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ABSTRACT

The recently introduced Gene-pool Optimal Mixing Evolu-
tionary Algorithm (GOMEA), with a lean, but sufficient,
linkage model and an efficient variation operator, has been
shown to be a robust and efficient methodology for solving
single objective (SO) optimization problems with superior
performance compared to classic genetic algorithms (GAs)
and estimation-of-distribution algorithms (EDAs). In this
paper, we bring the strengths of GOMEAs to the multi-
objective (MO) optimization realm. To this end, we modify
the linkage learning procedure and the variation operator of
GOMEAs to better suit the need of finding the whole Pareto-
optimal front rather than a single best solution. Based on
state-of-the-art studies on MOEAs, we further pinpoint and
incorporate two other essential components for a scalable
MO optimizer. First, the use of an elitist archive is beneficial
for keeping track of non-dominated solutions when the main
population size is limited. Second, clustering can be cru-
cial if different parts of the Pareto-optimal front need to be
handled differently. By combining these elements, we con-
struct a multi-objective GOMEA (MO-GOMEA). Experi-
mental results on various MO optimization problems con-
firm the capability and scalability of our MO-GOMEA that
compare favorably with those of the well-known GA NSGA-
II and the more recently introduced EDA mohBOA.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search
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1. INTRODUCTION
A multi-objective (MO) optimization problem of m objec-

tives fi(x), i ∈ {0, 1, . . . , m− 1}, is defined as, without loss
of generality, to maximize all fi(x)’s. The objective value
vector of a solution x is f(x) = (f0(x), f1(x), . . . , fm−1(x)).
A solution x0 dominates a solution x1 (denoted x0 ≻ x1) if
and only if fi(x

0) ≥ fi(x
1),∀i ∈ {0, 1, . . . ,m−1}∧f (x0) 6=

f(x1). A solution x0 is Pareto optimal if and only if there
does not exist a solution x1 such that x1 ≻ x0. The Pareto-
optimal set PS of the problem at hand is the set of all
Pareto-optimal solutions. The Pareto-optimal front PF is
the set of the objective value vectors of all Pareto-optimal
solutions. The goal of MO optimization is to find a set of
non-dominated solutions whose objective value vectors con-
stitute a good approximation of the Pareto-optimal front [4].

It is known that MO evolutionary algorithms (MOEAs)
are an effective methodology for solving MO optimization
problems [4]. Most MOEAs studies focus on the capability
to find a good approximation of the Pareto-optimal front.
The quality of approximations is often assessed based on
both proximity to the optimal front (i.e. as close as possi-
ble) and diversity along the front (i.e. as well-spread as pos-
sible) [4]. Commonly studied MOEAs, such as the Nondom-
inated Sorting Genetic Algorithm II (NSGA-II) [5] and the
improved Strength Pareto Evolutionary Algorithm (SPEA2)
[13], have been demonstrated to be effective in achieving this
two-fold goal for a wide range of problems. However, the im-
portant issue of scalability is often overlooked [10], which is
typically highly dependent on the algorithms’ capability for
efficient and effective linkage learning. It has been shown
that without detecting and exploiting the dependencies be-
tween problem variables (e.g. using classic crossover and mu-
tation operators), MOEAs cannot solve some decomposable
problems efficiently [7, 10]. Addressing scalability, there
exist MO estimation-of-distribution algorithms (MOEDAs),
such as the Multi-objective Adapted Maximum-Likelihood
Model (MAMaLGaM) [1] for continuous variables and the
Multi-objective Hierarchical Bayesian Optimization Algo-
rithm (mohBOA) [10] for discrete variables. Similar to the
advantages of EDAs in single objective (SO) optimization,
MOEDAs attempt to bring these advantages to MO opti-
mization by replacing classic variation operators with model-
based variation operators [7, 9, 10].

Although EDAs (and MOEDAs) are robust optimizers,
probabilistic model building procedure typically comes at
the cost of larger population sizes and more CPU time as
a result of large computational complexity for model build-
ing [9]. Furthermore, the estimation of complete probability
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distributions may be unnecessary if linkage information by
itself suffices to perform variation effectively [12]. Such in-
formation is processed using an intensive, but effective, mix-
ing procedure in the recently introduced class of Gene-pool
Optimal Mixing Evolutionary Algorithms (GOMEAs) [12].
GOMEAs have been found to efficiently and reliably solve
a variety of well-known SO benchmark problems, typically
requiring far smaller population sizes and having better scal-
ability in required function evaluations as compared to clas-
sic GAs and EDAs [12]. Moreover, certain classes of linkage
models in GOMEA can be learned inO(nl2) time [6] whereas
learning comparable higher-order models in EDAs typically
requires O(nl3) time (where l is the problem size and n is
the population size). It is these strengths of GOMEAs that
we aim to transfer to MO optimization.

Studies on MOEAs have underlined important features for
improving the capability of solving MO optimization prob-
lems. State-of-the-art MOEAs are characterized by imple-
mentations of the elitism concept in the context of MO opti-
mization (i.e. when there exist multiple equally good trade-
off solutions on the non-dominated Pareto front) [3]. A com-
mon elitism realization is the use of a secondary population,
termed the elitist archive, for retaining non-dominated solu-
tions found during the search. An archive can be beneficial
because the sizes for the main population may be smaller
than the number of solutions on the Pareto front and some
non-dominated solutions can be lost due to selection [8].

The goal of MO optimization is two-fold: finding an ap-
proximation set of non-dominated solutions that is close to
the Pareto-optimal front (i.e. proximity) and as diverse as
possible (i.e. diversity, especially in the objective space) [4].
Standard MOEAs steer the population toward the optimal
front while trying to preserve the diversity by different mech-
anisms, such as the selection based on crowding distance in
NSGA-II [5] or the environmental selection in SPEA2 [13].
However, it has been showed that these mechanisms are in-
sufficient for achieving a good scalability and that differ-
ent parts of the optimal front should be processed sepa-
rately [10]. State-of-the-art MOEDAs therefore often im-
plement mixture probability distributions by clustering the
selected solutions in the objective space and building a link-
age model for each cluster separately (e.g. in mohBOA [10]
and in MAMaLGaM [1]). Studies [10, 11] have noted the
difficulty for finding the entire optimal front of some de-
composable problems, especially the extreme regions of the
optimal front, as for the studied problems the niches on
the extremes become exponentially smaller than the niches
in the middle. Furthermore, for MO optimization in gen-
eral, selection tries to exploit all objectives simultaneously,
thus reducing the pressure towards approaching the optimal
front [1]. This problem was solved in MAMaLGaM-X+ [1]
by adding a separate SO optimizer for each objective and
injecting the best solutions found by these SO optimizers
into the elitist archive. In this paper, we adopt the idea of
clustering from MAMaLGaM-X+ but we adapt the process
to fit well with the mechanism of GOMEA.

Having discussed the importance of elitist archiving, clus-
tering, and linkage learning, in the remainder we will design
and assemble these components into MO-GOMEA. Section
2 will describe these key components of MO-GOMEA. We
presents benchmark problems and their characteristics in
Section 3. Section 4 exhibits and discusses the experimental
results. Finally, Section 5 concludes the paper.

MO-GOMEA //population size n, k clusters

1 t← 0; tNIS ← 0
2 for i ∈ {0, 1, . . . , n− 1} do
3 Pi ← CreateRandomSolution()
4 EvaluateFitness(Pi)
5 At ← UpdateElitistArchive(Pi)
6 while ¬TerminationCriteriaSatisfied do

7 t← t+ 1
8 {C0, C1, . . . , Ck−1} ← ClusterPopulation(P)
9 for j ∈ {0, 1, . . . , k − 1} do

10 Sj ← TournamentSelection(Cj)
11 Fj ← LearnLinkageModel(Sj)
12 for i ∈ {0, 1, . . . , n− 1} do
13 Cj ← DetermineCluster(Pi, {C0, C1, . . . , Ck−1})
14 if ¬IsExtremeCluster(Cj) then
15 Oi ←MO-OptimalMixing(Pi, Cj ,Fj ,A

t)
16 else

17 Oi ← SO-OptimalMixing(Pi, Cj ,Fj ,A
t)

15 P ← O = {O0,O1, . . . ,On−1}
16 if f(At) 6= f(At−1) then
17 tNIS ← 0
18 else

19 tNIS ← tNIS + 1

Figure 1: Pseudo code for MO-GOMEA

2. MULTI-OBJECTIVE GOMEA
MO-GOMEA is started by randomly initializing a popu-

lation P of n candidate solutions. All n solutions are eval-
uated to obtain their objective values. The population P is
then clustered (in the objective space) into k clusters Cj ’s
(j ∈ {0, 1, . . . , k − 1}) of equal sizes. For each cluster Cj ,
selection is performed separately to obtain the correspond-
ing selection set Sj . From each Sj , a separate linkage model
Fj is learned. Finally, for each solution in the population
P , the cluster Cj that it belongs to is determined, and then
variation is performed on the solution using the linkage re-
lations captured by the corresponding linkage model Fj (see
Section 2.4) where only the other solutions in the same clus-
ter Cj are used as potential donors. This transforms each
solution in the population into an offspring solution. These
offspring complete replace the population. The pseudo-code
for the outline of MO-GOMEA is given in Figure 1.

