Swarming or collective motion of living entities is one of the most common
and spectacular manifestations of living systems having been extensively
studied in recent years. A number of general principles have been established.
The interactions at the level of cells are quite different from those among
individual animals therefore the study of collective motion of cells is likely
to reveal some specific important features which are overviewed in this paper.
In addition to presenting the most appealing results from the quickly growing
related literature we also deliver a critical discussion of the emerging
picture and summarize our present understanding of collective motion at the
cellular level. Collective motion of cells plays an essential role in a number
of experimental and real-life situations. In most cases the coordinated motion
is a helpful aspect of the given phenomenon and results in making a related
process more efficient (e.g., embryogenesis or wound healing), while in the
case of tumor cell invasion it appears to speed up the progression of the
disease. In these mechanisms cells both have to be motile and adhere to one
another, the adherence feature being the most specific to this sort of
collective behavior. One of the central aims of this review is both presenting
the related experimental observations and treating them in the light of a few
basic computational models so as to make an interpretation of the phenomena at
a quantitative level as well.Comment: 24 pages, 25 figures, 13 reference video link