441 research outputs found

    End-to-End Entity Detection with Proposer and Regressor

    Full text link
    Named entity recognition is a traditional task in natural language processing. In particular, nested entity recognition receives extensive attention for the widespread existence of the nesting scenario. The latest research migrates the well-established paradigm of set prediction in object detection to cope with entity nesting. However, the manual creation of query vectors, which fail to adapt to the rich semantic information in the context, limits these approaches. An end-to-end entity detection approach with proposer and regressor is presented in this paper to tackle the issues. First, the proposer utilizes the feature pyramid network to generate high-quality entity proposals. Then, the regressor refines the proposals for generating the final prediction. The model adopts encoder-only architecture and thus obtains the advantages of the richness of query semantics, high precision of entity localization, and easiness of model training. Moreover, we introduce the novel spatially modulated attention and progressive refinement for further improvement. Extensive experiments demonstrate that our model achieves advanced performance in flat and nested NER, achieving a new state-of-the-art F1 score of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset

    Automatic rule learning exploiting morphological features for named entity recognition in Turkish

    Get PDF
    Named entity recognition (NER) is one of the basic tasks in automatic extraction of information from natural language texts. In this paper, we describe an automatic rule learning method that exploits different features of the input text to identify the named entities located in the natural language texts. Moreover, we explore the use of morphological features for extracting named entities from Turkish texts. We believe that the developed system can also be used for other agglutinative languages. The paper also provides a comprehensive overview of the field by reviewing the NER research literature. We conducted our experiments on the TurkIE dataset, a corpus of articles collected from different Turkish newspapers. Our method achieved an average F-score of 91.08% on the dataset. The results of the comparative experiments demonstrate that the developed technique is successfully applicable to the task of automatic NER and exploiting morphological features can significantly improve the NER from Turkish, an agglutinative language. ยฉ The Author(s) 2011

    The Hmong Medical Corpus: a biomedical corpus for a minority language

    Get PDF
