
AUTOMATING INFORMATION
EXTRACTION TASK FOR TURKISH TEXTS

a dissertation submitted to

the department of computer engineering

and the institute of engineering and science

of bilkent university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Serhan Tatar

January, 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bilkent University Institutional Repository

https://core.ac.uk/display/52925593?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Özgür Ulusoy (Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Dr. İlyas Çiçekli (Co-Supervisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Prof. Dr. Fazlı Can

ii

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Assoc. Prof. Dr. Ferda Nur Alpaslan

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. Selim Aksoy

I certify that I have read this thesis and that in my opinion it is fully adequate,

in scope and in quality, as a dissertation for the degree of doctor of philosophy.

Asst. Prof. Dr. İbrahim Körpeoğlu

Approved for the Institute of Engineering and Science:

Prof. Dr. Levent Onural
Director of the Institute

iii

ABSTRACT

AUTOMATING INFORMATION EXTRACTION TASK
FOR TURKISH TEXTS

Serhan Tatar

Ph.d. in Computer Engineering

Supervisors: Prof. Dr. Özgür Ulusoy and Dr. İlyas Çiçekli

January, 2011

Throughout history, mankind has often suffered from a lack of necessary re-

sources. In today’s information world, the challenge can sometimes be a wealth

of resources. That is to say, an excessive amount of information implies the need

to find and extract necessary information. Information extraction can be defined

as the identification of selected types of entities, relations, facts or events in a set

of unstructured text documents in a natural language.

The goal of our research is to build a system that automatically locates and

extracts information from Turkish unstructured texts. Our study focuses on

two basic Information Extraction (IE) tasks: Named Entity Recognition and

Entity Relation Detection. Named Entity Recognition, finding named entities

(persons, locations, organizations, etc.) located in unstructured texts, is one of

the most fundamental IE tasks. Entity Relation Detection task tries to identify

relationships between entities mentioned in text documents.

Using supervised learning strategy, the developed systems start with a set

of examples collected from a training dataset and generate the extraction rules

from the given examples by using a carefully designed coverage algorithm. More-

over, several rule filtering and rule refinement techniques are utilized to maximize

generalization and accuracy at the same time. In order to obtain accurate gen-

eralization, we use several syntactic and semantic features of the text, including:

orthographical, contextual, lexical and morphological features. In particular,

morphological features of the text are effectively used in this study to increase

the extraction performance for Turkish, an agglutinative language. Since the sys-

tem does not rely on handcrafted rules/patterns, it does not heavily suffer from

domain adaptability problem.

The results of the conducted experiments show that (1) the developed systems

iv

v

are successfully applicable to the Named Entity Recognition and Entity Relation

Detection tasks, and (2) exploiting morphological features can significantly im-

prove the performance of information extraction from Turkish, an agglutinative

language.

Keywords: Information Extraction, Turkish, Named Entity Recognition, Entity

Relation Detection.

ÖZET

TÜRKÇE METİNLERDEN OTOMATİK BİLGİ
ÇIKARIMI

Serhan Tatar

Bilgisayar Mühendisliği, Doktora

Tez Yöneticileri: Prof. Dr. Özgür Ulusoy ve Dr. İlyas Çiçekli

Ocak, 2011

Tarih boyunca, kaynakların yetersizliği insanoğlu için sorun olmuştur. Ne var ki

günümüz bilgi dünyasında, kaynakların yetersizliğinden ziyade kaynak fazlalığının

sebep olduğu yeni bir problem türüyle karşı karşıyayız. Aşırı bilgi, ihtiyaç duyu-

lan bilginin bulunmasını ve çıkarımını gerektirmektedir. Bilgi çıkarımı, ihtiyaç

duyulan nesnelerin, ilişkilerin, gerçeklerin veya olayların, doğal dildeki serbest

metinler içerisinde bulunması olarak tanımlanabilir. Bu bağlamda bilgi çıkarımı,

doğal dildeki yapısal olmayan metinlerin çözümlenmesi ve bu metinlerin ihtiva

ettiği gerekli bilginin yapısal bir şablona aktarılması işlemidir.

Bu çalışmanın amacı Türkçe serbest metinlerdeki bilgiyi otomatik olarak bu-

lan ve çıkaran bir sistemin geliştirilmesidir. Çalışma iki temel bilgi çıkarımı

görevine odaklanmaktadır: Ad Tanıma ve İlişki Bulma. En temel bilgi çıkarımı

görevlerinden olan Ad Tanıma, serbest metinlerde geçen varlık isimlerinin (in-

san, yer, organizasyon vb.) bulunmasıdır. İlişki Bulma görevi ise, metinlerde

bahsedilen varlıklar arasındaki ilişkileri bulmaya çalışır.

Gözetimli ögrenme stratejisini kullanan sistem, öğrenme kümesinden seçilen

örnek kümesi ile başlayıp bilgi çıkarım kurallarını üretmektedir. Ayrıca,

genelleştirmenin ve doğruluğun maksimize edilmesi amacıyla kural filtreleme ve

kural iyileştirme teknikleri kullanılmaktadır. Hassas genelleştirmenin sağlanması

maksadıyla imla, bağlam, sözcük, biçim gibi çeşitli sözdizimsel ve anlamsal metin

özelliklerinden faydalanılmaktadır. Özellikle, bitişimli bir dil olan Türkçe’den

bilgi çıkarımı başarımının artırılması için biçimbilimsel özellikler etkin olarak

kullanılmıştır. Sistem elle üretilen kurallar üzerine dayanmadığı için alan uyum-

luluğu probleminden ciddi olarak etkilenmemektedir.

Yapılan test sonuçları, (1) geliştirilen sistemin Ad Tanıma ve İlişki Bulma

vi

vii

görevlerine başarılı bir şekilde uygulandığını, ve (2) biçimbilimsel özelliklerin kul-

lanımının, bitişimli bir dil olan Türkçe’den bilgi çıkarımı işleminin performansını

önemli ölçüde artırdığını göstermiştir.

Anahtar sözcükler : Bilgi Çıkarımı, Türkçe, Ad Tanıma, İlişki Bulma.

Acknowledgement

First and foremost, I would like to express my sincere gratitude to my advisor

Dr. İlyas Çiçekli for his guidance, patience, and active support during this long

journey. I would also like to thank Prof. Dr. Özgür Ulusoy for his support.

I would like to thank the members of my thesis committee Prof. Dr. Fazlı

Can, Assoc. Prof. Dr. Ferda Nur Alpaslan, Asst. Prof. Dr. Selim Aksoy, and

Asst. Prof. Dr. İbrahim Körpeoğlu for their invaluable comments.

I consider myself fortunate to have had the chance to take courses from dis-

tinguished faculty members throughout my doctoral study. I am grateful to Asst.

Prof. Dr. Selim Aksoy, Prof. Dr. Cevdet Aykanat, Prof. Dr. H.Altay Güvenir,

Asst. Prof. Dr. İbrahim Körpeoğlu, Prof. Dr. Bülent Özgüç, and Asst. Prof.

Dr. Ali Aydın Selçuk. I am also indebted to them for their excellent research

and teaching, which have significantly influenced me.

I would like to thank the scientists at the Defence Research and Development

Canada - Atlantic Center for their help and support during my research visit

(Canadian Defence Research Fellowship Program) between September 2006 and

September 2007. I want to express my special thanks to David Chapman. It was

a pleasure to work with such professional people.

I would like to thank Mücahid Kutlu for Turkish Morphological Disambiguator

used in this study.

Doctoral study is a challenging task. Having professional commitments and

responsibilities in my military career has made mine even more challenging. I am

grateful to LtCol. Ramazan Ercan, LtCol. Cemal Gemci, Col. Bülend Ayyıldız,

Col. Şükrü Kısadere, Col. Fikret Serbest, Col. Bilgehan Doruk, CDR. Andrew

Mason, and Mr. Pall Arnason for their support.

I thank my friends Şahin Yeşil, Ümit Altıntakan, Mahmut Bilgen, Ziya

Bayrak, Ata Türk, Rıfat Özcan, Aydemir Memişoğlu, Hüseyin Özgür Tan, and

Ozan Alptekin for their friendship and support.

viii

ix

I would like to thank my brother Erhan Tatar and my cousin Ünal Tatar for

their brotherhood.

Lastly, I would like to thank my parents for believing in me and for encour-

aging me throughout my life. Without their support, this thesis would not have

been possible.

Serhan TATAR

Anneme ve Babama.

x

Contents

1 Introduction 1

1.1 Information Extraction . 1

1.1.1 What is IE? . 2

1.1.2 Formal Definition . 7

1.1.3 Common IE Tasks . 8

1.1.4 Language Impact . 8

1.1.5 Domain Adaptability/Portability 9

1.1.6 Application Areas . 9

1.2 Thesis Statement . 11

1.3 Organization of the Dissertation 12

2 Related Work 13

2.1 The Message Understanding Conferences (MUCs) 14

2.2 Automatic Content Extraction (ACE)

Program . 15

xi

CONTENTS xii

2.3 Approaches and Methods . 17

2.3.1 Review of the previous IE Systems 20

2.3.1.1 FASTUS . 20

2.3.1.2 Proteus . 21

2.3.1.3 LaSIE-II . 22

2.3.1.4 AutoSlog . 22

2.3.1.5 PALKA . 23

2.3.1.6 WHISK . 24

2.3.1.7 CRYSTAL . 25

2.3.1.8 RAPIER . 25

2.3.1.9 SRV . 26

2.3.1.10 Boosted Wrapper Induction 26

2.3.2 Domains . 27

2.3.3 Languages . 28

3 Preliminaries 29

3.1 Turkish . 29

3.2 Specific Generalization of Strings 31

4 Named Entity Recognition 34

4.1 Task Definition . 34

4.1.1 Scope . 35

CONTENTS xiii

4.1.2 General Guidelines . 35

4.1.3 Organization Names . 36

4.1.4 Person Names . 38

4.1.5 Location Names . 39

4.1.6 Temporal Expressions . 40

4.2 Generalization Features . 43

4.3 Rule Representation . 44

4.4 Automatic Rule Learning . 47

4.5 Rule Refinement . 53

4.6 Testing & Post-Processing . 53

5 Entity Relation Detection 54

5.1 Task Definition . 54

5.1.1 Scope & General Guidelines 54

5.1.2 LOCATED IN Relations 55

5.1.3 AFFILIATED WITH Relations 56

5.1.4 ATTACKED BY Relations 57

5.2 Rule Representation . 58

5.3 Automatic Rule Learning . 61

5.4 Testing & Post-Processing . 62

6 Experimental Evaluation 64

CONTENTS xiv

6.1 Data . 64

6.1.1 TurkIE Corpus Tagger . 65

6.1.2 Token, Sentence and Topic Tagging 66

6.1.3 Named Entity Tagging . 68

6.1.4 Relation Tagging . 69

6.1.5 Corpus Statistics . 72

6.2 Methodology . 72

6.3 Results & Discussion . 73

6.3.1 Named Entity Recognition 73

6.3.1.1 Quantitative Results & Comparison of the Methods 73

6.3.1.2 Error Analysis 75

6.3.1.3 Threshold Factor 75

6.3.1.4 Generalization Features 76

6.3.1.5 Automatic Rule Learning for Protein Name Ex-

traction . 78

6.3.2 Entity Relation Detection 78

6.3.2.1 Quantitative Results 78

6.3.2.2 Threshold Factor 80

7 Conclusion 82

A A Sample Tagged News Article 98

CONTENTS xv

B Named Entity Classes 106

C Entity Relation Classes 107

D List of the used Gazetter Lists 108

List of Figures

1.1 Sample Tagged Medline Abstract 4

1.2 Sample News Article . 5

2.1 The frame-phrasal pattern representation in the PALKA system . 23

2.2 An extraction rule in the WHISK system 24

4.1 Example NER rules . 45

4.2 Text excerpts containing named entities that match the example

rules given in Figure 4.1 . 46

4.2 An example NER rule generation 50

4.3 The rule generalization algorithm 52

5.1 Example ERD rules . 59

5.2 Sentences containing relations that match the example rules given

in Figure 5.1 . 60

5.2 An example ERD rule generation 63

6.1 TurkIE Corpus Tagger Tool . 65

xvi

LIST OF FIGURES xvii

6.2 Some Examples of the Tagged Tokens 66

6.3 An Example Tagged Sentence . 67

6.4 An Example Tagged Topic . 67

6.5 Named Entity Tagging in TurkIE Corpus Tagger 68

6.6 Example Tagged Named Entities 69

6.7 Relation Tagging in TurkIE Corpus Tagger 70

6.8 Example Tagged Relations . 71

6.9 The observed performance of the developed NER system as the

threshold parameter changes . 76

6.10 The observed performance of the developed ERD system as the

threshold parameter changes . 79

6.11 The observed performance of the developed ERD system for dif-

ferent relation categories as the threshold parameter changes . . . 81

List of Tables

2.1 List of MUC Evaluations . 15

2.2 List of ACE Evaluations . 17

3.1 Several surface forms produced using the stem word İstanbul . . . 30

6.1 Quantitative performance results of the developed NER system . 73

6.2 Individual impact of each feature set to the developed NER system

performance (I). 77

6.3 Individual impact of each feature set to the developed NER system

performance (II). 77

6.4 Quantitative performance results of the developed ERD system . 79

xviii

Chapter 1

Introduction

1.1 Information Extraction

Recently, we have observed an explosive growth in the amount of available

information. Especially with the advances in computer technology and the

popularization of the Internet, there has been an exponential increase in the

number of online resources. As estimated in [64], 1.5 exabytes (1.5 billion

gigabytes) of storable information was produced in 1999. According to the report,

this is equivalent to about 250 megabytes for every man, woman, and child on

earth. Thus, the vast amount of information is accessible to an ordinary person

today. For most of the people, idea of having more available resources than the

needed amount may seem preferable. However, it is not easy for an individual to

search all documents in order to find the specific piece of information that she/he

needs. Therefore, excessive amount of information brings a new type of problem

into existence: finding and extracting necessary information.

As in many cases, computer assistance can be used to overcome the problem.

Information retrieval (IR) aims to develop automatic methods for indexing large

document collections and searching for documents in those collections, for the

information within the documents. Current research in information retrieval

makes it possible to retrieve relevant documents from a document collection.

1

CHAPTER 1. INTRODUCTION 2

However most of the information is in human languages, not in databases or

other structured formats, and unfortunately, interpreting natural language texts

is a task that humans are simply better suited for than computers.

Natural language processing (NLP), a sub-field of artificial intelligence and

linguistics, focuses on the automated systems that can analyze, understand,

and generate natural human languages. It addresses many tasks to understand

the meaning of the speech/text in natural languages and translate them into

machine understandable representations. The ultimate goal is to manipulate the

information in more user-friendly ways (e.g. controlling aircraft systems by voice

commands) by using the computational power of machines.

Among the others, information extraction (IE) is an important task in the

field. IE has the main goal of automating the process of finding valuable pieces

of information out of huge data. We should distinguish IE from a number of

major research fields. IR retrieves relevant documents from a document collection,

whereas IE retrieves relevant information from documents. Question answering

(QA), in which the system first finds relavant documents and then extracts the

asked information from the retrieved documents, can be seen as the combination

of IR and IE. Both IE and data mining (DM) search for the information available

in the documents. However, DM aims to discover or derive new information from

data [44], while IE focuses on the extraction of the information already available

in the documents.

1.1.1 What is IE?

Basically, information extraction can be defined as the identification of selected

types of entities, relations, facts or events in a set of unstructured text documents

in a natural language. It is the process of analyzing unstructured texts and

extracting the necessary information into a structured representation, or as

described in [38] - the process of selective information structuring. IE transforms

free text into a structured form and reduces the information in a document to a

tabular structure and does not attempt to understand whole document.

CHAPTER 1. INTRODUCTION 3

As stated in the previous section, information extraction is an important task

in the NLP field. However, IE owns some features that make the task more

manageable when compared to many other NLP tasks. First of all, the task does

not care about author’s intentions and need to answer general questions about

documents. The aim is to populate the slots of the defined template. Therefore,

a less expressive representation of the meaning of a document can be sufficient

for IE. Moreover, IE is a well-defined task; we know what we search for and how

we encode the output information.

Before giving a formal definition of the problem, it is helpful to give a few

examples. A simple example may be automatic discovery and extraction of

protein names from biological texts. An example text from YAPEX [28] corpora,

whose protein names are marked, is shown in Figure- 1.1. In the corpora each

article has four sections:

• MedlineID: starts with <MedlineID> tag and ends with </MedlineID>.

• PMID: starts with <PMID> tag and ends with </PMID>.

• ArticleTitle: starts with<ArticleTitle> tag and ends with</ArticleTitle>.

• AbstractText: starts with<AbstractText> tag and ends with</AbstractText>.

Last two parts, ArticleTitle and AbstractText, contain protein names. In the

figure, tagged protein names can be seen clearly. Each protein name is marked

by two tags: <Protname> and </Protname> (e.g. <Protname> retinoic acid

receptor alpha </Protname>). In the example, target entities are proteins. A

simple extractor may learn rules from the tagged biological texts and extract

protein names from un-tagged texts by using the generated rules.

A more complex example may describe the levels of detail that systems can

extract. Figure- 1.2 shows a sample input text where the necessary information

lies. In the example, a news article [21] is presented. We can extract different

kind of information from the story. For instance, the entities (an object of interest

CHAPTER 1. INTRODUCTION 4

<PubmedArticle>

<MedlineID>21294781</MedlineID>

<PMID>11401507</PMID>

<ArticleTitle>Molecular dissection of the <Protname>importin
beta1</Protname>-recognized nuclear targeting
signal of <Protname>parathyroid hormone-related
protein</Protname>.</ArticleTitle>

<AbstractText>Produced by various types of solid tumors,
<Protname>parathyroid hormone-related protein</Protname>
(<Protname>PTHrP</Protname>) is the causative agent of
humoral hypercalcemia of malignancy. The similarity of
<Protname>PTHrP’s</Protname> amino-terminus to that of
<Protname>parathyroid hormone</Protname> enables it to share some
of the latter’s signalling properties, but its carboxy-terminus confers distinct
functions including a role in the nucleus/nucleolus in reducing apoptosis and
enhancing cell proliferation. <Protname>PTHrP</Protname> nuclear
import occurs via a novel <Protname>importin beta1</Protname>-
mediated pathway. The present study uses several different direct binding
assays to map the interaction of <Protname>PTHrP</Protname>
with <Protname>importin beta</Protname> using a series of alanine
mutated <Protname>PTHrP</Protname> peptides and truncated human
<Protname>importin beta1</Protname> derivatives. Our results indicate that
<Protname>PTHrP</Protname> amino acids 83-93 (KTPGKKKKGK) are
absolutely essential for <Protname>importin beta1</Protname> recognition
with residues 71-82 (TNKVETYKEQPL) additionally required for high affinity
binding; residues 380-643 of <Protname>importin beta1</Protname>
are required for the interaction. Binding of <Protname>importin
beta1</Protname> to <Protname>PTHrP</Protname> is reduced in
the presence of the GTP-bound but not GDP-bound form of the guanine
nucleotide binding protein <Protname>Ran</Protname>, consistent
with the idea that <Protname>Ran</Protname>GTP binding to
<Protname>importin beta</Protname> is involved in the release of
<Protname>PTHrP</Protname> into the nucleus following translocation
across the nuclear envelope. This study represents the first detailed
examination of a modular, non-arginine-rich <Protname>importin
beta1</Protname>-recognized nuclear targeting signal. Copyright 2001
Academic Press.</AbstractText>

</PubmedArticle>

Figure 1.1: Sample Tagged Medline Abstract

CHAPTER 1. INTRODUCTION 5

Fletcher Maddox, former Dean of the UCSD Business School, announced
the formation of La Jolla Genomatics together with his two sons. La Jolla
Genomatics will release its product Geninfo in June 1999. Geninfo is a turnkey
system to assist biotechnology researchers in keeping up with the voluminous
literature in all aspects of their field.

Dr. Maddox will be the firm’s CEO. His son, Oliver, is the Chief Scientist
and holds patents on many of the algorithms used in Geninfo. Oliver’s brother,
Ambrose, follows more in his father’s footsteps and will be the CFO of L.J.G.
headquartered in the Maddox family’s hometown of La Jolla, CA.

Figure 1.2: Sample News Article

such as a person or organization) and attributes associated with them extracted

from the text are shown below.

• ENTITY { NAME = “Fletcher Maddox” ; DESCRIPTOR = “Former

Dean of USCD Business School” ; TYPE = Person; }

• ENTITY { NAME = “Dr. Maddox”; DESCRIPTOR = “his father ”;

DESCRIPTOR = ” the firm’s CEO ”; TYPE = Person; }

• ENTITY { NAME = “Oliver”; DESCRIPTOR = “His son”; DESCRIP-

TOR = ”Chief Scientist”; TYPE = Person; }

• ENTITY { NAME = “Ambrose”; DESCRIPTOR = “Oliver’s brother”;

DESCRIPTOR = ”the CFO of L.J.G.”; TYPE = Person; }

• ENTITY { NAME = “UCSD Business School”; TYPE = Organization;

}

• ENTITY { NAME = “La Jolla Genomatics”; TYPE = Organization; }

• ENTITY { NAME = “L.J.G.”; TYPE = Organization; }

• ENTITY { NAME = “Geninfo”; DESCRIPTOR = “its product”; TYPE

= Artifact; }

• ENTITY { NAME = “La Jolla”; DESCRIPTOR = “the Maddox family’s

hometown”; TYPE = Location; }

CHAPTER 1. INTRODUCTION 6

• ENTITY { NAME = “CA”; TYPE = Location; }

• ENTITY { NAME = “June 1999”; TYPE = Date; }

Relations between the extracted entities (or facts) can be the target of

information extraction.

• RELATION { ENTITY 1 = “Fletcher Maddox”; ENTITY 2 = “UCSD

Business School”; TYPE = Employee of; }

• RELATION { ENTITY 1 = “Fletcher Maddox”; ENTITY 2 = “La Jolla

Genomatics”; TYPE = Employee of; }

• RELATION { ENTITY 1 = “Oliver”; ENTITY 2 = “La Jolla Genomat-

ics”; TYPE = Employee of; }

• RELATION { ENTITY 1 = “Ambrose”; ENTITY 2 = “La Jolla

Genomatics”; TYPE = Employee of; }

• RELATION { ENTITY 1 = “Geninfo”; ENTITY 2 = “La Jolla Geno-

matics”; TYPE = Product of; }

• RELATION { ENTITY 1 = “La Jolla”; ENTITY 2 = “La Jolla

Genomatics”; TYPE = Location of; }

• RELATION { ENTITY 1 = “CA”; ENTITY 2 = “La Jolla Genomatics”;

TYPE = Location of; }

• RELATION { ENTITY 1 = “La Jolla”; ENTITY 2 = “CA”; TYPE =

Location of; }

We can also extract the events available in the text. Events extracted from

the example text are shown below.

• EVENT { PRINCIPAL = “Fletcher Maddox”; DATE = “ ”; CAPITAL

= “”; TYPE = Company Formation; }

CHAPTER 1. INTRODUCTION 7

• EVENT { COMPANY = “La Jolla Genomatics”; PRODUCTS =

“Geninfo”; DATE = “June 1999”; COST = “ ”; TYPE = Product Release;

}

1.1.2 Formal Definition

After examining several examples of information extraction, we can give a formal

definition of the problem. We will follow the machine learning approach described

in [34]. Information extraction task takes two inputs: a knowledge source and a

predefined template. The output of the task is semantically explicit information

suitable for the given template.

The first input, knowledge source, is a collection of documents. Let D

represent a document in the input collection. D can be seen as a sequence of

terms, 〈t1, · · · , tn〉, where a term is an atomic processing unit (e.g. a word, a

number, or a unit of punctuation).

The second input, target template, can be seen as a collection of fields where

a field is a function, z(D) = {(i1, j1), (i2, j2), · · · , (in, jn)}, mapping a document

to a set of fragments from the document. In the definition, ik and jk are the

location index values of the left and right boundaries of fragment k (k ≤ n). If

input document does not include a specific field, z(D) returns the empty set.

