1,627 research outputs found

    In Search of Optimal Linkage Trees

    Get PDF
    Linkage-learning Evolutionary Algorithms (EAs) use linkage learning to construct a linkage model, which is exploited to solve problems efficiently by taking into account important linkages, i.e. dependencies between problem variables, during variation. It has been shown that when this linkage model is aligned correctly with the structure of the problem, these EAs are capable of solving problems efficiently by performing variation based on this linkage model [2]. The Linkage Tree Genetic Algorithm (LTGA) uses a Linkage Tree (LT) as a linkage model to identify the problem's structure hierarchically, enabling it to solve various problems very efficiently. Understanding the reasons for LTGA's excellent performance is highly valuable as LTGA is also able to efficiently solve problems for which a tree-like linkage model seems inappropriate. This brings us to ask what in fact makes a linkage model ideal for LTGA to be used

    Multi-objective gene-pool optimal mixing evolutionary algorithms

    Get PDF
    In this paper, by constructing the Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA), we pinpoint key features for scalable multi objective optimizers. First, an elitist archive is beneficial for keeping track of non-dominated solutions. Second, clustering can be crucial if different parts of the Pareto-optimal front need to be handled separately. Next, an efficient linkage learning procedure with a lean linkage model is required to capture the underlying dependencies among decision variables. It is also important that the optimizers can effectively exploit the learned linkage relations to generate new offspring solutions, steering the search toward promising regions in the search space

    Multi-objective gene-pool optimal mixing evolutionary algorithms

    Get PDF
    The recently introduced Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA), with a lean, but sufficient, linkage model and an efficient variation operator, has been shown to be a robust and efficient methodology for solving single objective (SO) optimization problems with superior performance compared to classic genetic algorithms (GAs) and estimation-of-distribution algorithms (EDAs). In this paper, we bring the strengths of GOMEAs to the multi-objective (MO) optimization realm. To this end, we modify the linkage learning procedure and the variation operator of GOMEAs to better suit the need of finding the whole Pareto-optimal front rather than a single best solution. Based on state-of-the-art studies on MOEAs, we further pinpoint and incorporate two other essential components for a scalable MO optimizer. First, the use of an elitist archive is beneficial for keeping track of non-dominated solutions when the main population size is limited. Second, clustering can be crucial if different parts of the Pareto-optimal front need to be handled differently. By combining these elements, we construct a multi-objective GOMEA (MO-GOMEA). Experimental results on various MO optimization problems confirm the capability and scalability of our MO-GOMEA that compare favorably with those of the well-known GA NSGA-II and the more recently introduced EDA mohBOA

    Medium-Voltage Distribution Network Expansion Planning with Gene-pool Optimal Mixing Evolutionary Algorithms

    Get PDF
    Medium-voltage distribution network expansion planning involves finding the most economical adjustments of both the capacity and the topology of the network such that no operational constraints are violated and the expected loads, that the expansion is planned for, can be supplied. This paper tackles this important real-world problem using realistic yet computationally feasible models and, for the first time, using two instances of the recently proposed class of Gene-pool Optimal Mixing Evolutionary Algorithms (GOMEAs) that have previously been shown to be a highly efficient integration of local search and genetic recombination, but only on standard benchmark problems. One GOMEA instance that we use employs linkage learning and one instance assumes no dependencies among problem variables. We also conduct experiments with a widely used traditional Genetic Algorithm (GA). Our results show that the favorable performance of GOMEA instances over traditional GAs extends to the real-world problem at hand. Moreover, the use of linkage learning is shown to further increase the algorithm's effectiveness in converging toward optimal solutions

    Exploiting Linkage Information and Problem-Specific Knowledge in Evolutionary Distribution Network Expansion Planning

    Get PDF
    This paper tackles the Distribution Network Expansion Planning (DNEP) problem that has to be solved by distribution network operators to decide which, where, and/or when enhancements to electricity networks should be introduced to satisfy the future power demands. We compare two evolutionary algorithms (EAs) for optimizing expansion plans: the classic genetic algorithm (GA) with uniform crossover and the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) that learns and exploits linkage information between problem variables. We study the impact of incorporating different levels of problem-specific knowledge in the variation operators as well as two constraint-handling techniques: constraint domination and repair mechanisms. Experiments show that the use of problem-specific variation operators is far more important for the classic GA to find high-quality solutions to the DNEP problem. GOMEA is found to have far more robust performance even when an out-of-box variant is used that doesn't exploit problem-specific knowledge. Based on experiments, we suggest that when selecting optimization algorithms for real-world applications like DNEP, EAs that have the ability to model and exploit problem structures, such as GOMEAs and estimation-of-distribution algorithms, should be given priority, especially when problem-specific knowledge is not straightforward to exploit, e.g. in the case of black-box optimization

    Towards a Universal Wordnet by Learning from Combined Evidenc

    Get PDF
    Lexical databases are invaluable sources of knowledge about words and their meanings, with numerous applications in areas like NLP, IR, and AI. We propose a methodology for the automatic construction of a large-scale multilingual lexical database where words of many languages are hierarchically organized in terms of their meanings and their semantic relations to other words. This resource is bootstrapped from WordNet, a well-known English-language resource. Our approach extends WordNet with around 1.5 million meaning links for 800,000 words in over 200 languages, drawing on evidence extracted from a variety of resources including existing (monolingual) wordnets, (mostly bilingual) translation dictionaries, and parallel corpora. Graph-based scoring functions and statistical learning techniques are used to iteratively integrate this information and build an output graph. Experiments show that this wordnet has a high level of precision and coverage, and that it can be useful in applied tasks such as cross-lingual text classification

    Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm with the interleaved multi-start scheme

    Get PDF
    The Multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA) has been shown to be a promising solver for multi-objective combinatorial optimization problems, obtaining an excellent scalability on both standard benchmarks and real-world applications. To attain optimal performance, MO-GOMEA requires its two parameters, namely the population size and the number of clusters, to be set properly with respect to the problem instance at hand, which is a non-trivial task for any EA practitioner. In this article, we present a new version of MO-GOMEA in combination with the so-called Interleaved Multi-start Scheme (IMS) for the multi-objective domain that eliminates the manual setting of these two parameters. The new MO-GOMEA is then evaluated on multiple benchmark problems in comparison with two well-known multi-objective evolutionary algorithms (MOEAs): Non-dominated Sorting Genetic Algorithm II (NSGA-II) and Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Experiments suggest that MO-GOMEA with the IMS is an easy-to-use MOEA that retains the excellent performance of the original MO-GOMEA

    Linked Data Entity Summarization

    Get PDF
    On the Web, the amount of structured and Linked Data about entities is constantly growing. Descriptions of single entities often include thousands of statements and it becomes difficult to comprehend the data, unless a selection of the most relevant facts is provided. This doctoral thesis addresses the problem of Linked Data entity summarization. The contributions involve two entity summarization approaches, a common API for entity summarization, and an approach for entity data fusion
    • …
    corecore