    Biomedical communication is an area that increasingly benefits from natural language processing (NLP) work. Biomedical named entity recognition (NER) in particular provides a foundation for advanced NLP applications, such as automated medical question-answering and translation services. However, while a large body of biomedical documents are available in an array of languages, most work in biomedical NER remains in English, with the remainder in official national or regional languages. Minority languages so far remain an underexplored area. The Hmong language, a minority language with sizable populations in several countries and without official status anywhere, represents an exceptional challenge for effective communication in medical contexts. Taking advantage of the large number of government-produced medical information documents in Hmong, we have developed the first named entity-annotated biomedical corpus for a resource-poor minority language. The Hmong Medical Corpus contains 100,535 tokens with 4554 named entities (NEs) of three UMLS semantic types: diseases/syndromes, signs/symptoms, and body parts/organs/organ components. Furthermore, a subset of the corpus is annotated for word position and parts of speech, representing the first such gold-standard dataset publicly available for Hmong. The methodology presented provides a readily reproducible approach for the creation of biomedical NE-annotated corpora for other resource-poor languages

    Transfer learning for Turkish named entity recognition on noisy text

    Get PDF
    This is an accepted manuscript of an article published by Cambridge University Press in Natural Language Engineering on 28/01/2020, available online: https://doi.org/10.1017/S1351324919000627 The accepted version of the publication may differ from the final published version.ยฉ Cambridge University Press 2020. In this article, we investigate using deep neural networks with different word representation techniques for named entity recognition (NER) on Turkish noisy text. We argue that valuable latent features for NER can, in fact, be learned without using any hand-crafted features and/or domain-specific resources such as gazetteers and lexicons. In this regard, we utilize character-level, character n-gram-level, morpheme-level, and orthographic character-level word representations. Since noisy data with NER annotation are scarce for Turkish, we introduce a transfer learning model in order to learn infrequent entity types as an extension to the Bi-LSTM-CRF architecture by incorporating an additional conditional random field (CRF) layer that is trained on a larger (but formal) text and a noisy text simultaneously. This allows us to learn from both formal and informal/noisy text, thus improving the performance of our model further for rarely seen entity types. We experimented on Turkish as a morphologically rich language and English as a relatively morphologically poor language. We obtained an entity-level F1 score of 67.39% on Turkish noisy data and 45.30% on English noisy data, which outperforms the current state-of-art models on noisy text. The English scores are lower compared to Turkish scores because of the intense sparsity in the data introduced by the user writing styles. The results prove that using subword information significantly contributes to learning latent features for morphologically rich languages.Published versio

