legs it would be simple to offset their positions. The 

perception of changes to walking base would be more apparent from the front than the side 

Foot Progression or toe out describes an angle between the line of progression and a line 

drawn between the midpoints of the calcaneus and the second metatarsal head. This can be 

measured using motion capture and modified by rotating the virtual character’s heel, 

however, the perception of changes to foot progression may be limited due to the small 

degrees of change and limited effect on the rest of the body. 

6.2.2 Temporal Parameters /Time Variables  

Velocity (speed) the product of cadence and step length, is expressed in units of distance 

per time (m/s). As instantaneous velocity varies during locomotion we use an average 

velocity. Recording speed physically would involve measuring the positional movement of 
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the hips over time. Modifying velocity could be achieved by time warping the entire walking 

clip to alter forward movement and cadence, otherwise footskating would occur.  

Cadence or walking rate is calculated in steps per minute. This can be measured physically 

by counting the number of steps per captured walking time. To modify this virtually would 

simply require time warping the walking clip so that cadence and velocity are both altered. 

Stance Time is the amount of time taken during the stance phase of a gait cycle (a single 

stride) including single support and double support. Typically the stance phase takes 60% of 

the time whilst the swing phase takes 40% of the time. As walking speed decreases, 

percentage of time spent in the stance phase increases (Sarmini, 2005) which could provide 

the impression of a plodding walking style.  

Swing Time is the amount of time taken during the pendulum-like swing phase of a gait 

cycle (Sarmini, 2005). It is possible to measure the stance and swing time by counting the 

duration between heel strike and toe-off. It would also be possible to apply these phase 

time modifications to the feet of a virtual character, however, without modelling changes to 

forward hip movement, locomotion could appear staggered. 

Step Time is the amount of time spent during a single step; between the heel strike of one 

leg and the heel strike of the contra-lateral leg (Essa, 2012). Assuming normal gait, the step 

time for left and right legs should be equal. 

Stride Time is the amount of time taken to complete one gait cycle (Essa, 2012). Step time 

and stride time are easily measured and can be applied to virtual characters, however, they 

are actually expressions of speed and stride length. 

6.2.3 Determinants of Gait 

The following spatial variables interact dynamically to have an effect on the displacement of 

the centre of mass (COM). Movement of COM beyond a normal range increases energy 

expenditure (Saunders et al., 1953). 

 Pelvic Rotation in the transverse plane is when the pelvis rotates forwards on the 

swing side whilst rotating backwards on the stance side.  
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 Lateral Pelvic Tilt in the frontal plane is when one side of the pelvis is elevated 

higher than the other 

 Lateral Pelvic Displacement is the horizontal shift of the pelvis. 

 Knee Flexion during mid-stance is the angle between the lower leg to the back of the 

thigh. 

 Knee range of motion is the range in degrees from full extension to full flexion 

 

Pelvic movement can be captured physically using motion capture and modified virtually, 

however, the degrees of movement may be too subtle to be perceived. 

Knee flexion and range of motion can be measured physically but modifying it virtually can 

produce foot skating. Controlling knee flexion directly may also conflict with stride length 

modifications, which would require a replacement IK lower body rig which would preclude 

direct control of the knee joints.   

6.2.4 Additional Gait Parameters 

The ankle is subject to the weight of the entire body and the force impact with the ground. 

The joint is constantly moved through mechanical extremes during gait and it is essential for 

walking on any surface.  

Ankle Plantar Flexion is when the foot points downward.  

Ankle range of motion is typically 0-50° flexion and 0-20° dorsiflexion (upwards)  

Ankle flexion is a relatively smaller joint rotation which only affects the relative rotation of 

the toes so modification of its movement on a virtual character, whilst possible, may have 

minimal perceptual effect. 

In addition to lower body gait parameters there are a range of upper body gait parameters 

less commonly recorded. 2/3 of the body mass in the head, arms and trunk (HAT) is located 

2/3 of the body height above the ground which makes maintaining a balance with the COG 

challenging (Winter et al., 1990).  

The lower spine section, lumbar, bears the weight of the body whilst the upper spine, 

thoracic, holds the rib cage and has a lower range of motion. 
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De Souza et al. (2005b) observed that spinal posture was altered in obese patients, 

however, their study observed patients standing still. 

6.2.5 Summary  

Most gait parameters are measurable using the motion capture technology available with 

the possible exception of spinal curvature. Therefore we shall build our choice of gait 

parameters on those previously studied to change over increases in obesity as seen in 

section 3.1. Velocity, cadence and stride length are all essential components of walking 

speed. Knee flexion shall not be explored as this would cause foot skating and the use of IK 

legs would remove direct control. Hip movement shall also be tested to verify how 

perceivable its motion modifications are. Ankle rotation shall not be modified as its 

movements would be too small and subtle to notice. Spinal curvature shall be explored with 

some caution due to the constraints of the motion capture equipment. Finally arm 

abduction, swing and abducting bob shall also be tested as they represent perceptually large 

upper body movements that have not yet been tracked over increases in body shape. 

 

Figure 6-5- Angle references for thoracic kyphosis and lumbar lordosis (Muyor et al., 2011) 

Measuring trunk motion can prove complex as the spine is comprised of 33 vertebrae bones 

typically in an S shape, as seen in Figure 6-5. Spinal curvature is difficult to measure 

physically as motion capture suits will stretch taut over spinal curvature gaps making it 

difficult to measure. To apply it to virtual characters would also need to take into account 

the counteracting relationship with hip movements. 
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Upper body limbs, like arms, can swing under the influence of gravity with or without 

muscle assistance. Whilst leg swings are prevented from swinging backwards by footstrike, 

arms are not. 

Arm swing is the combination of shoulder extension and flexion. It is the motion that each 

arm swings with the motion of the opposing leg. The pendulum-like motion of arm swings is 

not essential for walking, but can improve the stability and energy efficiency in human 

locomotion. These variables can vary over increases in body mass. Changes in arm swing 

range of motion can be measured using motion capture and modified on virtual characters. 

The range of movement in arm swing from the rotating shoulder down to the tips of the 

fingers can be as large as some people’s leg swings so it is arguable that this could have a 

large effect on perception of motion changes.  

Arm abduction is the angle at which the arms are raised from the side of the body in the 

plane of the torso. Arm abduction could raise with increased adipose or muscle tissue in 

upper arms or torso. This parameter can be measured physically and can be modified easily 

on virtual characters. It could also have a significant perceptual effect on changes in motion. 

6.3. Motion Capture Methodology 
The motion capture sessions were promoted through social media channels such as Twitter 

and Facebook. Twenty-eight male volunteers without gait related health problems or 

pacemakers were recruited, mostly from Teesside University. Participants were sent an 

information guide and consent form to read which explained the project, the process and 

benefit. Both documents are available to read in Appendix A and B. Upon arrival participants 

would be shown the facility, talked through the procedure, and it would be checked that 

they had read the information guide and given signed consent. A final check would be made 

on whether participants had any remaining questions or health issues. 

 

The motion capture session was comprised of two sections that tackle the core of this 

thesis; appearance capture and motion capture. 
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6.3.1. Appearance Capture  

The appearance capture took place in Teesside University’s Olympia Building, within the 

Physiology Lab which contained the required equipment. 

 

There are multiple options to select for when trying to accurately capture body morphology 

such as body scanning (Wang et al.2006; Tahrani et al., 2008), hydrostatic weighing (Siri, 

1961), BMI (Keys et al., 1972), BVI (Tahrani et al., 2008) and Body Fat Percentage. Body 

scanning was considered, however, the topology of the scanned mesh was considered to be 

too high density and disorganized to be useful for modelling or automated anthropometric 

measurements. Using the Konica Minolta Vi-700‘s field of view only permitted scanning half 

a body at a time which proved insufficient.  

 

The hydrostatic weighing method measures a participant’s mass, however, this would 

require them to undress and immerse themselves in water which many (especially obese 

participants) would find embarrassing. There are only limited facilities in the UK that house 

water displacement units and Teesside University does not currently have one. 

 

A combination of appearance capture methods was chosen. Ten appearance measurements 

were recorded. Sports science technicians in Teesside University’s School of Health advised 

on measurement techniques.  

 

Height was recorded using a wall-mounted height rod as this measurement was necessary 

to calculate BMI. Participants were instructed to stand straight against a wall and to take a 

breath before the height was recorded. 

 

Weight and body fat percentage was recorded without jackets or shoes using the InBody 

720 scales. The typical procedure involved cleaning the plates with sterilizing wipes, asking 

the participant to remove their socks, stand on the floor plate and grip the handles whilst 

their details were entered. The participants were then asked to stand still for a minute with 

their arms slightly away from their body, so as not to interrupt the path of the electrical 

flow, and to maintain a steady balance. 
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The InBody 720 machine was assessed by Ogawa et al. (2011) and found to a more 

convenient substitute for Computed Tomography with significantly correlated results (R = 

0.759). Alternative methods to measuring body fat percentage included the U.S. Naval tape 

measure method (Hodgdon and Beckett, 1984), were tested, but were deemed to be too 

inaccurate. However, height, neck, waist and hip circumference were measured on all 

participants so future analysis could compare the differences in methods. 

 

Skinfold testing is a popular method for measuring body fat percentage, and was initially 

tested. However, this was ultimately rejected for a number of reasons. The primary assessor 

was not ISAK accredited to measure skinfolds to a high enough level of precision. The 

accuracy of skinfold measurements also becomes more difficult to accurately measure as 

adipose deposits increase with obesity. Early feedback with skin calliper measurements also 

noted that participants felt that the method may be too intrusive or embarrassing for 

others.  

 

The bio-electrical impedance method is safe, non-invasive and easy to use (Houtkooper et 

al., 1986), however, readings can vary depending on hydration levels (Lukaski et al., 1986), 

meal consumption (Slinde and Rossander-Hulthen, 1986) and exercise (Kushner et al, 1986). 

Ultimately this method was considered to have the most suitable balance of accuracy, 

consistency, ease of use and non-invasiveness. The bio-electrical impedance meter used was 

the InBody 720 machine seen in Figure 6-6: 

 

    

Figure 6-6 – InBody 720 Body Composition Analyser Figure 6-7- InBody 720 Body Composition Report 
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Following the measurement participants received a free Body Composition Report seen in 

Figure 6-7 which they were recommended to take to a personal trainer or qualified health 

practitioner if they wished to improve their fitness and health. The report also displays a 

wide range of interesting but extraneous data such as Skeleton Muscle Mass and Visceral 

Fat. This study relates to the external appearance parameters that are perceptually 

viewable. Analysing changes to motion based on skeletal muscle mass and visceral fat data, 

whilst of value, could not be applied to virtual characters with only surface topology 

modelling.  

 

The final set of anthropometric measurements taken were body circumferences. The 

circumferences represent the major limbs, some of which correspond to measurements 

taken using the U.S. Naval method (Hodgdon and Beckett, 1984) and U.S. Army (2011) for 

estimating body fat composition. This is a useful combination of measurements to take as 

they are a simplified volumetric measurement. They are quicker, easier and cheaper to take 

than a 3D volumetric laser scan. The same circumference measurements can also be taken 

from virtual characters. 

 

They were recorded using a Myotape Body Tape with measurement guidance from ISAK 

accredited sports science technicians, and consistently measured by the same assessor, 

Satish Shewhorak, on the right side of participants’ relaxed bodies. Circumference metrics 

and landmarks are listed in Table 6-5 below: 
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Table 6-5 - Circumference metrics and landmarks 

 Anthropometric Girth Landmark 

 1 Neck 

Across laryngeal prominence (Adam’s 

apple) 

 2 Chest Across nipples 

 3 

Bicep/ arm girth 

relaxed 

50% between elbow and shoulder cliff 

 4 Waist/ Abdomen Across navel 

 5 Hips Across deepest gluteal girth 

 6 Thigh 50% between hips and knee 

 7 Calf Largest girth of the calf 

6.3.2. Motion Capture 

Once all appearance measurements had been taken participants moved onto the motion 

capture phase. The motion capture session took place in the Biomechanics Lab, close to the 

previously used Physiology Lab, which featured six MX13 Vicon cameras in a capture volume 

with the following settings (mm): 

 -3500, -3500,  -100 (min vector x,y,z)   

 3500,    3500, 3000 (min vector x,y,z) 

 

Participants were asked to change, using the fitting area, into a black compression suit. The 

suit came in three sizes; small, medium and large, with most lean participants using the 

largest suit. Elasticated material bands with prefixed markers were also strapped around the 

wrists and head. Thirty five optic markers were positioned on the body following the 

Validated Vicon Marker Set as seen in Figure 6-8. This marker set was selected as it had 

been validated by biomechanics as a suitable configuration to model full body gait to a 

research standard (Kadaba et al., 1990; Winter et al., 1990; Davis et al., 1991). As it is 

commonly used in other published biomechanical research papers, this makes the results 

easy to compare and replicate. 
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Figure 6-8- Validated Vicon Marker Set 

The optic markers with Velcro bases were attached to the compression suit using bony 

landmarks as reference as seen in Figure 6-8. Markers were attached to the base of the 

fingers and the outside of the shoes using double sided tape. Participants were motion 

captured wearing shoes as most people viewed in a real or virtual crowd would be expected 

to be wearing shoes and this could affect their gait. Larger participants who could not fit the 

compression suit top were requested to wear their own tight fitting t-shirt and optic 

markers were attached using double sided tape. Climbing harnesses and tape across the 

upper body were tested to minimise marker movement on clothing, however, these 

methods proved restrictive and uncomfortable to participants. These methods produced 

unnatural movements so were abandoned in favour of adhesive marker placement on t-

shirts and skin.  
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Figure 6-9- Motion Capture T-Pose 

A series of calibration tests were needed for each session. This included a room calibration 

using an L-Frame to calculate the inclination of the floor against the position of the cameras. 

The cameras and volume were also calibrated using the 3-Marker wand (240mm). Error 

rates were recorded for participants and camera calibrations were repeated and adjusted 

until they fell below 0.18 which is considered by Vicon to be an acceptable level of error 

suitable to research purposes. Finally the participant held a T-pose as seen above in Figure 

6-9 to take a single frame static calibration to aid the system in marker recognition. 

 

The rigidity and adhesion of the optic markers was rechecked after the static calibration 

phase and after each take. Participants were asked to take part in a Range of Motion test 

which would help verify the orientation of the bones. They were asked to hold a T-pose, 

then rotate their right arm in two axes, their right torso in two axes and their right upper leg 

in two axes. 

 



115 
 

Before participants were recorded walking they were asked to start walking back and forth 

along the centre of the capture volume at a preferred walking speed until they were 

comfortable. This was to acclimatise participants to walk in a natural style of gait along the 

central line and to ensure the attached optic markers were secure. 

 

Participants were then asked to walk at five different self-selected speeds: 

1. Slowest natural speed 

2. Slower than preferred walking speed 

3. Preferred walking speed 

4. Faster than preferred walking speed 

5. Fastest natural walking speed 

 

Each speed was recorded at least two times to ensure alternate takes were available if there 

were unforeseen problems or marker occlusions that could not be filled. 

 

Finally, all participants were asked to walk at a fixed speed of 1.2m/s. This was achieved by 

marking out a distance of 7m and asking participants to hit the end marker on 5.83 seconds. 

They were then allowed several practise attempts with a timer on a large screen to help 

them get the pacing right. Once they had achieved a natural walk at the required speed, the 

timer was removed so there was some deviation in the speed around the 1.2m/s. For this 

reason two to four walks were captured so that the speed closest to 1.2m/s could be 

selected.   
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Figure 6-10- Vicon Nexus cleanup processs 

Vicon’s Nexus 1.8.5 software was used to cleanup each walk clip’s data. This involved 

manually retagging any markers that had been incorrectly identified e.g. the system often 

disorientated the hand so the left [LWRI] and right [RWRI] markers might need swapping 

around.  

 

The other cleanup requirement was gap filling, typically caused by marker occlusion e.g. 

hand markers passing past hip markers. For small gaps of one to three frames a linear join 

could be used but for longer gaps a spline filling may be considered to be smoother or more 

accurate. 

6.3.3. Limitations and Assumptions  

This study primarily focuses on appearance and motion relationships in males as female gait 

differs significantly with wider hips and shoulders (Kozlowski and Cutting, 1977). Five 

females volunteered and completed the appearance and motion capture sessions, however, 

the sample group was not considered large enough to be of useful analysis. 

Whilst male participants ranged in weight between 59.1 - 115kg there were only eight who 

would be classified as obese on the BMI scale, seven classified as obese on the BF% scaler or 
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five who would be classified ‘at risk’ on the WtHR scale. This was due to recruitment largely 

taking place from a presumably fit and active student population. However, this also 

reduced the range in ages to 19-62. 

Body Mass Index was recorded but there are known problems with this measurement as it 

does not differentiate between fat and muscle mass e.g. short but muscular people can be 

incorrectly classified as obese. 

Body Fat Percentage was therefore recorded but it does not take height into account, which 

is an influential perceptual parameter.  It also takes internal visceral fat and edema levels 

into account, which are not externally perceivable. 

The motion capture walks were recorded at preset speeds by using a timed bleep to 

accustom participants to hit a mark within the time limit. It was assumed that gauging 

timing by asking participants to watch an onscreen clock could cause a small amount of 

anxiety that could affect gait, whilst following another person walking at the correct speed 

would encourage mimicry in gait style. Therefore we assume that our method of practising 

to hit a distance at a timed beep was the least abnormal. 

The compression suit for the motion capture procedure was suitable for most lean people, 

however, for more overweight participants we had to switch to adhering markers to their 

clothing. We assume that the improved comfort created less abnormality of gait than 

increased marker movement due to looser clothing. 

6.4. Range of Motion Capture Data 
Once both perceptual video surveys had been deployed, real world data capture was 

needed to understand the correlations between body morphology parameters and motion 

parameters. 

 

An initial batch of motion capture data was collected, before any perceptual surveys were 

conducted, between 28/03/13 and 23/05/13.  A second round of motion capture was then 

collected after the point-light perceptual survey had been deployed, between 10/03/14 and 

16/04/14. 
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Local participants were attracted through social media and from Teesside University but no 

monetary incentive was offered, however, an anthropometric feedback report and their 

personal motion capture data was available upon request. 

 

When collecting data to determine a reliable regression model between anthropometric 

and motion parameters, as large a sample size as possible would be preferable. 

A common rule of thumb is 10-15 cases of data per predictor, so for 5 anthropometric 

variables 50-75 would be a target sample size. However, Green (1991) recommends when 

testing the overall fit of our regression model: 

Minimum sample size = 50 + (8 * no. of predictors) 

Equation 4 - Green's Minimum Sample Size for Overall Fit (1991) 

Or when testing individual predictors within the model (b-values): 

Minimum sample size = 104 + no. of predictors 

Equation 5 - Green's Minimum Sample Size for Individual Predictor's (1991) 

Which would require a sample size of 90 or 109. As we’re interested in both uses, Green 

recommends using the largest value (109).  

However, when compared to related studies the typical sample size is much lower than 75 

or 109. 
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Table 6-6 - Comparison of Sample Sizes in Related Studies 

Source Sample Size 
n 

Browning and Kram (2007) 20 

DeVita and Hortobágyi, (2003) 39 

Hulens et al. (2003) 218 

McGraw et al. (2000) 20 

da Silva-Hamu et al. (2013) 48 

de Souza (2005a) 34 

Spyropoulos et al. (1991) 21 

Tompkins et al. (2008) 30 

Vismara et al. (2007) 34 

Troje (2002)* males 20 

Lai et al. (2008) 14 

Pataky et al. (2014) 46 

Sarkar et al. (2011) 30 

Wu et al. (2012) 10 

Vartiainen et al. (2012) 13 

 

By comparing fifteen related publications in Table 6-6 we can estimate a mean sample size 

(n=40). However, as Hulens et al. (2003) used a significantly larger samples size we can also 

consider the median sample size (n=30). 

However, due to the sensitivity of obese participants and the lengthy time it took to recruit, 

measure and analyse appearance and locomotion, a slightly smaller sample size of 

participants (n=28) was obtained and are reported for exploratory purposes to validate 

existing research and guide further research. 

n=28 participants were recruited providing a range of 59 - 115kg in body mass 

measurements. 

The mean body mass of the twenty-one participants was 86.4kg against the UK male 

bodyweight of 84kg (Welsh Health Survey, 2009). 
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n=28 Participants ranged between 1.65 - 1.91m in height. The mean height of the 

participants was 1.8m against the average UK male height of 1.77m (Moody, 2013). 

 

n= 26 participants ranged between 0.8 – 1.06 in waist-to-hip ratio when recorded. The 

mean waist-to-hip ratio of the participants was 0.89 against the recommended mean of 

0.93. 

 

n= 28 participants ranged between 19.3 – 33.8 in body mass index. The mean BMI of the 

twenty-one participants was 26.7 against the average UK male BMI of 21.7 (Moody, 2013). 

 

n= 28 participants range between 5.8 – 37.3% in body fat percentage. The mean body fat 

percentage of the participants was 23.8% against the recommended male body fat 

percentage of 21% (WHO, 1995; 2000). 

 

6.5. Motion Capture Results  
For each motion capture participant, five walking clips at different speeds were captured, 

cleaned up and exported in Vicon Nexus software as described in the previous sections. 

  

Each participant’s exported data was collected into anonymised, individual spreadsheets 

containing multiple tabs of data. The anthropometric data was stored in the first tab, and 

then the positional and rotational data for each walk clip was also contained in subsequent 

tabs. 

 

The LASI:Y positional data was used to calculate each walks average speed by dividing the 

waists distance travelled over time. Primarily the preferred walking speed was verified to 

check how close to the control speed of 1.2m/s they were. Variations in speed of 0.1m/s 

were considered acceptable. 
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By analysing the positional and rotational data from each participant’s 1.2m/s walks, a 

number of motion parameters could be analysed and compared against the anthropometric 

measurements. 

 

SPSS was used for linear regression analysis and all results presented had passed the five 

assumptions needed for them to provide valid predictions: 

 

1. A linear relationship between the two variables (or transformed to linearity). 

2. No significant outliers or influential points. 

3. Independence of errors (residuals). 

4. Homoscedasticity of residuals (equal error variances). 

5. Errors (residuals) are normally distributed. 

6.5.1. Average Arm Abduction Position 

Arm abduction occurs when the arms are held at the sides, parallel to the length of the 

torso, and then raised sideways. In the real world the angle of arm abduction would be 

measured using a universal goniometer and a standing, stabilized participant. To measure 

arm abduction position during locomotion, the average position had to be calculated from 

the motion captures output for the LShoulderAngles:Y rotational data over the length of the 

walk clip. It is hypothesized that Average Arm Abduction raises over increases in 

anthropometric parameters. 

 

Figure 6-11 shows average arm abduction visualised against increases in body fat 

percentage. Linear regression (r2 = 0.33) indicates the body fat percentage has a medium 

effect (Cohen, 1988; 1992) on the average arm abduction position. Figure 6-12 shows 

average arm abduction visualised against increases in bicep circumference. Linear 

regression (r2 = 0.36) indicates the bicep circumference has a medium effect on the average 

arm abduction position. 
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Figure 6-11- Increase of Arm Abduction over Body Fat 

Percentage 

Figure 6-12- Increase of Average Arm Abduction over 

Bicep Circumference 

  

 Figure 6-13 shows average arm abduction visualised against increases in Body Mass 

Index. Linear regression (r2 = 0.42) indicates the body mass index has a large effect on the 

average arm abduction position. 