One way of looking to problem is to find a function z′ that approximates z
as well as possible and generalizes to unseen documents. An alternative way to

this approach is using a function, G(D, i, j) which maps a document sub-sequence

to a real number representing the system’s confidence whether a text fragment

(i, j) is a field instance. In this way, the problem is reduced to task of presenting

G with fragments of appropriate size, and picking the fragment for which G’s

output is highest. Moreover, we also want to use G to reject some fragments.

This can be accomplished by associating a threshold with G.

CHAPTER 1. INTRODUCTION 8

1.1.3 Common IE Tasks

IE is a multilateral research area. The tasks performed by IE systems usually

differ, but the following are some of the common IE tasks:

• Named Entity Recognition (NER) task deals with locating the entities

(persons, locations, organizations, etc.) in the text.

• Entity Relation Detection (ERD) task requires identifying relationships

between entities (e.g. PRODUCT OF, EMPLOYEE OF).

• Event Extraction (EE) task requires identifying instances of a task-specific

event in which entities participate and identifying event-attributes.

1.1.4 Language Impact

The characteristics of the source language to extract information from also have

a significant impact on the extraction techniques being used. A certain feature

of one language, which can help the extraction process, may not be available for

another one. For example, unlike English, there are no spaces between words

in Chinese, which makes a text segmentation process essential prior to IE [104].

Chinese and Arabic further lack the capitalization information which can be used

as clues for identifying named entities [104, 10]. Absence of short vowels is yet

another difficulty in IE from Arabic texts since it renders the lexical items a lot

more ambiguous than in other languages aggravating the homography problem

[10]. Moreover, a language specific phenomenon can complicate the IE task. For

instance, in German, all nouns are capitalized; consequently the number of word

forms to be considered as potential named entities is much larger [83]. In Slavonic

languages the case of the noun phrase within a numerical phrase depends on the

numeral and on the position of the whole numerical phrase in the sentence [79].

Likewise, IE for the languages with complex morphological structures, such as

Turkish, requires a morphological level of processing.

CHAPTER 1. INTRODUCTION 9

1.1.5 Domain Adaptability/Portability

One of the key challenges in the IE field is domain adaptability/portability.

Domain adaptation can be described as the process of adapting an extraction

system developed for one domain to another domain. As for the domain itself, it

can be thought of as the genre and format of the content in documents from which

named entities will be extracted. To illustrate: how easy can a system developed

for extracting people names from news articles be adapted for extracting people

names from seminar announcements? Can a system designed for the identification

of person names locate protein names in biomedical text? In fact, adapting

a system to a new domain can sometimes be compared to developing a new

system altogether. That is to say, adapting knowledge-source based and rule-

based IE approaches to new domains is generally not straightforward since it

essentially requires human intervention to first analyze the domain and develop

the appropriate resources to tackle it (i.e. dictionaries, rules etc.). Furthermore,

keeping these resources up-to-date given evolution in domains also requires

constant human intervention.

1.1.6 Application Areas

Possible application areas of the IE research include a variety of fields. Security

and intelligence is an important application area where the rich interpretation

provided by IE is needed. To perform intelligence research and analysis effectively,

IE can be used in an efficient manner. In intelligence analysis, entities are key

pieces of information, such as people, places, phone numbers and addresses.

Information extraction helps analysts and field personnel automatically identify,

extract and classify mission-critical entities, relations between or among entities,

and the multiple aspects of events from unstructured text to provide faster,

more accurate intelligence. Thus, information extraction is an essential tool for

operations that require link analysis, event tracking and order of battle analysis.

Another application field of the research may be business world. Competitive

intelligence is an important organizational function responsible for the early

CHAPTER 1. INTRODUCTION 10

identification of risks and opportunities in the market. To know what others know

and what others do provide great advantage in the competitive environment of

business world. Current IE technology can be used in competitive intelligence by

enabling actors in the business world to monitor their competitors’ activities on

open information sources. The capability of processesing large volumes of data,

recognizing, interpreting, and extracting entities, relations, and events of interest

can serve analysts, executives and managers in decision making process.

Biomedical domain is just another application area for IE methods. Biological

knowledge, generated as a result of biological research, is currently stored in

scientific publications which can be accessed via different knowledge sources

storing vast amounts of information - Medline1 being a prominent example.

Knowledge sources do not, however, feature a formal structure in which to access

stored information, thus rendering information search, retrieval and processing

especially tedious and time-consuming. This consequently results in a strong

demand for automatized discovery and extraction of information.

IE can also be beneficial in the currently developing concept semantic web.

The semantic web is an extension to existing web standards that enables semantic

information to be associated with web documents. The current World Wide Web

is not designed to be easily understandable by machines. The main objective of

the semantic web is to make web documents easier for machines to understand.

It proposes to add machine-readable information to the documents. However,

the vast majority of current web pages have no semantic information associated

with them. One of the main issues of the semantic web is the difficulty in adding

semantic tags to large amounts of text. The ability to automatically add semantic

annotations would be of huge benefit to adoption of the semantic web. IE is

one process that can be used for automatically identifying entities in existing

web documents and using this information to add semantic annotations to the

documents.

1MEDLINE (Medical Literature Analysis and Retrieval System Online) is a bibliographic
database of life sciences and biomedical information owned by the United States National
Library of Medicine (NLM). MEDLINE is freely available on the Internet and searchable via
PubMed: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

CHAPTER 1. INTRODUCTION 11

While IE spans a wide range of application areas, we anticipate that there

will be even more in the near future. Particularly, as speech-understanding

technology improves, the need for IE capabilities will increase dramatically. The

need for the information is unending and the role of the language in exchanging

and disseminating the information is indisputable, and therein lies the future of

IE applications.

1.2 Thesis Statement

The main objective of the study is to build a system that automatically locates

and extracts information from Turkish unstructured texts. Our study focuses

on two basic IE tasks: named entity recognition and entity relation detection.

Adopting supervised learning strategy, the developed IE system automatically

starts with a set of examples collected from a training dataset and generates the

extraction rules from the given examples by using a carefully designed learning

strategy. Since the system does not rely on handcrafted rules/patterns, it does

not heavily suffer from domain adaptability problem. Moreoever, an adapted

version of the automatic rule learning method is experimented for protein name

extraction task. Besides a novel rule learning algorithm, our system employs rule

filtering and rule refinement techniques to minimize any possible reduction in

accuracy caused by the generalization. In order to obtain accurate generalization

and remedy the issues related to the data sparseness problem, the developed

IE system uses an expressive rule representation language and several syntactic

and semantic features of the text, including: orthographical, contextual, lexical

and morphological features. In particular, morphological features of the text are

effectively used in this study to increase the extraction performance for Turkish,

an agglutinative language that is therefore morphologically rich and productive.

Because of the lack of defined task definitions and training data for Turkish, this

study covers the adaptation of the NER and ERD task definitions to Turkish and

the development of an annotated corpus.

CHAPTER 1. INTRODUCTION 12

1.3 Organization of the Dissertation

The structure of the thesis is as follows. Chapter 2 reviews the previous research in

IE field. Chapter 3 provides a foundation for further chapters. Chapter 4 (based

on [94]) and 5 describe how we employed automatic rule learning for the tasks

of NER and ERD respectively. Chapter 6 presents the experimental evaluation

of the study. Finally, in the last chapter we conclude and indicate directions for

future research.

Chapter 2

Related Work

IE has been well-researched and many approaches have been proposed ranging

from handcrafted rule-based systems to adaptive learning systems. Numerous

studies [60, 89, 102, 72] have reviewed the studies that have been carried out by

the research community in the field of IE. Kushmerick and Thomas [60] focused

on machine learning approaches for IE. They segmented the field of adaptive IE

roughly into two areas: finite state techniques that learn extraction knowledge

corresponding to regular grammars or automata, and the relational rule learning

techniques that learn first-order Prolog-like extraction rules. Siefkes and Siniakov

[89] surveyed the adaptive IE systems and established a classification of different

types of adaptive IE systems based on their observations on the origins and

requirements. Turmo et al. [102] compared different adaptive IE approaches

that use machine learning techniques used to achieve adaptive IE technology. In

their own survey, Nadeau and Sekine [72] reviewed the research conducted in the

Named Entity Recognition and Classification (NERC) field between 1991 and

2006. In addition to the different techniques proposed in the field, they reported

their observations about languages, named entity types, domains and textual

genre studied in the literature.

13

CHAPTER 2. RELATED WORK 14

2.1 The Message Understanding Conferences

(MUCs)

In order to stimulate the development of new IE systems and to create a

common basis for the evaluation of their performance, several projects were

established. The Message Understanding Conferences (MUCs) [21, 5, 2, 1, 4, 3],

a series of seven conferences held between 1987 and 1998, were a great spur to

research in the field. MUC funded the development of metrics and algorithms to

support evaluations of emerging information extraction technologies by providing

a platform on which various IE approaches can be evaluated and compared. In

each evaluation, task, training data, test data and a scoring metric were provided

to participants.

The tasks grew from just production of a database of events found in

newswire articles from one source to the production of multiple databases of

increasingly complex information extracted from multiple sources of news in mul-

tiple languages. Named Entity Recognition (locating the entities), Coreference

Resolution (finding identities between entities), Template Element Construction

(finding the attributes of the entities), Template Relation Construction (detecting

relationships between entities), and Scenario Template Construction (extracting

events and identifying event-attributes) are the major tasks defined during the

MUCs.

The results of MUC evaluations were reported at conferences during the 1990’s

where developers and evaluators shared their findings and government specialists

described their needs. Table 2.1 lists the year and topics (domains) of each

evaluation.

Many new problems were identified and separated. During the evaluations,

evaluation metrics and methods were determined. Moreover, many corpora with

associated ”key templates” were developed. The only downside of the evaluations

may be that the participating systems tended to converge to a few best performing

approaches due to the competitive nature of the evaluations. The MUC program

CHAPTER 2. RELATED WORK 15

was finalized after MUC-7 because of the funding problems. A brief history of

MUC evaluations was provided by Grishman and Sundheim [39].

Project Year Domain
MUC-1 1987 Naval operations messages
MUC-2 1989 Naval operations messages
MUC-3 1991 Terrorism in Latin American countries
MUC-4 1992 Terrorism in Latin American countries
MUC-5 1993 Corporate Joint Venture and Microelectronics
MUC-6 1995 News articles on management changes
MUC-7 1998 Airplane Crashes/Rocket Launches

Table 2.1: List of MUC Evaluations

2.2 Automatic Content Extraction (ACE)

Program

The Automatic Content Extraction (ACE) [73] evaluation program, a successor to

the MUCs, began in 1999 with the aim of developing automatic content extraction

technology to support automatic processing of human language in text form from

a variety of sources.

The ACE evaluations largely follow the scheme of the MUCs. Its development

cycle includes specifying the tasks, developing training and test data, carrying

out an evaluation and discussing the results from all participating sites. Several

tasks were defined during the evaluations:

• Entity Detection and Tracking (EDT): detecting each unique entity men-

tioned in the source text, and tracking its mentions.

• Relation Detection and Characterization (RDT): detecting and character-

izing relations between EDT entities.

• Entity Detection and Recognition (EDR): the detection of the entities,

recognition of the information about the detected entities and creating a

unified representation for each entity.

CHAPTER 2. RELATED WORK 16

• Relation Detection and Recognition (RDR): the detection of the relations,

recognition of the information about the detected relations and creating a

unified representation for each relation.

• Time Detection and Recognition(TDR): detecting and recognizing the

temporal expressions mentioned in the text.

• Value Detection and Recognition (VDR): the detection of the values

(e.g.money, contact-info), recognition of the information about the detected

values and creating a unified representation for each value.

• Event Detection and Recognition: the detection of the events, recognition

of the information about the detected events and creating a unified

representation for each event.

• Local Entity Detection and Recognition (LEDR): the detection of the

entities in each document in a document collection separately, recognition

of the information about the detected entities and creating a unified

representation for each entity.

• Local Relation Detection and Recognition (LRDR): the detection of the

relations in each document in a document collection separately, recognition

of the information about the detected relations and creating a unified

representation for each relation.

• Global Entity Detection and Recognition (GEDR): the detection of the

entities in a document collection collectively, recognition of the information

about the detected entities and creating a unified representation for each

entity.

• Global Relation Detection and Recognition (GRDR): the detection of the

relations in a document collection collectively, recognition of the information

about the detected relations and creating a unified representation for each

relation.

One difference from the MUC evaluations is that it is multi-source and mul-

tilingual. Each evaluation includes text from different sources; e.g. newswire

CHAPTER 2. RELATED WORK 17

documents, broadcast news transcripts, and text derived from OCR. ACE

Evaluations also cover several languages: English, Chinese, Arabic, and Spanish.

Table 2.2 lists the tasks and languages of the ACE evaluations.

After several evaluations took place between 1999 and 2008 in order to

accomplish this goal, ACE became a track in the Text Analysis Conference (TAC)

[74] in 2009.

Tasks Languages Tasks
2000 English EDT (Pilot)
2001 English EDT, RDC
2002 English EDT, RDC
2003 English, Chinese, Arabic EDT, RDC
2004 English, Chinese, Arabic EDR, RDR, TDR
2005 English, Chinese, Arabic EDR, RDR, TDR, VDR, Event

DR
2007 English, Chinese, Arabic, Spanish EDR, RDR, TDR, VDR, Event

DR
2008 English, Arabic LEDR, LRDR, GEDR, GRDR

Table 2.2: List of ACE Evaluations

2.3 Approaches and Methods

In this section, we will cover the IE approaches and methods result of previous

research. In fact, the idea is not a new one. The information extraction concept

was first introduced by Harris [42] in the 1950’s. First applications [46, 84] were

reported within the medical domain. Furthermore, the task of automatically

extract information from natural language texts has received a lot of attention

in the past, and as such we observe a high diversity in the proposed approaches

and the methods used therein.

We will follow the general trend of natural language technology, which is

a transition from complete human intervention to automated optimization, to

introduce the proposed methods in the past. Early research [7, 37, 51] in the

IE community established a linguistic architecture based on cascading automata

CHAPTER 2. RELATED WORK 18

and domain specific knowledge. The SRI FASTUS system [7] used a series of

finite-state transducers that compute the transformation of text from sequences

of characters to domain templates. The Proteus system [37] also used cascaded

finite state transducers to recognize succession events. At a low syntactic level,

transducers were prepared to locate proper names, noun groups and verb groups;

at a higher syntactic and semantic level, transducers were generated to account

for basic events. The LaSIE-II system [51], developed at the University of

Sheffield, used finite state recognition of domain-specific lexical patterns, partial

parsing using a restricted context-free grammar and quasi-logical form (QLF)

representation of sentence semantics. Although these systems have demonstrated

remarkable performance, rule development and management is the main issue in

these systems. Developing and managing rules by hand requires high human

expertise. Constructing IE systems manually has also proven to be expensive

[81]. Domain adaptability is also a major issue for these systems since the domain

specific rules constructed in these systems for a domain cannot be easily applied

to another domain.

In order to reduce human effort in building or shifting an IE system, significant

research in information extraction has focused on using supervised learning

techniques for automated development of IE systems. Instead of having humans

create patterns and rules, these models use automatically generated rules via

generalization of examples or statistical models derived from the training data.

One of the earliest systems, AutoSlog [80] learns a dictionary of patterns, called

concept nodes, with an anchor word, most often the head verb, to activate

that concept node to extract information from text. The LIEP system [50] is

a learning system that generates multi-slot extraction rules. The CRYSTAL

system [92] employed inductive learning to construct a concept dictionary from

annotated training data. Inspired by inductive logic programming methods,

RAPIER [14, 15] used bottom-up (specific to general) relational learning to

generate symbolic rules for IE. Freitag [30] describes several learning approaches

to the IE problem: a rote learner, a term-space learner based on Naive Bayes,

an approach using grammatical induction, and a relational rule learner. Freitag

also proposed a multi-strategy approach which combines the described learning

CHAPTER 2. RELATED WORK 19

approaches. Basically, wrappers can be seen as simple extraction procedures

for semi-structured or highly structured data. Freitag and Kushmerick [31]

introduced wrapper induction, identified a family of six wrapper classes, and

demonstrated that the wrappers were both relatively expressive, and efficient

for extracting information from highly regular documents. Hsu and Dung

[48] presented SoftMealy, a wrapper representation formalism based on a finite

state transducer and contextual rules. The Boosted Wrapper Induction (BWI)

method [31, 59] learns a large number of relatively simple wrapper patterns, and

combines them using boosting. The Hidden Markov Models (HMMs) are powerful

statistical models that have been successfully applied to the task of information

extraction [12, 33, 32, 87]. One of the earliest learning systems for IE based

on HMMs is the IdentiFinder system developed by Bikel et al. [12]. Freitag

and McCallum [33] used shrinkage to improve parameter estimation of the HMM

emission probabilities and learn optimal HMM structures. Seymore et al. [87]

focused on learning the structure of the HMMs. Maximum entropy Markov model

(MEMM) [66], Conditional Random Fields (CRFs) [67, 76], Maximum entropy

models [16], and Support Vector Machines (SVMs) [27, 108] were also used for

information extraction.

The adaptive methods discussed thus far used supervised learning strategy.

Supervised methods can quickly learn the most common patterns, but require

a large corpus in order to achieve good coverage of the less frequent patterns.

However, annotating a large corpus is not easy. Semi-supervised (or weakly

supervised) methods have been developed to overcome the annotated corpus

preparation problem. Because, the amount of un-annotated text is greater

than the annotated data, semi-supervised methods use un-annotated text along

with a small set of annotated data. The major technique in this category is

called “bootstrapping”. Bootstrapping methods [82, 105, 22] use only a small

degree of supervision, such as a set of seeds, at the beginning. Riloff and

Jones [82] introduced a multi-level bootstrapping technique. They used mutual

bootstrapping technique that learns extraction patterns from the seed words

and then exploits the learned extraction patterns to identify more words that

belong to the semantic category. To minimize the system’s sensitivity to noise,

CHAPTER 2. RELATED WORK 20

they introduced another level of bootstrapping (meta-bootstrapping) that retains

only the most reliable lexicon entries produced by mutual bootstrapping and

then restarts the process. A different solution approach to the annotated corpus

preparation problem is to mark only the data which can help to improve the

overall accuracy. Active learning methods [71, 97, 53] try to make this process

by selecting suitable candidates for the user to annotate. Thompson et al. [97]

showed that 44% example savings can be achieved by employing active sample

selection. The methods based on unsupervised learning approaches [6, 88, 26]

do not need labeled data at all. Shinyama and Sekine [88] used the time series

distribution of words in news articles to obtain rare NEs. KnowItAll system [26]

uses a set of generic extraction patterns, and automatically instantiates rules by

combining these patterns with user supplied relation labels.

2.3.1 Review of the previous IE Systems

After reviewing the general approaches to IE task, we believe that it is helpful to

examine some important works in detail in the following sections.

2.3.1.1 FASTUS

The FASTUS system [47, 7] used an architecture consisting of cascaded finite state

transducers, each providing an additional level of analysis of the input, together

with merging of the final results. The system employed six transducers.The first

transducer, the Tokenizer, accepts a stream of characters as input, and transforms

it into a sequence of tokens. Next, the Multiword Analyzer automatically

recognizes token sequences (like “because of”) that are combined to form single

lexical items. The Preprocessor handles more complex or productive multiword

constructs than could be handled automatically from the lexicon. Named entities

are recognized by the Name Recognizer. It also locates unknown words and

sequences of capitalized words that don’t fit other known name patterns, and

flags them so that subsequent transducers can determine their type, using

broader context. Next comes the Parser where noun groups and verb groups

CHAPTER 2. RELATED WORK 21

are output. The Combiner produces larger constituents (e.g. “John Smith, 56,

president of Foobarco”), from the output of the parser. The final transducer, the

Domain, recognizes the particular combinations of subjects, verbs, and objects

that are necessary for correctly filling the templates for a given information

extraction task. The FASTUS system also includes a merger for merging, a

unification operation, the templates produced by the domain phase. The precise

specifications for merging are provided by the system developer when the domain

template is defined.

2.3.1.2 Proteus

The Proteus system [37] also used cascaded finite state transducers to perform IE

tasks. In a similar fashion to the FASTUS system, the Proteus system performs

text analysis in seven main stages: (1) tokenization and dictionary look-up,

(2) name recognition, (3) noun group recognition, (4) verb group recognition,

(5) semantic pattern recognition, (6) reference resolution, and (7) response

generation.

In the first stage, the input document is divided into tokens and each token

is looked up in our dictionaries. This initial stage is followed by four pattern

matching stages. The name recognition stage records the initial mention and

type of each name. The second pattern matching stage, noun group recognition,

recognizes noun groups (i.e. nouns with their left modifier). Next, both active and

passive verb groups are found. During the semantic pattern recognition stage, the

scenario-specific patterns are recognized. The various stages of pattern matching

produce a logical form for the sentence, consisting of a set of entities and a set

of events which refer to these entities. Reference resolution examines each entity

and event in logical form and decides whether it is an anaphoric reference to a

prior entity or event, or whether it is new and must be added to the discourse

representation. Finally, response generation handles the required inferencing for

generating the results for several IE tasks.

CHAPTER 2. RELATED WORK 22

2.3.1.3 LaSIE-II

The LaSIE-II system [51] is a pipeline of modules each of which processes the

entire text before the next is invoked. The system starts with basic preprocessing

operations: tokenization, gazetteer look-up, sentence splitting, part-of-speech

tagging, and morphological analysis. The text processing continues with partial

parsing using a restricted context-free grammar and quasi-logical form (QLF)

representation of sentence semantics. The parsing results of sentences are

mapped to QLF representation. Then, the discourse interpreter adds the QLF

representation to a semantic net. This semantic map keeps the system’s domain

model as a hierarchy of concepts. Additional information gathered is also added

to the model, then coreference resolution is performed, and finally information

consequent upon the input is added. This results in an updated discourse model.

Lastly, the template writer generates the results for different IE tasks by scanning

the discourse model and extracting the required information.

2.3.1.4 AutoSlog

AutoSlog [80] automatically constructs a domain-specific dictionary for informa-

tion extraction. Using supervised learning strategy, given a set of training texts

and their associated answer keys, AutoSlog learns a dictionary of patterns that

are capable of extracting the information in the answer keys from the texts. These

patterns are called concept nodes. A concept node is essentially a case frame that

is triggered by a lexical item, called conceptual anchor point, and activated in

a specific linguistic context. AutoSlog provides 13 single slot predefined concept

node types to recognize a specific linguistic pattern. An example concept node is

<subject> passive-verb

with an anchor point murdered. This concept node was generated by the system

given the training clause “the diplomat was murdered” along with “the diplomat”

as the target string. Since the target string is the subject of the training clause

and is followed by a passive verb “murdered”, the system proposed a concept

CHAPTER 2. RELATED WORK 23

node type that recognizes the pattern <subject> passive-verb is satisfied. The

concept node type returns the word “murdered” as the conceptual anchor point

along with enabling conditions that require a passive construction.

2.3.1.5 PALKA

The PALKA system [56] automatically acquires extraction patterns that are in

the form of frame-phrasal pattern structures (FP-structures) from a training

corpus. An FP-structure is a pair of a meaning frame and a phrasal pattern.

Each slot in the meaning frame defines an item-to-be-extracted together with

the semantic constraints associated to it (e.g. the target of the bombing event

must be a physical object). The phrasal pattern represents an ordered sequence

of lexical entries and/or semantic categories taken from a predefined concept

hierarchy. The frame-phrasal pattern representation in the PALKA system is

shown in Figure 2.1.