2.1 Elitist Archive
We use a basic, but effective, implementation of the elitist

archive. We denote the elitist archive in generation t by At

in decision-variable space and by f(At) in objective space.
Every newly generated solution is checked to see if it can be
added into the archive. If the new solution is dominated by
any archive member, it will be discarded. If it is a new non-
dominated solution, it will be added into the archive, and
archive members that are dominated by this new solution
will be removed. In the case that there exists an archive
member with the same objective values, the existing solution
will be replaced by the new one if such replacement results in
a diversity improvement for the archive in decision-variable
space. We use a simple diversity metric for a solution: the
Hamming distance to the nearest neighbor in the archive.
Between the existing archive member and the new solution,
the one having greater value for this metric will be chosen.
How to ensure elitism for a bounded archive size is not our
focus in this paper. Moreover, because of the nature of our
benchmarks and experiment settings, we can assume that
the elitist archive size is as large as the Pareto-optimal front.
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2.2 Clustering
We use balanced k-leader-means clustering as previously

used in MAMaLGaM [1] to cluster the population into k
clusters of equal sizes. Note that clustering is performed in
the objective space. First, a heuristic is used to select k
leader solutions that are as well spread as possible. To do
so, the first leader is the solution with maximum value in
an arbitrary objective. The nearest-leader distances of all
remaining solutions are computed as the distances to this
first leader. The solution with the largest distance is cho-
sen as the next leader. For every remaining solution, its
nearest-leader distance is then updated if the distance to
this new leader is smaller than the previous value. This
process is repeated until k leaders are obtained. Second,
k-means clustering is performed with the k leaders as the
initial cluster means. Third, the distance from every solu-
tion to every final cluster mean is computed. Each cluster is
then expanded to contain exactly c closest solutions, start-
ing from each cluster mean. It was previously suggested to
use c = 2

k
|P |, where P are the solutions being clustered,

resulting in overlap between neighboring clusters [1]. This
reduces the probability that some solutions are not covered
by any clusters. Moreover, it is beneficial to have equal-sized
clusters so that a comparable amount of resources is used to
handle each part of the Pareto-optimal front, to support ob-
taining an evenly-spread set of non-dominated solutions.

Instead of clustering the selection set as in mohBOA [10]
and MAMaLGaM [1], in MO-GOMEA the whole population
is clustered first, and selection is then performed for each
cluster separately. This is done because MO-GOMEA does
not generate offspring solutions by sampling new solutions
from the learned models as is the case in MOEDAs. Instead,
the variation operator in MO-GOMEA is used to improve
each solution in the population in a more local-search like
fashion (see Section 2.4). To do so, each solution in the
population needs to be associated with a cluster.

Clustering helps to handle different parts of the Pareto-
optimal front separately. This can be of major importance,
especially for the extreme regions of the front where solu-
tions maximize a single objective. This is because solutions
from different extreme regions typically differ a lot. More-
over, in some problems the number of available solutions in
the extreme regions can be much smaller than in the mid-
dle regions of the optimal front [11]. The additional use of
separate SO optimizers to specifically obtain solutions in ex-
treme regions of the front as used in MAMaLGaM-X+ has
been shown to be highly beneficial [1]. Although these sep-
arate optimizers can be tied in with the MOEA by running
them generationally-synchronously parallel, putting the best
solutions found by the separate optimizers into the elitist
archive, and having the elitist archive participate in varia-
tion, such interaction between the populations of the SO and
MO optimizers is still very limited. Therefore, instead of us-
ing external SO optimizers, in MO-GOMEA we use only a
single population. In every generation, for each objective, in
MO-GOMEA the cluster having the largest mean value in
that objective is designated to perform only SO optimization
in that objective during variation. If a single cluster hap-
pens to have the largest mean in more than one objective, we
choose an objective arbitrarily. Moreover, while the selec-
tion procedure for learning linkage models in middle clusters
is based on the Pareto-domination concept, the selection for
extreme clusters is based on the single-objective only.

2.3 Linkage Learning
Linkage learning is performed for each cluster separately.

Moreover, similar to the SO GOMEA, linkage learning is
performed on a selection set that is obtained using tourna-
ment selection with tournament size 2 to have a beneficial
bias in the model toward better fitness values.

Let L = {0, 1, . . . , l − 1} be the set of indices of all l de-
cision variables. To capture the interactions between these
decision variables, GOMEAs use a general linkage model
termed as the Family Of Subset (FOS). A FOS F consists

of subsets of set L, i.e. F = {F 0,F 1, . . . ,F |F|−1} where
F i ⊆ {0, 1, . . . , l − 1}, i ∈ {0, 1, . . . , |F| − 1}. A FOS F is
thus a subset of the powerset of L, i.e. F ⊆ P(L). Every
subset F i can be seen as a linkage group of problem vari-
ables that exhibit some degree of joint dependency and that
should thus be copied jointly together when performing vari-
ation. Various GOMEA instances exist with different FOS
structures [2, 12]. Here, we employ the Linkage Tree (LT)
structure, which is the most commonly used in literature.
In SO optimization, the GOMEA variant with LT is also
known as the Linkage Tree Genetic Algorithm (LTGA) [12].