 

 Figure 6-13- Increase of Arm Abduction over Body Mass Index 

Figure 6-14 shows average arm abduction visualised against increases in chest 

circumference. This is the strongest correlation between any motion parameter and 

appearance parameter that was analysed. Linear regression (r2 = 0.49) indicates the chest 

circumference has a large effect on the average arm abduction position. 
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Figure 6-14- Increase of Average Arm Abduction over Chest Circumference 

A linear regression established that statistically Chest Circumference could significantly 

predict Average Arm Abduction Position, F(1, 23) = 21.773, p < .0005 and Chest 

Circumference accounted for 48.6% of the explained variability in Average Arm Abduction 

Position. The regression equation was:  

 

Predicted Average Arm Abduction = 0.907 + (0.012 * Chest Circumference) 

Equation 6 - Average Arm Abduction 

6.5.2. Arm Bob Magnitude 

Arm bob magnitude refers to shoulder abduction and adduction range of motion. This is the 

range of lateral movement of the upper arm in the plane of the torso. To measure arm 

abduction magnitude during locomotion, the maximum and minimum rotation had to be 

differenced from the motion captures output for the LShoulderAngles:Y over the length of 

the walk clip. It is hypothesized that Average Bob Magnitude becomes more exaggerated 

over increases in anthropometric parameters. 

 

Figure 6-15 shows arm abduction magnitude visualised against increases in body fat 

percentage. This suggests minimal or non-existent correlation between the motion 

parameter and the appearance parameter. Figure 6-16 shows arm abduction magnitude 
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visualised against increases in body mass. Linear regression (r2 = 0.02) indicates body mass 

has a small effect on arm bob magnitude. 

 

    

Figure 6-15- Increase In Arm Abduction Magnitude Over 

Body Fat Percentage 

Figure 6-16- Increase In Arm Abduction Magnitude Over 

Body Mass 

Figure 6-17 shows arm abduction magnitude visualised against increases in height. Height 

demonstrates the strongest correlation with arm bob magnitude.  

 

Figure 6-17- Increase In Arm Abduction Magnitude Over Height 
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A linear regression established that Height could statistically significantly predict Arm Bob 

Magnitude, F(1, 23) = 2.055, p < .0005 and Height accounted for 8.2% of the explained 

variability in Arm Bob Magnitude which Cohen considers a small effect size. The regression 

equation was:  

 

Predicted Arm Bob Magnitude = -13.19 + (12.04 * Height) 

Equation 7 - Arm Bob Magnitude 

6.5.3. Arm Swing Magnitude 

Arm swing known as shoulder flexion and extension occurs when the arms rotate out of the 

plane of the torso so that they swings anteriorly and posteriorly. To measure arm swing 

magnitude during locomotion, the maximum and minimum rotation had to be differenced 

from the motion captures output for the LShoulderAngles:X over the length of the walk clip. 

It is hypothesized that Average Swing Magnitude becomes more exaggerated over increases 

in anthropometric parameters. 

 

Figure 6-18 shows arm swing magnitude visualised against increases in BMI. Linear 

regression (r2 = 0.13) indicates the body mass index has a small effect on the arm swing 

magnitude. Figure 65 shows arm swing magnitude visualised against increases in height. 

This suggests that as people get taller their arm swing could reduce. However, linear 

regression (r2 = 0.02) indicates that height only has a small effect on the arm swing 

magnitude so this requires further exploration. 

 

       

Figure 6-18- Increase In Arm Swing Magnitude Over BMI 
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Figure 6-19- Decrease In Arm Swing Magnitude Over Increase In Height 

The following graph shows arm swing magnitude visualised against increases in body fat 

percentage. This suggests a correlation between increases in arm swing magnitude over 

increases in body fat percentage. 

 

Figure 6-20- Increase in arm swing magnitude over body fat percentage 

A linear regression established that statistically Body Fat % could significantly predict Arm 

Swing Magnitude, F(1, 23) = 2.237, p < .0005 and Body Fat % accounted for 8.9% of the 

explained variability in Arm Swing Magnitude which Cohen considers a small effect size. The 

regression equation was:  

 

Predicted Arm Swing Magnitude = 18.76 + (0.29 * Body Fat %) 

Equation 8- Arm Swing Magnitude 

6.5.4. Average Preferred Walking Speed 

Preferred walking speed is the self-selected speed that participants feel comfortable walking 

at. Walking speed is determined by three elements; forward speed, cadence (steps per 

minute) and step length (distance between both heel strikes in a step). Average walking 

speed is measured using the motion capture data of the positional distance travelled by 

LASI:Y (waist) divided by the time taken to complete the walk. It is hypothesized that 

Average Preferred Walking Speed increases over increases in anthropometric parameters. 
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Figure 6-21 shows preferred walking speed visualised against increases in BMI. This suggests 

that there is no correlation between body mass index and speed. Figure 6-22 shows 

preferred walking speed visualised against increases in body fat percentage. Again we find a 

negligible or non-existent correlation between the body fat percentage and preferred 

walking speed. 

 

  

Figure 6-21- Increase Preferred Walking Speed Over BMI  Figure 6-22- Increase Preferred Walking Speed Over 

Body Fat Percentage 

Figure 6-23 shows preferred walking speed visualised against increases in body mass. This 

suggests a small correlation between the motion parameter and the appearance parameter. 

 

 

Figure 6-23- Increase In Preferred Walking Speed Over Body Mass 
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Figure 6-24 shows preferred walking speed visualised against increases in height. This 

demonstrates the strongest correlation between the motion parameter and the appearance 

parameter. 

 

 

Figure 6-24- Increase In Preferred Walking Speed Over Height 

 

A linear regression established that Height could statistically significantly predict Average 

Preferred Walking Speed, F(1, 26) = 4.538, p < .0005 and Height accounted for 14.9% of the 

explained variability in locomotion. The regression equation was:  

 

Predicted Average Preferred Walking Speed = -1.07 + (1.3 * Height) 

Equation 9 - Average Preferred Walking Speed 

6.5.5. Walking Base 

Walking base is the width of a stride; the lateral distance between the line of both heels 

during the heel strike phase. It is hypothesized that Walking Base widens over increases in 

anthropometric parameters. 
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Figure 6-25 shows walking base visualised against increases in body fat percentage. Linear 

regression (r2 = 0.17) indicates the body fat percentage has a small effect on the walking 

base. Figure 6-26 shows walking base visualised against increases in BMI. Linear regression 

(r2 = 0.2) indicates the body mass has a small effect on the walking base. 

 

 

Figure 6-25- Increase In Walking Base Over Body Fat 

Percentage 

Figure 6-26- Increase In Walking Base Over BMI 

Figure 6-27 shows walking base visualised against increases in total body part limb 

circumference. Linear regression (r2 = 0.2) indicates the circumferences of key multiple body 

parts has a small effect on the walking base. Figure 6-28 shows walking base visualised 

against increases in waist-to-hip ratio. Linear regression (r2 = 0.24) indicates the waist to hip 

ratio has a medium effect on the walking base. 
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Figure 6-27- Increase In Walking Base Over Total 

Circumferences 

Figure 6-28- Increase In Walking Base Over Waist-To-Hip 

Ratio 

Figure 6-29 shows walking base visualised against increases in body mass. Linear regression 

(r2 = 0.24) indicates that body mass has a medium effect on the walking base. Body Mass is 

the strongest correlation to walking base but multiple regression could be performed to 

incorporate waist to hip ratio which was almost equal in strength of fit. 

 

Figure 6-29- Increase In Walking Base Over Body Mass 

A linear regression established that body mass could statistically significantly predict walking 

base, F(1, 24) = 6.005, p < .0005 and body mass accounted for 23.6% of the explained 

variability in walking base. The regression equation was:  

 

Walking Base = -32.11 + (1.2 * Body Mass) 

Equation 10 - Walking Base 

6.5.6. Step Length 

Step length is the distance between the point of initial contact of one foot and the point of 

initial contact of the opposite foot. It was measured using the motion capture data of the 

positional distance between the LHEE: and RHEE: during a heel strike phase. It is 

hypothesized that Step Length increases over increases in anthropometric parameters. 

 



131 
 

Figure 6-30 shows step length visualised against increases in BMI. This suggests a negligible 

or non-existent negative correlation between the step length and body mass index. Figure 

6-31 shows step length visualised against increases in body fat percentage. This suggests a 

negligible or non-existent negative correlation between the step length and body fat 

percentage. 

 

     

Figure 6-30- Decrease In Step Length Over BMI Figure 6-31- Decrease In Step Length Over Body Fat 

Percentage 

Figure 6-32 shows step length visualised against increases in body mass. Linear regression 

(r2 = 0.02) indicates the body mass has a small effect on the length of step. Figure 6-33 

shows step length visualised against increases in height. Linear regression (r2 = 0.18) 

indicates the body fat percentage has a small effect on the walking base. 
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Figure 6-32- Secondary Anthropometric Correlation With 

Step Length 

Figure 6-33- Dominant Anthropometric Correlation With 

Step Length

6.6. Summary 
The methodology thoroughly reviewed a range of difference anthropometrics and kinematic 

metrics to determine which best represent body shape and gait for physical and virtual 

characters and which were practical to employ. Eight anthropometrics were decided upon 

to measure body morphology and seven further parameters could be derived from these. 

 

The motion capture process allows the recording of full body movement and most gait 

parameters but the focus of analysis was eight gait parameters, three of which failed to 

return useful data. The remaining five parameters were correlated against anthropometrics. 

These will be further analysed in comparison to the results of the perceptual video tests in 

the following chapter.  

 

This process resulted in the research contribution of a relatively small but rich dataset 

combing multiple anthropometric and locomotive data points. Unlike the KIT Whole-Body 

Human Motion Database, our richer database contains internal limb lengths as well as 

externally visible limb circumferences, height, weight and body fat percentage data. In 

addition we have collated five correlations between anthropometric and gait parameters 

that form the basis of an appearance to motion framework 
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7. ANALYSIS & OBSERVATIONS 
The surveys were developed using Google forms which allows easy distribution online and 

embedding of fixed dimension videos. The video matrix of walkers was initially based on 

McDonnell et al. (2008) format but iterated upon for clarity, based on prototype feedback. 

The selection criteria for participants were loose; they had to declare that they were over 

the age of eighteen and were sourced broadly through social media channels such as 

Facebook and Twitter with a £20 voucher incentive to encourage participation. For more 

information on our survey methodology see section 4.2. Whilst the response rate to the 

point light survey was fair (n=59), we were able to double the confidence in our results by 

iterating a second character mesh survey (n=67) which helped cover more parameters. 

There is large range of other biomechanical parameters that could have also been modelled 

and tested, however we chose to cover those with the larger range of movements that we 

deemed most perceptually noticeable individually and within a crowd. 

 

The survey results have been analysed using categorical bar charts. Whilst results from 

surveys’ individual parameters could show the distribution of degrees of exaggeration, these 

were only displayed and selectable in discrete categorical values. In addition, combination 

videos had different parameters modified at different rates and in different directions so a 

categorical bar chart was the appropriate format for analysis. 

 

Numerous public domain motion data sets were considered for analysis, such as Carnegie 

Mellon University’s motion capture database, however whilst this source was rich in a 

variety of locomotion clips it was devoid of any corresponding anthropometric data. The KIT 

Whole-Body Human Motion Database, had some potentially useful anthropometric data 

however these were all structural lengths representing underlying bone sizes. Whilst we 

recorded many of the same measurements for calibration purposes, we were interested in 

more externally perceptual anthropometrics such as circumferences around muscular-

adipose limb masses, weight, body fat percentage and height.  
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The motion capture data was analysed against anthropometric measurements using linear 

regression to provide predictive formulas for implementation into the final scripted 

animation tool. The sample size, whilst smaller than Green’s (1991) formula recommended, 

was in the range of other highly cited anthropometric studies. 

 

We shall analyse the results of our perceptual surveys and motion capture sessions to make 

observations on how the motion parameter trends correlate with appearance parameters, 

perceptually and actually. This shall help inform the structure of a framework that can be 

implemented in a believable character generation tool. 

7.1. Observations 

7.1.1. Average Arm Abduction Position 

Changes in arm kinematics were predicted to be perceptually strong as they have a larger 

range of motion of compared to the torso and their movement could appear to be amplified 

by any rotation of the torso or hips. Average arm abduction was predicted to raise over 

increases in perceived obesity to avoid chafing of the upper arms and chest. The results as 

seen in Figure 4-4 confirm this with a clear upward trend of identification of obese walkers 

with increased angle of the average arm abduction.  

 

Increased arm abduction is also demonstrated in combination with arm bob in Figure 4-7. 

However, when increased arm bob was surveyed in Figure 5-3 the results were broadly 

mixed and supported under exaggeration. This means that in Figure 4-7 arm abduction was 

significantly more perceptually dominant than (the incorrectly exaggerated) arm bob. This 

can be seen more clearly when the two survey results are compared in Figure 7-1: 
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Figure 4-4- Increased Arm Abduction point-light results Figure 7-1 - Arm Abduction + Bob & Arm Bob 

Comparison 

 

When increased arm abduction and arm swing were tested the results were mixed but not 

as evenly random, which suggested one or two of the parameters were correct but 

conflicting in some way. Figure 4-6 shows a viewer preference for under exaggerated arm 

swing. This can be seen more clearly when the two survey results are compared in Figure 

7-2. In a similar conflict in Figure 4-7, arm abduction dominated the arm bob (which was 

exaggerated in the incorrect direction) whereas Figure 4-8 is mixed which suggests arm 

abduction is perceptually stronger than arm swing, which is perceptually stronger than arm 

bob. This can be seen more clearly when the two survey results are compared in Figure 7-3. 

 

      

Figure 7-2 - Arm Abduction + Swing & Arm Swing 

Comparison 

Figure 7-3 - Arm Abduction + Bob & Arm Abduction  

+ Swing Comparison 
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Section 6.5.1 shows the actual changes in average arm abduction position over increases in 

obesity. The strongest appearance correlation is with increased chest circumference with a 

coefficient of (r2=0.49) seen in Figure 6-14. This is the strongest correlation between an 

appearance parameter and motion parameter. Bicep girth also had a strong correlation with 

0.3627 seen in Figure 6-12. This suggests the cause is avoidance of chafing of increased 

bicep girth with increased chest girth. 

 

Figure 6-14- Increase of Average Arm Abduction over Chest Circumference 

 

Figure 6-12- Increase of Average Arm Abduction over Bicep Circumference 

7.1.2. Increased Arm (swing)  

Arm swing magnitude was predicted to amplify over increases in perceived obesity as 

Cutting and Kozlowski (1977) had noted this change. It was hypothesised this would be in 
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counterbalance to a perceived increase in torso twist. Arm swing has a large range of 

motion of 175° which could be considered to be perceptually significant. 

 

The results in Figure 4-6 appear to oppose this hypothesis with a decreasing trend of 

identification of obese walkers with increased arm swing magnitude. Viewers perceived arm 

swing magnitude to decrease in obese walkers. As previously discussed, the combined 

parameters in section 4.4.5 demonstrates ‘correct’ increases in arm abduction but 

‘incorrect’ arm swing increases. As the results appear somewhat mixed this supports the 

trend for decreased arm swing over increases in obesity. This can be seen more clearly 

when compared to survey results preferring under-exaggerated arm swing compared in 

Figure 7-4. 

 

Figure 5-4 combined increased arm abduction with decreased arm swing. Whilst the results 

were much less clear than increases in arm abduction alone, they still appeared to 

somewhat support a preference that supports decreased arm swing. 

 

     

Figure 7-4 - Arm Swing & Arm Abduction + Arm Swing 

Comparison 

Figure 5-4- Arm Abduction and Arm Swing obese mesh 

results 

Section 6.5.3 shows the actual changes in arm swing magnitude over increases in obesity. 

However, several correlations such as body fat percentage and BMI show an increase of arm 

swing magnitude. There were few direct correlations with appearance parameters, 

however, in Figure 6-19 increasing height is seen to have a small correlation of 0.0173 over 

decreasing arm swing. This could suggest that taller people reduce their arm swing to 

maintain a steady COG/ balance 
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Figure 6-20- Increase in arm swing magnitude over body fat %         

 

     

Figure 6-18- Increase In Arm Swing Magnitude Over BMI Figure 6-19- Decrease In Arm Swing Magnitude Over 

Increase In Height

 

7.1.3. Increased Arm bob  

Arm bob magnitude was predicted to amplify over increases in perceived obesity. The 

results in Figure 5-3 appear to oppose this hypothesis with a slight downward trend of 

identification of obese walkers with increased arm bob. Whilst the responses to the first 

three strengths are equally distributed the last and strongest amplifications of arm bob 

magnitude received fewer preferences. To verify these subtle responses, we can check the 
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combined parameters of increased arm abduction and arm bob seen in Figure 4-7. The 

clarity of the upward trend suggests that either arm bob increases over obesity or the more 

likely trend, that its decrease is overpowered by the perceptual strength of arm abduction. 

This can be seen more clearly when the two survey results are compared in Figure 7-5. 

 

Either way, the clear trend in the combined parameters of Figure 4-7 is so similar to arm 

abduction alone in Figure 4-4, as seen in Figure 7-6, that we can determine that arm bob is a 

perceptually weaker motion parameter.   

 

 

Figure 7-5 Arm Abduction + Bob & Arm Bob Comparison 

 

Figure 7-6 Arm Abduction + Bob & Arm Abduction 

Comparison 

 

Section 6.5.2 shows the actual changes in arm bob magnitude over increases in obesity BF%.  

 

 

Figure 6-15- Increase in arm abduction magnitude over BF% 
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Like arm swing magnitude, the strongest arm bob correlation is over an increase in height 

with a (r2=0.08) correlation seen in Figure 6-17: 

 

 

Figure 6-17- Increase In Arm Abduction Magnitude Over Height 

 

Similarly to arm swing magnitude, this could suggest that taller people reduce their arm bob 

to maintain a steady COG/ balance. 

 

7.1.4. Increased Spinal Erectness  

Spinal erectness was predicted to increase over increases in perceived obesity, as (McGraw 

et al., 2000) had noted this change. The mixed perceptual results in Figure 4-5 unfortunately 

demonstrated that this parameter was poorly modelled. 

 

Whilst the motion capture recording did capture C7 upper spine, T10 mid spine and Hip 

Angles which might have provided enough to analyse a three point spine curvature, the T10 

marker was placed on an area of the suit that was often stretched taut over the actual spinal 

curvature so it would not have been accurate enough. 
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7.1.5. Hip and Torso (twist)  

Hip and torso twist was predicted to increase over increases in perceived obesity. Figure 

4-10 showed the point light results of hip and torso twist but the results appear mixed with 

stronger values at -0.8, 1 (the original lean walker) and 8.3. As the degree of rotation may 

have been difficult to ascertain from spherical lights with no affected body surface we also 

look at the retested hip and torso twist combination using body meshes in Figure 5-6. 

Unfortunately, this provides even less clear results. 

  

The cause of this is unclear however hip and torso may simply be a subtle parameter as they 

are the closest body parts to the centre of gravity and less movement is needed to maintain 

balance. As they proved too subtle a set of parameters, gait analysis was not performed on 

the actual data. 

 

7.1.6. Torso Swagger (thorax lateral rotation) 

Torso swagger was predicted to increase over increases in perceived obesity. Torso swagger 

rotation is likely a counter balance to the opposite legs heel strike to maintain centre of 

gravity. The results in Figure 5-5 appears to somewhat support this hypothesis with a peak 

identification of obese walkers identified at 1.6. 

 

This parameter was analysed as one tall, overweight walker had a characteristic torso 

swagger, however, not all tall or overweight walkers did, so this was not considered as clear 

a trend as others parameters and further gait analysis was not performed at this stage. 

  

7.1.7. Reduced Walking Speed/ Cadence  

Preferred walking speed was predicted to slow down over increases in perceived obesity. 

The results in Figure 4-9 appear too mixed to assess, as a result of the confusing 

presentation angle of 45° of the video. So when the parameter was retested in Figure 5-9 

with mesh characters presented 0° towards the camera, the results demonstrated a clear 

bell curve with a preferred speed reduction of 0.8 expected over an increase in perceived 
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obesity. This can be seen more clearly when the two survey results are compared in Figure 

7-7: 

 

 

Figure 7-7 - Speed + Cadence Point Light & Mesh Comparison 

Figure 6-21 and Figure 6-22 shows the recorded changes in walking speed over increases in 

obesity. However, the wide range in walking speed does not display a clear trendline over 

increase in either body fat percentage or body mass index despite literature demonstrating 

(Spyropoulos et al., 1991) a decrease in walking speed over increases in obesity. 

  

Figure 6-21- Increase Preferred Walking Speed Over BMI Figure 6-22- Increase Preferred Walking Speed Over 

Body Fat Percentage 

Figure 6-24, however, does show a strong correlation of (r2=0.1486) increasing preferred 

walking speed over height. Webb (1996) confirms this correlation of height with walking 

speed. The cause of this trend could be the taller the height, the longer the leg length and 

therefore the stride length.  
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Figure 6-24- Increase In Preferred Walking Speed Over Height 

However, when leg length was also analysed the correlation (r2 = 0.0667) was weaker than 

overall height as seen in Figure 7-8. 

 

Figure 7-8 - Increased walking speed over Foot to Hip 

Decreased walking speed/ cadence is considered to be a dominant motion parameter as 

Figure 5-9 demonstrated the clearest curve of identification for strengths of exaggeration.  

 

It is considered more dominant a motion parameter than increased average arm abduction 

as preferred speed reduction requires a reduction by 0.8 (Figure 5-9) whilst arm abduction 

requires an increase of 12.8 (Figure 4-4) to reach the preferred exaggeration strengths for 

identification of obese walker i.e. a smaller degree of exaggeration is needed to reduce 

preferred walking speed than average arm abduction, therefore its effect is more dominant. 
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Figure 5-9- Speed and Cadence obese mesh results Figure 4-4- Increased Arm Abduction point-light results 

7.1.8. Increasing Walking Base  

Walking base was predicted to widen over increases in perceived obesity. The results in 

Figure 5-10 appear to support this hypothesis with an upward trend of identification of 

obese walkers with widening walking base.  

 

 

Figure 5-10- Walking Base obese mesh results 

 

Section 6.5.5 shows how the actual changes in walking base over increases in obesity. The 

strongest appearance correlation is with Body Mass (r2= 0.2356) seen in Figure 6-29.  
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Figure 6-29- Increase in walking base over body mass 

 

Waist to Hip Ratio also had a strong correlation of (r2= 0.2349) seen in Figure 6-28. As Waist-

to-Hip Ratio can be measured and modified on virtual characters this is the more useful 

parameter for our purposes. 

 

Figure 6-28- Increase In Walking Base Over Waist-To-Hip Ratio 

This suggests that the larger the Waist-to-Hip Ratio the wider the legs spread apart to 

maintain a steadier support base. 
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Increased walking base is considered to be a moderately dominant motion parameter as 

eighteen people selected the most exaggerated width compared to twenty-three people 

who selected Arm Abduction’s exaggerated width and twenty-two people who selected 

Speed/ Cadence’s. 

  

7.1.9. Upper body combination  

It was expected that upper body movement would have a strong perceptual effect with arm 

abduction having the largest effect, arm swing having a medium effect, arm bob having a 

lesser effect and hip/torso rotation having the least effect. This could be seen in isolation 

Figure 4-4 where arm abduction has a clear upward trend. Arm abductions perceptual 

dominance is also determined by its overpowering over other parameters such as arm bob, 

as seen in Figure 7-1. 

