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Wave propagation and cell movement 
control morphogenesis of the cellular slime mould 

Dictyostelium discoideum 

Florian Siegert and Cornells J. Weijer, Zoologisches Institut, Universität München, Luisenstraße 14, 
8000 Manchen 2, Germany. FAX: 089-5902450 

The cellular slime mould Dictyostelium discoideum is well suited to study cellular 
communication and the role of biological oscillations in spatio-temporal pattern formation. 
Dictyostelium cells live as solitary amoebae in the soil where they feed on bacteria. Upon 
starvation up to cells aggregate over large distances into a multicellular mass, the slug (see 
fig. 1A). The slug transforms during a complicated morphogenesis into a fruiting body 
consisting of a spore head supported by a stalk composed of dead vacuolated stalk cells. The 
spores disperse and germinate to single amoeba again. The aggregation and coordinated cell 
movement during slug morphogenesis require extensive cell-cell communication. 

The aggregation of single cells into multicellular structures is directed by periodic cyclic-AMP 
signals and Chemotaxis. Cells in the aggregation center periodically produce the 
chemoattractant cyclic Adenosine-Monophosphate (cAMP). cAMP is secreted into the 
extracellular medium, where it diffuses away. Neighbouring cells detect cAMP via cell surface 
receptors. These stimulated cells now produce themselves huge amounts of cAMP, which they 
in turn secrete. This feed-back process results in a wave-like propagation of the cAMP signal 
from cell to cell and from the center outwards. Extracellular phosphodiesterases degrades 
cAMP. After stimulation the cells are refractory to further stimulation. This property ensures 
unidirectional outward propagation of the signal. Stimulated cells respond with periodic 
chemotactic movement. Theys move in the direction of increasing cAMP concentrations. This 
leads to periodic waves of inward directed chemotactic movement. As a result the cells collect 
in the aggregation center. The cAMP wave propagation can be seen as outward propagating 
concentric or spiral optical density waves (see fig. IB) . These waves are only visible in 
monolayers of cells ,i.e during the early stages of aggregation (1). In later aggregates these 
waves are no longer visible. After aggregation the cells form a multicellular "slug" which 
contains up to cells. The slug has a defined polarity and is composed of at least three 
different cell types. The front quarter (tip) consists of two types of prestalk cells (pstA, pstB), 
the back three quarters consists of prespore cells. The prestalk cells will form the stalk of the 
fruiting body and the prespore cells the spores. 

We investigated whether the same principles that govern aggregation, i.e wave propagation 
and chemotactic cell movement, are responsible for the complex slug morphogenesis. Since 
optical density waves are no longer visible we investigated cell behaviour and cell movement 
in late aggregates and slugs. Cell movement of labeled single cells in Dictyostelium slugs were 
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analysed by high resolution digital image processing. We found that all cells in a slug move in 
a periodic and chemotactic fashion as juged by their periodic shape and velocity changes (2). 
This implies that the cells respond to periodic signals. In order to deduce the spatial geometry 
of these signals we determined the movement trajectories of many cells in various parts of the 
slug. Cells in the front and the back of a slug move along completely different trajectories (see 
fig. 1C). Prestalk cells move around the long axis of the slug, while prespore cells move 
forward parallel to the long axis. The cell movement data show that the chemotactic signal in 
the slug propagates as a three dimensional scroll wave in the front (prestalk zone), which 
transforms into planar waves in the back (prespore zone). This behavior is postulated to result 
from a difference in excitability of the cells along the long axis of the slug (2,3). The cells in 
the prestalk zone are more excitable than cells in the prespore zone. The biological 
significance of this particular type of wave propagation is that the core of the scroll wave will 
be a region of low continuous cAMP, conditions that favor the expression of stalk cell specific 
genes. In summary our experiments show that the morphogenesis of this relative simple 
biological system is controlled in two as well as in three dimensions largely by the dynamics 
of the underlying excitable system. 

1. F.Siegertand C.J.Weijer, (1989) J. Cell.Sci. 93, 325 
2. F.Siegert and C.J.Weijer, (1991) Physica D 49, 224 
3. F Siegertand C.J.Weijer, (1992) Proc.Natl.Acad.Sei. 89, 6433 

Figure: The life cycle of Dictyostelium discoideum 
The scheme (A) starts with single cells that aggregate in spirals as seen in darkfield optics. 
Moving cells are elongated and are seen as white bands due to increased light scattering (B). 
Cells which are not moving directionally are rounded and detected as dark bands. After stream 
formation waves emanating from the center propagate through the aggregation streams, while 
the cells move inward. The aggregation center can either be a mass of cells or temporarly form 
a loop. After tight aggregates (mounds) have formed the cells differentiate. Due to a higher 
oscillation frequency the prestalk cells form the tip in which the signals propagates as a 
(twisted) scroll wave as derived from the analysis of cell movement tracks (C, white lines). 
The wave rotates along its long axis as indicated by the black arrow. The mound now extends 
up in the air and forms a slug, which falls over and migrates away. The prestalk region stays a 
twisted scroll wave which decomposes upon arrival in the prespore zone in planar waves, due 
to the lower excitability of the prespore cells. The core of the slug is a region of low cAMP 
and this favors pstB expression, while the perifery of the tip with high cAMP favours pstA 
expression. The slug then converts by a series of not yet understood morphogenetic changes 
into a fruiting body, during which process the differentiation in the final cell types spore and 
stalk cells takes place. 
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