- The meaning frame
(BOMBING

agent: ANIMATE
target: PHYSICAL-OBJ
instrument: PHYSICAL-OBJ
effect: STATE

)

- The phrasal frame
((BOMB) EXPLODED AT (PHYSICAL-OBJ))

- The FP-structure
(BOMBING

target: PHYSICAL-OBJ
instrument: BOMB
pattern: ((instrument) EXPLODED AT (target))

)

Figure 2.1: The frame-phrasal pattern representation in the PALKA system

The FP-structures are used by the parser of the system to extract the relevant

information resident in the input texts. Applying FP-structures to input texts

CHAPTER 2. RELATED WORK 24

happens in two steps: (1) An FP-structure is activated when a phrase in the

input text is matched to the elements in a phrasal pattern, and (2) The relevant

information is extracted by using the activated meaning frame.

2.3.1.6 WHISK

The WHISK system [91] is a supervised learning system that generates extraction

rules. The WHISK extraction patterns are a special type of regular expressions

that can represent the context that makes a phrase relevant, and the exact

delimiters of the phrase. WHISK patterns can be used on both semi-structured

and free text domains. Depending on the structure of the text, WHISK can

generate patterns that use either context-based representation or delimeter-based

representation or both. An example WHISK rule is shown in Figure 2.2. The

rule implies: (1) skip until the first digit followed by the “br” string; extract the

recognized digit into the “Bedrooms” slot in the target template. (2) skip until

a dollar sign immediately followed by a number; extract the recognized number

into the “Price” slot in the target template.

- Extraction Rule
ID:: 1
Pattern:: * (Digit) BR * $ (Number)
Output:: Rental {Bedrooms $1} {Price $2}

- Input Text
Capitol Hill - 1 br twnhme. fplc D/W W/D.Undrgrnd pkg incl $675. 3 BR,

upper flr turn of ctry HOME. incl gar, grt N. Hill loc $995. (206) 999-9999

- Extracted Info
RENTAL { BEDROOM = “1”; PRICE = “$675”;}
RENTAL { BEDROOM = “3”; PRICE = “$995”;}

Figure 2.2: An extraction rule in the WHISK system

CHAPTER 2. RELATED WORK 25

2.3.1.7 CRYSTAL

The CRYSTAL system [92] automatically induces extraction rules from annotated

training data in order to extract relevant information from texts. These rules,

called concept definitions, use a combination of syntactic, semantic, and lexical

constraints to identify references to the target concept.

CRYSTAL uses supervised learning strategy with a bottom up approach,

which begins with highly specific concept definitions and tries to merge similar

concept nodes by gradually relaxing the constraints. The merged concept is

tested on the training data and error rate for the new concept is calculated. If

the found error rate exceeds an error tolerance parameter, CRYSTAL begins the

generalization process on another initial CN definition. This process continues

until no unification can be executed. The error tolerance parameter can be used

to make the learning process robust. The parameter also determines the trade-off

between precision and recall of the learned patterns.

2.3.1.8 RAPIER

The RAPIER system [14, 15] uses a generalization technique inspired by Inductive

Logic Programming (ILP) to generate symbolic rules for extraction. The

RAPIER extraction rules are indexed by template name and slot name and

contains three parts: 1) a pre-filler pattern (matches text immediately preceding

the target field), 2) a pattern (matches the target field), and 3) a post-filler

pattern (matches the text immediately following the target field).

RAPIER’s learning strategy is compression-based and employs a specific

to general (bottom-up) search. The generalization algorithm generates more

general rules by selecting several random pairs of rules from the rulebase, finding

generalizations of the selcted rule pairs, and selecting the best rule among the

acceptable rules to add to the rulebase. The old rules covered by the newly added

rule (i.e. the ones which cover a subset of the examples covered by the new rule)

are removed from the rulebase when the new rule is added to the rulebase.

CHAPTER 2. RELATED WORK 26

2.3.1.9 SRV

The SRV system [29] is based on a top-down relational algorithm. The system

treats information extraction is a kind of text classification, where every candidate

instance in a document is presented to a classifier, which is asked to accept or

reject them as target information field to extract.

The SRV system provides two basic types of generalization features: simple

and relational. A simple feature (e.g. numeric, capitalized, verb) is a function

mapping a token to some discrete value. On the other hand, a relational feature

(e.g. prev token, next token) maps a token to another token.

SRV starts learning with the entire set of examples (i.e. all negative examples

and any positive examples not covered by already induced rules) and adds

predicates greedily, attempting to maximize the number of positive examples

covered, while minimizing the number of negative examples covered. SRV

validates each learned rule on a hold-out set, a randomly selected portion of

the training data. After training on the remaining data, the number of matches

and correct predictions over the validation set is stored with each rule. This

validation scores are used during testing in order to calculate system’s prediction

confidence.

2.3.1.10 Boosted Wrapper Induction

Boosted Wrapper Induction (BWI) method [31] learns a large number of simple

extraction procedures (called wrappers) and combines them using boosting which

is a method for improving the performance of a simple machine learning algorithm

by repeatedly applying it to the training set. BWI treats IE as a token

classification task, where the task is to classify each token as being a boundary

that marks the beginning or end of a field. It learns two separate models: one

for detecting the start boundaries and one for detecting the end boundaries.

When start and end boundaries are detected, a phrase is extracted based on the

probability of a target phrase of that length occurring.

CHAPTER 2. RELATED WORK 27

2.3.2 Domains

From security to medical field, possible application areas of the research include

a variety of domains. MUC-3 [5] and MUC-4 [2] evaluations performed on

the reports of terrorist events in Central and South America, as reported in

articles provided by the Foreign Broadcast Information Service. Louis et al. [63]

applied IE technology to cyber forensic domain and introduced a probabilistic

NER system for the identification of names in documents for the purpose of

forensic investigation. Maynard and colleagues [65] developed a system that can

identify named entities in diverse text types such as emails, scientific documents

and religious text. Minkov et al. [69] investigated IE for informal text with

an experimental study of the problem of recognizing personal names in emails.

Wellner et al. [103] conducted their experiments on a data set of research

paper citations. As part of their study to minimize human interaction during

corporate expense reimbursement process, Zhu et al. [109] presented a CRF

based approach for extracting relevant named entities from document images.

ProMED-PLUS system [106] can automatically extract the facts from plain

text reports about outbreaks of infectious epidemics around the world. Since

most of the information on the World Wide Web is in textual format, various

studies [48, 58, 70, 29, 91, 8, 25, 49] have increasingly been conducted to extract

information from the Web. The biomedical domain is one of the domains that

many IE studies have focused on. One of the basic tasks in automatic extraction

of information from biological texts is protein name recognition. Tsuruoka

and Tsujii [100] proposed using approximate string searching techniques and

expanding the dictionary in advance with a probabilistic variant generator for

protein name recognition. Fukuda et al. [36] developed PROPER (PROtein

Proper-noun phrase Extracting Rules) system that exploits simple lexical patterns

and orthographic features for protein name recognition. Franzén et al. [28]

introduced the YAPEX system that combines lexical and syntactic knowledge,

heuristic rules and a document-local dynamic dictionary. Tanabe and Wilbur

[93] proposed ABGene system which uses both statistical and knowledge-based

strategies for finding gene and protein names. NLProt [68] is a system that

combines a preprocessing dictionary and rule based filtering step with several

CHAPTER 2. RELATED WORK 28

separately trained support vector machines to identify protein names in the

MEDLINE abstracts. Tatar and Cicekli [95] introduced two different techniques

-a statistical learning method based on bigram language model and an automated

rule learning method- along with the hierarchically categorized syntactic token

types to identify protein names located in the biological texts.

2.3.3 Languages

Although the language subject to most research applications is English, there has

been a growing attention to other languages. The shared task of CoNLL-2002

[98] focused on NER for Spanish and Dutch. A year later, German was one of

the focus languages in CONLL-2003 [99]. Numerous studies [104, 107, 35] have

been conducted on IE in Chinese. Japanese has received a lot of attention as

well [86, 52]. Moreover, various studies deal with the development of systems

for addressing IE in various languages: Korean [19], French [77], Greek [77, 13],

Danish [11], Italian [22], Vietnamese [96], Bengali [43], Arabic [10], Bulgarian

[90], Russian [78], and Ukrainian [54]. Multilingual IE has also received a lot of

attention [40, 85]. Cucerzan and Yarowsky [23] presented a language-independent

bootstrapping algorithm and conducted their experiments on several languages:

Romanian, English, Greek, Turkish and Hindi. This was the first study

conducted to examine named entity recognition in Turkish to our knowledge,

an otherwise seldom researched language. Tur et al. [101] applied statistical

learning approaches to a number of tasks for Turkish: sentence segmentation,

topic segmentation, and name tagging. Their named tagging approach is based

on n-gram language models embedded in hidden Markov models. Bayraktar and

Temizel [9] studied Person name extraction from Turkish financial news articles

using local grammar approach. Conducting their experimentation on different

text genres (news articles, historical text, and child stories), Kucuk and Yazici

[57] presented a rule based named entity recognition system for Turkish which

employs a set of lexical resources and pattern bases for the extraction of named

entities.

Chapter 3

Preliminaries

The objective of this chapter is to provide the necessary foundation for the next

two chapters where we present the details of the technique we propose for IE.

The following section covers the basic knowledge of Turkish and the IE related

challenges drawn from the nature of the language. Lastly in this chapter, the

concept of Specific Generalization of Strings is briefly described. Originally

proposed in order to reduce over-generalization problem in the learning process

of predicates with string arguments, this ILP technique is adapted for IE in our

study.

3.1 Turkish

Turkish is a member of the Oghuz group of the Turkic languages, which belongs to

the Altaic branch of Ural-Altaic language family. Turkish uses a Latin alphabet

consisting of twenty-nine letters, of which eight are vowels and twenty-one are

consonants. Similar to Hungarian and Finnish, Turkish has vowel harmony and

lacks grammatical gender distinction.

Another major feature of Turkish is that it is an agglutinative language with

free word order [75]. The complex morphological structure of Turkish words have

29

CHAPTER 3. PRELIMINARIES 30

a significant role to play in IE; it makes the task even more difficult. In Turkish,

a sequence of inflectional and derivational morphemes can be added to a word.

This concatenation process can yield relatively long words, which can convey the

equivalent meaning of a phrase, or even a whole sentence in English. A single

Turkish word can give rise to a very large number of variants, which results in

the vocabulary explosion.

Surface Form Morphological Decomposition English Meaning

İstanbul istanbul +Noun +Prop +A3sg
+Pnon +Nom

İstanbul

İstanbul’da istanbul +Noun +Prop +A3sg
+Pnon +Loc

in İstanbul

İstanbul’daki istanbul +Noun +Prop +A3sg
+Pnon +Loc ˆDB+Adj+Rel

the (one) in
İstanbul

İstanbul’dakiler istanbul +Noun +Prop +A3sg
+Pnon +Loc ˆDB+Adj+Rel ˆDB
+Noun+Zero+A3pl+Pnon+Nom

the ones in İstanbul

İstanbul’dakilerden istanbul +Noun +Prop +A3sg
+Pnon +Loc ˆDB+Adj+Rel ˆDB
+Noun+Zero+A3pl+Pnon+Abl

from the ones in
İstanbul

Table 3.1: Several surface forms produced using the stem word İstanbul

+Noun ⇒ Noun; +Prop ⇒ Proper Noun ; +Pnon ⇒ Pronoun (no overt
agreement); +A3sg ⇒ 3rd person singular; +A3pl ⇒ 3rd person plural; +Nom
⇒ Nominative; +Loc ⇒ Locative; +Abl ⇒ Ablative; ˆDB+Adj+Rel ⇒
Derivation Boundary + Adjective + Relative; ˆDB+Noun+Zero ⇒ Derivation
Boundary +Noun + 0 Morpheme;

Table 3.1 lists several formations produced using the stem word İstanbul.

Note that the morphemes added to the stem word produce different sur-

face forms. The list can easily be expanded; (e.g. İstanbul’dakilerdenmiş,

İstanbul’dakilerdenmişce,...). In fact, millions of different surface forms can be

derived from a nominal or verbal stem [41]. Although in English, it is possible

that a suffix can change the surface form of a proper noun (e.g. Richard’s), it is

not as common as in Turkish and other morphologically rich languages. Using

each surface form generated from the same stem as a different training element

would cause data sparseness problem in the training data, which indicates that

CHAPTER 3. PRELIMINARIES 31

morphological level processing is a requirement for Turkish IE.

3.2 Specific Generalization of Strings

Specific generalization of strings, described in [20], is based on an observation that

humans learn general sentence patterns using similarities and differences between

many different example sentences that they are exposed to. The basic idea behind

the concept is to generalize the strings by processing similarities and differences

between them. A similarity (SIM) represents a similar part between two strings,

and a difference (DIFF) represents a pair of differing parts between two strings.

The similarities and the differences are the basic elements of a match sequence

(MS) which is defined as the sequence of similarities and differences between

two strings with certain conditions satisfied. For instance, a similarity cannot

follow another similarity, and a difference cannot follow another difference in a

match sequence. The conditions for the match sequence is important because

they guarantee that there can be at least one match sequence for any given two

strings. However, conditions cannot provide that there can be at most one match

sequence for any given two strings.

A specific case of a match sequence, unique match sequence (UMS), can be

described as a match sequence which can occur either uniquely once or none

at all for any given two strings. To meet these criteria, the notion of unique

match sequence has two more necessary conditions on a match sequence. The

first condition states that a symbol cannot occur in any difference, if it occurs in

a similarity. Moreover, the second condition says that a symbol cannot occur in

the second constituent of any difference if the same symbol is found in the first

constituent of a difference. The examples provided below will clarify the unique

match sequence concept.

• UMS (ε, ε)= SIM (ε)

• UMS (ab,ab)= SIM (ab)

CHAPTER 3. PRELIMINARIES 32

• UMS (bc, ef)= DIFF (bc, ef)

• UMS (abcb, dbebf)= DIFF (a, d) SIM (b) DIFF (c, e) SIM (b) DIFF (ε, f)

• UMS (abb, cdb)= ∅

• UMS (ab, ba)= ∅

As evident from the examples, the unique match sequence of two empty strings

is a sequence of a single similarity which is an empty string. Moreover, the unique

match sequence of two identical strings is a sequence of a single similarity which

is equal to that string. The unique match sequence of two totally different strings

is a sequence of a single difference.

In the framework, the separable difference (SDIFF) term is coined to provide

further capturing of similar patterns and to avoid the ambiguity. A difference

DIFF (D1, D2) is said to be separable by difference DIFF (d1, d2) if d1 and d2

occur more than once and the same number of times in D1 and D2, respectively.

A difference D is said to be useful separation difference for a match sequence (or

an instance of match sequence) if all the differences in that match sequence are

separable by D, and the total number of differences which occur more than once

is increased after the separation. The next definition is the most useful separation

difference (MUSDIFF)which is the separation difference that separates the match

sequence with the greatest factor.

In [20], an algorithm which can find the specific generalization of two strings

presented. In the algorithm, the specific instance of a unique match sequence

(SIofUMS) is computed by dividing the unique match sequence iteratively by the

most useful separation difference. The algorithm replaces all differences in the

found specific instance of the match sequence with new variables replace the same

differences with the same variables in order to create the specific generalization

(SG)of two strings. The example below shows the generation of the specific

generalization of two strings:

• UMS (abcdbhec,agcdgfec) = a (b, g) cd (bh, gf) ec

CHAPTER 3. PRELIMINARIES 33

• MUSDIFF (abcdbhec,agcdgfec) = (b, g)

• SIofUMS (abcdbhec,agcdgfec) = a (b, g) cd (b, g) (h, f) ec

• SG(abcdbhec,agcdgfec) = aX cdXY ec

Chapter 4

Named Entity Recognition

4.1 Task Definition

Named Entity Recognition, finding named entities (persons, locations, organi-

zations, etc.) located in unstructured texts, is one of the most fundamental IE

tasks. NER is a prerequisite to more sophisticated information extraction tasks,

such as entity relation detection and event extraction. The main objective of

the task is to extract and categorize all instances of predetermined categories of

names and certain expressions in a given set of documents.

In this study, we generally followed the existing MUC-7 named entity task

definition [17] as a guideline. However, particular characteristics of the Turkish

language and the scope of our study required us to make some adaptations

to the task definiton specified in the guideline. Of the three subtasks (entity

names, temporal expressions, and numerical expressions) defined in [17], leaving

numerical expressions out, we only included two of them in our task definiton.

Moreover, morphemes coming after the named entities are considered as part of

the name in our study. The following subsections describe details of our task

definiton.

34

CHAPTER 4. NAMED ENTITY RECOGNITION 35

4.1.1 Scope

The entity names subtask is limited to proper names, acronyms, and sometimes

miscellaneous other unique identifiers, which are categorized as follows:

• PERSON : named person or family.

• ORGANIZATION : corporate, governmental, or other organizational entity.

• LOCATION : name of politically or geographically defined location (e.g.

cities, provinces, countries, international regions, bodies of water, moun-

tains).

The temporal expressions subtask is for “absolute” and “relative” temporal

expressions and categorized as follows:

• DATE : complete or partial date expression.

• TIME : complete or partial expression of time of day.

4.1.2 General Guidelines

• Morphemes coming after the named entities are considered as part of the

name.

Input Text: “Kamuran Mustafa Ballı’nın”

Extraction: <PERSON> Kamuran Mustafa Ballı’nın </PERSON>

• Conjoined named entities in general are to be extracted separately.

Input Text: “İsmail Bulat ve Mustafa Erdoğan” (İsmail Bulat and Mustafa

Erdoğan)

Extraction: <PERSON> İsmail Bulat </PERSON> ve <PERSON> Mustafa

Erdoğan </PERSON>

CHAPTER 4. NAMED ENTITY RECOGNITION 36

• Conjoined multi-name expressions are to be extracted as single entities.

Input Text: “Muhterem ve Güleser Şahin”

Extraction: <PERSON> Muhterem ve Güleser Şahin </PERSON>

Input Text: “Balat ve Tarabya Polis Karakolları” (Balat and Tarabya Police

Stations)

Extraction: <ORGANIZATION> Balat ve Tarabya Polis Karakolları

</ORGANIZATION>

• Single-name expressions containing conjoined modifiers with no elision are to be

extracted as single entities.

Input Text: “Hakkari Dağ ve Komando Tugayı” (Hakkari Mountain and Com-

mando Brigade)

Extraction: <ORGANIZATION> Hakkari Dağ ve Komando Tugayı

</ORGANIZATION>

Input Text: “Taksim İlkyardım Eğitim ve Araştırma Hastanesi” (Taksim First Aid

Training and Research Hospital)

Extraction: <ORGANIZATION> Taksim İlkyardım Eğitim ve Araştırma Has-

tanesi </ORGANIZATION>

• In case of nested expressions, only outer expressions are to be extracted.

Input Text: “5 Ocak Caddesi” (5th January Street)

Extraction: <LOCATION> 5 Ocak Caddesi </LOCATION>

4.1.3 Organization Names

• Miscellaneous types of proper names that are to be extracted as ORGANIZA-

TION include stock exchanges, multinational organizations, political parties,

orchestras, unions, non-generic governmental entity names, sports teams and

armies.

CHAPTER 4. NAMED ENTITY RECOGNITION 37

Input Text: “TBMM” (acronym for Turkish Grand National Assembly/Parliament)

Extraction: <ORGANIZATION> TBMM </ORGANIZATION>

Input Text: “Türk Silahlı Kuvvetleri” (Turkish Armed Forces)

Extraction: <ORGANIZATION> Türk Silahlı Kuvvetleri </ORGANIZATION>

Input Text: “Türk Bankacılar Birliği” (The Banks Association of Turkey)

Extraction: <ORGANIZATION> Türk Bankacılar Birliği </ORGANIZATION>

Input Text: “Ziraat Bankası” (Ziraat Bank)

Extraction: <ORGANIZATION> Ziraat Bankası </ORGANIZATION>

• Miscellaneous types of proper names referring to facilities (e.g., mosques,

churches, embassies, factories, hospitals, hotels, museums, universities) are to

be extracted as ORGANIZATION.

Input Text: “İpekyolu Cami” (Ipekyolu Mosque)

Extraction: <ORGANIZATION> İpekyolu Cami </ORGANIZATION>

Input Text: “Aşkale Çimento Fabrikası” (Askale Cement Factory)

Extraction: <ORGANIZATION> Aşkale Çimento Fabrikası </ORGANIZATION>

Input Text: “Betyaakov Sinagogu” (Betyaakov Synagog)

Extraction: <ORGANIZATION> Betyaakov Sinagogu </ORGANIZATION>

Input Text: “Van 100. Yıl Üniversitesi” (Van 100th Year University)

Extraction: <ORGANIZATION> Van 100. Yıl Üniversitesi </ORGANIZATION>

• Generic entity names such as ”the police” and ”the government,” are not to be

extracted.

Input Text: “Jandarma” (the gendarmerie)

Extraction: None

Input Text: “Emniyet” (the police)

Extraction: None

CHAPTER 4. NAMED ENTITY RECOGNITION 38

4.1.4 Person Names

• Named person or families are to be extracted as PERSON.

Input Text: “Mustafa Yücel Özbilgin”

Extraction: <PERSON> Mustafa Yücel Özbilgin </PERSON>

Input Text: “M.Cahit Kıraç”

Extraction: <PERSON> M.Cahit Kıraç </PERSON>

• Titles such as ”Dr.” and role names such as ”President” are not considered part

of a person name.

Input Text: “Cumhurbaşkanı Ahmet Necdet Sezer” (President Ahmet Necdet

Sezer)

Extraction: Cumhurbaşkanı <PERSON> Ahmet Necdet Sezer </PERSON>

Input Text: “Org.Hilmi Özkök” (GEN Hilmi Özkök)

Extraction: Org. <PERSON> Hilmi Özkök </PERSON>

• Partial Names (names without first names, or names without family names) are

to be extracted as PERSON.

Input Text: “Erdoğan”

Extraction: <PERSON> Erdoğan </PERSON>

Input Text: “Demirel”

Extraction: <PERSON> Demirel </PERSON>

• Names not clearly mentioned for basic legal and ethical reasons are to be marked

as PERSON.

Input Text: “T.F.”

Extraction: <PERSON> T.F. </PERSON>

CHAPTER 4. NAMED ENTITY RECOGNITION 39

Input Text: “Ahmet K.”

Extraction: <PERSON> Ahmet K. </PERSON>

4.1.5 Location Names

• Miscellaneous types of proper names that are to be extracted as LOCATION

include named heavenly bodies, continents, countries, provinces, counties, cities,

regions, districts, towns, villages, neighborhoods, airports, highways, street

names, street addresses, oceans, seas, straits, bays, channels, sounds, rivers,

islands, lakes, national parks, mountains, fictional or mythical locations, and

monumental structures.

Input Text: “Mustafa Kemal Bulvarı” (Mustafa Kemal Boulevard)

Extraction: <LOCATION> Mustafa Kemal Bulvarı </LOCATION>

Input Text: “Hükümet Caddesi” (Hukumet Street)

Extraction: <LOCATION> Hükümet Caddesi </LOCATION>

Input Text: “Yüksekova” (Yuksekova)

Extraction: <LOCATION> Yüksekova </LOCATION>

Input Text: “Musul” (Mosul)

Extraction: <LOCATION> Musul </LOCATION>

Input Text: “Londra” (London)

Extraction: <LOCATION> Londra </LOCATION>

Input Text: “E-5 Otoyolu” (E-5 Highway)

Extraction: <LOCATION> E-5 Otoyolu </LOCATION>

Input Text: “Erzincan-Sivas Demiryolu” (Erzincan-Sivas Railroad)

Extraction: <LOCATION> Erzincan-Sivas Demiryolu </LOCATION>

Input Text: “Amanos Dağı” (Amanos Mountain)

Extraction: <LOCATION> Amanos Dağı </LOCATION>

CHAPTER 4. NAMED ENTITY RECOGNITION 40

Input Text: “Uzungeçit Yaylası” (Uzungecit Plateau)

Extraction: <LOCATION> Uzungeçit Yaylası </LOCATION>

Input Text: “Cehennem Deresi” (Cehennem Creek)

Extraction: <LOCATION> Cehennem Deresi </LOCATION>

Input Text: “Sason Çayı” (Sason Stream)

Extraction: <LOCATION> Sason Çayı </LOCATION>

Input Text: “Atatürk Havalimanı” (Ataturk Airport)

Extraction: <LOCATION> Atatürk Havalimanı </LOCATION>

Input Text: “Fatma Girik Parkı” (Fatma Girik Park)

Extraction: <LOCATION> Fatma Girik Parkı </LOCATION>

4.1.6 Temporal Expressions

• The DATE sub-type is a temporal unit of a full day or longer. Both absolute

and relative dates are extracted as DATE.