 

   

Figure 4-4- Increased Arm Abduction point-light results Figure 7-1 - Arm Abduction + Bob & Arm Bob 

Comparison 

 

Arm swing was perceived to decrease. However, when decreased arm swing was combined 

with increased arm abduction, as seen in Figure 7-9, results show a slight upward trend but 

not as clear as arm abduction alone. As the total number of ‘58%’ selections for combined 

arm abduction and swing were smaller than those for arm and abduction and bob we shall 

classify arm swing as potentially less perceptually important but more likely not modified 

quite correctly yet. 
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Figure 7-9 - Arm Swing & Arm Abduction + Arm Swing Comparison 

The modified upper combination set of parameters in Figure 4-11 improved perceptual 

identification by decreasing instead of increasing arm swing and torso twist demonstrating 

that these were of perceptual significance. Arm bob was not decreased but left to increase 

and yet Figure 5-7 still shows a significant improvement which indicates that arm bob is low 

in terms of perception. Figure 7-10 demonstrates that the second combination of parameter 

strengths received was significantly more believable. 

 

    

Figure 4-11- Upper Body Combination point-light results Figure 5-7- Upper Body Combination obese mesh results 

 

Figure 7-10- Upper Body Combinations of Parameters Compared 
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7.1.10. Lower body combination  

In the point-light video survey, decreased speed-cadence, increased walking base and 

increased hip twist were modelled as a lower body combination of parameters. This was 

with an expectation that viewers would show an upward trend of identification of obese 

walkers. The upward trend demonstrates this to be true, however, the penultimate strength 

dipped.  

 

However, hip twist was considered more convincing in this combination of parameters 

when retested as a decreasing effect in section 4.4.9. The only parameter changed from 

Figure 4-12 was hip twist which produced the more convincing lower combo results seen in 

Figure 5-11. This shows an upward trend of identification of obese walkers with values at 

the strongest preference peaking at ‘D’, which follows the results of preferred walking 

speed, suggesting that this is the more dominant parameter. Reductions in speed create the 

largest perceptual effect. Increased walking base skewed more results to the ‘E’ and ‘F’ 

values suggesting it as a strong secondary parameter and the hip twist the weakest 

parameter, 

    

Figure 4-12- Lower Body Combination point-light results Figure 5-11- Lower Body Combination obese mesh 

results

7.1.11. Whole body combination  

The point-light video survey in Figure 4-12 decreased walking speed and increased hip twist, 

torso twist, walking base, arm abduction, arm bob and arm swing were modelled as a total 

body combination of parameters. This was with an expectation that viewers would show an 

upward trend of identification of obese walkers. The upward trend demonstrates this to be 

true, with a much greater preference for the three strongest combinations.  
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The mesh survey in Figure 5-12 decreased hip and torso twist and arm swing. This provided 

a smoother upward trend of identification with obese walkers.  

  

Figure 4-12- Lower Body Combination point-light results Figure 5-12- Total Combination obese mesh results 

This could indicate that the upper body parameters of, torso twist and arm swing have a 

significant effect on perception of obesity, however, without modifying perceptually 

dominant lower body parameters such as walking speed, we cannot determine which has 

the stronger effect. 

Comparing the most perceptually dominant parameters from the upper body and lower 

body shows similar peak identification numbers which suggests that both halves of the body 

may be equally important when perceiving obesity. 

    

Figure 4-4- Increased Arm Abduction point-light results Figure 5-9- Speed and Cadence obese mesh results 

7.2. Analysis & Results Summary  

The results demonstrate a series of motion parameters that, when exaggerated from a 

normal walk, are identifiable as that of an obese walker. Following a series of data capture 

and analysis we deduced an order of perceptual dominance to certain motion parameters. 

These are summarised as follows. 
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7.2.1. Summary of Point Light Survey 

Having analysed the results of the point light perceptual survey we can deduce an order of 

preference for a number of motion parameters and combinations. A number of parameters 

were also identified as needing to be retested: 

 
Table 7-1 - Summary of Point Light Perceptual Survey Results 

Perceptua
l Order 

Video Parameter 

Highest 
Votes 

Perceived 
Preferred  

Direction of 
Change 

Action 

1 Lower body 

combination 

29 Increase  

2 
Increased Arm (swing) 

27  Decrease Retest decreasing 
swing with increasing 
abduction 

2 Increased Arm 
Abduction & (bob) 
 

27 Increase Retest Arm Bob only 

4 Whole body 

combination 

26 Increase  

5 Increased Arm 
Abduction 

23 Increase  

6 Upper body 
combination 

17 Mixed  

 Increased Hip (twist) & 
Torso (twist) 

16 Mixed/ 
Unclear 

Retest with character 
mesh 

 Reduced Walking 
Speed/ Cadence 

15 Mixed/ 
Unclear 

Retest with different 
camera angle 

 Increased Arm 
Abduction & (swing) 

15 Mixed/ 
Unclear 

Retest with decreasing 
swing 

 
Increased Spinal 
Erectness 

14 Mixed/ 
Unclear, 
Poorly 
Modelled 

Abandon 

 

These results informed the selection of parameters for the character mesh perceptual 

survey. 
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7.2.2. Summary of Mesh Survey  

The second perceptual survey retested a number of motion parameters and combinations 

to give an indication of perceptual dominance. 

 
Table 7-2 - Summary of Character Mesh Perceptual Survey Results 

Perceptual 
Order 

Video Parameter 

Highest 
Votes 

Perceived 
Preferred  

Direction of 
Change 

Notes 

1 
Upper body combination  

32  Much 
improved 

2 Decreased Walking Speed/ 
Cadence 

22  Much clearer 

2 Whole body combination  22   
4 

Lower body combination 

19  Lower highest 
category, 
however, 
higher cluster 
of votes 

4 Increased Walking Base 19   
6 

Decreased Hip Twist 
18 Mixed/ 

Increased 
Abandoned 

7 
Increased Torso Twist 

17 Mixed/ 
Unclear 

Abandoned 

8 Increased Arm Abduction & 
decreased Arm Swing 

15 Mixed/ 
Unclear 

Inconclusive 

9 
Increased Hip & Torso Twist  

14 Mixed/ 
Unclear 

Abandoned 

10 Increased Arm Bob 13 Mixed/ 

Unclear 

Weak 

parameter 

 

From these two tables we can list the motion parameters perceptual strengths in the 

following order of dominance: 

1. Decreased Preferred Walking Speed 

2. Increased Average Arm Abduction 

3. Increased Walking Base 

4. Decreased Arm Bob Magnitude 

5. Decreased Arm Swing Magnitude 

The perceptual surveys demonstrate that people expect walking speed to decrease over 

increases in obesity. This validates observations previous findings (Spyropoulos et al., 1991; 
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DeVita and Hortobágyi, 2003; Hulens et al., 2003; Vismara et al., 2007; Tompkins et al., 

2008; Lai et al., 2008; Browning, 2012; da Silva-Hamu et al., 2013; Pataky et al., 2014).  

 

Increases in walking base is also perceived to increase over obesity which also validates 

previous findings (Spyropoulos et al., 1991; Browning and Kram, 2007; Sarkar et al., 2011; 

Wu et al., 2012; Vartiainen et al., 2012).  

 

As previous research focussed on lower body gait, the perception that arm abduction raises 

and arm bob and swing magnitude reduces over obesity is a new contribution to knowledge.  

 

Previous research focussed on the actual correlation between anthropometrics and gait 

parameters however these tests demonstrate the perceived correlation which is a different 

contribution to knowledge. 

7.2.3. Summary of Anthropometrics and Gait Analysis  

These motion parameters are listed in order of perceptual dominance and the direction and 

strength of correlation with anthropometrics. r2 estimates of effect size are included and 

their effect size classification according to Cohen (1988; 1992) Benchmark: 

 
Table 7-3 - Appearance to Motion Parameter Correlations by Perceptual Dominance 

Perceptual 
Order 

Gait Parameter 
Perceived  

Change 
Actual 
Change 

Correlation & 
Effect Size 

1 Preferred Walking 
Speed 

decrease increase over Height r2= 0.149  
(small) 

2 
Average Arm Abduction 

increase increase over Chest 
Circumference 

r2= 0.486  
(large) 

3 
Walking Base 

increase increase over WtHR r2= 0.236 
(medium) 

4 
Arm Bob Magnitude 

decrease slight increase over 
Height 

r2= 0.082  
(small) 

5 Arm Swing Magnitude decrease increase over BF% r2= 0.089  

(small) 

 

This framework can be utilised in an animation tool to model automatic and believable 

changes to gait based on changes to height and body shape.   
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8. DATA-DRIVEN ANIMATION MODIFIER 
The scripted animation tool was now capable of deforming the topological morphology 

along a general body fat percentage scale as well as changing the structural height of a 

virtual character. Uniquely the variation in appearance will then modify multiple gait 

parameters. In part the tool builds upon Gleicher (2001) to motion warp plus inverse 

kinematics to slow down all keys whilst still offering the flexibility of IK control to reposition 

the feet.  

Part of the inspiration for this tool was Troje’s (2002) synthesized walker demonstration 

which featured sliders to vary motion by classifiers such as gender. Whilst this approach also 

used twenty male (and twenty female) motion captured walkers and analysed limb lengths 

(height was normalised), body morphology was not directly recorded or analysed. Gait 

parameters were not specifically being extracted and modified. In reality these separate 

datasets were being trained with pattern recognition to classify variations in structural and 

dynamic motion overall, as opposed to a more discrete biomechanical framework. Our 

scripted tool can modify these as they directly relate to a single or multiple anthropometric 

features such as height and body fat percentage. Our tool can be expanded to separately 

alter different gait parameters by different anthropometric generating greater character 

and locomotion generation. 

Troje (2008) later went on to allow users to train the demonstration to classify the motion 

by their perceived weight mood, strength and any other. Our perceptual tests allowed us to 

analyse movements on a gait parameter basis as opposed to overall.  

Our slider based scripted animation tool matches the simplicity of Neff & Kim (2009) making 

it as easy to edit motion styles, however crucially these modifications are not just based on 

artistic judgements but correlated with recorded anthropometric data. 

Whilst our appearance to motion framework doesn’t directly try and modify motion to 

avoid self-mesh penetration as Ho et al. (2013) does, by analysing correlations between 

anthropometrics such as chest and bicep circumference it is able to do this, mimicking real 

world attempts to avoid chafing. 

 



154 
 

By taking the results of the most perceptually dominant motion parameters and their 

strengths, as previously seen in Table 7-3, it was possible to update the scripted animation 

tool to modify the five parameters according to the predictive formulas.  

The following section explains the changes that were made to the appearance modifier and 

the scripted motion modifier tool to be able to fully implement the scripted framework. 

Figure 8-1 shows the simple interface which allows modification of Body Fat Percentage and 

Height and the script running to modify gait parameter keyframes. Additional sliders are not 

visible or not fully enabled but in future can allow modification of separate anthropometrics 

to modify separate gait parameters. This was not implemented yet as it could alter the 

perceived overall metric of Body Fat Percentage in unpredictable ways. 

 

 

Figure 8-1 - Body Fat %, Height Slider Interface and Running Script 
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 Finally the framework and animation tool is tested and validated in a live video based 

perceptual polling. 

8.1. Scripted Animation Tool, Framework Modification 

8.1.1. Preferred walking speed over Height 

This was previously modelled but as the data showed the biggest correlation with speed was 

over height, the script needed to be modified to accommodate a height slider and skeletal 

scaler as seen in Figure 8-1. 

 

Figure 8-2 - Height Slider and Skeletal scaler 

The new formula was integrated:  

Walking Speed = -1.07 + (1.3 * Height) 

Equation 11 - Predicted Walking Speed by Height 

8.1.2. Arm Abduction over Chest Circumference 

This motion parameter was previously modelled but as the data showed the biggest 

correlation of arm abduction was over chest circumference, the arm abduction script was 

updated to integrate the new formula: 

Average Arm Abduction Position = -31.42 + (39.97 * Chest Circumference) 

Equation 12 - Predicted Average Arm Abduction by Chest Circumference 

Based on mocap data analysis, the highest correlation was over Chest Circumference. For 

the purpose of this test, the chest circumference of the obese virtual characters blend shape 

was matched to the predicted dimensions at 35% Body Fat by recorded data.  
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Figure 8-3 - Chest Circumference by Body Fat % 

As the character deformed between 12%-35% body fat and beyond, the chest 

circumference of the obese character blend shape increases linearly between 0.98m-1.12m. 

The Body Fat % slider therefore also drives Chest Circumference as seen in Figure 8-1, 

however future modifications could integrate separate sliders for body sections. The reason 

that chest circumference, waist and hip circumferences were not allowed to be modified 

separately on the virtual characters obese blend shape, was because this could create the 

perception of a different Body Fat Percentage which would conflict with other parameters. 

8.1.3. Walking Base over WtHR 

Walking base had previously been modelled but as the data showed the biggest correlation 

that could be applied to virtual characters was over Waist-to-Hip Ratio, so the walking base 

script was updated to integrate the new formula: 

Walking Base = -167.59 + (268.26 * WtHR) 

Equation 13 - Predicted Walking Base by Waist to Hip Ratio 

As previously mentioned, the waist and hip circumferences of the virtual character’s obese 

blend shape were matched to the predicted value at 35% Body Fat so that as the Body Fat 

slider and deformation was applied the waist-to-hip ratio would linearly increase: 
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Figure 8-4 - Waist to Hip increases over Body Fat % (separate and combined) 

8.1.4. Arm Bob Magnitude over Height 

Arm bob magnitude had previously been modelled but as the data showed the biggest 

correlation that could be applied to virtual characters was over Height, the walking base 

script was updated to integrate the new formula: 

Arm Bob Magnitude = -13.19 + (12.04 * Height) 

Equation 14 - Predicted Arm Bob Magnitude by Height 

8.1.5. Arm Swing Magnitude over BF% 

Arm swing magnitude had also previously been modelled over body fat percentage, 

therefore the script simply needed updating with the formula based on the actual data 

captured: 

Arm Swing Magnitude = 18.76 + (0.29 * BF) 

Equation 15 - Predicted Arm Swing Magnitude by Body Fat Percentage  
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8.2. Final Perceptual Survey Design 

Once the scripted animation tool had been updated with the formulas based on the actual 

data analysed, and the appearance modifications, the final test was to validate the 

appearance to motion framework and the scripted animation tools application of it. This 

was achieved by creating a final perceptual video poll.  

The video comprised of four obese character meshes based on an obese participant 

codenamed ‘AE’. The obese character meshes were scaled from 1.77m to 1.83m to match 

AE’s height. The obese character mesh videos were driven by the walks put in the following 

randomised order:  

A. MP’s lean motion capture data  

B. Keyframe animated in an obese style  

C. MP’s lean walk modified by scripted animation tool to deform five motion 

parameters  

D. AE’s obese motion capture data  

 

 

Figure 8-5 - Perceptual Video Poll to Validate the Appearance to Motion Parameter Framework 
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All characters were rendered out and edited together at 1080 x 1920 with plain grey 

shading, on a black background, walking towards the camera as this had proved the most 

effective approach previously. The four characters’ order was randomised and they were 

edited together, side by side and labelled A,B,C,D in order of appearance. 

8.2.1. Lean Motion Capture (A)  

This data was derived from the previously used lean motion captured participants ‘MP’ who 

had the following attributes.  

Table 8-1 MP's Lean Anthropometric Measurements 

Metric Metric 

Ref No. MP 
Height (m) 1.758 
BodyMass (weight kg) 70 
Age (years 21 
Fixed Speed (to 
1.2m/s) 1.40 

BMI = 23 
STRUCTURAL 
LENGTHS   

Foot to hip (cm) 95 

CIRCUMFERENCE   

Neck 0.37 
Chest 0.98 
Bicep/ arm girth 
relaxed 0.32 
Waist/ Abdominal 0.81 

Upper Body Total 2.48 
Hip / Gluteal girth 0.975 
Thigh 0.525 
Calf 0.37 

Lower Body Total 1.87 
CIRCUMFERENCE 

TOTAL 4.35 

WtHR =  0.83 
BODY FAT 
PERCENTAGE   

InBody 12.1% 
 

His character was scaled to match AE’s comparative height of 1.83m. 
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8.2.2. Keyframe animated in obese style (B) 

This data was keyframed by Stephie Johnson, a recent Teesside University animation 

graduate, who had not previously seen the other character walks and did not have access to 

the findings of my previous studies. Stephie was provided with the scaled obese character 

model and rig and was briefed to keyframe animate a walk cycle that matched her 

perception of the character’s body shape and height. She was also asked to record the time 

it took to animate it, to compare the efficiency of this approach with the scripted animation 

tool. 

8.2.3. Scripted Animation Tool (C) 

This data was derived from the previously used lean motion captured participants ‘MP’ and 

then modified using the scripted animation tool to match 1.83m in height and 34.1% Body 

Fat. 

8.2.4. Obese Motion Capture Data (D) 

This data was derived from one of the motion captured participants ‘AE’ who had the 

following attributes. 
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Table 8-2 AE's Obese Anthropometric Measurements 

Metric   

Ref No. AE 

Height (m) 1.83 
BodyMass (weight 
kg) 112.4 

Age (years 22 

BMI = 34 
STRUCTURAL 
LENGTHS   

Foot to hip (cm) 1.03 

CIRCUMFERENCE   

Neck 0.435 

Chest 1.11 
Bicep/ arm girth 
relaxed 0.345 

Waist/ Abdominal 1.155 

Upper Body Total 3.045 

Hip / Gluteal girth 1.18 

Thigh 0.65 

Calf 0.455 

Lower Body Total 2.285 
CIRCUMFERENCE 

TOTAL 5.33 

WtHR =  0.98 
BODY FAT 
PERCENTAGE   

InBody 34.1% 
 

As AE fell on the obese side of the BMI and BF% scale his motion capture walk was 

considered ideal to test the scripted animation tool. Unlike other obese participants, AE also 

had above average height, and since this was a parameter that had been determined to be 

perceptually dominant, we chose his data and scaled the other comparative characters to 

match his height of 1.83m. His motion captured walk data was retargeted to the same 

obese character mesh as the previous video survey. 
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8.3. Polling Methodology 

The looping video was screened on a large projector screen in front of 96 participating 3rd 

Year games design students at Teesside University on 24/11/16 as part of a lecture on 

research. The poll was conducted before this research project’s aims and findings were fully 

explained.  

 

Figure 8-6 - Turning Point live polling system 

Turning Point (2016) was used to live poll students’ opinion on which videos produced the 

most believable walking motion that matched the height and body shape of the character 

mesh. Students were requested to ignore any variations in lighting or glitchy mesh 

deformations. Anonymous participation in the polling was considered as consent and they 

were free to withdraw participation at any time. A videogame prize was offered as an 

incentive for participation and was awarded randomly. Turning Point assigned the following 

answer point values: 

 

1st video rank awarded 4 points each 

2nd video rank awarded 3 points each 

3rd video rank awarded 2 points each 

4th video rank awarded 1 points each 
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8.4. Polling Results 

The results of the live polling were collated immediately and are as follows 

 

Figure 8-7 - Live Poll of Most Believable Motion Deformation Technique to Generate Obese Motion 
The results of the live polling show that a 38% majority of viewers selected the appearance 

to motion framework and the scripted animation tool to be the most believable method to 

generate locomotion that matched the height and morphology of the obese character 

mesh.  

Surprisingly in second ranking they selected the keyframe animated walk. Despite the 

animation not being polished, the parameter it most heavily exaggerated was walking 

speed, which had previously been determined to have the strongest effect on the 

perception of obese motion. 

Thirdly the audience chose the actual obese motion. It was expected that this would have 

ranked highest, however there may be a number of factors which caused a lower ranking. 

AE’s taller height caused challenges when rescaling the character non-linearly. Variations in 

leg length meant greater IK leg wobble was produced which could have proved slightly 

distracting. And whilst much of the framework and tool deforms appearance and motion 

19%
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D. AE’s obese motion capture data

C. MP’s lean walk modified by scripted animation tool to deform 5 motion parameters
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according to linear trendlines, there remains a huge human variation in body morphologies 

and walking styles that don’t immediately fit perceptions of obesity. 

Lastly as to be expected, the shorter, lean walk was chosen as the least believable match to 

the taller obese character mesh. 
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9. CONCLUSIONS  

Our three main contributions to knowledge included an empirical study analysing perceived 

and actual changes of gait over body morphology, a framework of appearance to 

locomotion parameters that could be used to generate diverse, believable motion and a 

scripted animation tool that believably retargets lean gait to obese to different body 

morphologies.  

 

Our empirical study collated, analysed and tested a range of published sources validating 

previously observed parameters such as preferred walking speed (Spyropoulos et al., 1991; 

DeVita and Hortobágyi, 2003; Hulens et al., 2003; Vismara et al., 2007; Tompkins et al., 

2008; Lai et al., 2008; Browning, 2012; da Silva-Hamu et al., 2013; Pataky et al., 2014). 

Increases in walking base was validated (Spyropoulos et al., 1991; Browning and Kram, 

2007; Sarkar et al., 2011; Wu et al., 2012; Vartiainen et al., 2012). Step width or walking 

base was also validated (Spyropoulos et al., 1991; Browning and Kram, 2007).  

 

We found that the traditional anthropometric, Body Mass Index, is not always the most 

effective measurement when correlating appearance parameters with motion parameters. 

BMI incorporates height and mass but struggles to differentiate between fat mass and 

muscle mass. It fails to represent body shape the way Waist Circumference, Waist to Chest 

Ratio or Waist-to-Hip Ratio can. Keys (1972) noted that BMI was more appropriate for 

population studies and inappropriate for individual evaluation whilst Deurenberg et al. 

(2001) found that 8% of all men were incorrectly classified as obese using standard BMI 

cutoff points. BMI is also a difficult metric to map onto virtual characters as they have no 

mass. When reviewing our own data we found that a variety of different anthropometric 

parameters were more effective at providing correlations with gait parameters. 

 

Our analysis verified Spyropoulos’ (1991) observation that Average Preferred Walking Speed 

decreased and Walking Base increased over body morphology. Unfortunately McGraw’s 

(2000) observation that posture became more erect over increases in body morphology 

could not be accurately tested and verified. 
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Based on the empirical data collected and analysed we have defined and validated a 

framework of anthropometric to locomotive gait correlations ordered by perceptual 

dominance and effect size. This framework can be used by animators and motion capture 

artists to efficiently and dynamically generate a diverse range of characters that not only 

vary in body morphology but also have varying walking styles that believably match their 

body shape. 