    ํ•œ๊ตญ์–ด ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ ๊ตฌ์ถ•๊ณผ ํ™•์žฅ ์—ฐ๊ตฌ: ๊ฐ์ •๋ถ„์„์„ ์ค‘์‹ฌ์œผ๋กœ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ธ๋ฌธ๋Œ€ํ•™ ์–ธ์–ดํ•™๊ณผ, 2021. 2. ์‹ ํšจํ•„.Recently, as interest in the Bidirectional Encoder Representations from Transformers (BERT) model has increased, many studies have also been actively conducted in Natural Language Processing based on the model. Such sentence-level contextualized embedding models are generally known to capture and model lexical, syntactic, and semantic information in sentences during training. Therefore, such models, including ELMo, GPT, and BERT, function as a universal model that can impressively perform a wide range of NLP tasks. This study proposes a monolingual BERT model trained based on Korean texts. The first released BERT model that can handle the Korean language was Google Researchโ€™s multilingual BERT (M-BERT), which was constructed with training data and a vocabulary composed of 104 languages, including Korean and English, and can handle the text of any language contained in the single model. However, despite the advantages of multilingualism, this model does not fully reflect each languageโ€™s characteristics, so that its text processing performance in each language is lower than that of a monolingual model. While mitigating those shortcomings, we built monolingual models using the training data and a vocabulary organized to better capture Korean textsโ€™ linguistic knowledge. Therefore, in this study, a model named KR-BERT was built using training data composed of Korean Wikipedia text and news articles, and was released through GitHub so that it could be used for processing Korean texts. Additionally, we trained a KR-BERT-MEDIUM model based on expanded data by adding comments and legal texts to the training data of KR-BERT. Each model used a list of tokens composed mainly of Hangul characters as its vocabulary, organized using WordPiece algorithms based on the corresponding training data. These models reported competent performances in various Korean NLP tasks such as Named Entity Recognition, Question Answering, Semantic Textual Similarity, and Sentiment Analysis. In addition, we added sentiment features to the BERT model to specialize it to better function in sentiment analysis. We constructed a sentiment-combined model including sentiment features, where the features consist of polarity and intensity values assigned to each token in the training data corresponding to that of Korean Sentiment Analysis Corpus (KOSAC). The sentiment features assigned to each token compose polarity and intensity embeddings and are infused to the basic BERT input embeddings. The sentiment-combined model is constructed by training the BERT model with these embeddings. We trained a model named KR-BERT-KOSAC that contains sentiment features while maintaining the same training data, vocabulary, and model configurations as KR-BERT and distributed it through GitHub. Then we analyzed the effects of using sentiment features in comparison