Input Text: “14 Haziran, 2004” (14 June, 2004)

Extraction: <DATE> 14 Haziran , 2004 </DATE>

Input Text: “21 ağustos” (21 August)

Extraction: <DATE> 21 ağustos </DATE>

Input Text: “20 ağustos - 20 eylül 2005” (20 August - 20 September 2005)

Extraction: <DATE> 20 ağustos - 20 eylül 2005 </DATE>

Input Text: “07 Mart 2006 Salı” (07 March 2006 Tuesday)

Extraction: <DATE> 07 Mart 2006 Salı </DATE>

Input Text: “dün” (yesterday)

Extraction: <DATE> dün </DATE>

CHAPTER 4. NAMED ENTITY RECOGNITION 41

Input Text: “bugün” (today)

Extraction: <DATE> bugün </DATE>

Input Text: “5 ay önce” (5 months ago)

Extraction: <DATE> 5 ay önce </DATE>

• The TIME sub-type is defined as a temporal unit shorter than a full day, such

as second, minute, or hour. Both absolute and relative times are extracted as

TIME.

Input Text: “bu sabah” (this morning)

Extraction: <TIME> bu sabah </TIME>

Input Text: “14:30”

Extraction: <TIME> 14:30 </TIME>

Input Text: “06.00”

Extraction: <TIME> 06.00 </TIME>

• Temporal expressions are to be extracted as a single item. Contiguous subparts

(month/day/year) are not to be separately extracted unless they are taggable

expressions of two distinct temporal sub-types (date followed by time or time

followed by date).

Input Text: “28 Ekim, 2004 07:51:00 (TSİ)” (28 October, 2004 07:51:00 (Turkish

Time Zone))

Extraction: <DATE> 28 Ekim, 2004 </DATE> <TIME> 07:51:00 (TSİ) </TIME>

• Compound (”marker-plus-unit”) temporal expressions, and their lexicalized

equivalents, should be extracted as single items. However, if a lexicalized

”marker-plus-unit” modifies a contiguous time unit of a different sub-type, they

should be tagged as two items.

Input Text: “önceki gece” (the night before last night)

Extraction: <TIME> önceki gece </TIME>

CHAPTER 4. NAMED ENTITY RECOGNITION 42

Input Text: “dün sabah” (yesterday morning)

Extraction: <DATE> dün </DATE> <TIME> sabah </TIME>

• Words or phrases modifying the expressions (such as ”around” or ”about”) are

not to be extracted.

Input Text: “saat 10.00 sıralarında” (around 10 o’clock)

Extraction: <TIME> 10.00 </TIME>

• Absolute time expressions combining numerals and time-unit designators or other

subparts associated with a single temporal sub-type, are to be tagged as a single

item.

Input Text: “15:35:00 (TSİ)” (15:35:00 Turkish Time Zone))

Extraction: <TIME> 15:35:00 (TSİ) </TIME>

• When a temporal expression contains both relative and absolute elements, the

entire expression is to be extracted.

Input Text: “geçen nisan” (the last April)

Extraction: <DATE> geçen nisan </DATE>

Input Text: “geçtiğimiz yıl 6 ağustosta” (on August 6th last year)

Extraction: <DATE> geçtiğimiz yıl 6 ağustosta </DATE>

• Indefinite or vague temporal expressions are not be extracted.

Input Text: “son zamanlarda” (recently)

Extraction: None

Input Text: “şimdi” (now)

Extraction: None

CHAPTER 4. NAMED ENTITY RECOGNITION 43

4.2 Generalization Features

Two important criteria that determine the efficacy and the success of an extractor

are (1) the ability to recognize unseen named entities, and (2) the ability to precisely

distinguish name entities that belong to a named entity class from the other named

entity classes and non-entity names. Both criteria require accurate generalization of the

known named entities. Generalizing means to recognize the parts susceptible of being

changed in new names, and represent them with generic placeholders. In our study, we

generalize named entities by using a set of features that are capable of describing various

properties of the text. In addition to accurate generalization, the use of generalization

features will help overcome the data sparseness problem that occurs because of the

diversity of the language constructs and the insufficiency of the input data. When

we consider all possible language constructs, it is not possible to observe most of the

sequences during the training of the language model.

The features used in our study can be grouped into the following four categories:

• Lexical Features: IE deals with text documents which can be seen as contiguous

series of tokens. As basic constituents of the text, the tokens themselves are

used for IE as well as the features associated with them. Gazetteer information

(e.g. list of person names, list of city names) provided to the system can be

mapped to the tokens and utilized for generalization purposes. We used a two

level gazetteer hierarchy in our study to achieve accuracy in generalization. The

first level in our hierarchy corresponds to each named entity class (e.g. Person,

Location) and provides a higher level of generalization. The second level details

the gazetteer categorization (e.g. Location.Country, Location.City) and provides

more specific classification. The complete list of the used gazetteer lists is

provided in Appendix D.

• Morphological Features: We effectively used the morphological features of the

tokens not only for addressing the challenges arising from the agglutinative nature

of Turkish, but also for the clues they offer towards better generalization.

• Contextual Features: The information captured in the surrounding text of the

named entities is used by the system to learn and represent the patterns and

regularities in the target named entity boundaries which exist in the training

dataset.

CHAPTER 4. NAMED ENTITY RECOGNITION 44

• Orthographic Features: These features express various orthographic aspects of

the tokens. We selected four primitive features, a combination of which can yield

more complicated patterns: Capitalization (Lower, Upper, Proper, Unclassified),

Length Class (Short, Middle, Long), Length (the length of the token), and Type

Class (Alpha, Numeric, Alphanumeric, Punctuation, Unclassified).

4.3 Rule Representation

The ability to recognize the regularities among the target named entities and to capture

the learnt regularities/patterns in the rules requires a powerful rule representation.

Moreover, the coverage of the learnt rules which also related rule representation affects

the performance of the rule learning systems. While over-specific rules may cause

low recall, over-general rules cause low precision. An expressive rule language that

can handle the mentioned generalization features in a flexible manner and provide

the adequate level of granularity for rule coverage is necessary to achieve good NER

performance.

A NER rule defined in our system consists of four parts. The first part simply

addresses the NE class which is the target of this rule. The last three parts contain the

pattern segments: (1) The PRE-FILLER (PRE) segment tries to sense and match the

text immediately preceding the target NE, (2) The FILLER (FILL) segment tries to

sense and match the target NE, and (3) The POST-FILLER (POST) segment tries to

sense and match the text immediately following the target NE. The pattern segments

in an extraction rule can be seen as a sequence of pattern elements whose type can

be either Similarity (SIM) or Optional (OPT). A type SIM pattern element matches

exactly one token from the document that meets the element’s constraints. On the

other hand, a type OPT pattern element can match either a token that meets the

element’s constraints or none. Being tailored parallel to the features mentioned in the

previous section, our rule representation uses pattern elements containing several fields

to provide the expressiveness we need for accurate generalization.

In order to make the rule representation concept clearer, two example rules are

given in Figure 4.1. In our rule syntax, rule parts are separated by colons. As the first

part of the first rule indicates, the rule captures the pattern information belonging to

CHAPTER 4. NAMED ENTITY RECOGNITION 45

è [PERSON :

SIM<valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper; Middle;
6; Alpha> :

SIM< ; *+Noun+?(Prop)+A3sg+Pnon+Nom; {Person.First Name}; {Person};
Proper; ; ; Alpha> OPT< ; *+Noun+?(Prop)+A3sg+Pnon+Nom;
{Person.First Name}; {Person}; Proper; ; ; Alpha> SIM< ; *+?(Noun)+*+*+*+*;
{Person.Last Name}; {Person}; Proper; ; ; Alpha> :

SIM<,; ,+Punc; {};{}; Unclass; Short; 1; Punc>]

è [DATE :

NULL :

SIM< ; *+Num+Card; {Date.Day Number, Time.Minute, Number.Number}; {Date,
Time, Number}; Unclass; Short; 2; Number> SIM< ; *+Noun+A3sg+Pnon+Nom;
{Date.Month}; {Date}; ; ; ; Alpha> OPT<,; ,+Punc; {}; {}; Unclass; Short; 1;
Punc> SIM<; *+Num+Card; {Date.Year}; {Date}; Unclass; Short; 4; Number> :

SIM< ; *+Noun+A3sg+P3sg+*; {Date.Post Phrase}; {Date}; Lower; ; ; Alpha>]

Figure 4.1: Example NER rules

PERSON NE class. The next part, the PRE segment, in the first example contains only

one pattern element, a SIM element, which has eight fields separated by semicolons:

(1) token, (2) morphological tag, (3) low-level gazetteer set, (4) high-level gazetteer set,

(5) case tag, (6) length class, (7) token length, and (8) type class. Each field in the

pattern element represents a constraint. In order a pattern element to match a token in

the text, that token must satisfy all of the constraints imposed by that pattern element

(conjunction of the constraints).

The first constraint, token field, is a non-case sensitive atomic field that matches

only the exact text values, if it is set to a value. The morphological tag stored in the

second field is a simple regular expression that provides a concise and flexible means for

matching tokens according to their morphological characteristics. Each morpheme in

the morphological tag is separated by a plus sign. Special characters are used to express

the specific variations in the regular expressions. The star (*) character matches a single

morpheme with any type. The question mark (?) character with the combination of

parentheses indicates that there is zero or one of a single morpheme with the morpheme

CHAPTER 4. NAMED ENTITY RECOGNITION 46

type given in the parentheses. When it is used with the star character (i.e. ”?(*)”), it

indicates that there is zero or one of a single morpheme with any type. The third and

the fourth field contain gazetteer set constraints. To be matched, a token must be in

the coverage of the gazetteer sets (i.e. a token must not be included any gazetteer list

which is not in the sets). Since it is practically impossible to have complete gazetteer

lists that cover all available names, our matching algorithm does not refuse the tokens

which are not listed in any of our gazetteer lists in order to enable the system to tolerate

the potential faults that can be caused by missing names in the gazetteer lists. The

remaining atomic fields contain the constraints regarding to the orthographic features

described in the preceding section. Returning to the first example given in Figure 4.1,

the PRE segment of the rule indicates that the named entity phrase to be matched by

this rule must be preceded by the token Valisi (Governor (of)).

• Example Rule 1 (Person):
è ...Adana Valisi Cahit Kıraç, Türk-Amerikan Derneği binasındaki patlamanın
konulan bombadan...
è ...İstanbul Valisi Muammer Güler, Çapa’da İETT otobüsünde...
è ...inceleme yapan Ağrı Valisi Halil İbrahim Akpınar, yangının terör...
è ...Bursa Valisi Oğuz Kağan Köksal, Büyükşehir Belediye Başkanı Hikmet...

• Example Rule 2 (Date):
è ...Van’da 31 ekim 2005 tarihinde Erek Polis Karakolu’na...
è ...20 Mayıs 2003 tarihinde Ankara Kızılay’da bir kafede...
è ...göre, 26 Eylül 2000 günü akşam saatlerinde...

Figure 4.2: Text excerpts containing named entities that match the example
rules given in Figure 4.1

The FILL segment states that the named entity phrase to be matched by this rule

must start with a token which is a name in nominative form, not listed in any gazetteer

list other than Person.First Name gazetteer list, in proper case, in any length and

containing only alpha characters. The rule also requires that the last token of the

person phrase must be either in Person.Last Name gazetteer list or none, in proper

case, in any length and containing only alpha characters. Optionally, another token

possessing the same characteristics as the first token can occur between the first and

the last token. Finally, the POST segment asserts that the named entity phrase to

be matched by the rule must be followed by a comma. The rule given in the second

CHAPTER 4. NAMED ENTITY RECOGNITION 47

example describes a pattern belongs to DATE NE class in a similar fashion. Note that

the PRE segment is set to NULL value, which means the rule does not impose any

constraints on the tokens that can occur before the target named entity phrase. Some

text excerpts containing named entities that match the given example rules are shown

in Figure 4.2.

4.4 Automatic Rule Learning

The ability of rule learning and subsequent generalization is one of the critical functions

in the system. Our automatic rule learning and generalization method is based on the

concept of specific generalization of strings [20]. We applied the concept to generalize

both the patterns and the features in different levels; and employed a modified version

of the coverage algorithm presented in the study for inducing the rules. In order to

generalize two strings, a unique match sequence of those strings is obtained, and the

differences in the unique match sequence are replaced by variables to get a generalized

form of the strings. Referring the reader to the previous chapter for the details of the

concept, we will focus more on how we adapted the concept to automatic rule learning

for NER.

Prior to learning NER rules from the examples in the training text, the input

text is segmented in sentences and tokenized. We followed the standard tokenization

method which uses white-space and punctuation characters as delimiters except that we

removed the apostrophe symbol (’) from our delimiter set since morphemes coming after

the named entities are considered as part of the name in our study. The next step is to

assign feature values to every token in the text. First, possible morphological parses of

each observed token are found, and the most appropriate one among the found parses

is selected through morphological disambiguation process [24, 61]. Upon labeling the

observed tokens with the appropriate morphological tags, the system continues with

gazetteer list search. An important point to highlight is that the stem of the token

is looked up in the gazetteer lists to minimize the effect of morphological complexity.

Finally, each token is labeled with their corresponding orthographic feature values

before starting the learning. Thus each token is represented by its eight features, and

NER rules are learnt from these representations of tokens.

CHAPTER 4. NAMED ENTITY RECOGNITION 48

Subsequent to preprocessing of the training data, the learner starts generating

simple patterns from the training examples. A simple pattern is generated using

the preceding token, the following token, and the tokens of a named entity. The

generated simple patterns are kept in the rule representation stated in the previous

section. The generalization function GEN(R1, R2) takes two examples in the rule

representation and returns a generalized rule that covers the both examples by relaxing

the corresponding constraints specified by the feature fields in the pattern elements.

The generalization of the atomic fields (token, capitalization, length class, length, type

class) is straightforward. If the values in the corresponding fields of the examples

are the same, this value is assigned to the same field of the generalized pattern

element; otherwise, the field is left empty, which indicates that no constraint is defined

for that field. Generalization of morphological tag field is based on the concept of

specific generalization of strings [20]. Processing similarities and differences between the

morphological tag fields of the examples, and replacing the differences with either a type

ANY (*) variable or a type OPTIONAL (?) variable, or combination of these two, the

function obtains a simple regular expression that can represent the both examples. For

gazetteer set fields, the generalization operation returns the union of two input gazetteer

sets. However, if one of the gazetteer sets is empty, the generalization operation returns

an empty set. Empty gazetteer sets impose no constraint on the patterns.

Because the examples can differ in the number of tokens, we applied a method that

calculates a simple similarity score for each possible way for matching the tokens and

selects the match with the maximum similarity score. The similarity score for a match

is the sum of the similarity scores of each pattern element, which is the aggregated sum

of the similarity scores of each feature field. Each field’s contribution to the similarity

score vary according to its discrimination power. For instance, the orthographic type

class is apparently less powerful than gazetteer list sets in discriminating NEs.

In order to illustrate the rule generalization concept, an example rule generation

is given in Figure 4.2. In the example, a generalized rule is learnt from two

person name instances located in the following text excerpts: “...Elazığ Valisi Kadir

Koçdemir’in geçtiği...”, “...Van Valisi Hikmet Tan, konvoyuna...”. By performing

several generalization operations over the different pattern elements, the learner obtains

the generalized rule shown in Figure 4.2. In the example, the generalized rule asserts

the following constraints: (1) the named entity phrase to be matched by this rule must

be preceded by the token Valisi, (2) the named entity phrase to be matched by this rule

CHAPTER 4. NAMED ENTITY RECOGNITION 49

• Seed Instances (Person):

“...Valisi Kadir Koçdemir’in geçtiği...”, “...Valisi Hikmet Tan,...”

• Preprocessing:

è <valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper;
Middle; 6; Alpha>

<kadir; kadir+Noun+Prop+A3sg+Pnon+Nom; {Person.First Name,
Person.Last Name}; {Person}; Proper; Middle; 5; Alpha>
<koçdemir’in; koçdemir+Noun+Prop+A3sg+Pnon+Nom;
{Person.Last Name}; {Person}; Proper; Long; 11; Alpha>

<geçtiği; geç+Verb+PosˆDB+Adj+PastPartˆDB+Noun+Zero+A3sg+
P3sg+Nom; { }; { }; Lower; Middle; 7; Alpha>

è <valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper;
Middle; 6; Alpha>

<hikmet; hikmet+Noun+A3sg+Pnon+Nom; {Person.First Name}; {Person};
Proper; Middle; 6; Alpha>
<tan; tan+Noun+A3sg+Pnon+Nom; {Person.First Name, Person.Last Name};
{Person}; Proper; Short; 3; Alpha>

<,; ,+Punc; { }; { }; Unclass; Short; 1; Punc>

• Simple Pattern#1

[PERSON:

SIM<valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper;
Middle; 6; Alpha> :

SIM<kadir; kadir+Noun+Prop+A3sg+Pnon+Nom; {Person.First Name,
Person.Last Name}; {Person}; Proper; Middle; 5; Alpha> SIM<koçdemir’in;
koçdemir+Noun+Prop+A3sg+Pnon+Nom; {Person.Last Name}; {Person};
Proper; Long; 11; Alpha>:

SIM <geçtiği; geç+Verb+PosˆDB+Adj+PastPartˆDB+Noun+Zero+
A3sg+P3sg+Nom; { }; { }; Lower; Middle; 7; Alpha>]

CHAPTER 4. NAMED ENTITY RECOGNITION 50

• Simple Pattern#2

[PERSON:

SIM<valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper;
Middle; 6; Alpha>:

SIM<hikmet; hikmet+Noun+A3sg+Pnon+Nom; {Person.First Name};
{Person}; Proper; Middle; 6; Alpha>

SIM<tan; tan+Noun+A3sg+Pnon+Nom; {Person.First Name,
Person.Last Name}; {Person}; Proper; Short; 3; Alpha>

SIM<,; ,+Punc; { }; { }; Unclass; Short; 1; Punc>]

• Generalized Rule:

[PERSON :

SIM<valisi; vali+Noun+A3sg+P3sg+Nom; {Person.Title}; {Person}; Proper;
Middle; 6; Alpha> :

SIM< ; *+Noun+?(Prop)+A3sg+Pnon+Nom; {Person.First Name, Per-
son.Last Name}; {Person}; Proper; Middle; ; Alpha>

SIM< ; *+Noun+?(Prop)+A3sg+Pnon+*; {Person.First Name,
Person.Last Name}; {Person}; Proper; ; ; Alpha> :

SIM< ;*+?(Verb)+?(Pos)+?(ˆDB)+?(Adj)+?(PastPart)+?(ˆDB)+
?(Noun)+?(Zero)+?(A3sg)+?(P3sg)+*; { }; { }; ; ; ; >]

• Recognizable NEs:

“Adana Valisi Cahit Kıraç,”, “Tunceli Valisi Mustafa Erkal yaptığı”, “Çankırı
Valisi Ayhan Çevik’in bulunduğu”, “İstanbul Valisi Muammer Güler,”

Figure 4.2: An example NER rule generation

CHAPTER 4. NAMED ENTITY RECOGNITION 51

must start with a token which is a name in nominative form, listed in Person.First Name

and/or Person.Last Name gazetteer lists, in proper case, 5-8 characters in length and

containing only alpha characters, (3) the last token of the named entity must be in

Person.First Name and/or Person.Last Name gazetteer lists, in proper case, in any

length and containing only alpha characters, and (4) the token comes after the named

entity must match the morphological tag specified by the POST segment of the rule.

Note that some person names recognizable by the generalized rule are also given in the

example. As evident from the given list, exploiting morphological features increases

the recognizability of the NEs.

Our coverage algorithm that finds RULES, the set of generalized rules, is given in

Figure 4.3. Initially, RULES is set to an empty set (Figure 4.3, Line 1). The algorithm

then generates the rule R for all positive examples available in the training dataset and

adds R into RULES if it is not already in the set (Figure 4.3, Lines 2-4). Afterwards,

the algorithm iteratively generalizes the rules available in RULES (Figure 4.3, Line

5-19). In each iteration, for each rule R1 in RULES, possible generalized rules are

found and kept in a temporary rule-set RULEStemp (Figure 4.3, Lines 9-12). Then,

the rules in RULEStemp are sorted in descending order of the similarity factor, a score

that is directly proportional to the similarity of the rules used to generate a generalized

rule (Figure 4.3, Line 13). The sort process is performed to ensure that the rules with

high similarity factors are added into RULES in the next step. Subsequently, until

k number of generalized rules are added into RULES or every rule in RULEStemp

are validated, the rules in RULEStemp are validated on the training dataset in order

to give their confidence factors; and the rules with confidence factors above a certain

threshold value are added into RULES, while the rules from which the generalized rule

generated are dropped (Figure 4.3, Lines 14-19). The confidence factor of a rule is

calculated as the percentage of correctly extracted names as a result of applying that

rule to the training dataset. During the confidence factor calculation, the algorithm

also collects the rule exceptions and builds the rule exception list for each rule, which we

will discuss in the next section. This iterative loop continues until no more generalized

rule with confidence factor above the threshold value can be added into RULES. After

sorting the RULES in ascending order of the coverage -number of positive examples

covered- (Figure 4.3, Line 10), the algorithm eliminates the redundancy in RULES. If

all positives examples covered by a rule are also covered by some other rules in the

rule-set, that rule is deleted from the set (Figure 4.3, Lines 11-15). The reasoning

behind sorting rules in ascending order of their coverage is our preference of general

CHAPTER 4. NAMED ENTITY RECOGNITION 52

rules to specific rules.

(1) RULES ← ∅
(2) FOR each positive example e in the example space E:
(3) R← e
(4) IF R 6∈ RULES ADD R into RULES
(5) hasMoreGeneralization← TRUE
(6) WHILE (hasMoreGeneralization = TRUE)
(7) hasMoreGeneralization← FALSE
(8) FOR each rule R1 ∈ RULES:
(9) RULEStemp ← ∅
(10) FOR each rule R2 ∈ RULES (where R1 6= R2):
(11) R← GEN(R1, R2)
(12) IF R 6∈ RULEStemp ADD R into RULEStemp

(13) SORT RULEStemp in descending order of the similarity factor
(14) UNTIL k rules added into RULES or every rule in RULEStemp validated:
(15) TEST every rule R in RULEStemp on the training dataset and
CALCULATE CFR (the confidence factor of R)
(16) IF CFR ≥ T (confidence factor threshold) and R 6∈ RULES
(17) ADD R into RULES
(18) DROP rules R1 and R2, from which R generalized, from
RULES
(19) hasMoreGeneralization← TRUE
(20) SORT RULES in ascending order of the coverage
(21) FOR each rule R ∈ RULES:
(22) IF there exists another rule that covers ER (the positive examples covered by R)
(23) DROP R from RULES
(24) IF every example in ER is also covered by another rule in RULES
(25) DROP R from RULES

Figure 4.3: The rule generalization algorithm

There are two parameters determined by the user: the confidence factor threshold

(T), and the number of generalized rules to generate for each rule in each cycle (k).

The first parameter controls the trade-off between selectivity and sensitivity. By setting

a higher T value, it is possible to increase the system’s ability to precisely distinguish

name entities that belong to a named entity class from the other named entity classes

and non-entity names; however this can result in a decrease in the system’s ability

to recognize unseen named entities. The second parameter controls the learning time

of the system. The confidence factor of a rule is found by validating that rule on

the training dataset, which requires a computational time. By limiting the number of

generalized rules to generate for each rule in each cycle, the algorithm provides control

over the total computational time spent for confidence factor calculation.