Table 9-1- Effectiveness of Anthropometrics compared to BMI 

Gait Parameter Anthropometric R² Anthropometric R² 

Average Arm Abduction 

Position 

Chest 

Circumference 

0.4864 BMI 0.4222 

Arm Swing Magnitude Chest 

Circumference 

0.3606 BMI 0.0128 

Arm Bob Magnitude Height 0.0819 BMI 5E-05 

Average Preferred Walking 

Speed 

Height 0.1486 BMI 0.0009 

Walking Base Mass 0.2356 BMI 0.1991 

 

We hypothesised that by studying existing research and undertaking our own empirical 

study we can identify the most perceptually dominant motion parameters. Our research 

found that the following parameters were prioritised as perceptually dominant: 

 

1. Decreased Preferred Walking Speed 

2. Increased Average Arm Abduction 

3. Increased Walking Base 

4. Decreased Arm Bob Magnitude 

5. Decreased Arm Swing Magnitude 

 

This hypothesis was posed as the question was centred on whether we believe certain 

parameter correlations to be more influential in our perception of gait than actual scientific 

correlations.  
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By ordering the parameters by correlation effect size we can see some differences between 

what is perceived to be more influential and what actually is: 

 

 - Average Arm Abduction Position  

↑ Arm Swing Magnitude  

 - Walking Base  

↓ Average Preferred Walking Speed  

↓ Arm Bob Magnitude  

 

We found that people perceived a reduction in arm swing magnitude to be more influential 

to the perception of obese gait in comparison to the other ordered parameters. This could 

suggest that people expect certain characteristics to change more so, than ones that 

actually do. This challenges the validity of relying on perceptual based motion classification 

and synthesis (Troje, 2008). 

 

Future work could include testing a framework of anthropometric to gait correlation 

prioritised by perceptually dominance versus a framework prioritised by actual correlation 

effect sizes. 

 

We also hypothesised that by analysing changes in actual locomotion over changes in 

anthropometrics we can create a relaxed model of locomotion generation for obese 

characters. Our research found that the following anthropometric parameters, ordered by 

perceptual dominance, had the following effects on gait parameters. 
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Table 9-2 - Appearance to Motion Parameter Correlations by Perceptual Dominance 

Perceptual 
Order 

Gait Parameter 
Perceived  

Change 
Actual 
Change 

Correlation & 
Effect Size 

1 Preferred Walking 
Speed 

decrease increase over Height r2= 0.149  
(small) 

2 
Average Arm Abduction 

increase increase over Chest 
Circumference 

r2= 0.486  
(large) 

3 
Walking Base 

increase increase over WtHR r2= 0.236 
(medium) 

4 
Arm Bob Magnitude 

decrease slight increase over 
Height 

r2= 0.082  
(small) 

5 Arm Swing Magnitude decrease increase over BF% r2= 0.089  

(small) 

 

Whilst we struggled to accurately record and verify McGraw et al. (2000) and de Souza 

(2005b) changes to spinal curvature over increases in obesity, our research in changes in 

upper body gait over increases in obesity is also a novel contribution to knowledge. As seen 

below in Figure 9-1, changes to upper body gait parameters are more influential in the 

perception of obese gait than lower body gait. 

 

 

Figure 9-1 - Comparison of Upper and Lower Body Combo of Parameters 

 

The framework was implemented in the final version of the scripted animation and 

validated with a perceptual poll. The scripted animation tool was ranked at 38%, a more 

believable generator of tall and obese motion than an actual obese motion captured walk.  

  

The research provides animators and motion capture artists with a framework to generate a 

diverse range of characters that walk in a way that relates to their body shape. For 

animators and motion capture artists with limited or singular captures of walking data, this 

0

10

20

30

40

a b c d e f

N
o

. o
f 

R
es

p
o

n
d

en
ts

Category of Values

Upper and Lower Body Combo of 
Parameters Lower Body

Upper Body



169 
 

empowers them to create a wide range of characters, saving them production time and 

improving believability. 

 

Our final major contribution was the development of a scripted animation tool to test and 

apply the framework. This tool proved effective at believably retargeting lean locomotion 

data to taller or larger body morphology by modifying five gait parameters using a 

combination of motion warping plus IK, leg adjustments, foot constraints, and phase 

identification and amplification. These techniques have been used by the likes of Ho et al. 

(2013), Neff & Kim (2009) and Kim & Neff (2012) however none of these are correlated with 

anthropometric datasets and our tool has been tested to be more believable at modifying 

lean motion to obese motion than motion captured obese motion.  

 

A number of alternative approaches exist that were considered outside of the scope of this 

process and approach as they were physics based or used machine learning. 

 

Taylor & Hinton (2009) presented a model using Conditional Restricted Boltzmann Machines 

(CRBM) trained on Carngie Mellon University's (CMU) dataset to synthesize new motion 

with stride length and speed variables being manipulatable. In addition this system could 

transition and blend between styles. However as the CMU database contained no 

appearance data these variations are not constrained in any meaningful way to 

anthropometric variables. As the CRBM allowed a multiplicative three-way interaction 

between units, an anthropometric variable could serve as the third unit. Whilst Taylor & 

Hinton claimed their system could generate realistic  motion,  without available videos it is 

hard to assess how effectively this method avoids the perceived unnaturalness and foot 

sliding issues common to synthesized motion. 

 

Kenwright (2011) uses centre of mass to balance synthesized characters using priority 

weighted inverse kinematic constraints. Whilst it was capable of creating a diverse range of 

actions its focus on centre of mass did not take into account conservation of energy or self-

avoidance of mesh penetration. As the method is physics-based it once again falls victim to 

the production of unnatural poses that would need to be manually modified by an animator. 
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Holden et al. (2016) builds upon previous deep learning work by the likes of Taylor & Hinton 

(2009) to synthesize new editable motion trained on a motion capture database that breaks 

motion down into components and can add constraints whilst keeping the motion natural. 

This system allows the construction of the style of one motion to the timing of another. So 

whilst the neural network is not trained on motion with corresponding anthropometric 

data, this offers the possibility of combining our data driven method with the flexibility of 

deep learning frameworks. 

 

Most recently Holden et al. (2017) presents a real-time character control mechanism using a 

neural network architecture. This Phase-Functioned Neural Network produces controllable 

motions trained from a large dataset of locomotions. Whilst highly adaptable to user 

control, variable terrain and edges, the neural network is trained on a variety of motions 

with no recording, analysis or correlation with anthropometrics. However by combining our 

data driven approach this could in future extend the systems capability beyond locomotion. 

 

These were initially not considered due to the potential for unnatural motion, however the 

flexibility of their methods means it would be worthy to consider hybridising these 

approaches with ours. 

 

Based on the empirical data collected and analysed we have defined and validated a 

framework of anthropometric to locomotive gait correlations ordered by perceptual 

dominance and effect size. This framework can be used by animators and motion capture 

artists to efficiently and dynamically generate a diverse range of characters that not only 

vary in body morphology but also have varying walking styles that believably match their 

body shape. 
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10. RECOMMENDATIONS & FUTURE WORK 

 

Whilst the research could be considered a success against its original objectives, upon 

reviewing the project as a whole a number of areas remain that are ripe for future 

exploration. 

Initially we analysed gait parameters that viewers perceived to give the impression of obese 

gait. However further analysis of the data, could be undertaken to understand if and how 

people of different gender, age and experience view these parameters. As this study was 

exploratory, it would be desirable to expand the sample size to at least 109. This would 

make results more reliable for the appearance and locomotion data.  

The questionnaire asked participants to identify whether they were a member of the public 

or have a background in animation or biomechanics. Whilst this data was not analysed, it 

could be revisited to assess whether those with a background in movement were better 

able to detect modified motion. 

It would be highly interesting to capture a larger useable sample of female participants. 

Whilst female body morphology obviously differs from males, female gait also differs 

significantly to male gait (Kozlowski and Cutting, 1977). Therefore any changes in 

appearance to gait correlations may also change. Whilst five female participants were 

motion captured, this was considered too small a sample size, but could form a basis to 

expand the research. In addition to gender it may also be interesting to explore the effects 

of sexuality on the masculine or feminine qualities of a walking style. 

As many motion capture volunteers were sourced from Teesside University the average age 

was quite young at 27 years old, so this would be another potential area to expand the 

research to include younger and older participants.  

Whilst it is unforeseeable that different racial ethnicities have distinct walking styles, 

population data for certain countries or regions might reveal socio-economic and dietary 

trends that influence walking styles. 
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Whilst the data modifies motion in relation to people’s body shape, potentially it could also 

be used to adjust motion based on personality types. Satchell et al. (2016) recently 

determined a correlation between aggressive personality types and exaggerated gait 

swagger. This data could be added to the framework as another optionally adjustable 

motion modifier. 

This research was started on the observation of distinct walk cycles of obese people. Whilst 

a range of body morphologies were recorded, the highest BMI of a participant was 34. It is 

believed that even more characteristic walk cycles could be observed and modelled from 

those who the World Health Organisation (1995; 2000) had classified with a BMI of 40 being 

labelled as Obesity III; morbidly obese.  

Another reason for the distinctiveness of severely obese gait could be the increased 

likelihood of gait impairments. Whilst we only record participants who had no gait 

impairments, this might prove a future area of observation, especially if they are more likely 

to occur with those of large body morphologies. 

Capturing more morbidly obese participants would require the anticipation of further 

breaks during the motion capture process due to potential health risks or fatigue. However 

this brings to mind another area for potential expansion of the model; average time for 

walking fatigue, as this could also improve the believability of the framework at the extreme 

end of the anthropometric scales. Based on average time for fatigue, the framework could 

blend the motion into a tired idle clip for a recovery time, before blending back into the 

walk cycle, further improving believability. 

Much of the research was focussed on tracking changes in locomotion over a linear 

anthropometric such as body fat percentage or BMI. However the results of the research 

show that certain anthropometrics have larger effects on localised areas of locomotion than 

others. Further work could be undertaken to determine the effects of anthropometric data 

on each of the major limbs. This would provide much finer control on the generation of 

character appearance and individual locomotion. 

Whilst the bio-electrical impedance method of recording body fat percentage was fast and 

non-invasive it would be desirable to try previously inaccessible measurement methods 
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such as hydro-densitometry or the Body Volume Index method (see Appendix C). The BVI 

method also appears to automatically record body limb circumference data, which would 

enable automatic and faster data correlations with localised motion parameters. 

As McGraw et al. (2000) and de Souza (2005b) had previously observed changes in spinal 

curvature over increases in BMI we were disappointed to find that due to the tautness of 

the motion capture suits we were unable to accurately record and measure this 

anthropometric parameter. We hypothesise that this is to maintain balance over the centre 

of mass so in future it would be desirable to find an alternative method to measure and 

model this parameter. 

The motion capture process proved accurate to a sub-millimeter level of tracking, however 

there are a number of areas for errors to creep into the process. Spinal erectness had 

already proved difficult to capture, and on participants with larger amounts of adipose 

tissue, the mocap suit could have slid more. It would be interesting to quantify the degree of 

marker slippage and inaccuracy caused by larger adipose areas on the body. 

Perry (2012) was used as photographic reference for male body shapes of body fat 

classifications in the absence of any consensus on how people accumulate body fat in 

different areas of their body over time. This may extend outside of the boundaries of this 

research project however it would be highly useful to collect and analyse large datasets of 

body circumferences over periods of weight gain. 

As Dobbyn et al. (2006) had been exploring clothing variation to virtual characters it could 

be beneficial to also add clothing to the data driven framework. Whilst all participants had 

to wear the simple and tight motion capture suits further explorations could measure and 

model the effects of changes in clothes, bags and weaponry to the centre of gravity and 

average walking and running speeds. These are the typical additions added to virtual 

characters in video games. 

Whilst the research focussed on changes to locomotion over increases in body morphology, 

other action clips commonly recorded in motion capture for use in games and animation 

include running and jumping. Recording and analysing changes to these motion parameters 

over increases in body morphology could expand the usefulness of the framework and 
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implementation in character and crowd simulation systems. This could be achieved by a 

hybridised physics based motion system. The motion capture data also included 

measurements for centre of gravity and mass so it would be interesting to relate changes in 

parameters such as walking base and arm swing to these physical parameters. 

Whilst the animation tool is based on data driven observations of body morphology it would 

be useful to track these changes more closely and have them simulated directly back into 

the virtual locomotion system. This could be done by modelling adipose oscillation. Muscle 

activation could also be measured and then simulated beneath the fat layer. A combination 

of skeletal, muscular and adipose layers could then present a data driven alternative to 

Weta Digital’s Tissue System (2017). 

Currently the animation tool is scripted in JavaScript to modify keyframe animation data 

within the Softimage animation package. This can take a couple of minutes to fully run, 

however the applications for the animation framework could be applied to game engines. 

The animation tool could therefore benefit from optimisation or recoding to run in real-

time.  

The tool also has the potential for further development to incorporate path planning and 

random character generation. In addition to incorporating these well researched areas, 

further research could explore the volume or width of personal body space and character 

avoidance that varies not just by crowd density but also by increases in body morphologies.  

Ultimately the research aimed to discover whether it was possible to modify a lean walk 

cycle based on analysed data to appear obese, to an equally believable degree as actual 

obese motion. It succeeded - even appearing more believable than actual obese motion. 

The aim was to save animators time keyframing obese motion or modifying lean motion to 

appear obese. However one final test could be to test whether a lean actor can act obese 

and appear to be as believable as the tool. This final test could also extend to any future 

expansions to include women, children, ethnicities and personalities.  
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12. APPENDIX A – INFORMATION GUIDE 
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Information Guide   

for Motion Capture Participants 
 

Aim of the Research  

 

We are looking to improve the realism of computer generated characters in games and films 

by the way the look and move. To do this we shall need to record the look of real people of 

all shapes and sizes and also the unique way that they walk. Aside from making games and 

films look more believable, your participation will help medical specialists better understand 

how changes in our weight affect the way we walk. 

 

The Process 

 

Upon arrival to the University’s own Motion Capture lab you shall be asked to submit the 

attached consent form. We shall also talk through the procedure and you are welcome to 

ask any questions. 

Using scales and a tape measure, the researcher shall take the following measurements: 

1. Height 
2. Weight 
3. Age 
4. Foot to hip length 
5. Chest circumference 
6. Waist / Abdominal circumference 

7. Hip circumference 
8. Thigh circumference (right) 
9. Calf circumference (right) 
10. Bicep circumference (right) 
11. Neck circumference (right) 

  

This shall produce your BMI value and your Waist-to-Hip Ratio; useful measurements to roughly 
estimate your body weight and health.  
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Your Body Fat Percentage shall be measured by gripping and stepping on a sterilised InBody 720 
monitor for 60 seconds. Participants with pacemakers are not advised to use this machine as a small 
electrical current may interfere with it. Readings are more accurate when taken barefoot but can be 
taken wearing socks for those who feel uncomfortable: 
 

   
 
You shall be provided with a printed Body Composition Analysis sheet showing your weight, BMI, 
Body Fat Percentage and a number of other interesting measurements that may be useful to track 
your health and fitness improvements over time. 
 
It would be useful to bring shorts and tight fitting t-shirt to change into for the motion capture.  
 

We shall fit some bands with ping-pong style markers to areas like your head, back, arms, 

waist and feet using Velcro bands or harnesses to your clothing or small sticker patches onto 

your skin.  

 

We shall then take reference photos of you standing with your arms outstretched from the 

front, back and sides. You may opt out of photography if you are not comfortable with this. 

 

For practise you shall be asked to walk back and forth along a 5m path at a comfortable 

speed to get a natural walking pace. 

 

Once this preparation is complete, you shall be recorded walking the 5m in both directions 

at a comfortable speed. You shall then be asked to walk at a variety of speeds (3-6) from 

slow to fast. If you feel any pain or discomfort at walking at the fixed speed you may opt 

out. You are also free to withdraw from part or all of the experiment at any time. 

 

The process should take approximately 2 hours so you can select a morning or afternoon 

slot. Refreshments and comfortable seating will be provided in the private lab environment. 
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Who We are Looking For and Why 

 

We are ideally looking for a particular type of person for the following reasons: 

 18-40 years old 
o Old enough to consent for participation 
o Within a range likely not to have any walking problems or illnesses 

 
 No walk impairing illnesses or injuries 

o Illnesses such as osteoporosis can have an effect on your natural walking style 
o We must ensure that participants are at no risk of injury 
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Any Potential Risks and Mitigations 

 

Photography of your body appearance shall be taken in the private lab. Once each session is 

complete the blurring of identifying facial features shall be prioritised as the first task to 

maintain your privacy. 

 

The fitting, measurement and photography parts of the preparation process will be 

performed by same sex technicians in the private motion capture laboratory. Any physical 

contact as part of the process will only be made with your consent. 

 

The experiment is designed not to be strenuous, uncomfortable or painful. You will be asked 

to walk at a fixed speed but this will not be excessive and you are welcome to opt out of this 

if you feel any discomfort. 

 

How We Ensure Your Data and Identity is Kept Private 

 

It is a legal requirement under the Data Protection Act 1998 (DPA) that personal data must 

be lawfully and confidentially processed respecting your privacy. Your data shall be stored 

and anonymised according to this law’s eight principles: 

 

1. Your personal data shall be processed fairly and lawfully 

2. Your personal data shall be obtained only for the research project described and 

shall not be shared for use on other internal projects or external public resources 

(unless completely anonymised). 

3. The data we shall collect is to be adequate, relevant and not excessive for the 

described purposes for which they are intended. 

4. Your personal data shall be accurate and, where necessary, kept up to date. 

5. Your personal data shall not be kept for longer than is necessary for the research 

project which is likely to be completed no longer than May 2015. 

6. Your personal data shall be processed in accordance with the rights of data subjects 

under this Act. 

7. Appropriate technical measures shall be taken against unauthorised or unlawful 

processing of personal data and against accidental loss or destruction of, or damage 

to, personal data e.g. password encryption and data storage in private folders 

8. Personal data shall not be transferred to a country or territory outside the European 

Economic Area. Your data shall not be hosted on international servers as a public 

data research nor will it be shared with any other international research teams as 

this is a restricted project. 
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The biomechanics lab is on ground floor of the Olympia Building at Teesside University. 

 

 
 

If you have any questions about the process or appointment slots please feel free to contact 

the researcher at:  

 

Satish.Shewhorak@gmail.com  

  

mailto:Satish.Shewhorak@gmail.com
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APPENDIX B – CONSENT FORM 
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12.1. Consent Form  
Motion Capture Participants 

 

Participant ID No:      

Project:  ‘A Data Driven Approach to Motion Diversification in relation to Body Morphology’ 

Researcher:  Satish Shewhorak (BSc, MA)  

Please initial all boxes  
 

1. I confirm that I have read and understand the information sheet for the above 
study.  I have had the opportunity to consider the information, ask questions and 
have had these answered satisfactorily. 

 
2. I understand that my participation is voluntary and that I am free to withdraw at 

any time without giving any reason. 
 
 
3. I consent to the use of reference photography/ video and motion capture. 
 
  
4. I agree to take part in the above study. 

 

5. I declare that I have no illnesses or injuries that may affect my ability to walk  
naturally such as osteoperosis, broken or strained bones, asthma. 

 
 
 
 
            
Name of Participant   Date    Signature 

   
 
                              
            
Name of Person   Date    Signature  
taking consent.  
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APPENDIX C – OTHER ANTHROPOMETRICS 
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C.1 Mass 

Visceral Adipose Tissue (VAT) is deposited around the internal abdominal organs and is 

linked to increased cardiovascular disease and type 2 diabetes (Ginsberg, 2000; Kahn, 2000; 

Ross et al, 2000; Mokdad et al., 2000). As VAT is deposited primarily around the central 

abdominal area this can have a significant impact on the external perception of body shape. 

This may also be reflected in Waist Circumference and Waist to Hip Ratio. 

 

Subcutaneous Adipose Tissue (SAT) builds up beneath the skin layer and has a prominent 

impact on the external perception of overall body shape. SAT does not come with the same 

health risks as VAT. SAT is used in skinfold calliper pinches to estimate overall BF%. This may 

also be reflected in body volume and circumferences.  

 

Fat Free Mass (FFM) is the total body mass excluding fat tissue. This includes skeleton, 

muscles, ligaments, organs and water content. Levels of FFM can vary in an individual and 

between other people, which affects the representational accuracy of BMI when talking 

about body shape. 

 

C.2 Circumferences 

Another type of measurement for body shapes relates to circumferences of particular body 

areas. 

 

Hip Circumference (HC) also helps measure central abdominal fatness in (cm). It is 

measured around the widest portion of the buttocks, with the tape parallel to the floor 

(WHO, 2011).  

 

Waist circumference (WC) is highly correlated with central abdominal fatness explaining 80-

90% of variance in total body fat (Han et al., 1995; Seidell et al., 1989; Pouliot et al., 1994; 

Ross et al., 1992; 1993; Van der Kooy et al., 1993).  

The correct position for measuring waist circumference is midway between the uppermost 

border of the iliac crest and the lower border of the rib cage (WHO, 2008 cited in WHO, 

2011). In practice it can be difficult for obese patients to accurately locate those bony 
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landmarks so the navel is often used instead which can introduce measurement error. HC 

and WC can be easily combined into Waist to Hip Ratio, however WC alone remains a useful 

metric being more effective at predicting abdominal fat than WtHR or BMI. Waist 

circumference does not take into account height which can bias people taller or shorter 

than the national average. 

 

Thigh Circumference (ThC) helps measure lower body shape in (cm). A tape measure is used 

to measure the midpoint of the thigh. Thighs may feature more muscular tissue than fat, so 

thinner thighs could actually double the risk of heart disease (Heitmann and Freriksen, 2009) 

as opposed to necessarily indicating increased obesity. Increased thigh muscles could also 

have a direct effect on gait parameters. 

 

Sum of Five circumferences (CSum) is simply the sum total of the HC, WC, ThC, arm and calf 

circumference. These expand with, and can loosely represent body volume. Waist, hip and 

arm/ calf circumferences had the highest associations with whole-body VAT, SAT and 

skeletal muscle volumes respectively (Heymsfield et al., 2008). 

 

 

C.3 Ratios 

Ashwell Shape Chart categorises health based on shape rather than just weight and height, 

as BMI does. The chart seen in Figure 12-1 uses WHtR as a proxy for abdominal obesity 

classifying WHtR into three bands of health risks (Ashwell, 2011). This chart suggests that to 

achieve a healthy body shape people should keep their waist circumference measurement 

to less than half their height. 
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Figure 12-1- The Ashwell® Shape Chart based on waist-to-height ratio. (Ashwell, 2011). 

The chart also suggests that the four WHtR bands could be represented as a chilli, pear, 

pineapple and apple body shape. However, these shape classifications have not been 

validated in either sex. 

 

Waist to Chest Ratio (WCR) is the ratio of the waist circumference to chest (Maisey et al., 

1999). This ratio provides a useful estimation of the proportion of upper-body shape. Whilst 

medically WCR is less important for determining health than WtHR or BMI, WCR has a 

stronger effect when it comes to the perception of a more attractive male body shape (Fan 

et al., 2005). 

 

C.4 Linear Anthropometric Indecises 

Quetelet Index (QI) was devised in the 1850s by Adolphe Quetelet, a social scientist and 

statistician, interested in classifying anthropometrics and their correlations to issues and 

trends in wider society (Eknoyan, 2008). It is an index of adiposity measured as:  
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QI = Mass / Height2 

Equation 16 - Quetelet Index (BMI) 

However, its usefulness in the field of public health was only popularised when it was later 

re-termed as the Body Mass Index. 

 

Attempts to classify the weight of a person as a percentage of the average weight of others 

of the same height, age and sex against population data led to the first developments of 

“standard height-weight” tables by the life insurance industry (ALIMD, 1912; cited in 

Eknoyan, 2008). 

These kind of tables listed the average weights of insurance applicants of given a sex and 

height at approximately 25 years old (Keys, 1953; 1954; 1955a; 1955b). 

 

Metropolitan Life tables were developed (MLIC, 1959; cited in Keys et al., 1972) to calculate 

Ideal Body Weight (IBW) to height for health insurance purposes and became a widely used 

measurement. They provided "ideal" weight for ranges of height, according to sex and three 

categories of body frame; small, medium and large. However, no instructions on how to 

measure frame size were included so many people erroneously chose their own frame size.  