to KR-BERT by observing their performance in language modeling during the training process and sentiment analysis tasks. Additionally, we determined how much each of the polarity and intensity features contributes to improving the model performance by separately organizing a model that utilizes each of the features, respectively. We obtained some increase in language modeling and sentiment analysis performances by using both the sentiment features, compared to other models with different feature composition. Here, we included the problems of binary positivity classification of movie reviews and hate speech detection on offensive comments as the sentiment analysis tasks. On the other hand, training these embedding models requires a lot of training time and hardware resources. Therefore, this study proposes a simple model fusing method that requires relatively little time. We trained a smaller-scaled sentiment-combined model consisting of a smaller number of encoder layers and attention heads and smaller hidden sizes for a few steps, combining it with an existing pre-trained BERT model. Since those pre-trained models are expected to function universally to handle various NLP problems based on good language modeling, this combination will allow two models with different advantages to interact and have better text processing capabilities. In this study, experiments on sentiment analysis problems have confirmed that combining the two models is efficient in training time and usage of hardware resources, while it can produce more accurate predictions than single models that do not include sentiment features.์ตœ๊ทผ ํŠธ๋žœ์Šคํฌ๋จธ ์–‘๋ฐฉํ–ฅ ์ธ์ฝ”๋” ํ‘œํ˜„ (Bidirectional Encoder Representations from Transformers, BERT) ๋ชจ๋ธ์— ๋Œ€ํ•œ ๊ด€์‹ฌ์ด ๋†’์•„์ง€๋ฉด์„œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ถ„์•ผ์—์„œ ์ด์— ๊ธฐ๋ฐ˜ํ•œ ์—ฐ๊ตฌ ์—ญ์‹œ ํ™œ๋ฐœํžˆ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์žฅ ๋‹จ์œ„์˜ ์ž„๋ฒ ๋”ฉ์„ ์œ„ํ•œ ๋ชจ๋ธ๋“ค์€ ๋ณดํ†ต ํ•™์Šต ๊ณผ์ •์—์„œ ๋ฌธ์žฅ ๋‚ด ์–ดํœ˜, ํ†ต์‚ฌ, ์˜๋ฏธ ์ •๋ณด๋ฅผ ํฌ์ฐฉํ•˜์—ฌ ๋ชจ๋ธ๋งํ•œ๋‹ค๊ณ  ์•Œ๋ ค์ ธ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ELMo, GPT, BERT ๋“ฑ์€ ๊ทธ ์ž์ฒด๊ฐ€ ๋‹ค์–‘ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๋ชจ๋ธ๋กœ์„œ ๊ธฐ๋Šฅํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ•œ๊ตญ์–ด ์ž๋ฃŒ๋กœ ํ•™์Šตํ•œ ๋‹จ์ผ ์–ธ์–ด BERT ๋ชจ๋ธ์„ ์ œ์•ˆํ•œ๋‹ค. ๊ฐ€์žฅ ๋จผ์ € ๊ณต๊ฐœ๋œ ํ•œ๊ตญ์–ด๋ฅผ ๋‹ค๋ฃฐ ์ˆ˜ ์žˆ๋Š” BERT ๋ชจ๋ธ์€ Google Research์˜ multilingual BERT (M-BERT)์˜€๋‹ค. ์ด๋Š” ํ•œ๊ตญ์–ด์™€ ์˜์–ด๋ฅผ ํฌํ•จํ•˜์—ฌ 104๊ฐœ ์–ธ์–ด๋กœ ๊ตฌ์„ฑ๋œ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ๊ฐ€์ง€๊ณ  ํ•™์Šตํ•œ ๋ชจ๋ธ์ด๋ฉฐ, ๋ชจ๋ธ ํ•˜๋‚˜๋กœ ํฌํ•จ๋œ ๋ชจ๋“  ์–ธ์–ด์˜ ํ…์ŠคํŠธ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š” ๊ทธ ๋‹ค์ค‘์–ธ์–ด์„ฑ์ด ๊ฐ–๋Š” ์žฅ์ ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ๊ฐ ์–ธ์–ด์˜ ํŠน์„ฑ์„ ์ถฉ๋ถ„ํžˆ ๋ฐ˜์˜ํ•˜์ง€ ๋ชปํ•˜์—ฌ ๋‹จ์ผ ์–ธ์–ด ๋ชจ๋ธ๋ณด๋‹ค ๊ฐ ์–ธ์–ด์˜ ํ…์ŠคํŠธ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ์ด ๋‚ฎ๋‹ค๋Š” ๋‹จ์ ์„ ๋ณด์ธ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ๊ทธ๋Ÿฌํ•œ ๋‹จ์ ๋“ค์„ ์™„ํ™”ํ•˜๋ฉด์„œ ํ…์ŠคํŠธ์— ํฌํ•จ๋˜์–ด ์žˆ๋Š” ์–ธ์–ด ์ •๋ณด๋ฅผ ๋ณด๋‹ค ์ž˜ ํฌ์ฐฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ์™€ ์–ดํœ˜ ๋ชฉ๋ก์„ ์ด์šฉํ•˜์—ฌ ๋ชจ๋ธ์„ ๊ตฌ์ถ•ํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํ•œ๊ตญ์–ด Wikipedia ํ…์ŠคํŠธ์™€ ๋‰ด์Šค ๊ธฐ์‚ฌ๋กœ ๊ตฌ์„ฑ๋œ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ KR-BERT ๋ชจ๋ธ์„ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๊ณต๊ฐœํ•˜์—ฌ ํ•œ๊ตญ์–ด ์ •๋ณด์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋„๋ก ํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ์— ๋Œ“๊ธ€ ๋ฐ์ดํ„ฐ์™€ ๋ฒ•์กฐ๋ฌธ๊ณผ ํŒ๊ฒฐ๋ฌธ์„ ๋ง๋ถ™์—ฌ ํ™•์žฅํ•œ ํ…์ŠคํŠธ์— ๊ธฐ๋ฐ˜ํ•ด์„œ ๋‹ค์‹œ KR-BERT-MEDIUM ๋ชจ๋ธ์„ ํ•™์Šตํ•˜์˜€๋‹ค. ์ด ๋ชจ๋ธ์€ ํ•ด๋‹น ํ•™์Šต ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ WordPiece ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•ด ๊ตฌ์„ฑํ•œ ํ•œ๊ธ€ ์ค‘์‹ฌ์˜ ํ† ํฐ ๋ชฉ๋ก์„ ์‚ฌ์ „์œผ๋กœ ์ด์šฉํ•˜์˜€๋‹ค. ์ด๋“ค ๋ชจ๋ธ์€ ๊ฐœ์ฒด๋ช… ์ธ์‹, ์งˆ์˜์‘๋‹ต, ๋ฌธ์žฅ ์œ ์‚ฌ๋„ ํŒ๋‹จ, ๊ฐ์ • ๋ถ„์„ ๋“ฑ์˜ ๋‹ค์–‘ํ•œ ํ•œ๊ตญ์–ด ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋ฌธ์ œ์— ์ ์šฉ๋˜์–ด ์šฐ์ˆ˜ํ•œ ์„ฑ๋Šฅ์„ ๋ณด๊ณ ํ–ˆ๋‹ค. ๋˜ํ•œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” BERT ๋ชจ๋ธ์— ๊ฐ์ • ์ž์งˆ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ๊ทธ๊ฒƒ์ด ๊ฐ์ • ๋ถ„์„์— ํŠนํ™”๋œ ๋ชจ๋ธ๋กœ์„œ ํ™•์žฅ๋œ ๊ธฐ๋Šฅ์„ ํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๊ฐ์ • ์ž์งˆ์„ ํฌํ•จํ•˜์—ฌ ๋ณ„๋„์˜ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ํ•™์Šต์‹œ์ผฐ๋Š”๋ฐ, ์ด๋•Œ ๊ฐ์ • ์ž์งˆ์€ ๋ฌธ์žฅ ๋‚ด์˜ ๊ฐ ํ† ํฐ์— ํ•œ๊ตญ์–ด ๊ฐ์ • ๋ถ„์„ ์ฝ”ํผ์Šค (KOSAC)์— ๋Œ€์‘ํ•˜๋Š” ๊ฐ์ • ๊ทน์„ฑ(polarity)๊ณผ ๊ฐ•๋„(intensity) ๊ฐ’์„ ๋ถ€์—ฌํ•œ ๊ฒƒ์ด๋‹ค. ๊ฐ ํ† ํฐ์— ๋ถ€์—ฌ๋œ ์ž์งˆ์€ ๊ทธ ์ž์ฒด๋กœ ๊ทน์„ฑ ์ž„๋ฒ ๋”ฉ๊ณผ ๊ฐ•๋„ ์ž„๋ฒ ๋”ฉ์„ ๊ตฌ์„ฑํ•˜๊ณ , BERT๊ฐ€ ๊ธฐ๋ณธ์œผ๋กœ ํ•˜๋Š” ํ† ํฐ ์ž„๋ฒ ๋”ฉ์— ๋”ํ•ด์ง„๋‹ค. ์ด๋ ‡๊ฒŒ ๋งŒ๋“ค์–ด์ง„ ์ž„๋ฒ ๋”ฉ์„ ํ•™์Šตํ•œ ๊ฒƒ์ด ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ(sentiment-combined model)์ด ๋œ๋‹ค. KR-BERT์™€ ๊ฐ™์€ ํ•™์Šต ๋ฐ์ดํ„ฐ์™€ ๋ชจ๋ธ ๊ตฌ์„ฑ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๊ฐ์ • ์ž์งˆ์„ ๊ฒฐํ•ฉํ•œ ๋ชจ๋ธ์ธ KR-BERT-KOSAC๋ฅผ ๊ตฌํ˜„ํ•˜๊ณ , ์ด๋ฅผ GitHub์„ ํ†ตํ•ด ๋ฐฐํฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ทธ๋กœ๋ถ€ํ„ฐ ํ•™์Šต ๊ณผ์ • ๋‚ด ์–ธ์–ด ๋ชจ๋ธ๋ง๊ณผ ๊ฐ์ • ๋ถ„์„ ๊ณผ์ œ์—์„œ์˜ ์„ฑ๋Šฅ์„ ์–ป์€ ๋’ค KR-BERT์™€ ๋น„๊ตํ•˜์—ฌ ๊ฐ์ • ์ž์งˆ ์ถ”๊ฐ€์˜ ํšจ๊ณผ๋ฅผ ์‚ดํŽด๋ณด์•˜๋‹ค. ๋˜ํ•œ ๊ฐ์ • ์ž์งˆ ์ค‘ ๊ทน์„ฑ๊ณผ ๊ฐ•๋„ ๊ฐ’์„ ๊ฐ๊ฐ ์ ์šฉํ•œ ๋ชจ๋ธ์„ ๋ณ„๋„ ๊ตฌ์„ฑํ•˜์—ฌ ๊ฐ ์ž์งˆ์ด ๋ชจ๋ธ ์„ฑ๋Šฅ ํ–ฅ์ƒ์— ์–ผ๋งˆ๋‚˜ ๊ธฐ์—ฌํ•˜๋Š”์ง€๋„ ํ™•์ธํ•˜์˜€๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๊ฐ์ • ์ž์งˆ์„ ๋ชจ๋‘ ์ถ”๊ฐ€ํ•œ ๊ฒฝ์šฐ์—, ๊ทธ๋ ‡์ง€ ์•Š์€ ๋‹ค๋ฅธ ๋ชจ๋ธ๋“ค์— ๋น„ํ•˜์—ฌ ์–ธ์–ด ๋ชจ๋ธ๋ง์ด๋‚˜ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ์—์„œ ์„ฑ๋Šฅ์ด ์–ด๋Š ์ •๋„ ํ–ฅ์ƒ๋˜๋Š” ๊ฒƒ์„ ๊ด€์ฐฐํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์ด๋•Œ ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋กœ๋Š” ์˜ํ™”ํ‰์˜ ๊ธ๋ถ€์ • ์—ฌ๋ถ€ ๋ถ„๋ฅ˜์™€ ๋Œ“๊ธ€์˜ ์•…ํ”Œ ์—ฌ๋ถ€ ๋ถ„๋ฅ˜๋ฅผ ํฌํ•จํ•˜์˜€๋‹ค. ๊ทธ๋Ÿฐ๋ฐ ์œ„์™€ ๊ฐ™์€ ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ์„ ์‚ฌ์ „ํ•™์Šตํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์‹œ๊ฐ„๊ณผ ํ•˜๋“œ์›จ์–ด ๋“ฑ์˜ ์ž์›์„ ์š”๊ตฌํ•œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋น„๊ต์  ์ ์€ ์‹œ๊ฐ„๊ณผ ์ž์›์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฐ„๋‹จํ•œ ๋ชจ๋ธ ๊ฒฐํ•ฉ ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ์ ์€ ์ˆ˜์˜ ์ธ์ฝ”๋” ๋ ˆ์ด์–ด, ์–ดํ…์…˜ ํ—ค๋“œ, ์ ์€ ์ž„๋ฒ ๋”ฉ ์ฐจ์› ์ˆ˜๋กœ ๊ตฌ์„ฑํ•œ ๊ฐ์ • ์ž์งˆ ๋ชจ๋ธ์„ ์ ์€ ์Šคํ… ์ˆ˜๊นŒ์ง€๋งŒ ํ•™์Šตํ•˜๊ณ , ์ด๋ฅผ ๊ธฐ์กด์— ํฐ ๊ทœ๋ชจ๋กœ ์‚ฌ์ „ํ•™์Šต๋˜์–ด ์žˆ๋Š” ์ž„๋ฒ ๋”ฉ ๋ชจ๋ธ๊ณผ ๊ฒฐํ•ฉํ•œ๋‹ค. ๊ธฐ์กด์˜ ์‚ฌ์ „ํ•™์Šต๋ชจ๋ธ์—๋Š” ์ถฉ๋ถ„ํ•œ ์–ธ์–ด ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์–ธ์–ด ์ฒ˜๋ฆฌ ๋ฌธ์ œ๋ฅผ ์ฒ˜๋ฆฌํ•  ์ˆ˜ ์žˆ๋Š” ๋ณดํŽธ์ ์ธ ๊ธฐ๋Šฅ์ด ๊ธฐ๋Œ€๋˜๋ฏ€๋กœ, ์ด๋Ÿฌํ•œ ๊ฒฐํ•ฉ์€ ์„œ๋กœ ๋‹ค๋ฅธ ์žฅ์ ์„ ๊ฐ–๋Š” ๋‘ ๋ชจ๋ธ์ด ์ƒํ˜ธ์ž‘์šฉํ•˜์—ฌ ๋” ์šฐ์ˆ˜ํ•œ ์ž์—ฐ์–ด์ฒ˜๋ฆฌ ๋Šฅ๋ ฅ์„ ๊ฐ–๋„๋ก ํ•  ๊ฒƒ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๊ฐ์ • ๋ถ„์„ ๋ฌธ์ œ๋“ค์— ๋Œ€ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ชจ๋ธ์˜ ๊ฒฐํ•ฉ์ด ํ•™์Šต ์‹œ๊ฐ„์— ์žˆ์–ด ํšจ์œจ์ ์ด๋ฉด์„œ๋„, ๊ฐ์ • ์ž์งˆ์„ ๋”ํ•˜์ง€ ์•Š์€ ๋ชจ๋ธ๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์˜ˆ์ธก์„ ํ•  ์ˆ˜ ์žˆ๋‹ค๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค.1 Introduction 1 1.1 Objectives 3 1.2 Contribution 9 1.3 Dissertation Structure 10 2 Related Work 13 2.1 Language Modeling and the Attention Mechanism 13 2.2 BERT-based Models 16 2.2.1 BERT and Variation Models 16 2.2.2 Korean-Specific BERT Models 19 2.2.3 Task-Specific BERT Models 22 2.3 Sentiment Analysis 24 2.4 Chapter Summary 30 3 BERT Architecture and Evaluations 33 3.1 Bidirectional Encoder Representations from Transformers (BERT) 33 3.1.1 Transformers and the Multi-Head Self-Attention Mechanism 34 3.1.2 Tokenization and Embeddings of BERT 39 3.1.3 Training and Fine-Tuning BERT 42 3.2 Evaluation of BERT 47 3.2.1 NLP Tasks 47 3.2.2 Metrics 50 3.3 Chapter Summary 52 4 Pre-Training of Korean BERT-based Model 55 4.1 The Need for a Korean Monolingual Model 55 4.2 Pre-Training Korean-specific BERT Model 58 4.3 Chapter Summary 70 5 Performances of Korean-Specific BERT Models 71 5.1 Task Datasets 71 5.1.1 Named Entity Recognition 71 5.1.2 Question Answering 73 5.1.3 Natural Language Inference 74 5.1.4 Semantic Textual Similarity 78 5.1.5 Sentiment Analysis 80 5.2 Experiments 81 5.2.1 Experiment Details 81 5.2.2 Task Results 83 5.3 Chapter Summary 89 6 An Extended Study to Sentiment Analysis 91 6.1 Sentiment Features 91 6.1.1 Sources of Sentiment Features 91 6.1.2 Assigning Prior Sentiment Values 94 6.2 Composition of Sentiment Embeddings 103 6.3 Training the Sentiment-Combined Model 109 6.4 Effect of Sentiment Features 113 6.5 Chapter Summary 121 7 Combining Two BERT Models 123 7.1 External Fusing Method 123 7.2 Experiments and Results 130 7.3 Chapter Summary 135 8 Conclusion 137 8.1 Summary of Contribution and Results 138 8.1.1 Construction of Korean Pre-trained BERT Models 138 8.1.2 Construction of a Sentiment-Combined Model 138 8.1.3 External Fusing of Two Pre-Trained Models to Gain