CHAPTER 4. NAMED ENTITY RECOGNITION 53

4.5 Rule Refinement

In order to make full use of the information available in training data and improve the

algorithm’s extraction performance by further rule refinement, each rule in the rule-set

is associated with a set of exceptions. The problem is that of efficient utilization of

the negative examples (i.e. non-NEs or NEs of different classes) in the training data,

though they are used in confidence factor calculation (Figure 4.3, Line 15). Unless it

is a 100% confident rule, a rule in the final rule-set may cover some negative instances

in the training data. This leads to recognition of an incorrect NE during the test,

even if that name is marked as a non-NE or a NE of a different class in the training

data. This issue is solved by associating each rule in the final rule-set with a set of

exceptions. During confidence factor calculation, every negative instance recognized by

the candidate rule is put into that rule’s exception set. If any of the names in a rule’s

exception set are recognized by that rule during the test, the recognized names are just

ignored and not extracted.

4.6 Testing & Post-Processing

Subsequent to the generation of the rule-set and the completion of the training phase,

the test phase starts. Starting from each token in the text, the system applies the learnt

rules to the test data. If a rule matches a phrase between two sentence boundaries and

the matched phrase is not in that rule’s exception set, the matched phrase is put into a

candidate list. In case of any conflict (i.e. overlapping phrases), the longest candidate

is selected during the post-processing step, which comes after testing.

Chapter 5

Entity Relation Detection

5.1 Task Definition

Entity Relation Detection refers to identifying relationships between entities mentioned

in text documents. In our study, we restrict the scope of the problem to sentence level.

That is, our relationship detection system identifies and extracts relationships at the

sentence level.

Although we generally followed the existing MUC-7 information task definition [18]

as a guideline, the task definiton is tailored to the scope and the objectives of our study.

However, these adaptations are mostly domain related. For instance, relation categories

in our study are different from those defined in [18]. The following subsections describe

details of our task definiton.

5.1.1 Scope & General Guidelines

The task is restricted to the following three relation types possible between ORGANI-

ZATION, PERSON, and LOCATION named entity categories:

• LOCATED IN : indicates an ORGANIZATION or a LOCATION is located in

another LOCATION.

54

CHAPTER 5. ENTITY RELATION DETECTION 55

• AFFILIATED WITH : shows a PERSON is affiliated with an ORGANIZATION.

• ATTACKED BY : indicates that a PERSON or an ORGANIZATION is attacked

by another PERSON or another ORGANIZATION.

The target relations are required to be between two entities in the same sentence.

Moreover, the extracted information must be locatable or linked to something in the

text. Our scope does not cover the use of world knowledge or the format of the article

in inferencing during information extraction.

Some entities may be in more than one relationship. Our task definition requires

the extraction of all relations available in the text.

5.1.2 LOCATED IN Relations

• Relationship between two locations: A LOCATION is located in another

LOCATION.

Input Text: “Bingöl’ün Genç ilçesinde, PKK’lı teröristler tarafından döşenen

mayın, askeri aracın geçişi sırasında patladı.” (The mine planted by PKK terrorists

exploded during military vehicle’s pass in Bingol’s Genc district.)

Extracted Relation: <LOCATED IN Entity=“Genç” Ref Entity=“Bingöl’ün” />

• Relationship between an organization and a location: An ORGANIZATION is

located in a LOCATION.

Input Text: “Mardin’de Yenişehir Polis Karakoluna teröristlerce saldırıldı.” (Yenise-

hir Police Station was attacked by terrorists in Mardin.)

Extracted Relation: <LOCATED IN Entity=“Yenişehir Polis Karakoluna”

Ref Entity= “Mardin’de” />

• Transitive case: An ORGANIZATION is located in a LOCATION which is

located in another LOCATION. Hence, the ORGANIZATION is also located in

the second LOCATION.

CHAPTER 5. ENTITY RELATION DETECTION 56

Input Text: “Ağrı’nın Doğubeyazıt ilçesindeki Uluyol Polis Merkezi’ne saldırı

düzenlendi.” (In Agri’s Dogubeyazit district, an attack against Uluyol Police Center

was organized.)

Extracted Relation: <LOCATED IN Entity=“Doğubeyazıt ”

Ref Entity=“Ağrı’nın” />

Extracted Relation: <LOCATED IN Entity=“Uluyol Polis Merkezi’ne”

Ref Entity=“Doğubeyazıt” />

Extracted Relation: <LOCATED IN Entity=“Uluyol Polis Merkezi’ne”

Ref Entity=“Ağrı’nın” />

5.1.3 AFFILIATED WITH Relations

• Relationship between a person and an organization: A PERSON is affiliated

with an ORGANIZATION.

Input Text: “Fail DHKP-C terör örgütü üyesi Gültekin Koç olarak belirlendi.”

(The perpetrator was identified as DHKP-C terrorist organization member Gultekin

Koc.)

Extracted Relation: <AFFILIATED WITH Entity=“Gültekin Koç”

Ref Entity=“DHKP-C” />

• Relationships between multiple persons and an organization: Multiple PERSON s

are affiliated with the same ORGANIZATION.

Input Text: “Patlamada, TCDD çalışanları Celal Korkmaz, Özcan Türker, ve

Mehmet Şimşek hayatını kaybetti.” (In the explosion, TCDD employees Celal Korkmaz,

Ozcan Turker, and Mehmet Simsek lost their lives.)

Extracted Relation: <AFFILIATED WITH Entity=“Celal Korkmaz”

Ref Entity=“TCDD” />

Extracted Relation: <AFFILIATED WITH Entity=“Özcan Türker”

Ref Entity=“TCDD” />

Extracted Relation: <AFFILIATED WITH Entity=“Mehmet Şimşek”

Ref Entity=“TCDD” />

CHAPTER 5. ENTITY RELATION DETECTION 57

5.1.4 ATTACKED BY Relations

• Relationship between a person and an organization: A PERSON is attacked by

an ORGANIZATION.

Input Text: “Vali Çevik’e yapılan saldırıyı terör örgütü TKP-ML/TİKKO üstlendi.”

(The terrorist organization TKP-ML/TIKKO claimed the attack against the governor

Cevik.)

Extracted Relation: <ATTACKED BY Entity=“Çevik’e”

Ref Entity=“TKP-ML/TİKKO” />

• Relationship between two organizations: An ORGANIZATION is attacked by

another ORGANIZATION.

Input Text: “PKK tarafından Erenkaya Köyü Jandarma Karakoluna dün gece

saldırı düzenlendi.” (An attack was organized against Erenkaya Village Gendarmerie

Station by PKK last night.)

Extracted Relation: <ATTACKED BY Entity=“Erenkaya Köyü Jandarma Karakol-

una” Ref Entity=“PKK” />

• Relationship between an organization and a person: An ORGANIZATION is

attacked by a PERSON.

Input Text: “Danıştay’a yapılan saldırının failinin Alparslan Aslan olduğu açıklandı.”

(It was announced that the perpetrator of the attack against the Council of State is

Alparslan Aslan.)

Extracted Relation: <ATTACKED BY Entity=“Danıştay’a”

Ref Entity=“Alparslan Aslan” />

• Relationship between two persons: A PERSON is attacked by another PERSON.

Input Text: “Alparslan Aslan tarafından yapılan saldırı sonucunda Mustafa Yücel

Özbilgin hayatını kaybetti.” (Mustafa Yucel Ozbilgin lost his life as a result of the attack

carried out by Alparslan Aslan.)

Extracted Relation: <ATTACKED BY Entity=“Mustafa Yücel Özbilgin”

Ref Entity=“Alparslan Aslan” />

CHAPTER 5. ENTITY RELATION DETECTION 58

5.2 Rule Representation

The rule representation for capturing the regularities among the relations is similar to

the representation we utilized for NER rules. The major distinctions are (1) the token

versus phrase level processing units and (2) the phrase versus sentence level pattern

focus. Since named entities are phrases formed by a number of consecutive tokens,

tokens in texts are the main processing units for NER. Moreover, the NER patterns

focus on the phrases in the sentences. For ERD task, named entities are treated as a

single processing unit and the patterns focus on the whole sentences.

A relation extraction rule consists of four parts. The first part is the target relation

category of this rule. The second and the third parts show the referencing and the

referenced entity respectively. The last part contains the pattern segment. The pattern

segment consists of a number of pattern elements whose type can be (1) Referencing En-

tity (ENT), (2) Referenced Entity (REF ENT), (3) Named Entity/Temporal Expression

(ORGANIZATION, PERSON, LOCATION, DATE, TIME), (4) Similarity (SIM), and

(5) Skip (*). The ENT pattern element is the placeholder for the referencing entity.

Similarly, the REF ENT is the placeholder for the referenced entity. A Named Entity

or Temporal Expression can match any named entity or temporal expression of its type.

The SIM pattern element matches exactly one token from the document that meets

the its constraints. The Skip (*) element is the most flexible pattern element which

can match any phrase with any number of tokens, including NEs.

Two example rules are given in Figure 5.1 to describe the rule representation.

The first rule captures the pattern information belonging to a LOCATED IN relation

between two LOCATION s. The pattern segment, in the first example contains eight

pattern elements. It starts with a Skip (*) element followed by a LOCATION element.

The Skip (*) element means to skip any number of processing units (e.g. tokens,

named entity phrases) until the next occurence of the following term in the pattern.

In this case, the pattern skips until it finds a LOCATION element. The third element

REF ENT is the placeholder for the referenced location. This element is followed by

two SIM elements. SIM elements used in NER rule patterns and ERD rule patterns

have exactly the same structure and specify the same constraints to match tokens.

The next element ENT is the placeholder for the referencing location. The pattern

continues with a Skip (*) element. The last element in the pattern is another SIM.

As shown in the examples, ENT, REF ENT and Named Entity/Temporal Expression

CHAPTER 5. ENTITY RELATION DETECTION 59

elements have a similar structure and contain a entity type field and a morphological

tag field. The morphological tag field captures the morphological characteristics of the

last tokens of the entity phrases.

è [LOCATED IN : LOCATION : LOCATION :
*
LOCATION<*+Noun+Prop+A3sg+*+*>
REF ENT<LOCATION; *+?(Noun)+?(*)+?(*)+?(*)+?(*)+?(*)>
SIM<; ilçe+Noun+?(Prop)+A3sg+P3sg+Dat; {Location.Post Phrase}; {Location}; ;
; ; Alpha>
SIM<bağlı; bağ+Noun+A3sg+Pnon+Nom+ˆDB+Adj+With; {Location.Pre Phrase,
Organization.First Phrase, Organization.In Phrase, Organization.Post Phrase};
{Location, Organization}; Lower; Middle; 5; Alpha>
ENT<LOCATION; *+Noun+?(*)+?(*)+?(*)+?(*)+?(*)+?(*)+?(*)+?(*)>
*
SIM<.;.+Punc; {Person.Short Title, Person.In Phrase}; {Person}; Unclass; Short; 1;
Punc>]

è [ATTACKED BY : ORGANIZATION : ORGANIZATION :
*
ENT<ORGANIZATION; *+Noun+?(*)+*+?(*)+Dat>
*
SIM<terör; terör+Noun+A3sg+Pnon+Nom; {}; {}; Lower; Middle; 5; Alpha>
SIM<örgütü; örgüt+Noun+A3sg+P3sg+Nom; {Organization.Last Phrase};
{Organization}; Lower; Middle; 6; Alpha>
REF ENT<ORGANIZATION; *+Noun+*+*+*+*>
*
SIM<saldırı; saldırı+Noun+A3sg+Pnon+Nom; {}; {}; Lower; Middle; 7; Alpha>
*
SIM<.; .+Punc; {Person.Short Title, Person.In Phrase}; {Person}; Unclass; Short; 1;
Punc>]

Figure 5.1: Example ERD rules

The second rule captures the pattern information belonging to a ATTACKED BY

relation between two ORGANIZATION s. In this example, the pattern segment

contains ten pattern elements. The rule implies (1) skip until reaching an ORGANIZA-

TION ; (2) extract the found ORGANIZATION as the referencing entity; (3) skip until

finding the string “terör” followed by the string “örgütü” and match the found strings;

(4) if the next element is an ORGANIZATION, extract it as the referenced entity; (5)

skip until finding the string “saldırı” and match the found string; (6) skip until finding

the character “.” and match it. A number of sentences containing relations that match

the given example rules are shown in Figure 5.2.

CHAPTER 5. ENTITY RELATION DETECTION 60

• Example Rule 1 (LOCATED IN):

è KAHRAMANMARAŞ’IN Ekinözü ilçesine bağlı Altınyaprak

Köyü’nde terör örgütünün şehit ettiği üç öğretmen için anma

töreni düzenlendi .

è Çanakkale’nin Ezine İlçesine bağlı Çınar köyünde oturan aile

çocuklarının terhis günü şehit olduğunu öğrenince yıkıldı .

è Van Başkale İlçesi’ne bağlı Esenyamaç köyündeki piyade bölüğüne

teröristlerce yapılan roketli saldırıda ilk alınan bilgilere göre 1

asker şehit oldu , bir asker de ağır yaralandı .

• Example Rule 2 (ATTACKED BY):

è Batman’da Türkiye Petrolleri Anonim Ortaklığı’na ait petrol boru

hattına terör örgütü PKK/KONGRA-GEL tarafından bombalı saldırı

yapıldı .

è Mardin’de Yenişehir Polis Karakoluna terör örgütü

PKK/KONGRAGEL mensuplarınca yapılan silahlı saldırı sonucu

2 polis memuru yaralandı .

è Erenkaya Jandarma Karakoluna terör örgütü PKK mensuplarınca dün

gece roketatarlı saldırı düzenlendi .

: : : Ý ENT : : : Ý REF ENT

Figure 5.2: Sentences containing relations that match the example rules given
in Figure 5.1

CHAPTER 5. ENTITY RELATION DETECTION 61

5.3 Automatic Rule Learning

Our automatic rule learning and generalization method for ERD is also based on the

concept of specific generalization of strings [20]. The concept is further adapted to

generalize the relation patterns. The same coverage algorithm (Figure 4.3) used for

NER is also used for ERD task.

Prior to learning ERD rules from the examples in the training text, the input text is

tokenized, segmented in sentences and the entity names in the text are identified. Then,

the learner starts generating simple relation patterns from the training examples. The

generated simple patterns are kept in the rule representation stated in the previous

section. The output of the generalization operation for two rules is a generalized

rule that covers the both examples. The generalization operation is performed by

relaxing the corresponding constraints specified by the pattern elements in the rules.

The generalization of the pattern elements of different types (e.g. a Named Entity type

and a SIM type) results in a Skip (*) element. On the other hand, the generalization

of the pattern elements of the same type outputs the pattern type of the input pattern

elements. A generalization with a Skip (*) element always results in a Skip (*) element.

For SIM elements, the atomic fields (token, capitalization, length class, length, type

class) are generalized in the same way as generalized in NER. The same situation is

also valid for the morphological tag and gazetteer set fields.

In order to illustrate the rule generalization concept, an example rule generation

is given in Figure 5.2. In the example, a generalized rule is learnt from two

LOCATED IN relations. First, the simple patterns representing the input relations

are generated. Since no generalization operation is performed over the simple patterns

yet, they don’t include any Skip (*) element. By performing several generalization

operations over the simple patterns, the learner obtains the generalized rule shown in

Figure 5.2. The generalized rule asserts that a LOCATION immediately preceded by

another LOCATION is LOCATED IN the preceeding LOCATION. The new relations

recognizable by the generated rule is also given in the example.

CHAPTER 5. ENTITY RELATION DETECTION 62

5.4 Testing & Post-Processing

The testing and the post-processing steps are performed in the same manner as done

in NER. For each sentence in the text, the system applies the learnt rules to the test

data. During testing, the found relations are put into a candidate list. In case of any

conflict (i.e. two different relations between the same entities), the candidate added by

the rule with the highest confidence factor is selected during post-processing.

• Seed Instances (LOCATED IN):

è Gümüşhane’nin Şiran ilçesinde teröristler askeri araca ateş açtı .

è İstanbul Bağcılar’da polis ekibine silahlı saldırı düzenlendi .

• Simple Pattern#1

[LOCATED IN : LOCATION : LOCATION :
REF ENT<LOCATION; gümüşhane+Noun+Prop+A3sg+Pnon+Gen>
ENT<LOCATION; şiran+Noun+Prop+A3sg+Pnon+Nom>
SIM<ilçesinde; ilçe+Noun+A3sg+P3sg+Loc; {Location.Post Phrase};
{Location}; Lower; Long; 9; 1>
SIM<teröristler; terörist+Noun+A3pl+Pnon+Nom; {}; {}; Lower; Long; 11;
Alpha>
SIM<askeri; askeri+Adj; {Location.Vilage, Organization.First Phrase,
Organization.In Phrase}; Location, Organization; Lower; Middle; 6; Alpha>
SIM<araca; araç+Noun+A3sg+Pnon+Dat; {Person.Last Name,
Location.District}; {Per, Location}; Lower; Middle; 5; Alpha>
SIM<ateş; ateş+Noun+A3sg+Pnon+Nom; {Person.First Name,
Person.Last Name, Person.Title}; {Person}; Lower; Short; 4; Alpha>
SIM<açtı; aç+Verb+Pos+Past+A3sg; {Person.First Name}; {Person}; Lower;
Short; 4; Alpha>
SIM<.; .+Punc; {Person.Short Title, Person.In Phrase}; {Person}; Unclass;
Short; 1; Punc>]

CHAPTER 5. ENTITY RELATION DETECTION 63

• Simple Pattern#2

[LOCATED IN : LOCATION : LOCATION :
REF ENT<LOCATION; istanbul+Noun+Prop+A3sg+Pnon+Nom>
ENT<LOCATION; bağcılar+Noun+Prop+A3sg+Pnon+Loc>
SIM<polis; polis+Noun+A3sg+Pnon+Nom; {Person.Title,
Organization.First Phrase, Organization.In Phrase}; {Person, Organization};
Lower; Middle; 5; Alpha>
SIM<ekibine; ekip+Noun+A3sg+P3sg+Dat; {}; {}; Lower; Middle; 7; Alpha>
SIM<silahlı; silah+Noun+A3sg+Pnon+Nom+ˆDB+Adj+With; {Person.Title,
Organization.In Phrase}; {Person, Organization}; Lower; Middle; 7; Alpha>
SIM<saldırı; saldırı+Noun+A3sg+Pnon+Nom; {}; {}; Lower; Middle; 7;
Alpha>
SIM<düzenlendi; düzenle+Verb+ˆDB+Verb+Pass+Pos+Past+A3sg;
{Organization.In Phrase}; {Organization}; Lower; Long; 10; Alpha>
SIM<.; .+Punc; {Person.Short Title, Person.In Phrase}; {Person}; Unclass;
Short; 1; Punc>]

• Generalized Rule:

[LOCATED IN : LOCATION : LOCATION :
REF ENT<LOCATION; *+Noun+Prop+A3sg+Pnon+*>
ENT<LOCATION; *+Noun+Prop+A3sg+Pnon+*>
*
SIM<.; .+Punc; {Per.Short Title, Per.In Phrase}; {Per}; Unclass; Short; 1;
Punc>]

• Recognizable Relations:

è Siirt Pervari’de polise yapılan saldırı sonucu 1 polis şehit oldu .

è İstanbul Dolapdere’de sloganlar atarak gösteri yapan bir grup

polis otosuna molotofla saldırdı .

è Hakkari’nin Şemdinli ilçesinde , PKK bomba yüklü araçla saldırı

düzenledi .

è Ağrı’nın Doğubeyazıt ilçesindeki Uluyol Polis Merkezi’ne saldırı

düzenlendi .

: : : Ý ENT : : : Ý REF ENT

Figure 5.2: An example ERD rule generation

Chapter 6

Experimental Evaluation

We conducted a set of experiments in order to evaluate the performance and the

behavior of the proposed methods under different conditions. The main objective of

the experimentation is to analyze the performance and the behavior of the methods

on realistic data, with different setups. This chapter presents the results of our

experimentation and compares the efficiency and accuracy of our approach to several

other studies.

6.1 Data

Lavelli et al. discussed the issues specific to IE evaluation that need to be addressed

to allow a fair comparison of different systems in [62]. An important issue mentioned

in their paper is the description of the used corpus and the exact definition of the

corpus partition. In fact, a major obstacle to Turkish IE is the scarcity of publicly

available annotated corpora. The experiments for the evaluation of the developed

systems are conducted on the TurkIE dataset1. In order to generate the dataset, the

TurkIE corpus tagging tool was developed. We manually tagged 355 news articles

on terrorism from both online and print news sources in Turkish using the developed

tagging tool. Annotation process resulted in a single corpus file in XML format. We

mainly stuck to the MUC-7 task definitions [17, 45, 18] as guidelines, although we used

1http://www.cs.bilkent.edu.tr/ ilyas/TurkIE.rar

64

CHAPTER 6. EXPERIMENTAL EVALUATION 65

a different notation for tagging the articles. The developed notation is easy-to-use for

multiple purposes, more readable for human and machines and inherits all features of

XML (i.e. simplicity, extensibility, interoperability, openness). Moreover, the resulting

corpus can be used for other machine learning tasks. In addition to the named entities

and the relations located in the articles, which are the main focus of this study, the text

is also splitted into tokens, sentences and topics for other potential uses (e.g. sentence

boundary detection, topic segmentation). A sample tagged news article from the corpus

is provided in Appendix A.

Figure 6.1: TurkIE Corpus Tagger Tool

6.1.1 TurkIE Corpus Tagger

TurkIE corpus tagger is developed to allow the users to tag texts using a graphical

interface in a user-friendly environment. A snapshot of the tool is shown in Figure 6.1.

The upper toolbar provides user the ability to navigate between articles and do some

batch processes (e.g. tokenize all articles). The top text pane is the section where

the user can edit the input text before importing to the corpus. Below the text pane,

CHAPTER 6. EXPERIMENTAL EVALUATION 66

marking toolbars for named entity and relation tagging are placed. The yellow article

pane on the bottom leftt of the tagger keeps the original article text in read-only mode.

The tab control on the bottom right allows user to switch between the tagged item

lists. The article pane and the lists are interactive in the sense that the user can select

any tagged item in the lists and the associated part of the text in the article pane is

highlighted.

6.1.2 Token, Sentence and Topic Tagging

Prior to the named entity and relation annotation, the articles were tokenized, splitted

into sentences, and segmented into topics. The tagger provides some automatic utilities

for these operations. When used, these utilities parse the article text and automatically

detect the boundaries. The user can always make changes on the detected boundaries.

We followed the standard tokenization method which uses white-space and punc-

tuation characters as delimiters except that we removed the apostrophe symbol (’)

from our delimiter set since morphemes coming after the named entities are considered

as part of the name in our study. For TurkIE dataset, token tagging was performed

without human intervention. A simple XML element is defined for marking tokens.

Token element has four attributes:

• id : a unique identifier for the token (int type)

• startPos: starting character position in the text (int type)

• endPos: ending character position in the text (int type)

• stringValue: string value of the token (string type)

Some examples of the tagged tokens are shown in Figure 6.2.

<Token id=“1” startPos=“0” endPos=“9” stringValue=“Ankara’da” />

<Token id=“7” startPos=“36” endPos=“38” stringValue=“20” />

<Token id=“33” startPos=“228” endPos=“229” stringValue=“.” />

Figure 6.2: Some Examples of the Tagged Tokens

CHAPTER 6. EXPERIMENTAL EVALUATION 67

The tagging tool provides a basic capability of splitting text into sentences. It

simply divides text from possible sentence boundaries (e.g.“.”, “?”,“!”), without trying

to adress sentence boundary detection problem which is not the main objective of this

study. For TurkIE dataset, sentence tagging was performed mostly automatically. After

automatic sentence tagging, we manually corrected some incorrectly marked sentences.

The titles and the timestamps in the text articles are also tagged as sentences. A simple

XML element is defined for marking sentences. Sentence element has three attributes:

• id : a unique identifier for the sentence (int type)

• startToken: starting token in the text (int type)

• endToken: ending token in the text (int type)

An example tagged sentence is shown in Figure 6.3.