These Metropolitan Life tables were updated (MLIC, 1983) using elbow breadth to 

determine frame size. The idea behind this was to differentiate between people of the same 

weight but differences in skeletal-muscle mass and fat mass, which implies that the real 

target of measurement is body fat percentage rather than IBW (Seltzer, 1984).  

 

C.5 Body Shape Scales / Surface Anthropometrics 

Somatypes were three body types developed by Sheldon et al. (1940) by measuring nude 

students and classifying their body shapes into somatypes; endomorphic, mesomorphic, and 

ectomorphic. However, he believed the ratio of these body shapes did not increase with 

weight gain, and that a person’s somatype determined their psychological character. 

Sheldon’s somatypes have been widely discredited now.  
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Body Build and Posture Scales was developed by  Douty (1968) by projecting body 

silhouettes from the front and side onto grids, in a technique called somatography, to rate 

body shape and posture to a 5-point Body Build Scale, however, this relied on scaling up 

only an hourglass body shape and did not take into account other body shape profiles. 

 

Body I.D. Scale was developed by August and Count (1981) and featured five body shapes; 

circle, pear, rectangle, inverted triangle with secondary descriptions for body areas classified 

from the side view. However, these shape classifications could only be determined visually 

by experts.  

 

Body Surface Area (BSA) uses height and weight measurements to estimate surface area SA 

(m2) of the body and is used in medical tasks and dosage recommendations. Various 

formulas have been developed over the years (Boyd, 1935; Dubois and DuBois, 1916; Gehan 

and George, 1970; Haycock et al., 1978) all giving slightly different results which makes the 

lack of standardization problematic. The Mosteller (1987) formula is most commonly used 

due to its simplicity: 

  

BSA (m2) = ( Height(cm) x Weight(kg) / 3600 )½ 

Equation 17 - Body Surface Area 

Volume Height Index (VHI) is the total body volume divided by the square of a person’s 

height. It could be argued that volume is more related to shape than weight based indices 

such as BMI as the weight of skeletal, muscular and adipose mass can vary for the same 

BMI. VHI is noted for being a better at predictor of body shape attractiveness than BMI or 

WHtR (Fan et al., 2005; 2007).  

 

VHI = Volume / Height2 

Equation 18 - Volume Height Index 

Body Adiposity Index (BAI) is a method of predicting body fat without using weight but just 

HC and height (Bergman et al., 2011) 

  

BAI = ( Hip Circumference(cm) / (Height(M))1.5 ) - 18 
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Equation 19 - Body Adiposity Index 

Whilst Freedman et al. (2012) challenged the claim that BAI was more accurate than BMI at 

predicting body fat percentage, BAI is still a useful metric when correlating real world 

observations of humans with virtual characters that have no mass or weight.  

It is also possible to estimate BF% from BMI and BAI, however, this would introduce two 

levels of estimation and is not considered accurate enough (Barreira et al., 2011). 

 

A Body Shape Index (ABSI) was developed to improve upon BMI by taking Waist 

Circumference into consideration as a representation of body fat distribution and the risks 

of abdominal obesity (Krakauer and Krakauer, 2012). It was claimed to be a more effective 

predictor of mortality than BMI (Krakauer and Krakauer, 2014), however, Maessen et al. 

(2014) challenged this. ABSI is calculated as:  

ABSI = Waist Circumference / BMI2/3 Height1/2 

Equation 20 - A Body Shape Index 

Body Roundness Index (BRI) was developed to quantify geometric body shape using height, 

WC and HC. It was an attempt to improve upon BMI by measuring body girth in relation to 

height. By considering height, BRI also improves upon HC, WC and WtHR as taller individuals 

have larger WC or HCs, it also improves upon these metrics, BMI and WHtR, with slightly 

better predictions of BF% and %VAT (Thomas et al., 2013). However, it is relatively 

unpopular. 



207 
 

 

Figure 12-2- Image of BRI Scan (Thomas et al., 2013) 

BRI quantifies body shape as: 

 

BRI = 364.2 – (365:5 x eccentricity) 

Equation 21 - Body Roundness Index 

Body Shape Assessment Scale (BSAS©) was developed by Connell et al. (2006) through 

investigating body scans and adaptation of the parameters from Douty (1968), Minott 

(1972) and August and Count (1981). This helped inform the development of The Body 

Measurement Software (BMS©) by [TC]2 to automatically analyse body shapes from future 

scans. It is a nine parameter classification scale for body shape using front and side views. 

However, whilst body shape variation is continuous, BSAS is an ordinal scale. 

  

Body Volume Index (BVI) is a relatively new measurement devised in 2000 that 

automatically assesses body shape through abdominal volume and infers the location and 

distribution of fat (Tahrani et al., 2008). It is used with a 3D full body scanner and 

automatically measures BMI, WC, WtHR volumetric and body compositional data. Korenfeld 

et al. (2009) investigated the reliability of the BVI scanner in comparison to manual 
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measurements and found it to be a reliable, valid and reproducible method to measure WC 

and HC. 

 

Figure 12-3- BVI Scanner and Model (Bates, 2010) 

However, this index is still in development and evaluation and requires proprietary full body 

scanners that are not yet available. 

 

C.6 Measurements 

Underwater Weighing (UWW) also known as hydrostatic body composition analysis or 

hydro-densitometry is a way of measuring body density. This can then be used to estimate 

BF%. The subject is weighed under water with corrections made for any air that could not be 

exhaled before measuring. UWW also relies on equations for Caucasian populations to 

convert to BF% (Siri, 1961; Brožek, 1963; Jackson and Pollock, 1985; Womersley and Durnin, 

1977). UWW is considered more invasive to participants and not currently available at 

Teesside University. 

 

Figure 12-4 - Underwater Weighing (Health and Kinesiology Facilities, 2015) 
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Whole-body air displacement also known as air plethysmography is another method for 

measuring densitometry (for conversion to BF%) and gives comparable results to UWW 

(Dempster and Aitken, 1995; McCrory et al., 1995; Nunez et al., 1999). 

 

Figure 12-5 - BodPod Air Displacement (COSMED, 2015) 

Bodpod® is a commonly used air displacement device which avoids some of the discomfort 

of submersion underwater but still involves some disrobing and exhaling as much air from 

the lungs as possible, which can be uncomfortable for obese participants. It is also currently 

unavailable at Teesside University.  

 

Dual energy X-ray Absorptiometry (DXA) is a direct method of measuring bone mineral 

density but can also be used to measure body composition and fat composition with a high 

degree of accuracy. It is also independent of age or sex.  However, results can differ 

between machines (Paton et al., 1995). 

 

Figure 12-6- DXA machine (GE, 2013) 
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Magnetic Resonance Imagery (MRI) has been used to scan internal body composition. MRI 

technology measures “imaging slices” to differentiate between volumes of FM and FFM. It 

can do this in regions of the body inaccessible with other anthropometric methods. 

However, MRI estimates volume rather than mass of adipose tissue and has to assume a 

constant density to FM. MRI can also only measure total FM versus densitometry and 

multicomponent methods which measure adipose tissue mass (Wells and Fewtrell, 2006). 

When compared with dissection of cadavers the mean difference in accuracy was only 

0.076kg (Abate et al., 1994). MRI is a highly accurate and non-toxic method often used as 

reference when assessing other indices. However, scanners are expensive, require highly 

skilled technicians to capture and cleanup data and they are typically reserved for medical 

purposes.  

 

 

Figure 12-7 - MRI Scan (MRI Scan - NHS Choices, 2013) 

 

Figure 12-8 - MRI coloured results (Newman, 2004) 

Computed Tomography (CT / CAT Scans) operates in a similar fashion to a DXA scanner. 

They use x-ray images from different angles to produce virtual slices which can be combined 

into a 3D model of the body. CT has a high contrast resolution which allows differentiation 
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between tissue density of less than 1%. Like MRI image artefacts can be introduced which 

takes trained technicians time to clean up. Whilst CT is non-invasive it is regarded as a 

moderate to high radiation technique. Radiation doses are higher than conventional X-ray 

machines which can cause cancerous damage to body cells. 
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APPENDIX D – MOTION PARAMETER CODE 
 



1   // 19- WalkingSpeed + Cad, HipRoty+TorRotx , WalkBase, ArmAbd+ bob+ ArmSwing
2   OpenScene("D:\\Scenes\\MP COMPLETE camera_setup_H_test.scn", null, null);
3   
4   // general Variables
5   var cmToSi = 0.1; // value to multiply by to convert cm (centimeters) to SI 

units
6   var mToSi = cmToSi*100; // value to multiply by to convert m (meters) to SI units
7   
8   // Modifier / changeable Variables
9   var ChHeight = GetValue("DisplayInfo_Ch_Mods.Height"); // Char Height 

in m (meters)
10   var ChBF = GetValue("DisplayInfo_Ch_Mods.Body_Fat_Percentage"); // body fat %
11   var GetChest = GetValue("DisplayInfo_Ch_Mods.Set_Chest");
12   var ChChest = 0.98; // (m)  curent 

using lean character (MP) data 
13   
14   // baseline values from (or calculated from) lean character data or mocap of lean 

character to be used to make modifier values from Calculated Values
15   var leanWalkingSpeed = 1.2154; // ??? check all these baselines???
16   var leanArmAbduction = 7.7564; // *** CHANGED ***
17   var leanStepWidth = 55.0658; // (cm)
18   var leanArmBobMag = 7.97632;
19   var leanArmSwing = 22.269;
20   
21   var leanHeight = 1.758;
22   var leanWtHR = 0.83;
23   var bf35WtHR = 0.95; // large BF% WtHR estimated
24   var leanChest = 0.98;
25   var bf35Chest = 1.14; // large BF% Chest estimated *** CHANGED ***
26   
27   function interpolate(a, b, t) {
28   return (1-t)*a + t*b;
29   }
30   function reverseinterpolate(a, b, c) {
31   return (c-a)/(b-a);
32   }
33   
34   var scaleT = reverseinterpolate(12,35, ChBF) // find linearly how far 

between BF% 12 & 35
35   var WtHR = interpolate(leanWtHR, bf35WtHR, scaleT); // calculate linerly WtHR
36   if (GetChest == true){
37   ChChest = GetValue("DisplayInfo_Ch_Mods.Chest"); // get chest value from SI if 

GetChest is True
38   }else{
39   ChChest = interpolate(leanChest, bf35Chest, scaleT); // calculate linerly Chest
40   }
41   
42   // var ChWaist       = 0.81; // (m)  curent using lean 

character data 
43   // var ChHip         = 0.975; // (m)  curent using lean 

character data 
44   // var WtHR          = ChWaist/ChHip; //= 0.83;
45   
46   // Calculated Values
47   var walkingSpeed = -1.07 + (1.3 * ChHeight); // Speed (m/s)
48   var armAbduction = -31.424 + (39.98 * ChChest); // Avg Arm Abduction *** 

CHANGED ***
49   var walkingBase = -167.59 + (268.26 * WtHR); // Walking Base (cm)
50   var armBobMag = -13.19 + (12.04 * ChHeight); // Arm Bob Magnitude
51   var armSwing = 18.76 + (0.29 * ChBF); // Arm Swing Magnitude
52   
53   // modifyer values for script some convet to SI units
54   var SiWalkingSpeed = walkingSpeed/leanWalkingSpeed;
55   var SiArmAbduction = armAbduction-leanArmAbduction;
56   var SiStepWidth = (walkingBase-leanStepWidth)*cmToSi;// convert Walking base from 

metric to SI units and adjust for baseline
57   var SiArmBobMag = armBobMag/leanArmBobMag; // works as multiplyer value!
58   var SiArmSwing = armSwing/leanArmSwing; // should works as multiplyer 

value!



59   
60   FirstFrame(null); // set to first frame to build 

IK without distortion
61   
62   //Scale Height before doing anything.
63   var ScaleHeight = ChHeight / leanHeight
64   // get local cordinates and move positions relative to character (effect: lengthen bones)
65   // LENGTHEN HEIGHT OF HIPS 
66   var HipsLy = GetValue("MotionBuilder_Template.Hips.kine.local.posy"); //may need small 

correction for feet to reach ground
67   SetValue("MotionBuilder_Template.Hips.kine.local.posy", HipsLy*ScaleHeight, null);
68   // LENGTHEN LEGS
69   var LeftLegLx = GetValue("MotionBuilder_Template.LeftLeg.kine.local.posx");
70   SetValue("MotionBuilder_Template.LeftLeg.kine.local.posx", LeftLegLx*ScaleHeight, null);
71   var LeftFootLx = GetValue("MotionBuilder_Template.LeftFoot.kine.local.posx");
72   SetValue("MotionBuilder_Template.LeftFoot.kine.local.posx", LeftFootLx*ScaleHeight,

null);
73   var LeftToeBaseLx = GetValue("MotionBuilder_Template.LeftToeBase.kine.local.posx");
74   SetValue("MotionBuilder_Template.LeftToeBase.kine.local.posx",

LeftToeBaseLx*ScaleHeight, null);
75   var RightLegLx = GetValue("MotionBuilder_Template.RightLeg.kine.local.posx");
76   SetValue("MotionBuilder_Template.RightLeg.kine.local.posx", RightLegLx*ScaleHeight,

null);
77   var RightFootLx = GetValue("MotionBuilder_Template.RightFoot.kine.local.posx");
78   SetValue("MotionBuilder_Template.RightFoot.kine.local.posx", RightFootLx*ScaleHeight,

null);
79   var RightToeBaseLx = GetValue("MotionBuilder_Template.RightToeBase.kine.local.posx");
80   SetValue("MotionBuilder_Template.RightToeBase.kine.local.posx",

RightToeBaseLx*ScaleHeight, null);
81   // LENGTHEN SPINE
82   var SpineLx = GetValue("MotionBuilder_Template.Spine.kine.local.posx");
83   SetValue("MotionBuilder_Template.Spine.kine.local.posx", SpineLx*ScaleHeight, null);
84   var Spine1Lx = GetValue("MotionBuilder_Template.Spine1.kine.local.posx");
85   SetValue("MotionBuilder_Template.Spine1.kine.local.posx", Spine1Lx*ScaleHeight, null);
86   var Spine2Lx = GetValue("MotionBuilder_Template.Spine2.kine.local.posx");
87   SetValue("MotionBuilder_Template.Spine2.kine.local.posx", Spine2Lx*ScaleHeight, null);
88   var Spine3Lx = GetValue("MotionBuilder_Template.Spine3.kine.local.posx");
89   SetValue("MotionBuilder_Template.Spine3.kine.local.posx", Spine3Lx*ScaleHeight, null);
90   var Spine4Lx = GetValue("MotionBuilder_Template.Spine4.kine.local.posx");
91   SetValue("MotionBuilder_Template.Spine4.kine.local.posx", Spine4Lx*ScaleHeight, null);
92   var NeckLx = GetValue("MotionBuilder_Template.Neck.kine.local.posx");
93   SetValue("MotionBuilder_Template.Neck.kine.local.posx", NeckLx*ScaleHeight, null);
94   var HeadLx = GetValue("MotionBuilder_Template.Head.kine.local.posx");
95   SetValue("MotionBuilder_Template.Head.kine.local.posx", HeadLx*ScaleHeight, null);
96   // LENGTHEN ARMS
97   var LeftForeArmLx = GetValue("MotionBuilder_Template.LeftForeArm.kine.local.posx");
98   SetValue("MotionBuilder_Template.LeftForeArm.kine.local.posx",

LeftForeArmLx*ScaleHeight, null);
99   var LeftHandLx = GetValue("MotionBuilder_Template.LeftHand.kine.local.posx");

100   SetValue("MotionBuilder_Template.LeftHand.kine.local.posx", LeftHandLx*ScaleHeight,
null);

101   var RightForeArmLx = GetValue("MotionBuilder_Template.RightForeArm.kine.local.posx");
102   SetValue("MotionBuilder_Template.RightForeArm.kine.local.posx",

RightForeArmLx*ScaleHeight, null);
103   var RightHandLx = GetValue("MotionBuilder_Template.RightHand.kine.local.posx");
104   SetValue("MotionBuilder_Template.RightHand.kine.local.posx", RightHandLx*ScaleHeight,

null);
105   //SCALE HANDS
106   var LeftHandLsx = GetValue("MotionBuilder_Template.LeftHand.kine.local.sclx");
107   SetValue("MotionBuilder_Template.LeftHand.kine.local.sclx", LeftHandLsx*ScaleHeight,

null);
108   var LeftHandLsy = GetValue("MotionBuilder_Template.LeftHand.kine.local.scly");
109   SetValue("MotionBuilder_Template.LeftHand.kine.local.scly", LeftHandLsy*ScaleHeight,

null);
110   var LeftHandLsz = GetValue("MotionBuilder_Template.LeftHand.kine.local.sclz");
111   SetValue("MotionBuilder_Template.LeftHand.kine.local.sclz", LeftHandLsz*ScaleHeight,

null);
112   var RightHandLsx = GetValue("MotionBuilder_Template.RightHand.kine.local.sclx");
113   SetValue("MotionBuilder_Template.RightHand.kine.local.sclx", RightHandLsx*ScaleHeight,



null);
114   var RightHandLsy = GetValue("MotionBuilder_Template.RightHand.kine.local.scly");
115   SetValue("MotionBuilder_Template.RightHand.kine.local.scly", RightHandLsy*ScaleHeight,

null);
116   var RightHandLsz = GetValue("MotionBuilder_Template.RightHand.kine.local.sclz");
117   SetValue("MotionBuilder_Template.RightHand.kine.local.sclz", RightHandLsz*ScaleHeight,

null);
118   
119   //TORSO POS CO-ORDS
120   var Hipsx = GetValue("MotionBuilder_Template.Hips.kine.global.pos.posx"); // On 

current frame
121   var Hipsy = GetValue("MotionBuilder_Template.Hips.kine.global.pos.posy");
122   var Hipsz = GetValue("MotionBuilder_Template.Hips.kine.global.pos.posz");
123   var Spinex = GetValue("MotionBuilder_Template.Spine.kine.global.pos.posx");
124   var Spiney = GetValue("MotionBuilder_Template.Spine.kine.global.pos.posy");
125   var Spinez = GetValue("MotionBuilder_Template.Spine.kine.global.pos.posz");
126   var Spine1x = GetValue("MotionBuilder_Template.Spine1.kine.global.pos.posx");
127   var Spine1y = GetValue("MotionBuilder_Template.Spine1.kine.global.pos.posy");
128   var Spine1z = GetValue("MotionBuilder_Template.Spine1.kine.global.pos.posz");
129   var Spine2x = GetValue("MotionBuilder_Template.Spine2.kine.global.pos.posx");
130   var Spine2y = GetValue("MotionBuilder_Template.Spine2.kine.global.pos.posy");
131   var Spine2z = GetValue("MotionBuilder_Template.Spine2.kine.global.pos.posz");
132   var Spine3x = GetValue("MotionBuilder_Template.Spine3.kine.global.pos.posx");
133   var Spine3y = GetValue("MotionBuilder_Template.Spine3.kine.global.pos.posy");
134   var Spine3z = GetValue("MotionBuilder_Template.Spine3.kine.global.pos.posz");
135   var Spine4x = GetValue("MotionBuilder_Template.Spine4.kine.global.pos.posx");
136   var Spine4y = GetValue("MotionBuilder_Template.Spine4.kine.global.pos.posy");
137   var Spine4z = GetValue("MotionBuilder_Template.Spine4.kine.global.pos.posz");
138   // NECK POS CO-ORDS
139   var Neckx = GetValue("MotionBuilder_Template.Neck.kine.global.pos.posx");
140   var Necky = GetValue("MotionBuilder_Template.Neck.kine.global.pos.posy");
141   var Neckz = GetValue("MotionBuilder_Template.Neck.kine.global.pos.posz");
142   // LEFT ARM POS CO-ORDS
143   var LeftShoulderx =

GetValue("MotionBuilder_Template.LeftShoulder.kine.global.pos.posx"); // On current frame
144   var LeftShouldery =

GetValue("MotionBuilder_Template.LeftShoulder.kine.global.pos.posy");
145   var LeftShoulderz =

GetValue("MotionBuilder_Template.LeftShoulder.kine.global.pos.posz");
146   var LeftArmx = GetValue("MotionBuilder_Template.LeftArm.kine.global.pos.posx");
147   var LeftArmy = GetValue("MotionBuilder_Template.LeftArm.kine.global.pos.posy");
148   var LeftArmz = GetValue("MotionBuilder_Template.LeftArm.kine.global.pos.posz");
149   var LeftForeArmx =

GetValue("MotionBuilder_Template.LeftForeArm.kine.global.pos.posx");
150   var LeftForeArmy =

GetValue("MotionBuilder_Template.LeftForeArm.kine.global.pos.posy");
151   var LeftForeArmz =

GetValue("MotionBuilder_Template.LeftForeArm.kine.global.pos.posz");
152   var LeftHandx = GetValue("MotionBuilder_Template.LeftHand.kine.global.pos.posx");
153   var LeftHandy = GetValue("MotionBuilder_Template.LeftHand.kine.global.pos.posy");
154   var LeftHandz = GetValue("MotionBuilder_Template.LeftHand.kine.global.pos.posz");
155   // RIGHT ARM POS CO-ORDS
156   var RightShoulderx =

GetValue("MotionBuilder_Template.RightShoulder.kine.global.pos.posx");
157   var RightShouldery =

GetValue("MotionBuilder_Template.RightShoulder.kine.global.pos.posy");
158   var RightShoulderz =

GetValue("MotionBuilder_Template.RightShoulder.kine.global.pos.posz");
159   var RightArmx = GetValue("MotionBuilder_Template.RightArm.kine.global.pos.posx");
160   var RightArmy = GetValue("MotionBuilder_Template.RightArm.kine.global.pos.posy");
161   var RightArmz = GetValue("MotionBuilder_Template.RightArm.kine.global.pos.posz");
162   var RightForeArmx =

GetValue("MotionBuilder_Template.RightForeArm.kine.global.pos.posx");
163   var RightForeArmy =

GetValue("MotionBuilder_Template.RightForeArm.kine.global.pos.posy");
164   var RightForeArmz =

GetValue("MotionBuilder_Template.RightForeArm.kine.global.pos.posz");
165   var RightHandx = GetValue("MotionBuilder_Template.RightHand.kine.global.pos.posx");
166   var RightHandy = GetValue("MotionBuilder_Template.RightHand.kine.global.pos.posy");



