170 research outputs found

    Design, Optimization, and Evaluation of a Fusionless Device to Induce Growth Modulation and Correct Spinal Curvatures in Adolescent Idiopathic Scoliosis

    Get PDF
    RÉSUMÉ La scoliose est une déformation musculo-squelettique complexe et tridimensionnelle de la colonne vertébrale. Les mécanismes de progression de la scoliose sont liés au principe de Hueter-Volkmann. Selon cette théorie, les chargements asymétriques des plaques de croissance altèrent la croissance du rachis (cunéiformisation des vertèbres). Une courbure scoliotique présentant un angle de Cobb supérieur à 50° nécessite généralement une intervention chirurgicale avec fusion rachidienne. Cette chirurgie implique des procédures particulièrement invasives et coûteuses, ce qui a incité plusieurs chercheurs à tenter de développer d‘autres alternatives. Des techniques minimalement invasives et sans fusion ont ainsi été élaborées pour contrôler et corriger un mauvais alignement de la colonne vertébrale avant qu'une progression trop importante des déformations scoliotiques ne se produise. Ces techniques tentent d'exploiter la croissance vertébrale résiduelle afin de corriger la cunéiformisation locale et d‘aboutir à un réalignement progressif du rachis. Les traitements sans fusion semblent également mettre en péril la santé du disque intervertébral à long terme et se limitent à une correction 2D (plan frontal) de déformations intrinsèquement 3D. Mieux comprendre biomécaniquement la progression des déformations scoliotiques permettrait de développer des dispositifs sans fusion plus efficaces. Cela serait une contribution importante et innovatrice à l'amélioration du traitement de la scoliose idiopathique adolescente (SIA). L'objectif global de cette thèse était le développement, l‘optimisation, et l‘évaluation expérimentale d'implants sans fusion afin de moduler la croissance et de corriger les déformations scoliotiques. Les objectifs spécifiques étaient de 1) développer un modèle par éléments finis (MEF) de la colonne vertébrale intégrant une modélisation de la croissance; 2) exploiter ce MEF pour étudier les facteurs biomécaniques impliqués dans les mécanismes de progression de la SIA; 3) exploiter le MEF pour analyser la biomécanique des dispositifs sans fusion existant actuellement et repérer les améliorations pouvant être apportées à ces dispositifs; et 4) exploiter la plate-forme de conception conçue (analyses in silico, in situ, et in vivo) pour développer, optimiser, et valider de nouveaux dispositifs sans fusion modulateurs de croissance pour la correction des déformations de la SIA.----------ABSTRACT Scoliosis is a spinal musculoskeletal deformity defined by a 3D deformity of the spine. The pathomechanism of scoliotic progression may be in part explained by the Hueter-Volkmann principle. This theory describes how increased loading of growth plates will reduce regular growth rates while the converse is also accurate. Further, when extended to the pathogenesis of scoliosis, it defines how asymmetric loading of the vertebral bodies leads to the progression of the deformity via vertebral wedging. Currently, a scoliotic curve reaching a magnitude of 50° Cobb deformation requires surgical intervention involving instrumentation and spinal fusion. The process of fusion is among the most invasive and expensive procedures, which has motivated several researchers to develop other alternatives. The development of a less invasive technique, to control and correct a spinal misalignment before undesirable progression occurs, has subsequently been explored. Several fusionless devices have been developed that attempt to manipulate vertebral growth to correct vertebral wedging and, consequently, realign the spine. However, to date, these approaches have yet to be adopted in a clinical context. Moreover, devices actively pursued seemed to imperil the long term health of the intervertebral disc while corrective attempts are restricted to the unilateral manipulation of a 3D deformity. Therefore, enhanced biomechanical understanding of AIS pathomechanism in conjunction with the development of early and less invasive interventions would offer an important contribution to the improved treatment of AIS. The global objective of this thesis was to design, optimize, and evaluated experimentally fusionless device concepts to induce growth modulation and correct spinal curvatures in adolescent idiopathic scoliosis (AIS). The specific objectives were to: 1) develop a FEM of the spine with integrated growth dynamics; 2) exploit the FEM to explore biomechanical factors involved in the pathomechanism of AIS; 3) exploit the FEM to analyze biomechanically current fusionless growth sparring devices to identify available avenues of improvement; and 4) exploit the devised developmental platform (in silico, in situ, and in vivo analyses) to develop, optimize, and validate novel and improved fusionless growth modulating devices for AIS

    Porcine Spine Finite Element Model of Progressive Experimental Scoliosis and Assessment of a New Dual-Epiphyseal Growth Modulating Implant