<Sentence id=“2” startToken=“7” endToken=“33” />

Figure 6.3: An Example Tagged Sentence

The tagging tool provides a basic capability of dividing text into topics. It simply

divides text from possible topic boundaries (e.g. titles, subtitles), without trying to

adress topic segmentation problem which is not in the scope of this study. For TurkIE

dataset, sentence tagging was performed mostly manually. A simple XML element is

defined for marking topics. Topic element has three attributes:

• id : a unique identifier for the topic (int type)

• startToken: starting token in the text (int type)

• endToken: ending token in the text (int type)

An example tagged topic is shown in Figure 6.4.

<Topic id=“1” startToken=“1” endToken=“195” />

Figure 6.4: An Example Tagged Topic

CHAPTER 6. EXPERIMENTAL EVALUATION 68

6.1.3 Named Entity Tagging

The articles are annotated for three named entity and two temporal expression

categories: (1) PERSON, (2) LOCATION, (3) ORGANIZATION, (4) DATE, and (5)

TIME. Since NER task definition has been presented in Section 4.1, this section only

covers how named entities are marked by using the developed tagging tool and how

they are kept in the corpus file.

Figure 6.5: Named Entity Tagging in TurkIE Corpus Tagger

Named entity tagging is performed manually. The annotator uses the mouse to

select token(s) in the token list and then chooses an appropriate label from the toolbar

(Figure 6.5). Five separate simple XML elements with the same attributes (one for

each name type) are defined for name tagging. The element name identifies the NE

type. NE elements have four attributes:

• id : a unique identifier for the named entity (int type)

• startPos: starting token in the text (int type)

• endPos: ending token in the text (int type)

CHAPTER 6. EXPERIMENTAL EVALUATION 69

• stringValue: string value of the named entity (string type)

Some examples of the tagged named entites are shown in Figure 6.6.

<Date id=“2” startToken=“7” endToken=“9” stringValue=“20 Mayıs 2003” />

<Location id=“3” startToken=“11” endToken=“11” stringValue=“Ankara” />

<Location id=“4” startToken=“12” endToken=“12” stringValue=“Kızılay’da” />

<Time id=“8” startToken=“11” endToken=“18” stringValue=“15:39:00 (TSI)” />

<Person id=“3” startToken=“9” endToken=“10” stringValue=“Gaffar Okkan’a” />

<Organization id=“15” startToken=“104” endToken=“106” stringValue=“Ankara
Emniyet Müdürlüğü” />

<Organization id=“16” startToken=“107” endToken=“110” stringValue=“Terörle
Mücadele Şube Müdürlüğü” />

Figure 6.6: Example Tagged Named Entities

6.1.4 Relation Tagging

Three relation types annotated in the articles are: (1) LOCATED IN, (2) AT-

TACKED BY, and (3) AFFILIATED WITH. Since ERD task definition has been

presented in Section 5.1, this section only covers how relations are marked by using

the developed tagging tool and how they are stored in the corpus file.

Relation tagging is performed manually. The relation annotation interface

(Figure 6.7) provides the article itself, two lists of the named entities in the article

and the token list to the user for tagging. The interactive article text pane is used to

view the article text and navigate between the different items in the lists. In order to

tag a new relation, the annotator uses the mouse to select the relation type from the

top pull-down list, referencing entity from the left named entity list, referenced entity

from the middle named entity list, token(s) from which the relation inferred from the

token list. The panel, located at the top of the window, provides visual depictions of the

defined relations. Three separate complex XML elements with the same attributes (one

for each relation type) are defined for relation tagging. The element name identifies

the relation type. Relation elements have four attributes:

CHAPTER 6. EXPERIMENTAL EVALUATION 70

• id : a unique identifier for the relation (int type)

• entityId : referencing entity number (int type)

• refId : referenced entity number (int type)

• inferredFromText : the text piece from which the relation inferred (string type)

Figure 6.7: Relation Tagging in TurkIE Corpus Tagger

inferredFromText attribute can be a continuous portion of the article or a

concatanation of several discrete portions. In the latter case ’@’ symbol is used

to separate different parts of the text. In addition to inferredFromText attribute,

relation elements contain simple elements representing the tokens covered in the

inferredFromText attribute. Some examples of the tagged relations are shown in

Figure 6.8.

CHAPTER 6. EXPERIMENTAL EVALUATION 71

<LocatedIn id=“1” entityId=“6” refId=“5” inferredFromText=“Bingöl’ün Genç
ilçesine”>
<InferredFromToken id=“1” tokenRef=“28” text=“Bingöl’ün” />
<InferredFromToken id=“2” tokenRef=“29” text=“Genç” />
<InferredFromToken id=“3” tokenRef=“30” text=“ilçesine” />
</LocatedIn>

<LocatedIn id=“3” entityId=“7” refId=“6” inferredFromText=“Genç ilçesine bağlı
Yeniyazı Jandarma Karakolu’na”>
<InferredFromToken id=“1” tokenRef=“29” text=“Genç” />
<InferredFromToken id=“2” tokenRef=“30” text=“ilçesine” />
<InferredFromToken id=“3” tokenRef=“31” text=“bağlı” />
<InferredFromToken id=“4” tokenRef=“32” text=“Yeniyazı” />
<InferredFromToken id=“5” tokenRef=“33” text=“Jandarma” />
<InferredFromToken id=“6” tokenRef=“34” text=“Karakolu’na” />
</LocatedIn>

<AttackedBy id=“8” entityId=“7” refId=“8” inferredFromText=“Yeniyazı Jandarma
Karakolu’na terör örgütü PKK / KONGRA - GEL @ ateş açtı”>
<InferredFromToken id=“1” tokenRef=“32” text=“Yeniyazı” />
<InferredFromToken id=“2” tokenRef=“33” text=“Jandarma” />
<InferredFromToken id=“3” tokenRef=“34” text=“Karakolu’na” />
<InferredFromToken id=“4” tokenRef=“35” text=“terör” />
<InferredFromToken id=“5” tokenRef=“36” text=“örgütü” />
<InferredFromToken id=“6” tokenRef=“37” text=“PKK” />
<InferredFromToken id=“7” tokenRef=“38” text=“/” />
<InferredFromToken id=“8” tokenRef=“39” text=“KONGRA” />
<InferredFromToken id=“9” tokenRef=“40” text=“-” />
<InferredFromToken id=“10” tokenRef=“41” text=“GEL” />
<InferredFromToken id=“11” tokenRef=“43” text=“ateş” />
<InferredFromToken id=“12” tokenRef=“44” text=“açtı” />
</AttackedBy>

<AffiliatedWith id=“12” entityId=“22” refId=“21” inferredFromText=“Hakkari
Tugay Komutanlığı’nda görevli @ Şevket Kaygısız”>
<InferredFromToken id=“1” tokenRef=“164” text=“Hakkari” />
<InferredFromToken id=“2” tokenRef=“165” text=“Tugay” />
<InferredFromToken id=“3” tokenRef=“166” text=“Komutanlığı’nda” />
<InferredFromToken id=“4” tokenRef=“167” text=“görevli” />
<InferredFromToken id=“5” tokenRef=“169” text=“Şevket” />
<InferredFromToken id=“6” tokenRef=“170” text=“Kaygısız” />
</AffiliatedWith>

Figure 6.8: Example Tagged Relations

CHAPTER 6. EXPERIMENTAL EVALUATION 72

6.1.5 Corpus Statistics

The The TurkIE corpus contains 54499 tokens, 3552 sentences and 558 topics.

5692 named entities were tagged in 5 categories: 1336 PERSON names, 2338

LOCATION names, 1249 ORGANIZATION names, 376 DATE expressions and 393

TIME expressions. 921 relations were tagged in 3 categories: 99 ATTACKED BY

relations, 719 LOCATED IN relations, 103 AFFILIATED WITH relations.

6.2 Methodology

Another issue discussed in [62] is how tolerantly to assess inexact identification of NE

boundaries. Among three different criteria - exact, contains, and overlap - discussed in

[62] for matching reference instances and extracted instances, we used the exact criteria

which is the most conservative approach to determine the truth-value of the matching.

In our experiments, a predicted instance is not considered as a correct match unless it

matches exactly an actual instance in the text. In our scoring, the expectation from the

system is to find all occurrences of the named entities. However, we restrict relation

detection to finding relationships between entities in the same sentence.

In order to evaluate the developed methods, 10-fold cross validation was performed

on the dataset. We measured precision, recall, and F-score; as is commonly done in

the Message Understanding Conference (MUC) evaluations. Precision is the fraction of

correct outcomes divided by the number of all outcomes. For instance, precision value

for the NER task is the percentage of extracted named entities that are correct. On

the other hand, recall is analogous to sensitivity in binary classification. Recall can

be defined as the fraction of correct outcomes divided by the total number of possible

correct answers. The F-score, harmonic mean of precision and recall, provides a method

for combining precision and recall scores into a single value.

CHAPTER 6. EXPERIMENTAL EVALUATION 73

NE Category Precision (%) Recall (%) F-Score (%)
Person 92.08 96.69 94.33
Location 89.86 90.20 90.03
Organization 88.01 87.36 87.68
Date 95.34 97.69 96.50
Time 91.00 93.12 92.05
Overall 90.43 91.74 91.08

Table 6.1: Quantitative performance results of the developed NER system

The last row shows the overall extraction performance of the developed system.
We use the standard formula for precision, recall, and F-score calculation:
precision = (true positives)/(true positives + false positives); recall = (true
positives)/(true positives + false negatives); F-score = (2 * precision * recall)/(
precision + recall).

6.3 Results & Discussion

6.3.1 Named Entity Recognition

This section presents the performance and the behavior of the developed NER system.

6.3.1.1 Quantitative Results & Comparison of the Methods

Table 6.1 shows the quantitative results of the experiments performed. The developed

NER system achieved overall performance of F=91.08% on the dataset. The system

reached best performance score F=96.5% on locating DATE fields; the system

extracted 97.69% of the DATE fields in the test dataset and 95.34% of the found

DATE fields were correct. It achieved F=87.68% on a more challenging NE type,

ORGANIZATION.

The system produced better results than many of the previous studies. One

important point to highlight before discussing the results of the comparisons is that

the comparisons were not made on the same datasets, since the datasets were not

publicly available. Conducting their experiments on a relatively small corpus, Cucerzan

and Yarowsky [23] reported F=53.04% for NER from Turkish texts. They aimed at

CHAPTER 6. EXPERIMENTAL EVALUATION 74

building a maximally language-independent system for named-entity recognition and

classification, which lead using minimal information about the source language. They

used an EM-style bootstrapping algorithm based on iterative learning and re-estimation

of contextual and morphological patterns captured in hierarchically smoothed trie

models. With a focus on only Turkish, our algorithm is designed to take advantage

of the specific characteristics of the Turkish language and to address any challenges

pertaining to the language. Moreover, our algorithm is capable of utilizing several

resources (e.g. dictionaries and gazetteer lists) to obtain better extraction performance.

Bayraktar and Temizel [9] reported F=81.97% for person name extraction from

Turkish text using local grammar approach. They focused on reporting verbs (e.g. said,

told) in the sentences, and used these reporting verbs as the clues for extracting person

names. Their study covered finding significant reporting verbs in Turkish and obtaining

hand-crafted extraction patterns by conducting concordance analysis by using the found

forms of reporting verbs. The rule-based system developed by Kucuk and Yazici [57]

achieved F= 78.7% for the task of NER from Turkish news articles. Their system

heavily relies on a manually compiled set of lexical resources (e.g. dictionary of person

names, list of well-known people) and hand-crafted pattern bases to extract each named

entity type in its scope. In order to mitigate the issues caused by the agglutinative

nature of Turkish, they used a morphological analyzer. The system is designed to

extract the phrases which exist in the provided lexical resources, conform to the patterns

in the pattern bases or inflectional forms of those. Both of the systems presented

in [9] and [57] depend heavily on the lexical resources and the manually developed

rules/patterns. One drawback of these systems is the high human expertise required

for the development and management of the rules. Another well-known shortcoming

is their adaptability to new domains. For instance, Kucuk and Yazici [57] reported

that their system scored F=69.3% and F=55.3% on Child Stories and Historical Text

domains respectively.

The statistical learning system presented by Tur et al. [101] reached F=91.56%.

When the learning strategy and the information sources used are considered, their

system is the most similar previous work. Both our approach and theirs use

supervised learning strategy. Furthermore, both methods exploit similar features

(lexical, morphological, contextual, etc.), though there are differences in the ways how

the features are utilized.

CHAPTER 6. EXPERIMENTAL EVALUATION 75

6.3.1.2 Error Analysis

The analysis conducted revealed that the extraction errors are more frequently occur

in the following cases:

• Nested NEs: Nested NE constructs are common forms observed in texts. Fol-

lowing MUC-7 named entity task definition [17], only the longest NE was tagged

in case of nested NEs. For instance, “5 Ocak Caddesi” (5th January Street) is

tagged as one location name: <LOCATION>5 Ocak Caddesi</LOCATION>,

instead of a DATE and a LOCATION name: <LOCATION><DATE>5

Ocak</DATE> Caddesi</LOCATION>. Recognizing the inner NE (e.g. “5

Ocak”), and missing the outer one (e.g. “5 Ocak Caddesi”) is observed as one

type of the erroneous extractions.

• Long NEs: Partial detection of the long NEs, especially long ORGANIZATION

and LOCATION names, is another frequent type of the erroneous extractions.

The analysis showed that the average system performance for the long NEs is

below the overall performance of the system.

6.3.1.3 Threshold Factor

The coverage algorithm has a user-set threshold parameter which has an impact on the

performance of our extraction method. Figure 6.9 shows the performance of the NER

system as the threshold changes. The optimum value for the threshold parameter is

found to be 0.87, where the F-score is maximized, through experimentation.

In the first half of the graph, we observe a continuous climbing trend in the precision

and recall at the same time. The increase in the precision parallel to the increase

in the threshold value is a normal behaviour. However, one would expect inversely

proportional relation between the recall ad the threshold. The observed situation is

due to the fact that the longest candidate among the conflicting candidate phrases

is selected during the post-processing step. In the second half, as expected, the recall

value decreases and the precision value increases with the increase in threshold. Another

notable observation is the local drops in the recall rate where the threshold parameter

is 0.5. This behavior is caused by the elimination of a general rule whose true positive

CHAPTER 6. EXPERIMENTAL EVALUATION 76

(TP) returns are more than its false positive (FP) returns. A similar situation occurs

where the threshold parameter is 0.8.

Figure 6.9: The observed performance of the developed NER system as the
threshold parameter changes

6.3.1.4 Generalization Features

We investigated the impacts of each feature set used for the generalization process.

In order to calculate individual contribution of each set, we conducted two series of

experiments. First, we deactivated a feature set in each experiment, and recorded

the achieved system performance. Second, we approached the question from a different

point of view. This time, we tested the system performance by using only one feature set

at a time. Table 6.2 and Table 6.3 show the results of two experiment series conducted.

Table 6.2 shows the recorded performance score and the incurred performance loss in

the absence of each specific generalization feature. The biggest loss occurs (12.26%)

when morphological features were not used. Individual impact of each feature set to the

system performance is shown in a different way in Table 6.3; the recorded performance

scores and the incurred performance losses were given when only one feature set and

the actual token information were used at a time. The system achieved F=69.95%

using only morphological features and the actual token information.

CHAPTER 6. EXPERIMENTAL EVALUATION 77

Deactivated
Feature Set

Used Feature Sets System Performance
(F-Score (%))

F-Loss (%)

Lexical Morphological, Con-
textual, Orthographic

81.29 9.79

Morphological Lexical , Contextual,
Orthographic

78.82 12.26

Contextual Lexical , Morphologi-
cal, Orthographic

87.90 3.18

Orthographic Lexical, Morphologi-
cal, Contextual

81.71 9.37

Table 6.2: Individual impact of each feature set to the developed NER system
performance (I).

Each time a feature set was deactivated and the achieved system performance
value was recorded. The last column shows the performance loss incurred when
the specific set was not used. The loss incurred in this series is directly
proportional to the impact of the deactivated feature set.

Used Feature
Set

Deactivated
Feature Sets

System Performance
(F-Score (%))

F-Loss (%)

Lexical Morphological, Con-
textual, Orthographic

67.21 23.87

Morphological Lexical , Contextual,
Orthographic

69.95 21.13

Contextual Lexical , Morphologi-
cal, Orthographic

56.51 34.57

Orthographic Lexical, Morphologi-
cal, Contextual

65.15 25.93

Table 6.3: Individual impact of each feature set to the developed NER system
performance (II).

Only one feature set was used at a time. The last column shows the
performance loss incurred when only that specific set and the actual token
information were used. The loss incurred in this series is inversely proportional
to the impact of the used feature set.

CHAPTER 6. EXPERIMENTAL EVALUATION 78

6.3.1.5 Automatic Rule Learning for Protein Name Extraction

We used an adapted version of the developed NER system for protein name extraction

from biological texts [95]. This system use the same coverage algorithm and similar

pattern elements. Protein names are generalized by using hierarchically categorized

syntactic token types. The experiments were conducted on two different datasets: the

YAPEX corpora [28] and the GENIA corpus [55]. The performance scores on the

YAPEX dataset were recorded both with and without cross validation for comparison

purposes. Ten-fold cross validation were performed on the GENIA dataset to evaluate

the developed method. Altough the protein name recognizer was an early version with

small number of variables defined for generalization and the granularity level of the

protein name extraction rules were not as detailed as the rules learnt for Turkish, it

achieved satisfying results: 61.8% F-score value on the YAPEX dataset and 61.0% on

the GENIA corpus. This results show that the system is effective for protein name

extraction and achieved better performance than some of the previous work.

6.3.2 Entity Relation Detection

This section presents the performance and the behavior of the developed ERD system.

6.3.2.1 Quantitative Results

Table 6.4 shows the quantitative results of the experiments performed. The developed

ERD system achieved overall performance of F=71.68% on the dataset. The system

reached best performance score F=78.57% on locating LOCATED IN fields; the system

extracted 75.34% of the LOCATED IN fields in the test dataset and 82.09% of the

found LOCATED IN fields were correct. It achieved F=46.15% on ATTACKED BY,

and F=40.00% on AFFILIATED WITH categories.

We believe that system’s better performance on the extraction of LOCATED IN

relation is a result of the fact that the number of LOCATED IN relations in the dataset

is by far more than the number of the other two relation types.

CHAPTER 6. EXPERIMENTAL EVALUATION 79

Relation Category Precision (%) Recall (%) F-Score (%)
LOCATED IN 82.09 75.34 78.57
ATTACKED BY 75.00 33.33 46.15
AFFILIATED WITH 100 25.00 40.00
Overall 82.67 63.27 71.68

Table 6.4: Quantitative performance results of the developed ERD system

The last row shows the overall extraction performance of the developed system.
We use the standard formula for precision, recall, and F-score calculation:
precision = (true positives)/(true positives + false positives); recall = (true
positives)/(true positives + false negatives); F-score = (2 * precision * recall)/(
precision + recall).

Figure 6.10: The observed performance of the developed ERD system as the
threshold parameter changes

CHAPTER 6. EXPERIMENTAL EVALUATION 80

6.3.2.2 Threshold Factor

The threshold parameter controls the trade-off between precision and recall scores.

Figure 6.10 shows the performance of the ERD system as the threshold parameter

changes. The graph shows that the system shows the expected behaviour; the recall

value decreases and the precision value increases with the increase in threshold. The

optimum value for the threshold parameter is found to be 0.90, where the acquired

F-score value is maximized, through experimentation.

Another important point to underline is that diferent thresholds values can

maximize F-score values for different relation categories. For instance, the optimum

value for the threshold parameter is found to be 0.90 for LOCATED IN relations.

It is 0.75 for ATTACKED BY and AFFILIATED WITH. Figure 6.11 shows the

performance of the ERD system for different relation categories as the threshold

parameter changes.

The system performance for LOCATED IN at different threshold values is shown

in Figure 6.11(a). It is obvious that the LOCATED IN performance dominates the

overall system performance, since the number of LOCATED IN relations is more than

the number of the other two relation types. The system shows a similar performance

behaviour for ATTACKED BY and AFFILIATED WITH relation types, as seen in

Figure 6.11(b) and Figure 6.11(c).

CHAPTER 6. EXPERIMENTAL EVALUATION 81

(a) LOCATED IN

(b) ATTACKED BY

(c) AFFILIATED WITH

Figure 6.11: The observed performance of the developed ERD system for
different relation categories as the threshold parameter changes

Chapter 7

Conclusion

The research presented in this thesis has focused on the design and evaluation of

automatic rule learning methods for two important tasks in information extraction

field: named entity recognition, and entity relation detection. The presented methods

aim to learn rules automatically to recognize the patterns available in the texts and

generalize these patterns by processing similarities and differences between them.

We have first described the developed method for identifying NEs located in

Turkish texts. The system utilized several generalization features to obtain accurate

generalization and remedy the issues related to the data sparseness problem. In

addition to the generalization features, an expressive rule representation language and

a novel coverage algorithm are used by the system for automatic rule learning and

generalization. We performed several experiments to evaluate the performance of our

method. The results indicate that our suggested method can be used for extracting

NEs from Turkish texts effectively. Although there are a few studies available yet, we

compared the performance of the developed system with the previous studies. Our

system produced better results than many of the previous studies. The impact of each

generalization feature utilized for NER was investigated from different angles. The

results show that exploiting morphological features significantly improves the NER

from Turkish texts due to the agglutinative nature of the language. We believe that the

use of morphological features can improve the NER performance in other agglutinative

languages too.

82

CHAPTER 7. CONCLUSION 83

The second method presented in the thesis uses the same concepts to detect

relationships between the named entities in Turkish texts. To our knowledge, our

study is the first to examine ERD task in Turkish. The experiments demonstrated that

we have succesfully applied the developed model to the task. Unfortunately, the lack

of studies addressing ERD in Turkish prevented us comparing our results with others.

Both of the methods do not heavily suffer from domain adaptation problem, another

key challenge in the IE field, by employing an adaptive rule learning method. The

developed systems minimize the tasks requiring human intervention; it does not rely

on manually developed rules/patterns. The lexical sources used in the systems are

kept generic to capture the variations in the patterns. The system also eliminates the

burden of adding new sources by its configurable and extensible design. Moreoever, an

adapted version of the automatic rule learning algorithm is applied to protein name

extraction task and achieved satisfying results.

The lack of defined task definitions and training data for Turkish, and limited

number of studies focused on Turkish are the main issues we had to deal with. Another

contribution of this study lies in the adaptation of the NER and ERD task definitions

to Turkish. We generally followed the existing MUC-7 task definitions [17, 45, 18], but

distinct characteristics of Turkish led us to make several adaptations to these definitions.

The experiments were conducted on the TurkIE corpus, generated in support of this

study. The developed corpus and the annotation tool are two other major contributions

of this study, which will encourage and support future researchers in this area.

We think that there is still plenty of room for further research in IE from Turkish

texts. Our future plans include improving the developed named entity recognizer

and entity relation detector to further increase the performance and decrease the

training time. One research direction would be the introduction of correction rules

to the learning method. Although the use of rule exception sets helps reducing false

positives, handling the information regarding to the rule exceptions in a more formal

way and generalizing them into correction rules would provide further increase in the

performance of the system. The current relation extractor identifies and extracts

relationships at the sentence level. We are planning to extend the relation extractor

to detect relations that span multiple sentences. Another area of future work is to

further expand the TurkIE corpus in order to examine the behavior of the developed

systems on larger datasets. Moreover, we would like to see the system’s behaviour in

CHAPTER 7. CONCLUSION 84

the presence of noise. Generation of noisy data for test purposes will also be taken into

consideration during the corpus expansion study.

Bibliography

[1] Proceedings of the fifth message understanding conference. Morgan Kaufmann,

1993.

[2] Proceedings of the fourth message understanding conference. Morgan Kaufmann,

1992.

[3] Proceedings of the seventh message understanding conference. 1998.