167   var RightHandz = GetValue("MotionBuilder_Template.RightHand.kine.global.pos.posz");
168   
169   // LEFT LEG POS CO-ORDS
170   var lUpLegx = GetValue("MotionBuilder_Template.LeftUpLeg.kine.global.pos.posx"); // On 

current frame
171   var lUpLegy = GetValue("MotionBuilder_Template.LeftUpLeg.kine.global.pos.posy");
172   var lUpLegz = GetValue("MotionBuilder_Template.LeftUpLeg.kine.global.pos.posz");
173   var lKneex = GetValue("MotionBuilder_Template.LeftLeg.kine.global.pos.posx");
174   var lKneey = GetValue("MotionBuilder_Template.LeftLeg.kine.global.pos.posy");
175   var lKneez = GetValue("MotionBuilder_Template.LeftLeg.kine.global.pos.posz");
176   var lFootx = GetValue("MotionBuilder_Template.LeftFoot.kine.global.pos.posx");
177   var lFooty = GetValue("MotionBuilder_Template.LeftFoot.kine.global.pos.posy");
178   var lFootz = GetValue("MotionBuilder_Template.LeftFoot.kine.global.pos.posz");
179   var lToex = GetValue("MotionBuilder_Template.LeftToeBase.kine.global.pos.posx");
180   var lToey = GetValue("MotionBuilder_Template.LeftToeBase.kine.global.pos.posy");
181   var lToez = GetValue("MotionBuilder_Template.LeftToeBase.kine.global.pos.posz");
182   // RIGHT LEG POS CO-ORDS
183   var rUpLegx = GetValue("MotionBuilder_Template.RightUpLeg.kine.global.pos.posx");
184   var rUpLegy = GetValue("MotionBuilder_Template.RightUpLeg.kine.global.pos.posy");
185   var rUpLegz = GetValue("MotionBuilder_Template.RightUpLeg.kine.global.pos.posz");
186   var rKneex = GetValue("MotionBuilder_Template.RightLeg.kine.global.pos.posx");
187   var rKneey = GetValue("MotionBuilder_Template.RightLeg.kine.global.pos.posy");
188   var rKneez = GetValue("MotionBuilder_Template.RightLeg.kine.global.pos.posz");
189   var rFootx = GetValue("MotionBuilder_Template.RightFoot.kine.global.pos.posx");
190   var rFooty = GetValue("MotionBuilder_Template.RightFoot.kine.global.pos.posy");
191   var rFootz = GetValue("MotionBuilder_Template.RightFoot.kine.global.pos.posz");
192   var rToex = GetValue("MotionBuilder_Template.RightToeBase.kine.global.pos.posx");
193   var rToey = GetValue("MotionBuilder_Template.RightToeBase.kine.global.pos.posy");
194   var rToez = GetValue("MotionBuilder_Template.RightToeBase.kine.global.pos.posz");
195   
196   
197   //Create Hip root rings to to limit LEFT leg rotation
198   GetPrim("Null", null, null, null);

// get primitive null
199   SetValue("null.null.primary_icon", 2, null);

// change icon to rings
200   SetValue("null.Name", "left_leg_root_rot", null);

// rename null "left_leg_root_rot"
201   MakeLocal("left_leg_root_rot.display", siNodePropagation);

// change colour to pink for visability
202   SetValue("left_leg_root_rot.display.wirecolorr", 0.878, null);
203   SetValue("left_leg_root_rot.display.wirecolorg", 0, null);
204   SetValue("left_leg_root_rot.display.wirecolorb", 0.878, null);
205   MatchTransform("left_leg_root_rot", "MotionBuilder_Template.LeftUpLeg", siTrn, null);

// Match rotation rings pos to left leg up pos
206   MatchTransform("left_leg_root_rot", "MotionBuilder_Template.hips", siRot, null);

// Match rotation rings rot to hip rot
207   ParentObj("MotionBuilder_Template.Hips", "left_leg_root_rot");

// make hips parent
208   
209   //Create Hip root rings to to limit RIGHT leg rotation
210   GetPrim("Null", null, null, null);

// get primitive null
211   SetValue("null.null.primary_icon", 2, null);

// change icon to rings
212   SetValue("null.Name", "right_leg_root_rot", null);

// rename null "right_leg_root_rot"
213   MakeLocal("right_leg_root_rot.display", siNodePropagation);

// change colour to pink for visability
214   SetValue("right_leg_root_rot.display.wirecolorr", 0.878, null);
215   SetValue("right_leg_root_rot.display.wirecolorg", 0, null);
216   SetValue("right_leg_root_rot.display.wirecolorb", 0.878, null);
217   MatchTransform("right_leg_root_rot", "MotionBuilder_Template.RightUpLeg", siTrn, null);

// Match rotation rings pos to left leg up pos
218   MatchTransform("right_leg_root_rot", "MotionBuilder_Template.hips", siRot, null);

// Match rotation rings rot to hip rot
219   ParentObj("MotionBuilder_Template.Hips", "right_leg_root_rot");

// make hips parent
220   



221   // RUN COMMANDS TO BUILD IK LEGS
222   // Left IK Leg
223   var IKLbone;
224   var IKLeff;
225   var IKLLegChain = Create2DSkeleton(lUpLegx, lUpLegy, lUpLegz, lKneex, lKneey, lKneez,

1, 0, 0, 4, IKLbone, IKLeff); // Create Upper IK Leg() should contain original 
null's kine.global.pos on Frame1

226   var IKLLegShin = AppendBone (IKLLegChain.Effector, lFootx, lFooty,
lFootz); // Append Lower IK Leg

227   ParentObj("MotionBuilder_Template.left_leg_root_rot",
IKLLegChain.Root); // Parent whole 
IK Leg to FK Leg

228   var IKLFootbone;
229   var IKLFooteff;
230   var IKLFootChain = Create2DSkeleton(lFootx, lFooty, lFootz, lToex, lToey, lToez, 1, 0,

0, 4, IKLFootbone, IKLFooteff); // Create IK Foot from heel to toe() should 
contain original null's kine.global.pos on Frame

231   
232   // Make a local vector and transform to global to apply
233   SelectObj("MotionBuilder_Template.LeftToeBase", null, true);
234   var oObj = Application.Selection(0);
235   var oTrans = oObj.Kinematics.Global.Transform;
236   oTrans.SclX = 1;
237   oTrans.SclY = 1;
238   oTrans.SclZ = 1;
239   var oVector = XSIMath.CreateVector3();
240   oVector.X = -0.2;
241   oVector.Y = 0;
242   oVector.Z = 0;
243   // Convert toe's globalpos from local to global Vector space
244   var oGlobalPos = XSIMath.MapObjectPositionToWorldSpace( oTrans, oVector );
245   DeselectAll();
246   
247   var IKLFootToe = AppendBone (IKLFootChain.Effector, oGlobalPos.X, oGlobalPos.Y,

oGlobalPos.Z);
248   ParentObj(IKLLegChain.Effector,IKLFootChain.Root);

// toeRoot to Heel end eff // Might not need .Name
249   
250   // Left Leg Control Box
251   GetPrim("Null", null, null, null); // get 

primitive null
252   SetValue("null.null.primary_icon", 4, null); // change 

icon to box
253   SetValue("null.Name", "left_leg_pos", null); // rename 

null "left_leg_pos"
254   MakeLocal("left_leg_pos.display", siNodePropagation); // change 

colour to red for visability
255   SetValue("left_leg_pos.display.wirecolorr", 0.878, null);
256   SetValue("left_leg_pos.display.wirecolorg", 0, null);
257   SetValue("left_leg_pos.display.wirecolorb", 0, null);
258   MatchTransform("left_leg_pos", "MotionBuilder_Template.eff", siTrn, null); // Match 

Control Box pos to IK heel eff pos
259   
260   // Left Toe
261   GetPrim("Null", null, null, null); //get 

primitive null
262   SetValue("null.null.primary_icon", 4, null); // change 

icon to box
263   SetValue("null.Name", "left_toe_pos", null); // rename 

null "left_leg_pos"
264   MakeLocal("left_toe_pos.display", siNodePropagation); // change 

colour to red for visability
265   SetValue("left_toe_pos.display.wirecolorr", 0.878, null);
266   SetValue("left_toe_pos.display.wirecolorg", 0, null);
267   SetValue("left_toe_pos.display.wirecolorb", 0, null);
268   MatchTransform("left_toe_pos", "MotionBuilder_Template.eff1", siTrn, null); // 

Match(pos) to leg eff on rig1
269   
270   // Right IK Leg



271   var IKRbone;
272   var IKReff;
273   var IKRLegChain = Create2DSkeleton(rUpLegx, rUpLegy, rUpLegz, rKneex, rKneey, rKneez,

1, 0, 0, 4, IKRbone, IKReff); // Create Upper IK Leg() should contain original 
null's kine.global.pos on Frame1

274   var IKRLegShin = AppendBone (IKRLegChain.Effector, rFootx, rFooty,
rFootz); // Append Lower IK Leg

275   ParentObj("MotionBuilder_Template.right_leg_root_rot",
IKRLegChain.Root); // Parent whole IK 
Leg to FK Leg

276   var IKRFootbone;
277   var IKRFooteff;
278   var IKRFootChain = Create2DSkeleton(rFootx, rFooty, rFootz, rToex, rToey, rToez, 1, 0,

0, 4, IKRFootbone, IKRFooteff); // Create IK Foot from heel to toe() should 
contain original null's kine.global.pos on Frame1

279   
280   // Values in local space
281   SelectObj("MotionBuilder_Template.RightToeBase", null, true); // make a 

local vector and transfrom to global to apply
282   var oObj = Application.Selection(0);
283   var oTrans = oObj.Kinematics.Global.Transform;
284   oTrans.SclX = 1;
285   oTrans.SclY = 1;
286   oTrans.SclZ = 1;
287   var oVector = XSIMath.CreateVector3();
288   oVector.X = 0.2;
289   oVector.Y = 0;
290   oVector.Z = 0;
291   // Convert to global space
292   var oGlobalPos = XSIMath.MapObjectPositionToWorldSpace( oTrans, oVector );
293   DeselectAll();
294   
295   var IKRFootToe = AppendBone (IKRFootChain.Effector, oGlobalPos.X, oGlobalPos.Y,

oGlobalPos.Z);
296   ParentObj(IKRLegChain.Effector

,IKRFootChain.Root);
// toeRoot to Heel end eff

297   
298   // Right leg Control Box
299   GetPrim("Null", null, null, null);
300   SetValue("null.null.primary_icon", 4, null);
301   SetValue("null.Name", "right_leg_pos", null);
302   MakeLocal("right_leg_pos.display", siNodePropagation);
303   SetValue("right_leg_pos.display.wirecolorr", 0.878, null);
304   SetValue("right_leg_pos.display.wirecolorg", 0, null);
305   SetValue("right_leg_pos.display.wirecolorb", 0, null);
306   MatchTransform("right_leg_pos", "MotionBuilder_Template.eff2", siTrn,

null); // Match control box(pos) to leg IK eff on rig0
307   
308   // Right toe
309   GetPrim("Null", null, null, null);
310   SetValue("null.null.primary_icon", 4, null);
311   SetValue("null.Name", "right_toe_pos", null);
312   MakeLocal("right_toe_pos.display", siNodePropagation);
313   SetValue("right_toe_pos.display.wirecolorr", 0.878, null);
314   SetValue("right_toe_pos.display.wirecolorg", 0, null);
315   SetValue("right_toe_pos.display.wirecolorb", 0, null);
316   MatchTransform("right_toe_pos", "MotionBuilder_Template.eff3", siTrn, null);
317   
318   
319   
320   
321   // make heel control boxes children of hips
322   ParentObj("MotionBuilder_Template.Hips",

"left_leg_pos"); // Parent 
control box to hips

323   ParentObj("B:MotionBuilder_Template.Hips", "right_leg_pos");
324   
325   ParentObj("MotionBuilder_Template.Hips",



"left_toe_pos"); // Parent 
control box to hips

326   ParentObj("B:MotionBuilder_Template.Hips", "right_toe_pos");
327   
328   // constrain effectors position to new controls
329   ApplyCns("Position", "MotionBuilder_Template.eff",

"MotionBuilder_Template.left_leg_pos", null); // Heel IK eff pos 
constrained to CB(the constraining obj)

330   ApplyCns("Position", "MotionBuilder_Template.eff2",
"MotionBuilder_Template.right_leg_pos", null);

331   
332   // DEL?
333   ApplyCns("Position", "MotionBuilder_Template.eff1",

"MotionBuilder_Template.left_toe_pos", null); //true means constraint 
comp is on (offset is preserved)

334   ApplyCns("Position", "MotionBuilder_Template.eff3",
"MotionBuilder_Template.right_toe_pos", null);

335   
336   // LOOPS THROUGH AND SAVES CB KEYS ON EVERY MATCHING POS TO FK POS ####################
337   // USED TO SAY // var CurrentFrameNo = 

FirstKey("MotionBuilder_Template.Hips.kine.global.pos.posy");
338   var firstKeyf = 9; // set start to stop overshoot and overwrite 

when wrap round is on.
339   var lastKeyf = 88; // NEED TO FIX THIS TO DETECT LAST KEY
340   FirstFrame(null); // USED TO SAY // 

SetValue("PlayControl.Current", 9, null); // NEED TO FIX THIS TO DETECT FIRST KEY
341   
342   for (var i=firstKeyf; i<lastKeyf ; i++) //each frame
343   {
344   // (match translation (local pos) of CB heel and toe effectors to FK heel and toes)
345   MatchTransform("MotionBuilder_Template.left_leg_pos",

"MotionBuilder_Template.LeftFoot", siRT, null); // MatchTransform CB to FK 
heel null

346   MatchTransform("MotionBuilder_Template.right_leg_pos",
"MotionBuilder_Template.RightFoot", siRT, null);

347   
348   MatchTransform("MotionBuilder_Template.left_toe_pos",

"MotionBuilder_Template.LeftToeBase", siRT, null); // use toe pos
349   // Values in local space
350   SelectObj("MotionBuilder_Template.LeftToeBase", null, true); // make a local 

vector and transfrom to global to apply
351   var oObj = Application.Selection(0);
352   var oTrans = oObj.Kinematics.Global.Transform;
353   oTrans.SclX = 1;
354   oTrans.SclY = 1;
355   oTrans.SclZ = 1;
356   var oVector = XSIMath.CreateVector3();
357   oVector.X = -0.2;
358   oVector.Y = 0;
359   oVector.Z = 0;
360   // Convert to global space
361   var oGlobalPos = XSIMath.MapObjectPositionToWorldSpace( oTrans, oVector );
362   DeselectAll();
363   Translate("MotionBuilder_Template.left_toe_pos", oGlobalPos.X, oGlobalPos.Y,

oGlobalPos.Z, siAbsolute, siGlobal, siObj, siXYZ, null, null, null, null, null,
null, null, null, null, 0, null); // translate to compensate for offset

364   
365   MatchTransform("MotionBuilder_Template.right_toe_pos",

"MotionBuilder_Template.RightToeBase", siRT, null); // use toe pos
366   // Values in local space
367   SelectObj("MotionBuilder_Template.RightToeBase", null, true); // make 

a local vector and transfrom to global to apply
368   var oObj = Application.Selection(0);
369   var oTrans = oObj.Kinematics.Global.Transform;
370   oTrans.SclX = 1;
371   oTrans.SclY = 1;
372   oTrans.SclZ = 1;
373   var oVector = XSIMath.CreateVector3();
374   oVector.X = 0.2;



375   oVector.Y = 0;
376   oVector.Z = 0;
377   // Convert to global space
378   var oGlobalPos = XSIMath.MapObjectPositionToWorldSpace( oTrans, oVector );
379   DeselectAll();
380   Translate("MotionBuilder_Template.right_toe_pos", oGlobalPos.X, oGlobalPos.Y,

oGlobalPos.Z, siAbsolute, siGlobal, siObj, siXYZ, null, null, null, null, null,
null, null, null, null, 0, null); // translate to compensate for offset

381   
382   //Saves local pos key on where the effectors have been match translated to
383   SaveKey("MotionBuilder_Template.left_leg_pos.kine.local.posx");
384   SaveKey("MotionBuilder_Template.left_leg_pos.kine.local.posy");
385   SaveKey("MotionBuilder_Template.left_leg_pos.kine.local.posz");
386   
387   SaveKey("MotionBuilder_Template.right_leg_pos.kine.local.posx");
388   SaveKey("MotionBuilder_Template.right_leg_pos.kine.local.posy");
389   SaveKey("MotionBuilder_Template.right_leg_pos.kine.local.posz");
390   
391   SaveKey("MotionBuilder_Template.left_toe_pos.kine.local.posx");
392   SaveKey("MotionBuilder_Template.left_toe_pos.kine.local.posy");
393   SaveKey("MotionBuilder_Template.left_toe_pos.kine.local.posz");
394   
395   SaveKey("MotionBuilder_Template.right_toe_pos.kine.local.posx");
396   SaveKey("MotionBuilder_Template.right_toe_pos.kine.local.posy");
397   SaveKey("MotionBuilder_Template.right_toe_pos.kine.local.posz");
398   
399   // USED TO SAY // CurrentFrameNo = i;
400   NextFrame();
401   };
402   
403   
404   
405   
406   
407   
408   
409   Refresh(20); // forces viewport to update. can be any frame but not current or first. 

This fixes misalignment strange bug
410   
411   FirstFrame(null); // SetValue("PlayControl.Current", 9, null);
412   // ########### Loop through and remove FK null pos | LOOP REMOVED; DOES NOT NEED TO BE 

LOOPED
413   RemoveAllAnimation("MotionBuilder_Template.LeftUpLeg", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
414   RemoveAllAnimation("MotionBuilder_Template.LeftLeg", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
415   RemoveAllAnimation("MotionBuilder_Template.LeftFoot", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
416   RemoveAllAnimation("MotionBuilder_Template.LeftToeBase", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
417   
418   RemoveAllAnimation("MotionBuilder_Template.RightUpLeg", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
419   RemoveAllAnimation("MotionBuilder_Template.RightLeg", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
420   RemoveAllAnimation("MotionBuilder_Template.RightFoot", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
421   RemoveAllAnimation("MotionBuilder_Template.RightToeBase", null , siUnspecified,

siAnySource, siAllParam, null, null, null);
422   
423   
424   
425   
426   
427   // MUST BE ON A FRAME WHERE THERE IS NO DISTORTION (I.E. THE FIRST FRAME) (done above)
428   ParentObj("MotionBuilder_Template.bone", "MotionBuilder_Template.LeftUpLeg");
429   ParentObj("MotionBuilder_Template.bone1", "MotionBuilder_Template.LeftLeg");
430   ParentObj("MotionBuilder_Template.bone2", "MotionBuilder_Template.LeftFoot");

// Parents FK nulls to IK heel



431   ParentObj("MotionBuilder_Template.bone3", "MotionBuilder_Template.LeftToeBase");
// ADDED THIS TO TRY KEEP COPY TO RIG2 IN PLACE

432   
433   ParentObj("MotionBuilder_Template.bone4", "MotionBuilder_Template.RightUpLeg");
434   ParentObj("MotionBuilder_Template.bone5", "MotionBuilder_Template.RightLeg");
435   ParentObj("MotionBuilder_Template.bone6", "MotionBuilder_Template.RightFoot");
436   ParentObj("MotionBuilder_Template.bone7", "MotionBuilder_Template.RightToeBase");

// ADDED THIS TO TRY KEEP COPY TO RIG2 IN PLACE
437   
438   // NEW CODE INSERTED HERE 

####################################################################
439   
440   /* get primative null, change icon to box & rename "Global_Control_SRT" */
441   GetPrim("Null", null, null, null);
442   SetValue("null.null.primary_icon", 4, null);
443   SetValue("null.null.size", 40, null);
444   SetValue("null.Name", "Global_Control_SRT", null);
445   /* change colour to red for visability */
446   MakeLocal("Global_Control_SRT.display", siNodePropagation);
447   SetValue("Global_Control_SRT.display.wirecolorr", 0.878, null);
448   SetValue("Global_Control_SRT.display.wirecolorg", 0, null);
449   SetValue("Global_Control_SRT.display.wirecolorb", 0, null);
450   
451   /* Match all Transformations (SRT) to hips */
452   MatchTransform("Global_Control_SRT", "MotionBuilder_Template.Hips", siSRT, null);
453   
454   /* give hips a shadow icon for visability */
455   SetValue("MotionBuilder_Template.Hips.shadow_icon", 9, null);
456   SetValue("MotionBuilder_Template.Hips.shadow_offsetY", 5, null);
457   SetValue("MotionBuilder_Template.Hips.shadow_scaleX", 40, null);
458   SetValue("MotionBuilder_Template.Hips.shadow_scaleY", -20, null);
459   SetValue("MotionBuilder_Template.Hips.shadow_scaleZ", 20, null);
460   
461   // PARENTING ######################
462   /* make "Global_Control_SRT" child of "MotionBuilder_Template1" */
463   ParentObj("MotionBuilder_Template", "Global_Control_SRT");
464   
465   /* REmove any scaling animation, copy all animation pos and rot from "hips" to 

"Global_Control_SRT" */
466   RemoveAnimation("MotionBuilder_Template.Hips.kine.local.sclx, 

MotionBuilder_Template.Hips.kine.local.sclz, 
MotionBuilder_Template.Hips.kine.local.scly", 77, null, null, null, null);

467   CopyAnimation("MotionBuilder_Template.Hips", null, null, null, null, null);
468   PasteAnimation("MotionBuilder_Template.Global_Control_SRT", null);
469   /* remove ALL animation from "hips" */
470   RemoveAnimation("MotionBuilder_Template.Hips.kine.local.posx, 

MotionBuilder_Template.Hips.kine.local.posy,MotionBuilder_Template.Hips.kine.local.posz,M
otionBuilder_Template.Hips.kine.local.rotx,MotionBuilder_Template.Hips.kine.local.roty,Mo
tionBuilder_Template.Hips.kine.local.rotz,MotionBuilder_Template.Hips.kine.local.sclx,Mot
ionBuilder_Template.Hips.kine.local.scly,MotionBuilder_Template.Hips.kine.local.sclz",
75, null, null, null, null);

471   
472   /* make "Hips" Child of "Global_Control_SRT" */
473   ParentObj("MotionBuilder_Template.Global_Control_SRT", "MotionBuilder_Template.Hips");
474   
475   /* set ALL pos and rot values to ZERO. THIS IS IMPORTANT! any modifications to hip rot 

can now be made after this step */
476   Rotate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siX,

null, null, null, null, null, null, null, 0, null);
477   Rotate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siY,

null, null, null, null, null, null, null, 0, null);
478   Rotate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siZ,

null, null, null, null, null, null, null, 0, null);
479   Translate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siX,

null, null, null, null, null, null, null, null, null, 0, null);
480   Translate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siY,

null, null, null, null, null, null, null, null, null, 0, null);
481   Translate("MotionBuilder_Template.Hips", 0, 0, 0, siAbsolute, siPivotSym, siObj, siZ,

null, null, null, null, null, null, null, null, null, 0, null);



482   
483   /* make "Spine" Child of "Global_Control_SRT" */
484   ParentObj("MotionBuilder_Template.Global_Control_SRT", "MotionBuilder_Template.Spine");
485   /* make "leg_pos" controls Children of "Global_Control_SRT" */
486   ParentObj("MotionBuilder_Template.Global_Control_SRT",

"MotionBuilder_Template.left_leg_pos");
487   ParentObj("MotionBuilder_Template.Global_Control_SRT",

"MotionBuilder_Template.right_leg_pos");
488   /* make "toe_pos" controls Children of "Global_Control_SRT" */
489   ParentObj("MotionBuilder_Template.Global_Control_SRT",

"MotionBuilder_Template.left_toe_pos");
490   ParentObj("MotionBuilder_Template.Global_Control_SRT",

"MotionBuilder_Template.right_toe_pos");
491   /* make leg effectors controls Children of "Global_Control_SRT" */
492   ParentObj("MotionBuilder_Template.Global_Control_SRT", "MotionBuilder_Template.eff");
493   ParentObj("MotionBuilder_Template.Global_Control_SRT", "MotionBuilder_Template.eff2");
494   
495   //set expression to limit rotation of legs
496   SetExpr("MotionBuilder_Template.left_leg_root_rot.kine.local.roty", "cond( 