The LT contains all singleton subsets, i.e. F i = {i}, i ∈
{0, 1, . . . , l − 1}, capturing decision variables as being fully
independent. The LT also contains combinations of vari-
ables, organized in a tree-like fashion. A branch node of
the LT is a bivariate or multivariate subset F i, which is
created by combining two subsets F j and F k such that
F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i| and F j ∪ F k = F i.
The root node, which contains all the decision variable in-
dices, is the set L itself and is discarded from the LT as
it does not generate any new offspring solution when doing
recombination. The LT has 2l − 2 linkage groups.

A full LT can be constructed by a procedure called Un-
weighted Pair Grouping Method with Arithmetic-mean (UP-
GMA [6]). Starting with all the singleton groups of univari-
ate subsets (i.e. leaf nodes), multivariate groups (i.e. branch
nodes) are created by consecutively combining two closest
groups until the group containing all variable indices (i.e. root
node) is created. Here, we use Mutual Information (MI) as
the distance metric for UPGMA (i.e. a higher MI value in-
dicates a closer distance). An optimal implementation of
UPGMA exists that has O(nl2) time complexity [6].

2.4 Optimal Mixing
Classic EAs use blind crossover and mutation to create

offspring solutions. EDAs sample the learned probability
distribution to generate new solutions. GOMEAs perform
an intensive mixing procedure aimed at efficiently exploiting
the FOS linkage model to improve all population members,
one by one; the resulting solutions are offspring solutions.

Aimed at covering the whole Pareto-optimal front by dis-
cerning and exploiting different regions, the population is
clustered in MO-GOMEA and for each cluster Cj , a ded-
icated linkage model Fj is learned. Therefore, before im-
proving a population member, we need to determine which
cluster that solution belongs to. Although the clustering al-
gorithm used here nicely constructs equally sized clusters,
some solutions in P might actually not be covered by any
cluster and some solutions may be covered by more than one
cluster. Uncovered solutions are assigned to the cluster with
the nearest mean. In case of multiple cluster assignments,
ties are broken randomly. Every cluster thereby can be used
to improve a more or less equal number of solutions.
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Given cluster Cj that an existing solution x belongs to,
and the corresponding FOS Fj of that cluster, MO-GOMEA
changes x, that we also refer to as the parent solution, in-
crementally by the Optimal Mixing (OM) procedure into an
offspring solution as follows. First, the offspring solution o is
created by cloning x and a backup b of o is created. We then
traverse the linkage groups in FOS Fj . For every F i ∈ Fj , a
donor solution p is randomly chosen from the same cluster
Cj . The values of the problem variables whose indices are
indicated by the linkage group Fi are copied from the donor
p to the current solution o. The objective values of this
partially-altered solution o are evaluated and are compared
with the backed-up state b. If such mixing results in an im-
provement (i.e. the altered solution dominates the backed-up
state o ≻ b) or an equally good solution (i.e. the altered so-
lution has the same objective values as the backed-up state
f (o) = f(b)) or a side step (i.e. the altered solution may
not dominate the backed-up state but it is not dominated
by any solutions in the elitist archive A ⊁ o), the changes
are accepted and recorded as the new backup. Otherwise,
the current solution is reverted to its backed-up state.

It can happen that all the mixing steps of OM do not im-
prove nor at least change the parent solution or that there
exist significant plateaus in the problem causing solutions
to be changed back and forth. In SO GOMEA this problem
was tackled by using a procedure termed Forced Improve-
ment (FI) [2]. FI is essentially a second round of OM but
the donor solution then is always the currently best found
solution. In [2], FI is triggered when a parent solution is not
changed after going through OM or when the number of sub-
sequent generations that the best solution did not change,
termed no-improvement stretch (NIS), exceeds the threshold
1 + ⌊log10(n)⌋. Here, we implement an MO version for FI
through the following modifications. First, NIS is redefined
as the number of consecutive generations that the Pareto
front (in the objective space) formed by non-dominated so-
lutions in the elitist archive stayed the same. Second, a
new donor solution is now selected randomly from the eli-
tist archive for each linkage group. Third, because FI aims
to strictly improve the parent solution, a mixing step in the
FI phase is only accepted if it results in a direct domination
(i.e. o ≻ b) or a Pareto-front improvement (i.e. a truly new
non-dominated solution is found: At ⊁ o ∧ f (o) /∈ f(At)).
Similar to the SO version, rather than traversing the whole
linkage tree, the FI procedure is stopped as soon as the first
change is accepted. If the parent solution is still unchanged
after FI, we simply replace it by a solution randomly chosen
from the elitist archive. Pseudo-code is given in Figure 2.