[4] Proceedings of the sixth message understanding conference. Morgan Kaufmann,

1995.

[5] Proceedings of the third message understanding conference. Morgan Kaufmann,

1991.

[6] E. Alfonseca and S. Manandhar. An unsupervised method for general named

entity recognition and automated concept discovery. In Poceedings of the First

International Conference on General WordNet, Mysore, India, 2002.

[7] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David Israel, Megumi Kameyama,

David Martin, Karen Myers, and Mabry Tyson. SRI international FASTUS

system: MUC -6 test results and analysis. In MUC 6 ’95: Proceedings of the

6th conference on Message understanding, pages 237–248, Morristown, NJ, USA,

1995. Association for Computational Linguistics.

[8] Arvind Arasu. Extracting structured data from web pages. In In ACM SIGMOD,

pages 337–348, 2003.

[9] Ozkan Bayraktar and Tugba Taskaya Temizel. Person name extraction from

Turkish financial news text using local grammar based approach. In 23rd

85

BIBLIOGRAPHY 86

International Symposium on Computer and Information Sciences (ISCIS’08),

10/2008 2008.

[10] Yassine Benajiba, Mona Diab, and Paolo Rosso. Arabic named entity recognition

using optimized feature sets. In EMNLP ’08: Proceedings of the Conference on

Empirical Methods in Natural Language Processing, pages 284–293, Morristown,

NJ, USA, 2008. Association for Computational Linguistics.

[11] E. Bick. A named entity recognizer for danish. In Proceedings of the Conference

on Language Resources and Evaluation, 2004.

[12] Daniel M. Bikel, Richard Schwartz, and Ralph M. Weischedel. An algorithm that

learns what‘s in a name. Mach. Learn., 34(1-3):211–231, 1999.

[13] S. Boutsis, I. Demiros, V. Giouli, M. Liakata, H. Papageorgiou, and S. Piperidis.

A system for recognition of named entities in greek. In Proceedings of the

International Conference on Natural Language Processing, 2000.

[14] Mary Elaine Califf and Raymond J. Mooney. Relational learning of pattern-

match rules for information extraction. In AAAI ’99/IAAI ’99: Proceedings

of the sixteenth national conference on Artificial intelligence and the eleventh

Innovative applications of artificial intelligence conference innovative applications

of artificial intelligence, pages 328–334, Menlo Park, CA, USA, 1999. American

Association for Artificial Intelligence.

[15] Mary Elaine Califf and Raymond J. Mooney. Bottom-up relational learning of

pattern matching rules for information extraction. J. Mach. Learn. Res., 4:177–

210, 2003.

[16] Hai Leong Chieu and Hwee Tou Ng. A maximum entropy approach to information

extraction from semi-structured and free text. In Eighteenth national conference

on Artificial intelligence, pages 786–791, Menlo Park, CA, USA, 2002. American

Association for Artificial Intelligence.

[17] Nancy Chinchor. MUC -7 named entity task definition, version 3.5. In Proceedings

of the Seventh Message Understanding Conference, 1998.

[18] Nancy Chinchor and Elaine Marsh. MUC -7 information extraction task

definition, version 5.1. In Proceedings of the Seventh Message Understanding

Conference, 1998.

BIBLIOGRAPHY 87

[19] Euisok Chung, Yi-Gyu Hwang, and Myung-Gil Jang. Korean named entity

recognition using HMM and cotraining model. In Proceedings of the sixth

international workshop on Information retrieval with Asian languages - Volume

11, pages 161–167, Morristown, NJ, USA, 2003. Association for Computational

Linguistics.

[20] Ilyas Cicekli and Nihan Kesim Cicekli. Generalizing predicates with string

arguments. Applied Intelligence, 25(1):23–36, 2006.

[21] Science Applications International Corporation. Science applications interna-

tional corporation (SAIC) information extraction website. Retrieved September,

2010 from http://www.itl.nist.gov/iaui/894.02/related projects/muc/.

[22] Alessandro Cucchiarelli and Paola Velardi. Unsupervised named entity

recognition using syntactic and semantic contextual evidence. Comput. Linguist.,

27(1):123–131, 2001.

[23] Silviu Cucerzan and David Yarowsky. Language independent named entity

recognition combining morphological and contextual evidence. In Proceedings

of the Joint SIGDAT Conference on Empirical Methods in Natural Language

Processing and Very Large Corpora, pages 90–99, 1999.

[24] Turhan Daybelge and Ilyas Cicekli. A rule-based morphological disambiguator

for Turkish. In Proceedings of Recent Advances in Natural Language Processing

(RANLP 2007), Borovets, pages 145–149, 2007.

[25] D. Downey, O. Etzioni, D. S. Weld, and S. Soderland. Learning text patterns

for web information extraction and assessment. In Proceedings of the AAAI-04

Workshop on Adaptive Text Extraction and Mining, 2004.

[26] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,

Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-

entity extraction from the web: an experimental study. Artif. Intell., 165(1):91–

134, 2005.

[27] Aidan Finn and Nicholas Kushmerick. Multi-level boundary classification for

information extraction. In European Conference on Machine Learning (ECML),

pages 111–122, 2004.

BIBLIOGRAPHY 88

[28] Kristofer Franzén, Gunnar Eriksson, Fredrik Olsson, Lars Asker, Per Lidén, and

Joakim Cöster. Protein names and how to find them. I. J. Medical Informatics,

67(1-3):49–61, 2002.

[29] Dayne Freitag. Information extraction from HTML: application of a general ma-

chine learning approach. In Proceedings of the fifteenth national/tenth conference

on Artificial intelligence/Innovative applications of artificial intelligence, AAAI

’98/IAAI ’98, pages 517–523, Menlo Park, CA, USA, 1998. American Association

for Artificial Intelligence.

[30] Dayne Freitag. Machine learning for information extraction in informal domains.

Mach. Learn., 39(2-3):169–202, 2000.

[31] Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In

Proceedings of the Seventeenth National Conference on Artificial Intelligence and

Twelfth Conference on Innovative Applications of Artificial Intelligence, pages

577–583. AAAI Press, 2000.

[32] Dayne Freitag and Andrew McCallum. Information extraction with HMM

structures learned by stochastic optimization. In Proceedings of the Seventeenth

National Conference on Artificial Intelligence and Twelfth Conference on

Innovative Applications of Artificial Intelligence, pages 584–589. AAAI Press,

2000.

[33] Dayne Freitag and Andrew Kachites Mccallum. Information extraction with

HMMs and shrinkage. In In Proceedings of the AAAI-99 Workshop on Machine

Learning for Information Extraction, pages 31–36, 1999.

[34] Dayne Brian Freitag. Machine learning for information extraction in informal

domains. PhD thesis, Pittsburgh, PA, USA, 1999.

[35] Guohong Fu and Kang-Kwong Luke. Chinese named entity recognition using

lexicalized HMMs. SIGKDD Explor. Newsl., 7:19–25, 2005.

[36] K. Fukuda, T. Tsunoda, A. Tamura, and T. Takagi. Toward information

extraction: Identifying protein names from biological papers. In Proceedings

of the Pacific Symposium on Biocomputing, pages 707–718, 1998.

[37] Ralph Grishman. The NYU system for MUC -6 or where’s the syntax? In MUC 6

’95: Proceedings of the 6th conference on Message understanding, pages 167–175,

Morristown, NJ, USA, 1995. Association for Computational Linguistics.

BIBLIOGRAPHY 89

[38] Ralph Grishman. Information extraction: Techniques and challenges. In SCIE

’97: International Summer School on Information Extraction, pages 10–27,

London, UK, 1997. Springer-Verlag.

[39] Ralph Grishman and Beth Sundheim. Message Understanding Conference-6: a

brief history. In Proceedings of the 16th Conference on Computational Linguistics,

pages 466–471, Morristown, NJ, USA, 1996. Association for Computational

Linguistics.

[40] C. Grover, S. McDonald, D. N. Gearailt, V. Karkaletsis, D. Farmakiotou,

G. Samaritakis, G. Petasis, M. T. Pazienza, M. Vindigni, F. Vichot, and

F. Wolinski. Multilingual XML-based named entity recognition for e-retail

domains. In Proceedings of the 3rd International Conference on Language

Resources and Evaluation, 2002.

[41] Jorge Hankamer. Morphological parsing and the lexicon. In W. Marslen-Wilson,

editor, Lexical Representation and Process, pages 392–408, Cambridge, MA, 1989.

MIT Press.

[42] Zellig Sabbettai Harris. Linguistic transformations for information retrieval. In

International Conference on Scientific Information (1958), page 158, 1959.

[43] Kazi Saidul Hasan, Altaf ur Rahman, and Vincent Ng. Learning-based

named entity recognition for morphologically-rich, resource-scarce languages. In

Proceedings of the 12th Conference of the European Chapter of the Association

for Computational Linguistics, EACL ’09, pages 354–362, Morristown, NJ, USA,

2009. Association for Computational Linguistics.

[44] Marti A. Hearst. Untangling text data mining. In Proceedings of the

37th annual meeting of the Association for Computational Linguistics on

Computational Linguistics, pages 3–10, Morristown, NJ, USA, 1999. Association

for Computational Linguistics.

[45] Lynette Hirschman and Nancy Chinchor. MUC -7 coreference task definition,

version 3.0. In Proceedings of the Seventh Message Understanding Conference,

1998.

[46] Lynette Hirschman, Ralph Grishman, and Naomi Sager. From text to structured

information: automatic processing of medical reports. In AFIPS ’76: Proceedings

BIBLIOGRAPHY 90

of the June 7-10, 1976, National Computer Conference and Exposition, pages

267–275, New York, NY, USA, 1976. ACM.

[47] Jerry R. Hobbs, John Bear, David Israel, and Mabry Tyson. FASTUS : A finite-

state processor for information extraction from real-world text. In Proceedings

of the 13th International Joint Conference on Artificial Intelligence (IJCAI-93),

pages 1172–1178, 1993.

[48] Chun-nan Hsu and Ming-Tzung Dung. Generating finite-state transducers for

semistructured data extraction from the web. J. Information Systems, 23(8):521–

538, 1998.

[49] Dawei Hu, Huan Li, Tianyong Hao, Enhong Chen, and Liu Wenyin. Heuristic

learning of rules for information extraction from web documents. In Proceedings

of the 2nd international conference on Scalable information systems, InfoScale

’07, pages 61:1–61:7, ICST, Brussels, Belgium, Belgium, 2007.

[50] Scott B. Huffman. Learning information extraction patterns from examples.

In Connectionist, Statistical, and Symbolic Approaches to Learning for Natural

Language Processing, pages 246–260, London, UK, 1996. Springer-Verlag.

[51] K. Humphreys, R. Gaizauskas, S. Azzam, C. Huyck, B. Mitchell, H. Cunningham,

and Y. Wilks. University of sheffield: Description of the Lasie-II system as used

for MUC -7. In Proceedings of the Seventh Message Understanding Conferences.

Morgan, 1998.

[52] Hideki Isozaki. Japanese named entity recognition based on a simple rule

generator and decision tree learning. In Proceedings of the 39th Annual Meeting on

Association for Computational Linguistics, ACL ’01, pages 314–321, Morristown,

NJ, USA, 2001. Association for Computational Linguistics.

[53] Rosie Jones, Rayid Ghani, Tom Mitchell, and Ellen Rilo. Active learning for

information extraction with multiple view feature sets. In IN PROCEEDINGS

OF THE ECML-2004 WORKSHOP ON ADAPTIVE TEXT EXTRACTION

AND MINING (ATEM-2003, 2003.

[54] S. Katrenko and P. Adriaans. Named entity recognition for Ukrainian: a resource-

light approach. In Proceedings of the Workshop on Balto-Slavonic Natural

Language Processing: Information Extraction and Enabling Technologies, pages

88–93, 2007.

BIBLIOGRAPHY 91

[55] J.D. Kim, T. Ohta, Y. Tateisi, and J. Tsujii. Genia corpus: a semantically

annotated corpus for bio-textmining. Bioinformatics, 19(Suppl 1):180–182, 2003.

[56] Jun-Tae Kim and Dan I. Moldovan. Acquisition of linguistic patterns for

knowledge-based information extraction. IEEE Trans. on Knowl. and Data Eng.,

7:713–724, October 1995.

[57] Dilek Kucuk and Adnan Yazici. Named entity recognition experiments on Turkish

texts. In Proceedings of the 8th International Conference on Flexible Query

Answering Systems, FQAS ’09, pages 524–535, Berlin, Heidelberg, 2009. Springer-

Verlag.

[58] N. Kushmerick, D. S. Weld, and R. Doorenbos. Wrapper induction for

information extraction. In Proceedings of the Fifteenth International Joint

Conference on Artificial Intelligence, volume 1, pages 729–735, 1997.

[59] Nicholas Kushmerick. Wrapper induction: efficiency and expressiveness. Artif.

Intell., 118(1-2):15–68, 2000.

[60] Nicholas Kushmerick and Bernd Thomas. Intelligent information agents. chapter

Adaptive information extraction: core technologies for information agents, pages

79–103. Springer-Verlag, Berlin, Heidelberg, 2003.

[61] Mucahit Kutlu. Noun phrase chunker for Turkish using dependency parser. M.S

Thesis, Bilkent University, 2010.

[62] A. Lavelli, M. E. Califf, F. Ciravegna, D. Freitag, C. Giuliano, N. Kushmerick,

and L. Romano. IE evaluation: Criticisms and recommendations. In Proceedings

of the Workshop on Adaptive Text Extraction and Mining (AAAI-2004), 2004.

[63] Anita Louis, Alta De Waal, and Cobus Venter. Named entity recognition in a

south african context. In Proceedings of the 2006 annual research conference of the

South African institute of computer scientists and information technologists on

IT research in developing countries, SAICSIT ’06, pages 170–179. South African

Institute for Computer Scientists and Information Technologists, 2006.

[64] Peter Lyman and Hal R. Varian. How much storage is enough? ACM Queue,

1(4), 2003.

BIBLIOGRAPHY 92

[65] Diana Maynard, Valentin Tablan, Cristian Ursu, Hamish Cunningham, and

Yorick Wilks. Named entity recognition from diverse text types. In In Recent

Advances in Natural Language Processing 2001 Conference, Tzigov Chark, 2001.

[66] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum

entropy markov models for information extraction and segmentation. In

ICML ’00: Proceedings of the Seventeenth International Conference on Machine

Learning, pages 591–598, San Francisco, CA, USA, 2000. Morgan Kaufmann

Publishers Inc.

[67] Andrew McCallum and Wei Li. Early results for named entity recognition

with conditional random fields, feature induction and web-enhanced lexicons.

In Proceedings of the seventh conference on Natural language learning at HLT-

NAACL 2003, pages 188–191, Morristown, NJ, USA, 2003. Association for

Computational Linguistics.

[68] Sven Mika and Burkhard Rost. Protein names precisely peeled off free text.

Bioinformatics, 20:241–247, January 2004.

[69] Einat Minkov, Richard C. Wang, and William W. Cohen. Extracting personal

names from email: applying named entity recognition to informal text. In

Proceedings of the conference on Human Language Technology and Empirical

Methods in Natural Language Processing, HLT ’05, pages 443–450, Morristown,

NJ, USA, 2005. Association for Computational Linguistics.

[70] Ion Muslea, Steve Minton, and Craig Knoblock. A hierarchical approach

to wrapper induction. In Proceedings of the Third Annual Conference on

Autonomous Agents, AGENTS ’99, pages 190–197, New York, NY, USA, 1999.

ACM.

[71] Ion Muslea, Steven Minton, and Craig A. Knoblock. Selective sampling with

redundant views. In Proceedings of the Seventeenth National Conference on

Artificial Intelligence and Twelfth Conference on Innovative Applications of

Artificial Intelligence, pages 621–626. AAAI Press, 2000.

[72] David Nadeau and Satoshi Sekine. A survey of named entity recognition and

classification. Linguisticae Investigationes, 30(1):3–26, January 2007.

BIBLIOGRAPHY 93

[73] National Institute of Standards and Technology (NIST). Automatic Content

Extraction (ACE) evaluation website. Retrieved September, 2010 from

http://www.itl.nist.gov/iad/mig/tests/ace/.

[74] National Institute of Standards and Technology (NIST). Text Analysis Confer-

ence (TAC) website. Retrieved September, 2010 from http://www.nist.gov/tac.

[75] Kemal Oflazer. Two-level description of Turkish morphology. In Proceedings of

the sixth conference on European chapter of the Association for Computational

Linguistics, pages 472–472, Morristown, NJ, USA, 1993. Association for

Computational Linguistics.

[76] Fuchun Peng and Andrew McCallum. Accurate information extraction from

research papers using conditional random fields. In HLT-NAACL04, pages 329–

336, 2004.

[77] Georgios Petasis, Frantz Vichot, Francis Wolinski, Georgios Paliouras, Vangelis

Karkaletsis, and Constantine D. Spyropoulos. Using machine learning to maintain

rule-based named-entity recognition and classification systems. In Proceedings of

the 39th Annual Meeting on Association for Computational Linguistics, ACL

’01, pages 426–433, Morristown, NJ, USA, 2001. Association for Computational

Linguistics.

[78] B. Popov, A. Kirilov, D. Maynard, and D. Manov. Creation of reusable

components and language resources for named entity recognition in russian. In

Proceedings of the Conference on Language Resources and Evaluation, 2004.

[79] Adam Przepiórkowski. Slavonic information extraction and partial parsing.

In ACL ’07: Proceedings of the Workshop on Balto-Slavonic Natural

Language Processing, pages 1–10, Morristown, NJ, USA, 2007. Association for

Computational Linguistics.

[80] Ellen Riloff. Automatically constructing a dictionary for information extraction

tasks. In In Proceedings of the Eleventh National Conference on Artificial

Intelligence, pages 811–816. MIT Press, 1993.

[81] Ellen Riloff. An empirical study of automated dictionary construction for

information extraction in three domains. Artif. Intell., 85(1-2):101–134, 1996.

BIBLIOGRAPHY 94

[82] Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction

by multi-level bootstrapping. In AAAI ’99/IAAI ’99: Proceedings of

the sixteenth national conference on Artificial intelligence and the eleventh

Innovative applications of artificial intelligence conference innovative applications

of artificial intelligence, pages 474–479, Menlo Park, CA, USA, 1999. American

Association for Artificial Intelligence.

[83] Marc Rössler. Corpus-based learning of lexical resources for german named entity

recognition. In LREC ’04: Proceedings of the Conference on Language Resources

and Evaluation, 2004.

[84] Naomi Sager, Carol Friedman, and Margaret S. Lyman. Medical Language

Processing: Computer Management of Narrative Data. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1987.

[85] K. Saito and M. Nagata. Multi-language named-entity recognition system based

on HMM. In Proceedings of the ACL 2003 Workshop on Multilingual and Mixed-

Language Named Entity Recognition - Volume 15, pages 41–48, 2003.

[86] Satoshi Sekine, Ralph Grishman, and Hiroyuki Shinnou. A decision tree method

for finding and classifying names in japanese texts. In In Proceedings of the Sixth

Workshop on Very Large Corpora, 1998.

[87] Kristie Seymore, Andrew Mccallum, and Roni Rosenfeld. Learning hidden

markov model structure for information extraction. In AAAI 99 Workshop on

Machine Learning for Information Extraction, pages 37–42, 1999.

[88] Yusuke Shinyama and Satoshi Sekine. Named entity discovery using comparable

news articles. In COLING ’04: Proceedings of the 20th international conference

on Computational Linguistics, page 848, Morristown, NJ, USA, 2004. Association

for Computational Linguistics.

[89] Christian Siefkes and Peter Siniakov. An overview and classification of adaptive

approaches to information extraction. In JOURNAL ON DATA SEMANTICS,

IV:172212. LNCS 3730. Springer, 2005.

[90] Joaquim F. Ferreira Da Silva, Zornitsa Kozareva, Jos Gabriel, and Pereira Lopes.

Cluster analysis and classification of named entities. In Proc. Conference on

Language Resources and Evaluation, 2004.

BIBLIOGRAPHY 95

[91] Stephen Soderland. Learning information extraction rules for semi-structured

and free text. Mach. Learn., 34:233–272, February 1999.

[92] Stephen Soderland, David Fisher, Jonathan Aseltine, and Wendy Lehnert.

CRYSTAL inducing a conceptual dictionary. In IJCAI’95: Proceedings of the

14th international joint conference on Artificial intelligence, pages 1314–1319,

San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[93] L. Tanabe and W. J. Wilbur. Tagging gene and protein names in biomedical

text. Bioinformatics, 18(8):1124–1132, August 2002.

[94] Serhan Tatar and Ilyas Cicekli. Automatic rule learning exploiting morphological

features for named entity recognition in turkish. Journal of Information Science.

(in Press).

[95] Serhan Tatar and Ilyas Cicekli. Two learning approaches for protein name

extraction. J. of Biomedical Informatics, 42:1046–1055, December 2009.

[96] Pham Thi Xuan Thao, Tran Quoc Tri, Dinh Dien, and Nigel Collier. Named

entity recognition in vietnamese using classifier voting. ACM Transactions on

Asian Language Information Processing (TALIP), 6:1–18, December 2007.

[97] Cynthia A. Thompson, Mary Elaine Califf, and Raymond J. Mooney. Active

learning for natural language parsing and information extraction. In ICML

’99: Proceedings of the Sixteenth International Conference on Machine Learning,

pages 406–414, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers

Inc.

[98] Erik F. Tjong Kim Sang. Introduction to the CoNLL-2002 shared task: language-

independent named entity recognition. In proceedings of the 6th conference on

Natural language learning - Volume 20, COLING-02, pages 1–4, Morristown, NJ,

USA, 2002. Association for Computational Linguistics.

[99] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003

shared task: language-independent named entity recognition. In Proceedings

of the seventh conference on Natural language learning at HLT-NAACL 2003

- Volume 4, pages 142–147, Morristown, NJ, USA, 2003. Association for

Computational Linguistics.

BIBLIOGRAPHY 96

[100] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Improving the performance of

dictionary-based approaches in protein name recognition. J. of Biomedical

Informatics, 37:461–470, December 2004.

[101] Gokhan Tur, Dilek Hakkani-Tur, and Kemal Oflazer. A statistical information

extraction system for Turkish. Natural Languge Engineering, 9:181–210, June

2003.

[102] Jordi Turmo, Alicia Ageno, and Neus Català. Adaptive information extraction.

ACM Comput. Surv., 38(2):4, 2006.

[103] Ben Wellner, Andrew McCallum, Fuchun Peng, and Michael Hay. An integrated,

conditional model of information extraction and coreference with application

to citation matching. In Proceedings of the 20th conference on Uncertainty in

artificial intelligence, UAI ’04, pages 593–601, Arlington, Virginia, United States,

2004. AUAI Press.

[104] Youzheng Wu, Jun Zhao, Bo Xu, and Hao Yu. Chinese named entity recognition

based on multiple features. In HLT ’05: Proceedings of the conference on Human

Language Technology and Empirical Methods in Natural Language Processing,

pages 427–434, Morristown, NJ, USA, 2005. Association for Computational

Linguistics.

[105] Roman Yangarber, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen.

Automatic acquisition of domain knowledge for information extraction. In

Proceedings of the 18th conference on Computational linguistics, pages 940–946,

Morristown, NJ, USA, 2000. Association for Computational Linguistics.

[106] Roman Yangarber, Lauri Jokipii, Antti Rauramo, and Silja Huttunen. Extracting

information about outbreaks of infectious epidemics. In Proceedings of

HLT/EMNLP on Interactive Demonstrations, pages 22–23, Morristown, NJ,

USA, 2005. Association for Computational Linguistics.

[107] H. P. Zhang, Q. Liu, H.K. Yu, Y.Q. Cheng, and S. Bai. Chinese named entity

recognition using role model. International Journal of Computational Linguistics

and Chinese language processing, 8:29–60, 2003.