Performance and Cost Advantages 139 8.2 Future Directions and Open Problems 140 8.2.1 More Training of KR-BERT-MEDIUM for Convergence of Performance 140 8.2.2 Observation of Changes Depending on the Domain of Training Data 141 8.2.3 Overlap of Sentiment Features with Linguistic Knowledge that BERT Learns 142 8.2.4 The Specific Process of Sentiment Features Helping the Language Modeling of BERT is Unknown 143 Bibliography 145 Appendices 157 A. Python Sources 157 A.1 Construction of Polarity and Intensity Embeddings 157 A.2 External Fusing of Different Pre-Trained Models 158 B. Examples of Experiment Outputs 162 C. Model Releases through GitHub 165Docto

    Automating information extraction task for Turkish texts

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2011.Thesis (Ph. D.) -- Bilkent University, 2011.Includes bibliographical references leaves 85-97.Throughout history, mankind has often suffered from a lack of necessary resources. In todayโ€™s information world, the challenge can sometimes be a wealth of resources. That is to say, an excessive amount of information implies the need to find and extract necessary information. Information extraction can be defined as the identification of selected types of entities, relations, facts or events in a set of unstructured text documents in a natural language. The goal of our research is to build a system that automatically locates and extracts information from Turkish unstructured texts. Our study focuses on two basic Information Extraction (IE) tasks: Named Entity Recognition and Entity Relation Detection. Named Entity Recognition, finding named entities (persons, locations, organizations, etc.) located in unstructured texts, is one of the most fundamental IE tasks. Entity Relation Detection task tries to identify relationships between entities mentioned in text documents. Using supervised learning strategy, the developed systems start with a set of examples collected from a training dataset and generate the extraction rules from the given examples by using a carefully designed coverage algorithm. Moreover, several rule filtering and rule refinement techniques are utilized to maximize generalization and accuracy at the same time. In order to obtain accurate generalization, we use several syntactic and semantic features of the text, including: orthographical, contextual, lexical and morphological features. In particular, morphological features of the text are effectively used in this study to increase the extraction performance for Turkish, an agglutinative language. Since the system does not rely on handcrafted rules/patterns, it does not heavily suffer from domain adaptability problem. The results of the conducted experiments show that (1) the developed systems are successfully applicable to the Named Entity Recognition and Entity Relation Detection tasks, and (2) exploiting morphological features can significantly improve the performance of information extraction from Turkish, an agglutinative language.Tatar, SerhanPh.D
    • โ€ฆ
    corecore