OM in MO-GOMEA can be seen as a direct extension of
OM in SO-GOMEA by replacing SO improvement check-
ing with the Pareto-domination checking in every mixing
step, and using multiple solutions from the elitist archive
instead of a single best solution for the FI phase. MO-OM
is employed for improving solutions that are determined as
belonging to the middle region clusters. As discussed earlier
however, having a mechanism that puts extra pressure on
the individual objectives can be highly beneficial because
the Pareto-domination improvement may not give enough
pressure to find the extreme solutions (the solutions that
maximize a single objective). Therefore, to improve solu-
tions that belong to extreme region clusters, we employ SO-
OM and SO-FI of the SO-GOMEA variant as reported in [2].
In other words, if a parent solution x belongs to the extreme

MO-OptimalMixing(x, C,F ,At)
1 b← o← x; f (b)← f(o)← f(x); changed← false
2 for i ∈ {0, 1, . . . , |F| − 1} do
3 p← Random(C)
4 oF i ← pF i

5 if oF i 6= bF i then

6 f (o)← EvaluateFitness(o)
7 At ← UpdateElitistArchive(o)
8 if (o ≻ b) or (f(o) = f(b)) or (At ⊁ o) then
9 bF i ← oF i ; f (b)← f(o); changed← true

10 else

11 oF i ← bF i ; f (o)← f(b)
12 if ¬changed or tNIS > 1 + ⌊log10(n)⌋ then
13 changed← false
14 for i ∈ {0, 1, . . . , |F| − 1} do
15 p← Random(At)
16 oF i ← pF i

17 if oF i 6= bF i then

18 f(o)← EvaluateFitness(o)
19 if (o ≻ b) or (At ⊁ o and f (o) /∈ f(At)) then

20 bF i ← oF i ; f(b)← f(o); changed← true
21 else

22 oF i ← bF i ; f(o)← f(b)
23 At ← UpdateElitistArchive(o)
24 if changed then breakfor

25 if ¬changed then

26 p← Random(At);o← p; f(o)← f (p)

Figure 2: Pseudo code for multi-objective Optimal Mixing

cluster that is associated with optimizing single objective fi,
x will be improved by OM in the SO manner, and the solu-
tion xbest

fi
that stores the current maximum observed value

for fi will be considered as the single donor solution in FI.
Note that, however, the NIS concept is still defined in the
overall MO optimization context with regard to the Pareto
front formed by the elitist archive members.

3. EXPERIMENTAL SETTINGS

3.1 Benchmark Problems

3.1.1 Zeromax - Onemax

Zeromax - Onemax [10] has two objectives that are defined
over a binary string x of l bits as follows:

fOnemax(x) =
l−1
∑

i=0

xi; fZeromax(x) = l − fOnemax(x) (1)

Objective fOnemax counts the number of bits set to 1 while
fZeromax counts the number of bits set to 0, making the ob-
jectives conflicting. Every candidate solution is a Pareto-
optimal solution; any increase in the number of bits set to
1 will be a decrease in the number of bits set to 0, and vice
versa. The Pareto-optimal front PF of Zeromax - Onemax
consists of l+1 points PF = {(i, l−i) | i ∈ {0, 1, . . . l}}, on a
straight line. A point on PF can correspond to many differ-
ent solutions, with the exception of the two extreme points
that correspond to exactly a string of all 1s (maximizing
Onemax) and a string of all 0s (maximizing Zeromax). It
can be seen that the niches of the solutions having objective
values in the middle regions of the front PF are exponen-
tially larger than the niches in the extreme regions of PF .

3.1.2 Trap-5 - Inverse Trap-5

Trap-5 - Inverse Trap-5 also has two objectives. Trap-5 is
the well-known mutually exclusive, additively decomposable
composition of the order-5 deceptive subfunctions:
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fTrap-5(x) =

(l/5)−1
∑

i=0

f sub
Trap-5

(

5i+4
∑

j=5i

xj

)

(2)

where

f sub
Trap-5(u) =

{

5 if u = 5
4− u if u < 5

(3)

Inverse Trap-5 comprises the same partitions as Trap-5
but each partition is evaluated “inversely”:

f sub
Inverse-Trap-5(u) =

{

5 if u = 0
u− 1 if u > 0

(4)

A candidate solution for which each partition has one ob-
jective subfunction that evaluates to 5 is Pareto-optimal.
The Pareto-optimal front PF consists of l/5+1 pointsPF =
{(5i + 4(l/5 − i), 5(l/5 − i) + 4i) | i ∈ {0, 1, . . . l/5}}, on a
straight line. It is well-known known that in order to solve
additively decomposable trap functions, it is crucial to pre-
serve the linkage relations between problem variables dur-
ing variation. Therefore, this benchmark is often used as a
demonstration for the importance of linkage learning.

3.1.3 Leading Ones Trailing Zeros (LOTZ)

The Leading Ones Trailing Zeros (LOTZ) problem con-
sists of two objectives: maximizing the number of consecu-
tive bits set to 1 at the beginning and maximizing the num-
ber of consecutive bits set to zero at the end.

fLO(x) =

l−1
∑

i=0

i
∏

j=0

xj ; fTZ(x) =

l−1
∑

i=0

l−1
∏

j=i

(1− xj) (5)

A candidate solution that consists of a substring of all
1s followed by a substring of all 0s, i.e. having the form of
11 . . . 100 . . . 0, is Pareto-optimal. The two extreme solutions
are all 1s (maximizing Leading Ones) and all 0s (maximiz-
ing Trailing Zeros). The Pareto-optimal front PF of LOTZ
consists of l + 1 points P

i
F = {(i, l − i) | i ∈ {0, 1, . . . l}},

on a straight line. However, different from the Zeromax -
Onemax problem, any point on Pareto-optimal front PF of
LOTZ corresponds to exactly one Pareto-optimal solution.

