1,900 research outputs found

    Collective motion of cells: from experiments to models

    Get PDF
    Swarming or collective motion of living entities is one of the most common and spectacular manifestations of living systems having been extensively studied in recent years. A number of general principles have been established. The interactions at the level of cells are quite different from those among individual animals therefore the study of collective motion of cells is likely to reveal some specific important features which are overviewed in this paper. In addition to presenting the most appealing results from the quickly growing related literature we also deliver a critical discussion of the emerging picture and summarize our present understanding of collective motion at the cellular level. Collective motion of cells plays an essential role in a number of experimental and real-life situations. In most cases the coordinated motion is a helpful aspect of the given phenomenon and results in making a related process more efficient (e.g., embryogenesis or wound healing), while in the case of tumor cell invasion it appears to speed up the progression of the disease. In these mechanisms cells both have to be motile and adhere to one another, the adherence feature being the most specific to this sort of collective behavior. One of the central aims of this review is both presenting the related experimental observations and treating them in the light of a few basic computational models so as to make an interpretation of the phenomena at a quantitative level as well.Comment: 24 pages, 25 figures, 13 reference video link

    Lattice gas cellular automata model for rippling and aggregation in myxobacteria

    Full text link
    A lattice-gas cellular automaton (LGCA) model is used to simulate rippling and aggregation in myxobacteria. An efficient way of representing cells of different cell size, shape and orientation is presented that may be easily extended to model later stages of fruiting body formation. This LGCA model is designed to investigate whether a refractory period, a minimum response time, a maximum oscillation period and non-linear dependence of reversals of cells on C-factor are necessary assumptions for rippling. It is shown that a refractory period of 2-3 minutes, a minimum response time of up to 1 minute and no maximum oscillation period best reproduce rippling in the experiments of {\it Myxoccoccus xanthus}. Non-linear dependence of reversals on C-factor is critical at high cell density. Quantitative simulations demonstrate that the increase in wavelength of ripples when a culture is diluted with non-signaling cells can be explained entirely by the decreased density of C-signaling cells. This result further supports the hypothesis that levels of C-signaling quantitatively depend on and modulate cell density. Analysis of the interpenetrating high density waves shows the presence of a phase shift analogous to the phase shift of interpenetrating solitons. Finally, a model for swarming, aggregation and early fruiting body formation is presented

    Current quantization and fractal hierarchy in a driven repulsive lattice gas

    Get PDF
    Driven lattice gases are widely regarded as the paradigm of collective phenomena out of equilibrium. While such models are usually studied with nearest-neighbor interactions, many empirical driven systems are dominated by slowly decaying interactions such as dipole-dipole and Van der Waals forces. Motivated by this gap, we study the non-equilibrium stationary state of a driven lattice gas with slow-decayed repulsive interactions at zero temperature. By numerical and analytical calculations of the particle current as a function of the density and of the driving field, we identify (i) an abrupt breakdown transition between insulating and conducting states, (ii) current quantization into discrete phases where a finite current flows with infinite differential resistivity, and (iii) a fractal hierarchy of excitations, related to the Farey sequences of number theory. We argue that the origin of these effects is the competition between scales, which also causes the counterintuitive phenomenon that crystalline states can melt by increasing the density
    corecore