MotionBuilder_Template.Hips.kine.local.roty < 0 , 0 - 
MotionBuilder_Template.Hips.kine.local.roty , 0 )", null);

497   SetExpr("MotionBuilder_Template.right_leg_root_rot.kine.local.roty", "cond( 
MotionBuilder_Template.Hips.kine.local.roty > 0 , 0 - 
MotionBuilder_Template.Hips.kine.local.roty , 0 )", null);

498   
499   // fix leg twist
500   Rotate("MotionBuilder_Template.RightLeg", 0, 0, 0, siAbsolute, siPivotSym, siObj, siX,

null, null, null, null, null, null, null, 0, null);
501   // Rotate("MotionBuilder_Template.LeftLeg", 0, 0, 180, siAbsolute, siPivotSym, siObj, 

siX, null, null, null, null, null, null, null, 0, null);
502   Rotate("MotionBuilder_Template.root", 0, -90, 0, siAbsolute, siPivotSym, siObj, siXYZ,

null, null, null, null, null, null, null, 0, null); // straightens weird knee kink
503   Rotate("MotionBuilder_Template.root2", 0, 90, 180, siAbsolute, siPivotSym, siObj,

siXYZ, null, null, null, null, null, null, null, 0, null); // straightens weird knee kink
504   
505   // Duplicate rig0 to create rig1 with IK rigs
506   Duplicate("B:Max_Pears_setb_n", null, 2, 1, 1, 0, 0, 1, 0, 1, null, null, null, null,

null, null, 0, 0, 0, null, 0); // 5th value from end is posx offset translation
507   
508   
509   
510   
511   
512   
513   // 

=========================================================================================
==============================================================================

514   
515   
516   // 16- WALKING BASE
517   // HEEL local vars
518   var LeftLegCB_1posx = "MotionBuilder_Template.left_leg_pos.kine.local.posx";
519   var LeftLegCB_2posx = "MotionBuilder_Template1.left_leg_pos.kine.local.posx";
520   var RightLegCB_1posx = "MotionBuilder_Template.right_leg_pos.kine.local.posx";
521   var RightLegCB_2posx = "MotionBuilder_Template1.right_leg_pos.kine.local.posx";
522   
523   // loop whole operation not just ssmodkey MG
524   var keyCounter = LeftLegCB_1posx; // arbitrarily chosen LeftLegCB_1posx as 

all have keys
525   CurrentWBFrameNo = FirstKey(keyCounter);
526   LastWBKey = LastKey(keyCounter);
527   var newKeyPos = 0;
528   while (CurrentWBFrameNo <= LastWBKey)
529   {
530   // before modify step width for each frame. HEEL global vars
531   var HeelPosL_1posx =

GetValue("MotionBuilder_Template.left_leg_pos.kine.global.posx");
532   var HeelPosR_1posx =

GetValue("MotionBuilder_Template.right_leg_pos.kine.global.posx");



533   
534   // WALKING BASE VALUES
535   // var stepWidth = -1; // A
536   // var stepWidth = 0; // B (Lean 12%)
537   // var stepWidth = 1; // C
538   // var stepWidth = 2; // D (Trendline 35%)
539   // var stepWidth = 3; // E
540   // var stepWidth = 4; // F
541   var stepWidth = SiStepWidth; // now use SiStepWidth (SI unit version of 

stepWidth which is set in cm at the top)
542   
543   // Modify each HEEL local key at a time
544   ssModKeyOPsingle(LeftLegCB_1posx, LeftLegCB_2posx, stepWidth,

CurrentWBFrameNo); // 15- LEFT LEG CB.posx
545   ssModKeyONsingle(RightLegCB_1posx, RightLegCB_2posx, stepWidth,

CurrentWBFrameNo); // 15- RIGHT LEG CB.posx
546   
547   // after step width applied. Char2's HEEL global pos
548   var HeelPosL_2posx =

GetValue("MotionBuilder_Template1.left_leg_pos.kine.global.posx");
549   var HeelPosR_2posx =

GetValue("MotionBuilder_Template1.right_leg_pos.kine.global.posx");
550   var HeelMoveL = HeelPosL_2posx -

HeelPosL_1posx; // Local difference that heel is 
moved out

551   var HeelMoveR = HeelPosR_2posx -
HeelPosR_1posx; // Local difference that heel is 
moved out

552   
553   // TRANSLATING TOES
554   Translate("MotionBuilder_Template1.left_toe_pos", HeelMoveL, 0, 0, siRelative,

siGlobalSym, siObj, siXYZ, null, null, null, null, null, null, null, null, null, 0,
null);

555   Translate("MotionBuilder_Template1.right_toe_pos", HeelMoveR, 0, 0, siRelative,
siGlobalSym, siObj, siXYZ, null, null, null, null, null, null, null, null, null, 0,
null);

556   
557   var lToePos_2posx = "MotionBuilder_Template1.left_toe_pos.kine.local.pos.posx";
558   var rToePos_2posx = "MotionBuilder_Template1.right_toe_pos.kine.local.pos.posx";
559   
560   // Single key at a time. Move TOE local pos out by local difference of heels
561   ssModKeyOPsingle(lToePos_2posx, lToePos_2posx, HeelMoveL,

CurrentWBFrameNo); // 15- LEFT LEG CB.posx
562   ssModKeyONsingle(rToePos_2posx, rToePos_2posx, HeelMoveR,

CurrentWBFrameNo); // 15- RIGHT LEG CB.posx
563   
564   CurrentWBFrameNo = NextKey(keyCounter,

CurrentWBFrameNo); // Increment frame
565   

}
// end of loop

566   
567   
568   
569   
570   // HIP ROTATION Y
571   var GCSRT_2roty =

"MotionBuilder_Template1.Global_Control_SRT.kine.local.ori.euler.roty"; // Global 
Hips

572   var Hips_2roty =
"MotionBuilder_Template1.Hips.kine.local.ori.euler.roty"; // 
Additive Hips

573   var avgPosHipsy =
avgPosFinder(GCSRT_2roty); // 
Average position

574   // 13- TORSO Rotx TWIST
575   var Spine4_1rotx = "MotionBuilder_Template.Spine4.kine.local.ori.euler.rotx";
576   var Spine4_2rotx =

"MotionBuilder_Template1.Spine4.kine.local.ori.euler.rotx"; // 



Commented out below
577   var avgPosTRx = avgPosFinder(Spine4_1rotx);
578   // 7b- ARM BOB ROTz (minus is outwards, positive is inward abduction)
579   var LeftArm_1rotz = "MotionBuilder_Template.LeftArm.kine.local.ori.euler.rotz";
580   var LeftArm_2rotz =

"MotionBuilder_Template1.LeftArm.kine.local.ori.euler.rotz"; // 
Commented out below

581   var avgPosAALz = avgPosFinder(LeftArm_1rotz);
582   var RightArm_1rotz = "MotionBuilder_Template.RightArm.kine.local.ori.euler.rotz";
583   var RightArm_2rotz =

"MotionBuilder_Template1.RightArm.kine.local.ori.euler.rotz"; // 
Commented out below

584   var avgPosAARz = avgPosFinder(RightArm_1rotz);
585   // 6- ARM SWING ROTy
586   var LeftArm_1roty = "MotionBuilder_Template.LeftArm.kine.local.ori.euler.roty";
587   var LeftArm_2roty =

"MotionBuilder_Template1.LeftArm.kine.local.ori.euler.roty"; // 
Commented out below

588   var avgPosAALy = avgPosFinder(LeftArm_1roty);
589   var RightArm_1roty = "MotionBuilder_Template.RightArm.kine.local.ori.euler.roty";
590   var RightArm_2roty =

"MotionBuilder_Template1.RightArm.kine.local.ori.euler.roty"; // 
Commented out below

591   var avgPosAARy = avgPosFinder(RightArm_1roty);
592   
593   
594   // 11a- MAGMODS at Diff Strengths [DATA] MAYBE SPACE OUT MORE. RECHECK INCREMENTS ARE 

LINEAR OR CURVED
595   // 13- MAGMODS Hips roty and Torso rotx
596   // var magModHyTx = 1.25; // A
597   // var magModHyTx = 1; // B
598   // var magModHyTx = 0.75; // C
599   // var magModHyTx = 0.50; // D
600   // var magModHyTx = 0.25; // E
601   var magModHyTx = 0; // F
602   
603   // ARM ABDUCTION VALUES
604   // var dataPosAvgDiff = -3.19355; // A
605   // var dataPosAvgDiff = 0; // B (Lean 12%)
606   // var dataPosAvgDiff = 3.19355; // C
607   // var dataPosAvgDiff = 6.3871; // D (Trendline 35%)
608   // var dataPosAvgDiff = 9.58065; // E
609   // var dataPosAvgDiff = 12.7742; // F
610   var dataPosAvgDiff = SiArmAbduction; // uses modifyer value from top
611   
612   // magMods ARM BOB at Diff Strengths [DATA]
613   // var magModAAz = 0.55; // A
614   // var magModAAz = 1; // B 12% Original Lean
615   // var magModAAz = 1.45; // C
616   // var magModAAz = 1.895681358; // D 35% trendl exag
617   // var magModAAz = 2.34; // E slight exag
618   // var magModAAz = 2.79 ; // F
619   var magModAAz = SiArmBobMag;
620   
621   // 6- magMods ARM SWING at Diff Strengths [NO DATA]
622   // var magModAAy = 1.25; // A under exag
623   // var magModAAy = 1.00; // B slight under exag
624   // var magModAAy = 0.75; // C 12% Original Lean
625   // var magModAAy = 0.50; // D slight exag
626   // var magModAAy = 0.25; // E 35%  exag
627   // var magModAAy = 0.00; // F very exag
628   var magModAAy = SiArmSwing;
629   
630   
631   
632   ssModKeyT(LeftArm_1roty, LeftArm_2roty, magModAAy, avgPosAALy); // 

6- LEFT ARM SWING Roty
633   ssModKeyT(RightArm_1roty, RightArm_2roty, magModAAy, avgPosAARy); // 

6- RIGHT ARM SWING Roty



634   
635   ssModKey(LeftArm_1rotz, LeftArm_2rotz, dataPosAvgDiff, magModAAz, avgPosAALz); // 

7b- LEFT ARM BOB Rotz
636   ssModKey(RightArm_1rotz, RightArm_2rotz, dataPosAvgDiff, magModAAz, avgPosAARz); // 

7b- RIGHT ARM BOB Rotz
637   
638   // MODKEY FUNCTION 

##############################################################################
639   function ssModKey(objectStringFrom, objectStringTo, avgPosDiff, magMod,

averagePos) // rig1, rig2, theor diff between avg pos, mag multiplier, 
actual average position

640   {
641   CurrentFrameNo =

FirstKey(objectStringFrom); // After 
deletion current frame set back to start

642   aLastKey =
LastKey(objectStringFrom); // Does this 
need resetting? Isn't it still correct?

643   var newKeyPos = 0;
644   
645   while (CurrentFrameNo <= aLastKey)
646   {
647   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value
648   newKeyPos = (((CurrentKeyVal - averagePos) * magMod) + averagePos

- avgPosDiff); // avgPosDiff is MINUS as rig has ARMS goings upwards 
towards 0

649   SaveKey(objectStringTo, CurrentFrameNo, newKeyPos );
650   CurrentFrameNo = NextKey(objectStringFrom,

CurrentFrameNo); // Increment frame no on Rig1
651   }
652   }
653   
654   // MODKEY 1 FUNCTION 

##############################################################################
655   function ssModKeyT(objectStringFrom, objectStringTo, magMod,

averagePos) // rig1, rig2, mag multiplier, actual average position
656   {
657   CurrentFrameNo =

FirstKey(objectStringFrom); // After deletion 
current frame set back to start

658   aLastKey =
LastKey(objectStringFrom); // Does this need 
resetting? Isn't it still correct?

659   var newKeyPos = 0;
660   
661   while (CurrentFrameNo <= aLastKey)
662   {
663   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value
664   newKeyPos = (((CurrentKeyVal - averagePos) * magMod ) +

averagePos);
665   SaveKey(objectStringTo, CurrentFrameNo, newKeyPos);
666   CurrentFrameNo = NextKey(objectStringFrom,

CurrentFrameNo); // Increment frame no on Rig1
667   }
668   }
669   
670   
671   
672   
673   
674   // Average Pos calculator 

######################################################################
675   function avgPosFinder

(objectStringFrom) // (deleted 
objectStringTo as it seemed unecessary)

676   {
677   var CurrentFrameNo = FirstKey(objectStringFrom);



678   var aLastKey = LastKey(objectStringFrom);
679   var i = 0;
680   var sumKeyVal =

0; // Needed declaring 
outside

681   
682   while (CurrentFrameNo <=

aLastKey) // Better as a For loop?
683   {
684   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value
685   sumKeyVal = CurrentKeyVal + sumKeyVal;
686   CurrentFrameNo = NextKey(objectStringFrom,

CurrentFrameNo); // Increment frame no on Rig1
687   

i++;
// Increments the count

688   }
689   return (sumKeyVal /

i); // Returns 
a value to variable used to execute command

690   }
691   
692   // MODKEY FUNCTION 

##############################################################################
693   function ssModKeyDiff(objectStringFrom, objectStringTo, magMod,

averagePos) // rig1, rig2, mag multiplier, actual average position
694   {
695   CurrentFrameNo =

FirstKey(objectStringFrom); // After deletion 
current frame set back to start

696   aLastKey =
LastKey(objectStringFrom); // Does this need 
resetting? Isn't it still correct?

697   var newKeyPos = 0;
698   
699   while (CurrentFrameNo <= aLastKey)
700   {
701   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value
702   newKeyPos = (((CurrentKeyVal - averagePos) * magMod) + averagePos

- CurrentKeyVal); // only adds the difference
703   SaveKey(objectStringTo, CurrentFrameNo, newKeyPos);
704   CurrentFrameNo = NextKey(objectStringFrom,

CurrentFrameNo); // Increment frame no on Rig1
705   }
706   }
707   
708   // MODKEY OFFSET POSITIVE FUNCTION no loop 

##############################################################################
709   function ssModKeyOPsingle(objectStringFrom, objectStringTo, avgPosDiff,

CurrentFrameNo) // rig1, rig2,
710   {
711   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value
712   newKeyPos = (CurrentKeyVal +

avgPosDiff); // avgPosDiff is POSITIVE as rig 
has LEGS due to rig

713   SaveKey(objectStringTo, CurrentFrameNo, newKeyPos );
714   }
715   
716   // MODKEY OFFSET NEGATIVE FUNCTION no loop 

##############################################################################
717   function ssModKeyONsingle(objectStringFrom, objectStringTo, avgPosDiff,

CurrentFrameNo) // rig1, rig2, theor diff between avg pos, mag multiplier, actual 
average position

718   {
719   var CurrentKeyVal = GetValue(objectStringFrom,

CurrentFrameNo); // Gets current key value



720   newKeyPos = (CurrentKeyVal -
avgPosDiff); // avgPosDiff is NEGATIVE as rig 
has LEGS due to rig

721   SaveKey(objectStringTo, CurrentFrameNo, newKeyPos );
722   }
723   
724   
725   
726   
727   
728   
729   // 

#########################################################################################
##############

730   
731   // DUPLICATE IKmod rig2 to create IKmod slowdown rig3 with IK rigs
732   Duplicate("B:Max_Pears_setb_n1", null, 2, 1, 1, 0, 0, 1, 0, 1, null, null, null, null,

null, null, 0, 0, 0, null, 0); // 5th value from end is posx offset translation
733   
734   // UPDATE IF I CHANGE VALUES IN 10!
735   // var speedMod = 1.1; // A SLOWER
736   // var speedMod = 1.0; // B 12%
737   // var speedMod = 0.9; // C NO CHANGE
738   // var speedMod = 0.805025734; // D 35%
739   // var speedMod = 0.7; // E
740   // var speedMod = 0.6; // F FASTER
741   var speedMod = SiWalkingSpeed; // uses modifier value from top
742   
743   // LIST ALL ANIMATED BONES
744   
745   
746   // GCSRT HIP ROTATION
747   var GCSRT_2rotx = "MotionBuilder_Template1.Global_Control_SRT.kine.local.ori.euler.rotx";
748   //var GCSRT_2roty = 

"MotionBuilder_Template1.Global_Control_SRT.kine.local.ori.euler.roty"; // DECLARED 
L396 Additive hip rotation now added

749   var GCSRT_2rotz = "MotionBuilder_Template1.Global_Control_SRT.kine.local.ori.euler.rotz";
750   var GCSRT_3rotx = "MotionBuilder_Template2.Global_Control_SRT.kine.local.ori.euler.rotx";
751   var GCSRT_3roty = "MotionBuilder_Template2.Global_Control_SRT.kine.local.ori.euler.roty";
752   var GCSRT_3rotz =

"MotionBuilder_Template2.Global_Control_SRT.kine.local.ori.euler.rotz"; // For 
Pelvic Rotation Magnification later (not direct slowdown)

753   
754   // GCSRT POSITION
755   var GCSRT_2posx = "MotionBuilder_Template1.Global_Control_SRT.kine.local.pos.posx";
756   var GCSRT_2posy = "MotionBuilder_Template1.Global_Control_SRT.kine.local.pos.posy";
757   var GCSRT_2posz = "MotionBuilder_Template1.Global_Control_SRT.kine.local.pos.posz";
758   var GCSRT_3posx = "MotionBuilder_Template2.Global_Control_SRT.kine.local.pos.posx";
759   var GCSRT_3posy = "MotionBuilder_Template2.Global_Control_SRT.kine.local.pos.posy";
760   var GCSRT_3posz =

"MotionBuilder_Template2.Global_Control_SRT.kine.local.pos.posz"; // HIPS 
POS SHOULDNT BE SLOWED ONLY GCSRT

761   
762   // ADDITIVE HIP ROTATION
763   //var Hips_2roty = 

"MotionBuilder_Template1.Hips.kine.local.ori.euler.roty"; // 
DECLARED L397 Additive hip rotation now added

764   var Hips_3roty = "MotionBuilder_Template2.Hips.kine.local.ori.euler.roty";
765   
766   // Spine
767   var Spine_2rotx = "MotionBuilder_Template1.Spine.kine.local.ori.euler.rotx";
768   var Spine_2roty = "MotionBuilder_Template1.Spine.kine.local.ori.euler.roty";
769   var Spine_2rotz = "MotionBuilder_Template1.Spine.kine.local.ori.euler.rotz";
770   var Spine_3rotx = "MotionBuilder_Template2.Spine.kine.local.ori.euler.rotx";
771   var Spine_3roty = "MotionBuilder_Template2.Spine.kine.local.ori.euler.roty";
772   var Spine_3rotz = "MotionBuilder_Template2.Spine.kine.local.ori.euler.rotz";
773   // Spine1
774   var Spine1_2rotx = "MotionBuilder_Template1.Spine1.kine.local.ori.euler.rotx";
775   var Spine1_2roty = "MotionBuilder_Template1.Spine1.kine.local.ori.euler.roty";



776   var Spine1_2rotz = "MotionBuilder_Template1.Spine1.kine.local.ori.euler.rotz";
777   var Spine1_3rotx = "MotionBuilder_Template2.Spine1.kine.local.ori.euler.rotx";
778   var Spine1_3roty = "MotionBuilder_Template2.Spine1.kine.local.ori.euler.roty";
779   var Spine1_3rotz = "MotionBuilder_Template2.Spine1.kine.local.ori.euler.rotz";
780   // Spine2
781   var Spine2_2rotx = "MotionBuilder_Template1.Spine2.kine.local.ori.euler.rotx";
782   var Spine2_2roty = "MotionBuilder_Template1.Spine2.kine.local.ori.euler.roty";
783   var Spine2_2rotz = "MotionBuilder_Template1.Spine2.kine.local.ori.euler.rotz";
784   var Spine2_3rotx = "MotionBuilder_Template2.Spine2.kine.local.ori.euler.rotx";
785   var Spine2_3roty = "MotionBuilder_Template2.Spine2.kine.local.ori.euler.roty";
786   var Spine2_3rotz = "MotionBuilder_Template2.Spine2.kine.local.ori.euler.rotz";
787   // Spine3
788   var Spine3_2rotx = "MotionBuilder_Template1.Spine3.kine.local.ori.euler.rotx";
789   var Spine3_2roty = "MotionBuilder_Template1.Spine3.kine.local.ori.euler.roty";
790   var Spine3_2rotz = "MotionBuilder_Template1.Spine3.kine.local.ori.euler.rotz";
791   var Spine3_3rotx =

"MotionBuilder_Template2.Spine3.kine.local.ori.euler.rotx"; // 
Sideways Torso rotation

792   var Spine3_3roty = "MotionBuilder_Template2.Spine3.kine.local.ori.euler.roty";
793   var Spine3_3rotz = "MotionBuilder_Template2.Spine3.kine.local.ori.euler.rotz";
794   // Spine4
795   //var Spine4_2rotx = 

"MotionBuilder_Template1.Spine4.kine.local.ori.euler.rotx"; // DECLARED 
ABOVE

796   var Spine4_2roty = "MotionBuilder_Template1.Spine4.kine.local.ori.euler.roty";
797   var Spine4_2rotz = "MotionBuilder_Template1.Spine4.kine.local.ori.euler.rotz";
798   var Spine4_3rotx = "MotionBuilder_Template2.Spine4.kine.local.ori.euler.rotx";
799   var Spine4_3roty = "MotionBuilder_Template2.Spine4.kine.local.ori.euler.roty";
800   var Spine4_3rotz = "MotionBuilder_Template2.Spine4.kine.local.ori.euler.rotz";
801   // Neck
802   var Neck_2rotx = "MotionBuilder_Template1.Neck.kine.local.ori.euler.rotx";
803   var Neck_2roty = "MotionBuilder_Template1.Neck.kine.local.ori.euler.roty";
804   var Neck_2rotz = "MotionBuilder_Template1.Neck.kine.local.ori.euler.rotz";
805   var Neck_3rotx = "MotionBuilder_Template2.Neck.kine.local.ori.euler.rotx";
806   var Neck_3roty = "MotionBuilder_Template2.Neck.kine.local.ori.euler.roty";
807   var Neck_3rotz = "MotionBuilder_Template2.Neck.kine.local.ori.euler.rotz";
808   // Head
809   var Head_2rotx = "MotionBuilder_Template1.Head.kine.local.ori.euler.rotx";
810   var Head_2roty = "MotionBuilder_Template1.Head.kine.local.ori.euler.roty";
811   var Head_2rotz = "MotionBuilder_Template1.Head.kine.local.ori.euler.rotz";
812   var Head_3rotx = "MotionBuilder_Template2.Head.kine.local.ori.euler.rotx";
813   var Head_3roty = "MotionBuilder_Template2.Head.kine.local.ori.euler.roty";
814   var Head_3rotz = "MotionBuilder_Template2.Head.kine.local.ori.euler.rotz";
815   // RightShoulder
816   var RightShoulder_2rotx =

"MotionBuilder_Template1.RightShoulder.kine.local.ori.euler.rotx";
817   var RightShoulder_2roty =

"MotionBuilder_Template1.RightShoulder.kine.local.ori.euler.roty";
818   var RightShoulder_2rotz =

"MotionBuilder_Template1.RightShoulder.kine.local.ori.euler.rotz";
819   var RightShoulder_3rotx =

"MotionBuilder_Template2.RightShoulder.kine.local.ori.euler.rotx";
820   var RightShoulder_3roty =