3.1.4 Multi-objective MAXCUT

Weighted MAXCUT is defined over a weighted undirected
graph G = (V,E), where V = (v0, v1, . . . , vl−1) is the set of l
vertices, and E is the set of edges (vi, vj) with corresponding
weights wij ’s. A maximum cut is a partition of l vertices into
two disjoint subsets A and B = V \A such that the combined
weight of all edges (vi, vj) having vi ∈ A and vj ∈ B is
maximized. A cut can be encoded as a binary string x of
l bits, in which each bit xi corresponds to a vertex, and
all 0-valued bits indicate vertices of set A while all 1-valued
bits indicate vertices of set B. The objective function of the
weighted MAXCUT problem is defined as follows

fweighted MAXCUT(x) =
∑

(vi,vj)∈E

{

wij if xi 6= xj

0 otherwise
(6)

We construct an MO version of the weighted MAXCUT
problem by optimizing a different MAXCUT instance in
each objective. The instances have identical vertices but dif-
ferent edge weights. In our setup, each MAXCUT instance
is a fully connected graph having 1

2
l(l − 1) edges.

3.2 Performance Indicator
To compare the performance of different MO optimizers,

we employ the DPF →S performance indicator, also known
as inverse generational distance [1]:

DPF →S(S) =
1

|PF |

∑

f0∈PF

min
x∈S
{d(f (x),f0)} (7)

where PF is the Pareto-optimal front, S is the final ap-
proximation front (i.e. the outcome of that optimizer), and
d(·, ·) computes the Euclidean distance. The DPF →S per-
formance indicator is the average distance from a point in
PF to its nearest point in S . A smaller value of DPF →S

indicates a better performance result, and the value of 0
is achieved if and only if the approximation set equals the
Pareto-optimal front. Note that calculating the average dis-
tance in“reversed order”yields a different indicatorDS→PF

,
also known as generational distance. However, obtaining a
low DS→PF

score does not mean that a good approximation
front has been found since having a single Pareto-optimal
point already gives a value of 0. The DPF →S indicator
is more useful because it balances both proximity (i.e. how
close S is to the frontPF ) and diversity (i.e. how well-spread
S is along the front PF ) of the approximation set S .

For the problems Zeromax - Onemax, Trap-5 - Inverse
Trap-5, and LOTZ, PF is known, as described in the pre-
vious section. For MO MAXCUT problem however, we can
only construct PF for small problem sizes l ∈ {6, 12, 25}
using enumerative methods. For l ∈ {50, 100}, we can only
obtain reference fronts by consulting the results of [2] as fol-
lows. We use the maximum population sizes of LTGA, that
reliably solve the single-objective MAXCUT, reported in [2]
to set as the cluster size for MO-GOMEA. We then run 5
different instances of MO-GOMEA with different number of
clusters k ∈ {1, 3, 5, 7, 10}. Each MO-GOMEA instance is
run 100 times, each time with a budget of 20 million func-
tion evaluations. We take the Pareto front of all results in
all these runs over all 5 instances of MO-GOMEA to be PF

in this case. A degree of reliability can be taken from the
fact that the optimal extreme points were always found to
be in the final reference fronts PF so constructed by using
a dedicated SO MAXCUT optimal solver from literature.

3.3 Experimental Setup
We compare the performance of MO-GOMEA with an

commonly used instance of NSGA-II (2-point crossover with
probability 0.9 and bit-flipping mutation with probability
1/l). We also consider the best results obtained by the EDAs
(MO-)UMDA and mohBOA as reported in [10]. We want to
assess scalability, i.e. how the population size requirements
and the required number of evaluations grow as the problem
size increases. For the problems Zeromax - Onemax, Trap-5
- Inverse Trap-5, and LOTZ, the Pareto-optimal fronts are
known, so to this end, we perform bisection. Bisection is a
binary-search inspired procedure that aims to find the min-
imally required population size to solve a problem instance
reliably. Here, we define reliable as achieving DPF →S = 0
(i.e. the entire Pareto-optimal front is found) in all 100 out of
100 independent runs. We perform 10 independent bisection
searches for every problem size l ∈ {25, 50, 100, 200, 400}.