    Get PDF
    RÉSUMÉ La scoliose est une déformation tridimensionnelle de la colonne vertébrale dont l’étiologie reste encore à élucider. Il est généralement admis que la progression de la déformation scoliotique pédiatrique est liée au principe d’Hueter-Volkmann qui stipule une réduction de la croissance suite à des contraintes en compression excessives au niveau de la concavité de la courbure scoliotique vs. sa convexité. Les stratégies de traitement des courbures sont difficiles, surtout chez les jeunes enfants. Typiquement, une intervention chirurgicale avec une instrumentation rachidienne accompagnée d’une arthrodèse segmentaire est nécessaire pour des courbures progressant au-delà de 40° d’angle de Cobb. De nouveaux dispositifs visent à manipuler la croissance vertébrale en exploitant le principe d’Hueter-Volkmann pour contrôler la progression de et corriger la courbure. Ces implants sans fusion exploitent la croissance vertébrale résiduelle en manipulant des gradients de croissance pour localement inverser la cunéiformisation vertébrale et, au fil du temps, réaligner la colonne vertébrale globalement. Des essais cliniques ont démontré une correction prometteuse pour les courbures généralement inférieures à 45°; cependant, les dispositifs actuels chevauchent l’espace du disque intervertébral et le compriment augmentant les risques de dégénérescence du disque à long terme. Par ailleurs, les implants nouvellement conçus sont généralement testés en utilisant des modèles animaux équivalents pour évaluer leur efficacité à corriger des déformations par l'intermédiaire de l’approche inverse (création d'une déformation) ou l’approche à 2- étapes (création d'une déformation suivie d’une correction). Néanmoins, une plate-forme de conception efficace est nécessaire pour évaluer la manipulation de la croissance à court et long termes par de nouveaux implants et de raccourcir le transfert de connaissances vers des applications cliniques. L’objectif général de cette thèse était de développer et de vérifier un modèle par éléments finis porcin (MEFp) unique en tant qu’une plateforme alternative pour la simulation de scolioses expérimentales progressives et des implants sans fusion, et d’évaluer un nouvel implant double-épiphysaire local ne chevauchant pas l’espace du disque sur des porcs immatures. Ainsi, les objectifs spécifiques suivants ont été complétés : 1) développer et----------ABSTRACT Scoliosis is a complex three-dimensional deformity of the spine whose etiology is yet to be elucidated. The pathomechanism of scoliosis progression is believed to be linked to the Hueter-Volkmann principle, by which growth is reduced due to increased growth plate compression, with the inverse also valid. Treatment strategies are challenging, especially in young children. Curves progressing beyond 40° Cobb angle are typically treated via invasive surgical interventions requiring spinal instrumentation accompanied by segmental spinal arthrodesis, impairing spinal mobility. New devices aim at manipulating vertebral growth by exploiting the Hueter-Volkmann principle to control curvature progression. These fusionless implants harness remaining vertebral growth by manipulating growth gradients to reverse vertebral wedging locally and, over time, globally realign the spine. Clinical trials have demonstrated promising deformity correction for curves generally below 45°; however, current devices bridge the intervertebral disc gap and predominantly compress the disc increasing the risks of longterm disc degeneration. Moreover, in a time-consuming manner, newly designed implants are commonly tested using equivalent animal models to assess their efficacy in correcting spinal deformities via the inverse (creation of a deformity) or the 2-step approaches (creation of a deformity followed by its subsequent correction). Nevertheless, a solid design platform is required to evaluate the short- and long-term growth manipulating efficacy of new implant designs and shorten knowledge transfer to clinical applications. The general objective of this thesis was to develop and verify a unique porcine spine finite element model (pFEM) as an alternative testing platform for the simulation of progressive experimental scoliosis and fusionless implants, and assess a new localized dualepiphyseal implant on immature pigs. Thus, specific objectives were devised as follows: 1) develop and verify a distinctive pFEM of the spine and ribcage, 2) develop and test, in vivo, a dual-epiphyseal implant incorporating a custom expansion mechanism, 3) exploit the developed pFEM to investigate differences between the inverse and 2-step fusionless implant testing approaches, and 4) exploit the pFEM to evaluate the biomechanical contribution of the ribcage in fusionless scoliosis surgery

    CT Scanning

    Get PDF
    Since its introduction in 1972, X-ray computed tomography (CT) has evolved into an essential diagnostic imaging tool for a continually increasing variety of clinical applications. The goal of this book was not simply to summarize currently available CT imaging techniques but also to provide clinical perspectives, advances in hybrid technologies, new applications other than medicine and an outlook on future developments. Major experts in this growing field contributed to this book, which is geared to radiologists, orthopedic surgeons, engineers, and clinical and basic researchers. We believe that CT scanning is an effective and essential tools in treatment planning, basic understanding of physiology, and and tackling the ever-increasing challenge of diagnosis in our society

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    Spine Surgery

    Get PDF
    We are very excited to introduce this new book on spinal surgery, which follows the curriculum of the EUROSPINE basic and advanced diploma courses. The approach we take is a purely case-based one, in which each case illustrates the concepts surrounding the treatment of a given pathology, including the uncertainties and problems in decision-making. The readers will notice that in many instances a lack of evidence for a given treatment exists. So decisions taken are usually not a clearcut matter of black or white, but merely different shades of gray. Probably in a lot of cases, there is often more than one option to treat the patient. The authors were asked to convey this message to the reader, giving him a guidance as what would be accepted within the mainstream. In addition, the reader is provided with the most updated literature and evidence on the topic. Most of the authors are teachers in the courses of EUROSPINE or other national societies with often vast clinical experience and have given their own perspective and reasoning. We believe that the readers will profit very much from this variety and bandwidth of knowledge provided for them in the individual chapters. We have given the authors extensive liberty as to what they consider the best solution for their case. It is thus a representative picture of what is considered standard of care for spine pathologies in Europe. We hope that this book will be an ideal complement for trainees to the courses they take. Munich, Germany Bernhard Meyer Offenbach, Germany Michael Rauschman