"MotionBuilder_Template2.RightShoulder.kine.local.ori.euler.roty";
821   var RightShoulder_3rotz =

"MotionBuilder_Template2.RightShoulder.kine.local.ori.euler.rotz";
822   // RightArm
823   var RightArm_2rotx = "MotionBuilder_Template1.RightArm.kine.local.ori.euler.rotx";
824   //var RightArm_2roty = 

"MotionBuilder_Template1.RightArm.kine.local.ori.euler.roty"; //DECLARED ABOVE
825   //var RightArm_2rotz = 

"MotionBuilder_Template1.RightArm.kine.local.ori.euler.rotz"; //DECLARED ABOVE
826   var RightArm_3rotx = "MotionBuilder_Template2.RightArm.kine.local.ori.euler.rotx";
827   var RightArm_3roty = "MotionBuilder_Template2.RightArm.kine.local.ori.euler.roty";
828   var RightArm_3rotz = "MotionBuilder_Template2.RightArm.kine.local.ori.euler.rotz";
829   // RightForeArm - NOT SURE WHY I HAD PREVIOUSLY LEFT THIS OUT???
830   var RightForeArm_2rotx =

"MotionBuilder_Template1.RightForeArm.kine.local.ori.euler.rotx";
831   var RightForeArm_2roty =



"MotionBuilder_Template1.RightForeArm.kine.local.ori.euler.roty";
832   var RightForeArm_2rotz =

"MotionBuilder_Template1.RightForeArm.kine.local.ori.euler.rotz";
833   var RightForeArm_3rotx =

"MotionBuilder_Template2.RightForeArm.kine.local.ori.euler.rotx";
834   var RightForeArm_3roty =

"MotionBuilder_Template2.RightForeArm.kine.local.ori.euler.roty";
835   var RightForeArm_3rotz =

"MotionBuilder_Template2.RightForeArm.kine.local.ori.euler.rotz";
836   // RightHand
837   var RightHand_2rotx = "MotionBuilder_Template1.RightHand.kine.local.ori.euler.rotx";
838   var RightHand_2roty = "MotionBuilder_Template1.RightHand.kine.local.ori.euler.roty";
839   var RightHand_2rotz = "MotionBuilder_Template1.RightHand.kine.local.ori.euler.rotz";
840   var RightHand_3rotx = "MotionBuilder_Template2.RightHand.kine.local.ori.euler.rotx";
841   var RightHand_3roty = "MotionBuilder_Template2.RightHand.kine.local.ori.euler.roty";
842   var RightHand_3rotz = "MotionBuilder_Template2.RightHand.kine.local.ori.euler.rotz";
843   // LeftShoulder
844   var LeftShoulder_2rotx =

"MotionBuilder_Template1.LeftShoulder.kine.local.ori.euler.rotx";
845   var LeftShoulder_2roty =

"MotionBuilder_Template1.LeftShoulder.kine.local.ori.euler.roty";
846   var LeftShoulder_2rotz =

"MotionBuilder_Template1.LeftShoulder.kine.local.ori.euler.rotz";
847   var LeftShoulder_3rotx =

"MotionBuilder_Template2.LeftShoulder.kine.local.ori.euler.rotx";
848   var LeftShoulder_3roty =

"MotionBuilder_Template2.LeftShoulder.kine.local.ori.euler.roty";
849   var LeftShoulder_3rotz =

"MotionBuilder_Template2.LeftShoulder.kine.local.ori.euler.rotz";
850   // LeftForeArm - NOT SURE WHY I HAD PREVIOUSLY LEFT THIS OUT???
851   var LeftForeArm_2rotx = "MotionBuilder_Template1.LeftForeArm.kine.local.ori.euler.rotx";
852   var LeftForeArm_2roty = "MotionBuilder_Template1.LeftForeArm.kine.local.ori.euler.roty";
853   var LeftForeArm_2rotz = "MotionBuilder_Template1.LeftForeArm.kine.local.ori.euler.rotz";
854   var LeftForeArm_3rotx = "MotionBuilder_Template2.LeftForeArm.kine.local.ori.euler.rotx";
855   var LeftForeArm_3roty = "MotionBuilder_Template2.LeftForeArm.kine.local.ori.euler.roty";
856   var LeftForeArm_3rotz = "MotionBuilder_Template2.LeftForeArm.kine.local.ori.euler.rotz";
857   // LeftArm
858   var LeftArm_2rotx = "MotionBuilder_Template1.LeftArm.kine.local.ori.euler.rotx";
859   // var LeftArm_2roty = "MotionBuilder_Template1.LeftArm.kine.local.ori.euler.roty";

//DECLARED ABOVE
860   // var LeftArm_2rotz = "MotionBuilder_Template1.LeftArm.kine.local.ori.euler.rotz";

//DECLARED ABOVE
861   var LeftArm_3rotx = "MotionBuilder_Template2.LeftArm.kine.local.ori.euler.rotx";
862   var LeftArm_3roty = "MotionBuilder_Template2.LeftArm.kine.local.ori.euler.roty";
863   var LeftArm_3rotz = "MotionBuilder_Template2.LeftArm.kine.local.ori.euler.rotz";
864   // LeftHand
865   var LeftHand_2rotx = "MotionBuilder_Template1.LeftHand.kine.local.ori.euler.rotx";
866   var LeftHand_2roty = "MotionBuilder_Template1.LeftHand.kine.local.ori.euler.roty";
867   var LeftHand_2rotz = "MotionBuilder_Template1.LeftHand.kine.local.ori.euler.rotz";
868   var LeftHand_3rotx = "MotionBuilder_Template2.LeftHand.kine.local.ori.euler.rotx";
869   var LeftHand_3roty = "MotionBuilder_Template2.LeftHand.kine.local.ori.euler.roty";
870   var LeftHand_3rotz = "MotionBuilder_Template2.LeftHand.kine.local.ori.euler.rotz";
871   
872   // LEGS #######################
873   // Left Leg control box
874   // var LeftLegCB_2posx = "MotionBuilder_Template1.left_leg_pos.kine.local.posx";

//DECLARED ABOVE L415
875   var LeftLegCB_2posy = "MotionBuilder_Template1.left_leg_pos.kine.local.posy";
876   var LeftLegCB_2posz = "MotionBuilder_Template1.left_leg_pos.kine.local.posz";
877   var LeftLegCB_3posx = "MotionBuilder_Template2.left_leg_pos.kine.local.posx";
878   var LeftLegCB_3posy = "MotionBuilder_Template2.left_leg_pos.kine.local.posy";
879   var LeftLegCB_3posz = "MotionBuilder_Template2.left_leg_pos.kine.local.posz";
880   // Right Leg control box
881   //var RightLegCB_2posx = "MotionBuilder_Template1.right_leg_pos.kine.local.posx";

//DECLARED ABOVE L417
882   var RightLegCB_2posy = "MotionBuilder_Template1.right_leg_pos.kine.local.posy";
883   var RightLegCB_2posz = "MotionBuilder_Template1.right_leg_pos.kine.local.posz";
884   var RightLegCB_3posx = "MotionBuilder_Template2.right_leg_pos.kine.local.posx";
885   var RightLegCB_3posy = "MotionBuilder_Template2.right_leg_pos.kine.local.posy";



886   var RightLegCB_3posz = "MotionBuilder_Template2.right_leg_pos.kine.local.posz";
887   // Left Toe Control Boxes
888   //var lToePos_2posx = "MotionBuilder_Template1.left_toe_pos.kine.local.pos.posx";
889   var lToePos_2posy = "MotionBuilder_Template1.left_toe_pos.kine.local.pos.posy";
890   var lToePos_2posz = "MotionBuilder_Template1.left_toe_pos.kine.local.pos.posz";
891   var lToePos_3posx = "MotionBuilder_Template2.left_toe_pos.kine.local.pos.posx";
892   var lToePos_3posy = "MotionBuilder_Template2.left_toe_pos.kine.local.pos.posy";
893   var lToePos_3posz = "MotionBuilder_Template2.left_toe_pos.kine.local.pos.posz";
894   // Right Toe Control Boxes
895   //var rToePos_2posx = "MotionBuilder_Template1.right_toe_pos.kine.local.pos.posx";
896   var rToePos_2posy = "MotionBuilder_Template1.right_toe_pos.kine.local.pos.posy";
897   var rToePos_2posz = "MotionBuilder_Template1.right_toe_pos.kine.local.pos.posz";
898   var rToePos_3posx = "MotionBuilder_Template2.right_toe_pos.kine.local.pos.posx";
899   var rToePos_3posy = "MotionBuilder_Template2.right_toe_pos.kine.local.pos.posy";
900   var rToePos_3posz = "MotionBuilder_Template2.right_toe_pos.kine.local.pos.posz";
901   
902   // LIST ALL SSRETIMEKEYS
903   // ENSURE GCSRT IS THERE
904   // Execute retime commands for every bone on rig1 and rig2
905   // ssRetimeKey function #####################################################
906   
907   // GCSRT Hip Rotation
908   ssReTimeKey(GCSRT_2rotx,GCSRT_3rotx,speedMod);
909   ssReTimeKey(GCSRT_2roty,GCSRT_3roty,speedMod);
910   ssReTimeKey(GCSRT_2rotz,GCSRT_3rotz,speedMod);
911   // GCSRT Hip/ CHARACTER Pos
912   ssReTimeKey(GCSRT_2posx,GCSRT_3posx,speedMod);
913   ssReTimeKey(GCSRT_2posy,GCSRT_3posy,speedMod);
914   ssReTimeKey(GCSRT_2posz,GCSRT_3posz,speedMod);
915   // Added Hip twist
916   ssReTimeKey(Hips_2roty,Hips_3roty,speedMod);
917   
918   // Spine
919   ssReTimeKey(Spine_2rotx,Spine_3rotx,speedMod);
920   ssReTimeKey(Spine_2roty,Spine_3roty,speedMod);
921   ssReTimeKey(Spine_2rotz,Spine_3rotz,speedMod);
922   // Spine1
923   ssReTimeKey(Spine1_2rotx,Spine1_3rotx,speedMod);
924   ssReTimeKey(Spine1_2roty,Spine1_3roty,speedMod);
925   ssReTimeKey(Spine1_2rotz,Spine1_3rotz,speedMod);
926   // Spine3
927   ssReTimeKey(Spine2_2rotx,Spine2_3rotx,speedMod);
928   ssReTimeKey(Spine2_2roty,Spine2_3roty,speedMod);
929   ssReTimeKey(Spine2_2rotz,Spine2_3rotz,speedMod);
930   // Spine3
931   ssReTimeKey(Spine3_2rotx,Spine3_3rotx,speedMod);
932   ssReTimeKey(Spine3_2roty,Spine3_3roty,speedMod);
933   ssReTimeKey(Spine3_2rotz,Spine3_3rotz,speedMod);
934   // Spine4
935   ssReTimeKey(Spine4_2rotx,Spine4_3rotx,speedMod);
936   ssReTimeKey(Spine4_2roty,Spine4_3roty,speedMod);
937   ssReTimeKey(Spine4_2rotz,Spine4_3rotz,speedMod);
938   // Neck
939   ssReTimeKey(Neck_2rotx,Neck_3rotx,speedMod);
940   ssReTimeKey(Neck_2roty,Neck_3roty,speedMod);
941   ssReTimeKey(Neck_2rotz,Neck_3rotz,speedMod);
942   // Head
943   ssReTimeKey(Head_2rotx,Head_3rotx,speedMod);
944   ssReTimeKey(Head_2roty,Head_3roty,speedMod);
945   ssReTimeKey(Head_2rotz,Head_3rotz,speedMod);
946   
947   // RightShoulder
948   ssReTimeKey(RightShoulder_2rotx,RightShoulder_3rotx,speedMod);
949   ssReTimeKey(RightShoulder_2roty,RightShoulder_3roty,speedMod);
950   ssReTimeKey(RightShoulder_2rotz,RightShoulder_3rotz,speedMod);
951   // RightForeArm # Don't know why I had previously left this out?
952   ssReTimeKey(RightForeArm_2rotx,RightForeArm_3rotx,speedMod);
953   ssReTimeKey(RightForeArm_2roty,RightForeArm_3roty,speedMod);
954   ssReTimeKey(RightForeArm_2rotz,RightForeArm_3rotz,speedMod);



955   // RightArm
956   ssReTimeKey(RightArm_2rotx,RightArm_3rotx,speedMod);
957   ssReTimeKey(RightArm_2roty,RightArm_3roty,speedMod);
958   ssReTimeKey(RightArm_2rotz,RightArm_3rotz,speedMod);
959   // RightHand
960   ssReTimeKey(RightHand_2rotx,RightHand_3rotx,speedMod);
961   ssReTimeKey(RightHand_2roty,RightHand_3roty,speedMod);
962   ssReTimeKey(RightHand_2rotz,RightHand_3rotz,speedMod);
963   
964   // LeftShoulder
965   ssReTimeKey(LeftShoulder_2rotx,LeftShoulder_3rotx,speedMod);
966   ssReTimeKey(LeftShoulder_2roty,LeftShoulder_3roty,speedMod);
967   ssReTimeKey(LeftShoulder_2rotz,LeftShoulder_3rotz,speedMod);
968   // LeftArm
969   ssReTimeKey(LeftArm_2rotx,LeftArm_3rotx,speedMod);
970   ssReTimeKey(LeftArm_2roty,LeftArm_3roty,speedMod);
971   ssReTimeKey(LeftArm_2rotz,LeftArm_3rotz,speedMod);
972   // LeftForeArm # Don't know why I had previously left this out?
973   ssReTimeKey(LeftForeArm_2rotx,LeftForeArm_3rotx,speedMod);
974   ssReTimeKey(LeftForeArm_2roty,LeftForeArm_3roty,speedMod);
975   ssReTimeKey(LeftForeArm_2rotz,LeftForeArm_3rotz,speedMod);
976   // LeftHand
977   ssReTimeKey(LeftHand_2rotx,LeftHand_3rotx,speedMod);
978   ssReTimeKey(LeftHand_2roty,LeftHand_3roty,speedMod);
979   ssReTimeKey(LeftHand_2rotz,LeftHand_3rotz,speedMod);
980   
981   /* RightUpLeg
982   ssReTimeKey(RightUpLeg_2rotx,RightUpLeg_3rotx,speedMod);
983   ssReTimeKey(RightUpLeg_2roty,RightUpLeg_3roty,speedMod);
984   ssReTimeKey(RightUpLeg_2rotz,RightUpLeg_3rotz,speedMod);
985   // RightLeg
986   ssReTimeKey(RightLeg_2rotx,RightLeg_3rotx,speedMod);
987   ssReTimeKey(RightLeg_2roty,RightLeg_3roty,speedMod);
988   ssReTimeKey(RightLeg_2rotz,RightLeg_3rotz,speedMod);
989   // RightFoot
990   ssReTimeKey(RightFoot_2rotx,RightFoot_3rotx,speedMod);
991   ssReTimeKey(RightFoot_2roty,RightFoot_3roty,speedMod);
992   ssReTimeKey(RightFoot_2rotz,RightFoot_3rotz,speedMod);
993   // LeftUpLeg
994   ssReTimeKey(LeftUpLeg_2rotx,LeftUpLeg_3rotx,speedMod);
995   ssReTimeKey(LeftUpLeg_2roty,LeftUpLeg_3roty,speedMod);
996   ssReTimeKey(LeftUpLeg_2rotz,LeftUpLeg_3rotz,speedMod);
997   // LeftLeg
998   ssReTimeKey(LeftLeg_2rotx,LeftLeg_3rotx,speedMod);
999   ssReTimeKey(LeftLeg_2roty,LeftLeg_3roty,speedMod);

1000   ssReTimeKey(LeftLeg_2rotz,LeftLeg_3rotz,speedMod);
1001   // LeftFoot
1002   ssReTimeKey(LeftFoot_2rotx,LeftFoot_3rotx,speedMod);
1003   ssReTimeKey(LeftFoot_2roty,LeftFoot_3roty,speedMod);
1004   ssReTimeKey(LeftFoot_2rotz,LeftFoot_3rotz,speedMod);*/
1005   
1006   // Right Leg
1007   ssReTimeKey(LeftLegCB_2posx,LeftLegCB_3posx,speedMod);
1008   ssReTimeKey(LeftLegCB_2posy,LeftLegCB_3posy,speedMod);
1009   ssReTimeKey(LeftLegCB_2posz,LeftLegCB_3posz,speedMod);
1010   
1011   // Left Leg
1012   ssReTimeKey(RightLegCB_2posx,RightLegCB_3posx,speedMod);
1013   ssReTimeKey(RightLegCB_2posy,RightLegCB_3posy,speedMod);
1014   ssReTimeKey(RightLegCB_2posz,RightLegCB_3posz,speedMod);
1015   
1016   // Right Toe
1017   ssReTimeKey(lToePos_2posx,lToePos_3posx,speedMod);
1018   ssReTimeKey(lToePos_2posy,lToePos_3posy,speedMod);
1019   ssReTimeKey(lToePos_2posz,lToePos_3posz,speedMod);
1020   
1021   // Left Toe
1022   ssReTimeKey(rToePos_2posx,rToePos_3posx,speedMod);
1023   ssReTimeKey(rToePos_2posy,rToePos_3posy,speedMod);



1024   ssReTimeKey(rToePos_2posz,rToePos_3posz,speedMod);
1025   
1026   
1027   
1028   // PASTE SSRETIMEKEY
1029   function ssReTimeKey(objectStringFrom, objectStringTo, timeMod)
1030   {
1031   try
1032   { // DELETES all keys on rig2. COULD I REPLACE WITH RemoveAllAnimation TO 

SPEED UP?????????
1033   var CurrentFrameNo = FirstKey(objectStringTo);
1034   var aLastKey = LastKey(objectStringTo);
1035   
1036   while (CurrentFrameNo <= aLastKey)
1037   {
1038   RemoveKey(objectStringTo, CurrentFrameNo);
1039   CurrentFrameNo = NextKey(objectStringTo, CurrentFrameNo );
1040   }
1041   }
1042   catch (err){}
1043   
1044   try //Retiming section 

#####################################################################################
######################

1045   {
1046   CurrentFrameNo = FirstKey(objectStringFrom); // 

After deletion current frame set back to start
1047   aLastKey = LastKey(objectStringFrom); // Does 

this need resetting? Isn't it still correct?
1048   
1049   while (CurrentFrameNo <= aLastKey)
1050   {
1051   var modFrameNo = CurrentFrameNo / timeMod; // 

Divides frame no by scaleMod
1052   var CurrentKeyVal = GetValue(objectStringFrom, CurrentFrameNo); // Gets 

current key value
1053   SaveKey(objectStringTo, modFrameNo, CurrentKeyVal ); // 

ASSUMING MODKEYVAL WORKS. IF NOT REVERT TO CURRENTKEYVAL
1054   CurrentFrameNo = NextKey(objectStringFrom, CurrentFrameNo ); //
1055   }
1056   }
1057   catch (err){}
1058   }
1059   
1060   
1061   
1062   // ########################################## NULLSPHERES 

##############################################
1063   
1064   // HIDE BOTH CHARACTERS
1065   SelectObj("Max_Pears_setb_n", "BRANCH", null);
1066   ToggleSelection("Max_Pears_setb_n1", "BRANCH", null);
1067   //ToggleSelection("Max_Pears_setb_n2", "BRANCH", null);
1068   ToggleVisibility(null, null, null);
1069   
1070   // MAKE BACKGROUND BLACK
1071   // SetValue("Preferences.SceneColors.backgroundcol", 0, null);
1072   SetDisplayMode("Camera", "shaded");
1073   
1074   
1075   //ParentObj("B:Camera_Interest", "Camera");
1076   FirstFrame(); // Jump to FirstFrame
1077   SelectObj("Camera_Interest", null, true);
1078   //Rotate(null, 0, 45, 0, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null, 

null, null, null, 0, null); // Rotx Camera_Interest 0
1079   Rotate(null, 0, 0, 0, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null,

null, null, null, 0, null); // Rotx Camera_Interest 0
1080   SaveKey("Camera_Interest.kine.local.rotx,Camera_Interest.kine.local.roty,Camera_Interest.

kine.local.rotz", 9, null, null, null, false, null); // SaveKey



1081   
1082   // NEED TO CHANGE THE ROTY TO 360 FOR PANAROUND
1083   LastFrame(); // Jump to LastFrame
1084   // SelectObj("Camera_Interest", null, true);
1085   //Rotate(null, 0, 45, 0, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null, 

null, null, null, 0, null); // Rotx Camera_Interest 0
1086   Rotate(null, 0, 0, 0, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null,

null, null, null, 0, null); // Rotx Camera_Interest 0
1087   SaveKey("Camera_Interest.kine.local.rotx,Camera_Interest.kine.local.roty,Camera_Interest.

kine.local.rotz", 87, null, null, null, false, null); // Or change frame no
1088   
1089   // FRAME WALKERS FULLY
1090   SelectObj("Camera_Interest", null, true);
1091   Translate(null, 0, -1, 0, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null,

null, null, null, null, null, 0, null);
1092   SelectObj("Camera", null, true);
1093   Translate(null, 0, 0, 7, siRelative, siLocalSym, siObj, siXYZ, null, null, null, null,

null, null, null, null, null, 0, null);
1094   
1095   // Deform mesh
1096   SetValue("Camera.camvis.constructionlevel", false, null);
1097   SetValue("Camera.camvis.custominfo", true, null);
1098   SetValue("Camera.camvis.gridaxisvis", false, null);
1099   // Hide nulls and control objects in User view
1100   // 

SelectObj("MotionBuilder_Template1.eff,MotionBuilder_Template1.root1,MotionBuilder_Templa
te1.eff1,MotionBuilder_Template1.eff2,MotionBuilder_Template1.root3,MotionBuilder_Templat
e1.eff3", null, true);

1101   // ToggleVisibility(null, null, null);
1102   // SetValue("Views.ViewD.UserCamera.camvis.objnulls", false, null);
1103   // SetValue("Views.ViewD.UserCamera.camvis.objctrlwaves", false, null);
1104   // SetValue("Views.ViewD.UserCamera.camvis.objctrlother", false, null); */
1105   
1106   SetMarking("DisplayInfo_BF.Bodt_Fat_Percentage");
1107   SetValue("Man2.Character.DisplayInfo_BF.Bodt_Fat_Percentage", ChBF, null);
1108   SelectObj("MotionBuilder_Template2.eff,MotionBuilder_Template2.root1,MotionBuilder_Templa

te2.eff1,MotionBuilder_Template2.eff2,MotionBuilder_Template2.root3,MotionBuilder_Templat
e2.eff3", null, true);

1109   ToggleVisibility(null, null, null);
1110   
1111   // measurement readouts
1112   SetValue("DisplayInfo_Measurements.Body_Fat_Percentage", ChBF, null);
1113   SetValue("DisplayInfo_Measurements.WtHR", WtHR, null);
1114   SetValue("DisplayInfo_Measurements.Chest", ChChest, null);
1115   SetValue("DisplayInfo_Measurements.Height", ChHeight, null);
1116   SetValue("DisplayInfo_Measurements.ArmSwing", armSwing, null);
1117   SetValue("DisplayInfo_Measurements.ArmBob", armBobMag, null);
1118   SetValue("DisplayInfo_Measurements.StepWidth", walkingBase, null);
1119   SetValue("DisplayInfo_Measurements.armAbduction", armAbduction, null);
1120   SetValue("DisplayInfo_Measurements.WalkingSpeed", walkingSpeed, null);