For MO-MAXCUT, because we do not know the Pareto-
optimal front for certain, it is more difficult to perform bi-
section. Moreover, MO-MAXCUT is a (NP)-hard problem,
for which polynomial scalability may not be expected, so
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Figure 3: Scalability of MO-GOMEAs and competing opti-
mizers. Horizontal axis: problem size.

we wish to observe how good of an approximation can be
achieved. Therefore, we set the population sizes for MO-
GOMEA and NSGA-II by consulting the results in [2], which
solved SO-MAXCUT reliably. For each problem size, we use
the average required population size of LTGA as the clus-
ter size in MO-GOMEA and as the base population size in
NSGA-II. We run MO-GOMEA with the number of clusters
k ∈ {1, 3, 5, 7, 10}. Similarly, we run NSGA-II with the base
population size scaled by 1, 2, 4, 8, and 16 times. For every
MAXCUT problem instance l ∈ {6, 12, 25, 50, 100}, we per-
form 100 independent runs. We determine performance on
the basis of the average convergence graph of theDPF →S in-
dicator. The budgets of function evaluations are also set by
consulting [2]. For every problem size, we set the maximum
number of evaluations to be 10 times the average number
of evaluations that LTGA required to solve SO-MAXCUT
(we multiply by 10 because we have a MO-GOMEA instance
with at most k = 10 clusters). Note that we always consider
1 function evaluation to include evaluating both objectives.

4. RESULTS & DISCUSSIONS

4.1 Zeromax - Onemax
Figure 3 shows that MO-GOMEA with clustering (i.e. k >

1) outperforms UMDA with clustering in terms of number of
evaluations as well as scalability. Note that, in [10], UMDA
with clustering did not have an elitist archive and the re-
quired population size was not reported. It can be inferred
however, that in order to cover all points of the Pareto-
optimal front, the population size of UMDA without eli-
tist archive must be at least as large as the Pareto-optimal
front. Our MO-GOMEA instances require a smaller popu-
lation size that grows quite slowly as the problem size in-
creases. It can furthermore be observed that for solving
this problem we do not really need many clusters in MO-
GOMEA because all problem variables are independent from
each other in all regions of the search space. That explains
why MO-GOMEA with a number of clusters k = 3 has the
best performance, and as we increase the number of clus-
ters (k = 5, 7, 10), the number of evaluation also increases
accordingly, but the scalability is relatively the same. How-
ever, MO-GOMEA without clustering (k = 1), and thus
without internal SO optimizers, solves the problem much
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Figure 4: Scalability of MO-GOMEAs with mutation on
Zeromax-Onemax. Horizontal axis: problem size.

less efficiently. This is because the 2 extreme solutions (max-
imizing Zeromax vs. maximizing Onemax) are in very small
niches that contain only 1 solution. Without clustering to
distribute enough resources and without SO optimizers to
approach these extreme regions efficiently, it is much harder
to cover the entire Pareto-optimal front. In [10], an NSGA-
II version without an elitist archive was found to hardly be
able to solve the problem up to 50 problem variables. Here,
being equipped with an elitist archive, NSGA-II can solve
all Zeromax - Onemax instances with the smallest possi-
ble population size for NSGA-II of 4 individuals and with
a performance much better than UMDA. This confirms the
necessity of elitist archiving for scalable MO optimization.

NSGA-II does not have clustering nor SO optimizers. The
fact that it can solve all Zeromax - Onemax of various prob-
lem sizes with such a small population size (and with slightly
better scalability than MO-GOMEA) can be explained by its
use of bit-wise mutation, which is not by default employed
in MO-GOMEA. To validate this, we equip MO-GOMEA
with a simple mutation operator: the mixing step at sin-
gleton linkage groups is replaced by randomly assigning a 0
or a 1 value (i.e. not genepool-based). The performance of
MO-GOMEAs with this mutation operator is shown in Fig-
ure 4. With mutation, indeed the MO-GOMEAs now have a
scalability relatively similar to NSGA-II. Moreover, the MO-
GOMEAs need a fewer number of evaluations. The fact that
MO-GOMEA with mutation but without clustering (k = 1,
and thus without SO optimizers) still has worse performance
indicates that clustering and internal SO optimizers are im-
portant features of MO-GOMEA. It is however also a result
of the fact that mutation here is key to finding the extreme
points. This however requires time in terms of generations
and all higher-order mixing operations attempted by MO-
GOMEA that follow from use of the full LT in the mean
time are not useful. It would therefore be interesting in fu-
ture work to look at techniques to filter out superfluous FOS
sets as was recently done for the SO case [2].

4.2 Trap-5 - Inverse Trap-5
Figure 3 clearly demonstrates that MO-GOMEA outper-

forms both mohBOA and NSGA-II. Different from the Zero-
max - Onemax benchmark of all-independent problem vari-
ables, Trap-5 - Inverse Trap-5 requires linkage learning to
detect and preserve linkage relations between problem vari-
ables during recombination processes. Linkage learning is
not employed in NSGA-II and even though it uses a re-
combination operator (two-point crossover) that is linkage
friendly because we have encoded the trap functions tightly,
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it is still highly inefficient in finding the optimum. The
strengths of the linkage model and optimal mixing proce-
dure of GOMEA, which are known to contribute to its su-
perior performance in solving the SO version of Trap-5 [12],
is successfully extended to the MO realm. Given a prop-
erly learned linkage model, the OM procedure helps MO-
GOMEA achieve successful mixing events which respect the
dependencies between problem variables. The intensive local-
search-inspired characteristic of the OM procedure moreover
results in MO-GOMEA requiring only a small and slow-
growth population size, similarly to the SO case [12].