    Nextmed: Automatic Imaging Segmentation, 3D Reconstruction, and 3D Model Visualization Platform Using Augmented and Virtual Reality

    Get PDF
    The visualization of medical images with advanced techniques, such as augmented reality and virtual reality, represent a breakthrough for medical professionals. In contrast to more traditional visualization tools lacking 3D capabilities, these systems use the three available dimensions. To visualize medical images in 3D, the anatomical areas of interest must be segmented. Currently, manual segmentation, which is the most commonly used technique, and semi-automatic approaches can be time consuming because a doctor is required, making segmentation for each individual case unfeasible. Using new technologies, such as computer vision and artificial intelligence for segmentation algorithms and augmented and virtual reality for visualization techniques implementation, we designed a complete platform to solve this problem and allow medical professionals to work more frequently with anatomical 3D models obtained from medical imaging. As a result, the Nextmed project, due to the different implemented software applications, permits the importation of digital imaging and communication on medicine (dicom) images on a secure cloud platform and the automatic segmentation of certain anatomical structures with new algorithms that improve upon the current research results. A 3D mesh of the segmented structure is then automatically generated that can be printed in 3D or visualized using both augmented and virtual reality, with the designed software systems. The Nextmed project is unique, as it covers the whole process from uploading dicom images to automatic segmentation, 3D reconstruction, 3D visualization, and manipulation using augmented and virtual reality. There are many researches about application of augmented and virtual reality for medical image 3D visualization; however, they are not automated platforms. Although some other anatomical structures can be studied, we focused on one case: a lung study. Analyzing the application of the platform to more than 1000 dicom images and studying the results with medical specialists, we concluded that the installation of this system in hospitals would provide a considerable improvement as a tool for medical image visualization

    Book of Abstracts 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3rd Conference on Imaging and Visualization

    Get PDF
    In this edition, the two events will run together as a single conference, highlighting the strong connection with the Taylor & Francis journals: Computer Methods in Biomechanics and Biomedical Engineering (John Middleton and Christopher Jacobs, Eds.) and Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization (JoãoManuel R.S. Tavares, Ed.). The conference has become a major international meeting on computational biomechanics, imaging andvisualization. In this edition, the main program includes 212 presentations. In addition, sixteen renowned researchers will give plenary keynotes, addressing current challenges in computational biomechanics and biomedical imaging. In Lisbon, for the first time, a session dedicated to award the winner of the Best Paper in CMBBE Journal will take place. We believe that CMBBE2018 will have a strong impact on the development of computational biomechanics and biomedical imaging and visualization, identifying emerging areas of research and promoting the collaboration and networking between participants. This impact is evidenced through the well-known research groups, commercial companies and scientific organizations, who continue to support and sponsor the CMBBE meeting series. In fact, the conference is enriched with five workshops on specific scientific topics and commercial software.info:eu-repo/semantics/draf

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome

    11th International Conference on Business, Technology and Innovation 2022

    Get PDF
    Welcome to IC – UBT 2022 UBT Annual International Conference is the 11th international interdisciplinary peer reviewed conference which publishes works of the scientists as well as practitioners in the area where UBT is active in Education, Research and Development. The UBT aims to implement an integrated strategy to establish itself as an internationally competitive, research-intensive university, committed to the transfer of knowledge and the provision of a world-class education to the most talented students from all background. The main perspective of the conference is to connect the scientists and practitioners from different disciplines in the same place and make them be aware of the recent advancements in different research fields, and provide them with a unique forum to share their experiences. It is also the place to support the new academic staff for doing research and publish their work in international standard level. This conference consists of sub conferences in different fields like: Security Studies Sport, Health and Society Psychology Political Science Pharmaceutical and Natural Sciences Mechatronics, System Engineering and Robotics Medicine and Nursing Modern Music, Digital Production and Management Management, Business and Economics Language and Culture Law Journalism, Media and Communication Information Systems and Security Integrated Design Energy Efficiency Engineering Education and Development Dental Sciences Computer Science and Communication Engineering Civil Engineering, Infrastructure and Environment Architecture and Spatial Planning Agriculture, Food Science and Technology Art and Digital Media This conference is the major scientific event of the UBT. It is organizing annually and always in cooperation with the partner universities from the region and Europe. We have to thank all Authors, partners, sponsors and also the conference organizing team making this event a real international scientific event. Edmond Hajrizi, President of UBT UBT – Higher Education Institutio

    Congenital aortic stenosis and aneurysms

    Get PDF
    • …
    corecore