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Three-Dimensional Autowaves Control Cell Motion 
in Dictyostelium Slugs 

F . Siegert, O. Steinbock*, C . J . Weijer and S.C. Müller*, 

Universität München, Zoologisches Institut 

Luisenstr. 14, D-8000 München 2, Germany / Fax: +49-89-590-2450 

+Max-Planck-Institut für Ernährungsphysiologie / Fax: +49-231-1206 389 

Rheinlanddamm 201, D-4600 Dortmund 1, Germany / steinboc@mpi-dortmund.mpg.de 

During the developmental cycle of Dictyostelium a slug forms as a migratory stage, in 

which the behavior of about 105 individual cells is coordinated to that of a single organism. 

The direction of chemotactic cell motion is controlled by propagating waves of excitation. 

Cell motion occurs in a direction opposite to the direction of signal propagation [1]. The 

anterior part of the slug (20% of all amoebae) consists of prestalk cells, which ultimately 

build the stalk of the fruiting body. The remainder is formed by prespore cells which 

differentiate to spores in the fruiting body. 

According to recent analysis of cell motion, amoebae in the prespore zone move straight 

forward in the direction of slug migration, while cells in the prestalk zone move 

perpendicular to the direction of slug migration, that is they rotate around the slug axis 

[2]. We proposed that the underlying mode of signal propagation was caused by a 

change in excitability along the long axis of the slug. This hypothesis is based on the 

finding that during aggregation the cells that will become prestalk show high frequency 

oscillations in optical density when isolated, while cells that will become prespore show 

slow oscillations [2]. 

We were interested in the question whether a three-dimensional excitable system exhibits 

such behaviour we have performed computer simulations, based on previous simulations 

of wave propagation during the two-dimensional aggregation phase. For this purpose 

we calculated numerical solutions of an excitable reaction-diffusion system [3] in a 

cylinder: 

du 1 ,Λ J v + b\ dv 
- = DuAu + 1 u ( l - u ) [ u - — j , T t = u - v , 

(diffusion coefficient D u ; parameters a=0.4, e=l/150, b controlling the excitability; time 

per iteration dt=0.0103). The propagator u and the controller species ν are functions of 
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time and the three spatial coordinates. The variable u obeys nonlinear reaction kinetics 

and qualitatively models the extracellular cAMP concentration, while ν represents the 

fraction of the cAMP-receptor in its active state. The difference in excitability between 

the prestalk and prespore region is modelled by a step function of parameter b along the 

symmetry axis of the cylinder (bps,=0.01, b p s p=0.023). 

The initial condition is a scroll wave along the long axis of the slug having uniform 

excitability (b=0.01). It rotates stably in the homogeneous system. When introducing 

the described change in excitability (after t=880 iterations), the scroll wave undergoes a 

complex transformation into a new pattern (Figure 1). While the wave rotation in the 

region of high excitability (prestalk region) remains stable during the entire calculation, 

the scroll wave in the region of low excitability (prespore region) increases its wave 

length and rotation period, and subsequently the whole structure becomes twisted in 

middle segments of the cylinder. The process of twisting and the higher frequency in 

the prestalk region causes a dramatic change of the pattern in the less excitable prespore 

zone: Planar wave fronts appear that are oriented perpendicular to the long axis of the 

cylinder. Detailed analyses show that the shape of these wave fronts is slightly convex, 

thus focussing cell motion and stabilizing the slug geometry. This spatial arrangement is 

stable over more than 30 periods of scroll wave rotation. The interface between the region 

of scroll wave rotation and planar wave propagation displays more complex dynamics 

and alternating phases of weak and strong twisting. 

Figure 1 Three-dimensional representation of the variable ν after 

7800 iterations. Points having v<0.27 are plotted transparently. 
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The corresponding filament of wave rotation is oriented along the long axis of the slug in 
the prespore zone, but it becomes helical at the interface and bends away from the axis 
before ending at the cylinder boundary. Movies of the filament evolution reveal irregular 
changes in location and shape, but most of the time it stays attached to the boundary. 
Our calculations demonstrate that the observed pattern of chemotactic cell motion in 
Dictyostelium slugs can be explained readily by scroll waves of a chemotactic signal in 
the prestalk zone that decay into planar wave fronts in the prespore zone. This change 
in the pattern of wave propagation is caused by a step in excitability along the long axis 
of the slug. The simulations have furthermore shown that the filament of the scroll wave 
in the prestalk zone is a stable structure, a region of steady and low concentration of 
the excitation variable, conditions that most likely direct stalk formation by controlling 
expression of stalk specific genes. 
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