[108] Shubin Zhao and Ralph Grishman. Extracting relations with integrated

information using kernel methods. In ACL ’05: Proceedings of the 43rd

BIBLIOGRAPHY 97

Annual Meeting on Association for Computational Linguistics, pages 419–426,

Morristown, NJ, USA, 2005. Association for Computational Linguistics.

[109] Guangyu Zhu, Timothy J. Bethea, and Vikas Krishna. Extracting relevant

named entities for automated expense reimbursement. In Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’07, pages 1004–1012, New York, NY, USA, 2007. ACM.

Appendix A

A Sample Tagged News Article

<Article id=”156”>

<ArticleText>

Ankara’da bombalı saldırı: 1 ölü

20 Mayıs 2003 tarihinde Ankara Kızılay’da bir kafede intihar saldırısı hazırlığı içindeyken

bombanın yanlışlıkla patlaması üzerine ölen kişinin DHKP-C militanı Şengül Akkurt olduğu

açıklandı. Sabah 09.15 sıralarında meydana gelen patlama sonucu, kafenin tüm camları

kırıldı, 3. katın yan duvarı çöktü. Emniyet yetkilileri, kafeye bir sırt çantasıyla gelen

intihar eylemcisinin, tuvalette bombayı üzerine yerleştirirken yanlışlıkla patlattığını açıkladı.

Üzerinden herhangi bir belge çıkmayan ve yüzü parçalanan kadın eylemcinin parmak izleri

alındı ve tüm illere gönderildi. Malatya’da yapılan incelemeyle ölen militanın isminin Şengül

Akkurt olduğu saptandı. Bu bilgilere göre Şengül Akkurt, 2000 yılından bu yana Malatya

Devlet Güvenlik Mahkemesi tarafından aranıyordu.

Bu arada İçişleri Bakanı Abdülkadir Aksu, intihar eylemcisinin büyük bir olasılıkla güvenlik

kuvvetlerine karşı eylem yapacağını söyledi. Tahrip gücü çok yüksek olan bombanın menşeini

belirlemek için olay yerinden toplanan parçalar kriminal laboratuvarına gönderildi. Kafede

meydana gelen bombalı eylemle ilgili üzerinde koyu renk tişört ve mavi kot bulunan bir kişi

aranırken, Ankara polisi şüpheli paket konusunda alarma geçti. AŞTİ, Metro ve halkın alışveriş

yaptığı kalabalık yerlerde güvenlik önlemlerini arttırdı.

</ArticleText>

<Tokens>

<Token id=”1” startPos=”0” endPos=”9” stringValue=”Ankara’da” />

98

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 99

<Token id=”2” startPos=”10” endPos=”17” stringValue=”bombalı” />

<Token id=”3” startPos=”18” endPos=”25” stringValue=”saldırı” />

<Token id=”4” startPos=”25” endPos=”26” stringValue=”:” />

<Token id=”5” startPos=”27” endPos=”28” stringValue=”1” />

<Token id=”6” startPos=”29” endPos=”32” stringValue=”ölü” />

<Token id=”7” startPos=”36” endPos=”38” stringValue=”20” />

<Token id=”8” startPos=”39” endPos=”44” stringValue=”Mayıs” />

<Token id=”9” startPos=”45” endPos=”49” stringValue=”2003” />

<Token id=”10” startPos=”52” endPos=”61” stringValue=”tarihinde” />

<Token id=”11” startPos=”62” endPos=”68” stringValue=”Ankara” />

<Token id=”12” startPos=”69” endPos=”79” stringValue=”Kızılay’da” />

<Token id=”13” startPos=”80” endPos=”83” stringValue=”bir” />

<Token id=”14” startPos=”84” endPos=”90” stringValue=”kafede” />

<Token id=”15” startPos=”91” endPos=”98” stringValue=”intihar” />

<Token id=”16” startPos=”99” endPos=”108” stringValue=”saldırısı” />

<Token id=”17” startPos=”109” endPos=”118” stringValue=”hazırlığı” />

<Token id=”18” startPos=”119” endPos=”129” stringValue=”içindeyken” />

<Token id=”19” startPos=”130” endPos=”138” stringValue=”bombanın” />

<Token id=”20” startPos=”139” endPos=”150” stringValue=”yanlışlıkla” />

<Token id=”21” startPos=”151” endPos=”160” stringValue=”patlaması” />

<Token id=”22” startPos=”161” endPos=”168” stringValue=”üzerine” />

<Token id=”23” startPos=”169” endPos=”173” stringValue=”ölen” />

<Token id=”24” startPos=”174” endPos=”181” stringValue=”kişinin” />

<Token id=”25” startPos=”182” endPos=”186” stringValue=”DHKP” />

<Token id=”26” startPos=”186” endPos=”187” stringValue=”-” />

<Token id=”27” startPos=”187” endPos=”188” stringValue=”C” />

<Token id=”28” startPos=”189” endPos=”197” stringValue=”militanı” />

<Token id=”29” startPos=”198” endPos=”204” stringValue=”Şengül” />

<Token id=”30” startPos=”205” endPos=”211” stringValue=”Akkurt” />

<Token id=”31” startPos=”212” endPos=”218” stringValue=”olduğu” />

<Token id=”32” startPos=”219” endPos=”228” stringValue=”açıklandı” />

<Token id=”33” startPos=”228” endPos=”229” stringValue=”.” />

<Token id=”34” startPos=”230” endPos=”235” stringValue=”Sabah” />

<Token id=”35” startPos=”236” endPos=”238” stringValue=”09” />

<Token id=”36” startPos=”238” endPos=”239” stringValue=”.” />

<Token id=”37” startPos=”239” endPos=”241” stringValue=”15” />

<Token id=”38” startPos=”242” endPos=”253” stringValue=”sıralarında” />

<Token id=”39” startPos=”254” endPos=”261” stringValue=”meydana” />

<Token id=”40” startPos=”262” endPos=”267” stringValue=”gelen” />

<Token id=”41” startPos=”268” endPos=”275” stringValue=”patlama” />

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 100

<Token id=”42” startPos=”276” endPos=”282” stringValue=”sonucu” />

<Token id=”43” startPos=”282” endPos=”283” stringValue=”,” />

<Token id=”44” startPos=”284” endPos=”291” stringValue=”kafenin” />

<Token id=”45” startPos=”292” endPos=”295” stringValue=”tüm” />

<Token id=”46” startPos=”296” endPos=”303” stringValue=”camları” />

<Token id=”47” startPos=”304” endPos=”311” stringValue=”kırıldı” />

<Token id=”48” startPos=”311” endPos=”312” stringValue=”,” />

<Token id=”49” startPos=”313” endPos=”314” stringValue=”3” />

<Token id=”50” startPos=”314” endPos=”315” stringValue=”.” />

<Token id=”51” startPos=”316” endPos=”321” stringValue=”katın” />

<Token id=”52” startPos=”322” endPos=”325” stringValue=”yan” />

<Token id=”53” startPos=”326” endPos=”332” stringValue=”duvarı” />

<Token id=”54” startPos=”333” endPos=”338” stringValue=”çöktü” />

<Token id=”55” startPos=”338” endPos=”339” stringValue=”.” />

<Token id=”56” startPos=”340” endPos=”347” stringValue=”Emniyet” />

<Token id=”57” startPos=”348” endPos=”359” stringValue=”yetkilileri” />

<Token id=”58” startPos=”359” endPos=”360” stringValue=”,” />

<Token id=”59” startPos=”361” endPos=”367” stringValue=”kafeye” />

<Token id=”60” startPos=”368” endPos=”371” stringValue=”bir” />

<Token id=”61” startPos=”372” endPos=”376” stringValue=”sırt” />

<Token id=”62” startPos=”377” endPos=”387” stringValue=”çantasıyla” />

<Token id=”63” startPos=”388” endPos=”393” stringValue=”gelen” />

<Token id=”64” startPos=”394” endPos=”401” stringValue=”intihar” />

<Token id=”65” startPos=”402” endPos=”414” stringValue=”eylemcisinin” />

<Token id=”66” startPos=”414” endPos=”415” stringValue=”,” />

<Token id=”67” startPos=”416” endPos=”425” stringValue=”tuvalette” />

<Token id=”68” startPos=”426” endPos=”433” stringValue=”bombayı” />

<Token id=”69” startPos=”434” endPos=”441” stringValue=”üzerine” />

<Token id=”70” startPos=”442” endPos=”456” stringValue=”yerleştirirken” />

<Token id=”71” startPos=”457” endPos=”468” stringValue=”yanlışlıkla” />

<Token id=”72” startPos=”469” endPos=”481” stringValue=”patlattığını” />

<Token id=”73” startPos=”482” endPos=”490” stringValue=”açıkladı” />

<Token id=”74” startPos=”490” endPos=”491” stringValue=”.” />

<Token id=”75” startPos=”492” endPos=”501” stringValue=”Üzerinden” />

<Token id=”76” startPos=”502” endPos=”510” stringValue=”herhangi” />

<Token id=”77” startPos=”511” endPos=”514” stringValue=”bir” />

<Token id=”78” startPos=”515” endPos=”520” stringValue=”belge” />

<Token id=”79” startPos=”521” endPos=”529” stringValue=”çıkmayan” />

<Token id=”80” startPos=”530” endPos=”532” stringValue=”ve” />

<Token id=”81” startPos=”533” endPos=”537” stringValue=”yüzü” />

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 101

<Token id=”82” startPos=”538” endPos=”548” stringValue=”parçalanan” />

<Token id=”83” startPos=”549” endPos=”554” stringValue=”kadın” />

<Token id=”84” startPos=”555” endPos=”565” stringValue=”eylemcinin” />

<Token id=”85” startPos=”566” endPos=”572” stringValue=”parmak” />

<Token id=”86” startPos=”573” endPos=”579” stringValue=”izleri” />

<Token id=”87” startPos=”580” endPos=”586” stringValue=”alındı” />

<Token id=”88” startPos=”587” endPos=”589” stringValue=”ve” />

<Token id=”89” startPos=”590” endPos=”593” stringValue=”tüm” />

<Token id=”90” startPos=”594” endPos=”600” stringValue=”illere” />

<Token id=”91” startPos=”601” endPos=”611” stringValue=”gönderildi” />

<Token id=”92” startPos=”611” endPos=”612” stringValue=”.” />

<Token id=”93” startPos=”613” endPos=”623” stringValue=”Malatya’da” />

<Token id=”94” startPos=”624” endPos=”631” stringValue=”yapılan” />

<Token id=”95” startPos=”632” endPos=”643” stringValue=”incelemeyle” />

<Token id=”96” startPos=”644” endPos=”648” stringValue=”ölen” />

<Token id=”97” startPos=”649” endPos=”658” stringValue=”militanın” />

<Token id=”98” startPos=”659” endPos=”666” stringValue=”isminin” />

<Token id=”99” startPos=”667” endPos=”673” stringValue=”Şengül” />

<Token id=”100” startPos=”674” endPos=”680” stringValue=”Akkurt” />

<Token id=”101” startPos=”681” endPos=”687” stringValue=”olduğu” />

<Token id=”102” startPos=”688” endPos=”696” stringValue=”saptandı” />

<Token id=”103” startPos=”696” endPos=”697” stringValue=”.” />

<Token id=”104” startPos=”698” endPos=”700” stringValue=”Bu” />

<Token id=”105” startPos=”701” endPos=”710” stringValue=”bilgilere” />

<Token id=”106” startPos=”711” endPos=”715” stringValue=”göre” />

<Token id=”107” startPos=”716” endPos=”722” stringValue=”Şengül” />

<Token id=”108” startPos=”723” endPos=”729” stringValue=”Akkurt” />

<Token id=”109” startPos=”729” endPos=”730” stringValue=”,” />

<Token id=”110” startPos=”731” endPos=”735” stringValue=”2000” />

<Token id=”111” startPos=”736” endPos=”744” stringValue=”yılından” />

<Token id=”112” startPos=”745” endPos=”747” stringValue=”bu” />

<Token id=”113” startPos=”748” endPos=”752” stringValue=”yana” />

<Token id=”114” startPos=”753” endPos=”760” stringValue=”Malatya” />

<Token id=”115” startPos=”761” endPos=”767” stringValue=”Devlet” />

<Token id=”116” startPos=”768” endPos=”776” stringValue=”Güvenlik” />

<Token id=”117” startPos=”777” endPos=”786” stringValue=”Mahkemesi” />

<Token id=”118” startPos=”787” endPos=”797” stringValue=”tarafından” />

<Token id=”119” startPos=”798” endPos=”808” stringValue=”aranıyordu” />

<Token id=”120” startPos=”808” endPos=”809” stringValue=”.” />

<Token id=”121” startPos=”811” endPos=”813” stringValue=”Bu” />

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 102

<Token id=”122” startPos=”814” endPos=”819” stringValue=”arada” />

<Token id=”123” startPos=”820” endPos=”828” stringValue=”İçişleri” />

<Token id=”124” startPos=”829” endPos=”835” stringValue=”Bakanı” />

<Token id=”125” startPos=”836” endPos=”846” stringValue=”Abdülkadir” />

<Token id=”126” startPos=”847” endPos=”851” stringValue=”Aksu” />

<Token id=”127” startPos=”851” endPos=”852” stringValue=”,” />

<Token id=”128” startPos=”853” endPos=”860” stringValue=”intihar” />

<Token id=”129” startPos=”861” endPos=”873” stringValue=”eylemcisinin” />

<Token id=”130” startPos=”874” endPos=”879” stringValue=”büyük” />

<Token id=”131” startPos=”880” endPos=”883” stringValue=”bir” />

<Token id=”132” startPos=”884” endPos=”894” stringValue=”olasılıkla” />

<Token id=”133” startPos=”895” endPos=”903” stringValue=”güvenlik” />

<Token id=”134” startPos=”904” endPos=”916” stringValue=”kuvvetlerine” />

<Token id=”135” startPos=”917” endPos=”922” stringValue=”karşı” />

<Token id=”136” startPos=”923” endPos=”928” stringValue=”eylem” />

<Token id=”137” startPos=”929” endPos=”939” stringValue=”yapacağını” />

<Token id=”138” startPos=”940” endPos=”947” stringValue=”söyledi” />

<Token id=”139” startPos=”947” endPos=”948” stringValue=”.” />

<Token id=”140” startPos=”949” endPos=”955” stringValue=”Tahrip” />

<Token id=”141” startPos=”956” endPos=”960” stringValue=”gücü” />

<Token id=”142” startPos=”961” endPos=”964” stringValue=”çok” />

<Token id=”143” startPos=”965” endPos=”971” stringValue=”yüksek” />

<Token id=”144” startPos=”972” endPos=”976” stringValue=”olan” />

<Token id=”145” startPos=”977” endPos=”985” stringValue=”bombanın” />

<Token id=”146” startPos=”986” endPos=”994” stringValue=”menşeini” />

<Token id=”147” startPos=”995” endPos=”1005” stringValue=”belirlemek” />

<Token id=”148” startPos=”1006” endPos=”1010” stringValue=”için” />

<Token id=”149” startPos=”1011” endPos=”1015” stringValue=”olay” />

<Token id=”150” startPos=”1016” endPos=”1024” stringValue=”yerinden” />

<Token id=”151” startPos=”1025” endPos=”1033” stringValue=”toplanan” />

<Token id=”152” startPos=”1034” endPos=”1042” stringValue=”parçalar” />

<Token id=”153” startPos=”1043” endPos=”1051” stringValue=”kriminal” />

<Token id=”154” startPos=”1052” endPos=”1066” stringValue=”laboratuvarına” />

<Token id=”155” startPos=”1067” endPos=”1077” stringValue=”gönderildi” />

<Token id=”156” startPos=”1077” endPos=”1078” stringValue=”.” />

<Token id=”157” startPos=”1079” endPos=”1085” stringValue=”Kafede” />

<Token id=”158” startPos=”1086” endPos=”1093” stringValue=”meydana” />

<Token id=”159” startPos=”1094” endPos=”1099” stringValue=”gelen” />

<Token id=”160” startPos=”1100” endPos=”1107” stringValue=”bombalı” />

<Token id=”161” startPos=”1108” endPos=”1115” stringValue=”eylemle” />

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 103

<Token id=”162” startPos=”1116” endPos=”1122” stringValue=”ilgili” />

<Token id=”163” startPos=”1123” endPos=”1131” stringValue=”üzerinde” />

<Token id=”164” startPos=”1132” endPos=”1136” stringValue=”koyu” />

<Token id=”165” startPos=”1137” endPos=”1141” stringValue=”renk” />

<Token id=”166” startPos=”1142” endPos=”1148” stringValue=”tişört” />

<Token id=”167” startPos=”1149” endPos=”1151” stringValue=”ve” />

<Token id=”168” startPos=”1152” endPos=”1156” stringValue=”mavi” />

<Token id=”169” startPos=”1157” endPos=”1160” stringValue=”kot” />

<Token id=”170” startPos=”1161” endPos=”1168” stringValue=”bulunan” />

<Token id=”171” startPos=”1169” endPos=”1172” stringValue=”bir” />

<Token id=”172” startPos=”1173” endPos=”1177” stringValue=”kişi” />

<Token id=”173” startPos=”1178” endPos=”1187” stringValue=”aranırken” />

<Token id=”174” startPos=”1187” endPos=”1188” stringValue=”,” />

<Token id=”175” startPos=”1189” endPos=”1195” stringValue=”Ankara” />

<Token id=”176” startPos=”1196” endPos=”1202” stringValue=”polisi” />

<Token id=”177” startPos=”1203” endPos=”1210” stringValue=”şüpheli” />

<Token id=”178” startPos=”1211” endPos=”1216” stringValue=”paket” />

<Token id=”179” startPos=”1217” endPos=”1226” stringValue=”konusunda” />

<Token id=”180” startPos=”1227” endPos=”1233” stringValue=”alarma” />

<Token id=”181” startPos=”1234” endPos=”1239” stringValue=”geçti” />

<Token id=”182” startPos=”1239” endPos=”1240” stringValue=”.” />

<Token id=”183” startPos=”1241” endPos=”1245” stringValue=”AŞTİ” />

<Token id=”184” startPos=”1245” endPos=”1246” stringValue=”,” />

<Token id=”185” startPos=”1247” endPos=”1252” stringValue=”Metro” />

<Token id=”186” startPos=”1253” endPos=”1255” stringValue=”ve” />

<Token id=”187” startPos=”1256” endPos=”1262” stringValue=”halkın” />

<Token id=”188” startPos=”1263” endPos=”1272” stringValue=”alışveriş” />

<Token id=”189” startPos=”1273” endPos=”1280” stringValue=”yaptığı” />

<Token id=”190” startPos=”1281” endPos=”1290” stringValue=”kalabalık” />

<Token id=”191” startPos=”1291” endPos=”1299” stringValue=”yerlerde” />

<Token id=”192” startPos=”1300” endPos=”1308” stringValue=”güvenlik” />

<Token id=”193” startPos=”1309” endPos=”1320” stringValue=”önlemlerini” />

<Token id=”194” startPos=”1321” endPos=”1329” stringValue=”arttırdı” />

<Token id=”195” startPos=”1329” endPos=”1330” stringValue=”.” />

</Tokens>

<Sentences>

<Sentence id=”1” startToken=”1” endToken=”6” />

<Sentence id=”2” startToken=”7” endToken=”33” />

<Sentence id=”3” startToken=”34” endToken=”55” />

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 104

<Sentence id=”4” startToken=”56” endToken=”74” />

<Sentence id=”5” startToken=”75” endToken=”92” />

<Sentence id=”6” startToken=”93” endToken=”103” />

<Sentence id=”7” startToken=”104” endToken=”120” />

<Sentence id=”8” startToken=”121” endToken=”139” />

<Sentence id=”9” startToken=”140” endToken=”156” />

<Sentence id=”10” startToken=”157” endToken=”182” />

<Sentence id=”11” startToken=”183” endToken=”195” />

</Sentences>

<Topics>

<Topic id=”1” startToken=”1” endToken=”195” />

</Topics>

<NEs>

<Location id=”1” startToken=”1” endToken=”1” stringValue=”Ankara’da” />

<Date id=”2” startToken=”7” endToken=”9” stringValue=”20 Mayıs 2003” />

<Location id=”3” startToken=”11” endToken=”11” stringValue=”Ankara” />

<Location id=”4” startToken=”12” endToken=”12” stringValue=”Kızılay’da” />

<Organization id=”5” startToken=”25” endToken=”27” stringValue=”DHKP-C” />

<Person id=”6” startToken=”29” endToken=”30” stringValue=”Şengül Akkurt” />

<Time id=”7” startToken=”35” endToken=”37” stringValue=”09.15” />

<Location id=”8” startToken=”93” endToken=”93” stringValue=”Malatya’da” />

<Person id=”9” startToken=”99” endToken=”100” stringValue=”Şengül Akkurt” />

<Person id=”10” startToken=”107” endToken=”108” stringValue=”Şengül Akkurt” />

<Date id=”11” startToken=”110” endToken=”110” stringValue=”2000” />

<Organization id=”12” startToken=”114” endToken=”117” stringValue=”Malatya De-

vlet Güvenlik Mahkemesi” />

<Person id=”13” startToken=”125” endToken=”126” stringValue=”Abdülkadir Aksu”

/>

<Location id=”14” startToken=”175” endToken=”175” stringValue=”Ankara” />

<Organization id=”15” startToken=”183” endToken=”183” stringValue=”AŞTİ” />

</NEs>

<Relations>

<LocatedIn id=”1” entityId=”4” refId=”3” inferredFromText=”Ankara Kızılay’da” />

<InferredFromToken id=”1” tokenRef=”11” text=”Ankara” />

<InferredFromToken id=”2” tokenRef=”12” text=”Kızılay’da” />

</LocatedIn>

<AffiliatedWith id=”2” entityId=”6” refId=”5” inferredFromText=”DHKP - C militanı

APPENDIX A. A SAMPLE TAGGED NEWS ARTICLE 105

Şengül Akkurt” />

<InferredFromToken id=”1” tokenRef=”25” text=”DHKP” />

<InferredFromToken id=”2” tokenRef=”26” text=”-” />

<InferredFromToken id=”3” tokenRef=”27” text=”C” />

<InferredFromToken id=”4” tokenRef=”28” text=”militanı” />

<InferredFromToken id=”5” tokenRef=”29” text=”Şengül” />

<InferredFromToken id=”6” tokenRef=”30” text=”Akkurt” />

</AffiliatedWith>

</Relations>

</Article>

Appendix B

Named Entity Classes

• PERSON

• LOCATION

• ORGANIZATION

• DATE

• TIME

106

Appendix C

Entity Relation Classes

• LOCATED IN

• AFFILIATED WITH

• ATTACKED BY

107

Appendix D

List of the used Gazetter Lists

• ORGANIZATION

List of Common Organization Names

List of Common Words appear in the first position of Organization Names

List of Common Words appear in the last position of Organization Names

List of Common Words preceding Organization Names

List of Common Words succeeding Organization Names

List of Common Words appear in Organization Names

• LOCATION

List of Cities

List of Continents

List of Countries

108

APPENDIX D. LIST OF THE USED GAZETTER LISTS 109

List of Districts

List of Mountains

List of Geographical Regions

List of Rivers

List of Seas

List of Villages

List of Common Words preceding Location Names

List of Common Words succeeding Location Names

List of Common Words appear in Location Names

• PERSON

List of Common First Names

List of Common Last Names

List of Common Person Titles (Long)

List of Common Person Titles (Short)

List of Common Words preceding Person Names

List of Common Words succeeding Person Names

List of Common Words appear in Person Names

APPENDIX D. LIST OF THE USED GAZETTER LISTS 110

• DATE

List of Days (Numbers)

List of Days (Words)

List of Months (Numbers)

List of Months (Words)

List of Year Expressions (Numbers)

List of Common Words preceding Date Expressions

List of Common Words succeeding Date Expressions

List of Common Words appear in Date Expressions

• TIME

List of Hour Expressions (Numbers)

List of Minute Expressions (Numbers)

List of Common Words appear in Time Expressions

• NUMBER

List of Numbers (Digits)

List of Numbers (Words)

• GENERAL

List of Stop Words