The best results are again obtained with MO-GOMEA
with 3 clusters. Using more clusters again leads to simi-
lar scalability but requires larger numbers of evaluations.
This is again because the Pareto-optimal front of Trap-5
- Inverse Trap-5 has the same linkage structure (i.e. con-
catenated groups of 5 inter-dependent problem variables)
in both objectives, resulting in redundant behavior when
adding more clusters. However, MO-GOMEA with k = 1
clearly performs worse (but still better than NSGA-II) be-
cause the extreme regions of the front have again very small
niches (similar to Zeromax - Onemax). Figure 3 also shows
the performance of the MOEDA mohBOA with restricted
tournament replacement and clustering, which had the best
performance reported in [10]. Here, we obtain similar behav-
ior for k = 1 but we obtain clearly better results for k > 1.
Because in [10] mohBOA did not have an elitist archive, it
is difficult to directly compare MO-GOMEA and mohBOA,
which we did not re-implement. However, it has been re-
ported in [12] that, in SO optimization for Trap-5, GOMEA
had better performance than a typical EDA. Even if we as-
sume that the probabilistic model building and sampling in
mohBOA are as effective as the LT building and the OM
procedure in MO-GOMEA, the elitist archive and internal
SO optimizers cause MO-GOMEA to have better scalability.

4.3 LOTZ
Figure 3 shows that LOTZ is a challenge for MO-GOMEA.

The reason is that we aim to cover the entire Pareto-optimal
front reliably while LOTZ has a peculiar linkage structure.
Only substrings of consecutive 1 bits at the beginning (Lead-
ing Ones) and the substring of consecutive 0 bits at the end
(Trailing Zeros) contribute to the objective values. This
means that all the mixing events of 0s and 1s in the mid-
dle are useless and can be considered as noise, affecting the
effectiveness of linkage learning in MO-GOMEA. Moreover,
the LT model fails to capture efficiently the type of oper-
ations needed to solve LOTZ. What further makes LOTZ
a complicated problem is that selection pressure based on
Pareto dominance makes it very difficult to obtain the ex-
treme solutions of LOTZ (i.e. a string of all 1s and a string
of all 0s). For example, a string x beginning with a 0 will
be dominated by any strings beginning with a 1 and ending
with a 0. This string x will therefore soon be deleted from
of the population. The OM of GOMEA cannot improve x

while still keeping the leading 0 bit because OM will prefer
any dominating solutions x′ ≻ x with a leading 1 bit. Even
the SO version of OM in the extreme clusters cannot effi-
ciently preserve this leading 0 bit because the leading 0 bit is
only useful when it is combined with the substring of trailing
0s to create the extreme solution of all 0s. Figure 3 shows
however that NSGA-II has little difficulty in solving LOTZ,
requiring a population size of only 4. This is due to the
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mutation operator of NSGA-II. It can be inferred from Fig-
ure 3 that, e.g. in order to solve LOTZ of 400 bits, NSGA-II
needs to be run over than 300,000 generations, waiting for
mutation to flip the right bit at the right time to obtain
a Pareto-optimal solution. It should further be noted that
the two-point crossover operator of NSGA-II has a favorable
search bias here because it can preserve and recombine very
large substrings of all 1s or all 0s at the beginning and end of
a solution. Figure 5 validates this by showing that NSGA-II
with uniform crossover performs worse.

LOTZ clearly poses additional challenges, which for MO-
GOMEA include finding more appropriate linkage models
and filtering useless subsets. However, LOTZ can still be
solved fairly efficiently using a simple local search (LS) op-
erator. Following the typical design of genetic local search,
we apply LS at the end of every generation on each off-
spring solution by traversing the variables of a solution in
a random order and flipping every variable, followed by a
Pareto-improvement check. If a flip does not result in a so-
lution dominated by the previous state nor dominated by the
beginning state, it is accepted. Otherwise, it is reverted to
the previous state. Figure 5 shows the performance of MO-
GOMEA and NSGA-II with this LS. LS greatly improves
the performance of MO-GOMEA, but not that of NSGA-II
in terms of number of evaluations. These results underline
just how beneficial it can be to use a proper LS operator to
bring back diversity that might have gotten lost.

4.4 Multi-objective MAXCUT
Although Zeromax - Onemax, Trap-5 - Inverse Trap-5

and LOTZ are interesting benchmark problems with known
Pareto-optimal fronts, they are fairly artificial in the sense
that the Pareto-optimal fronts always have the shape of a
straight line. We therefore also perform experiments the
MO-MAXCUT problems where the Pareto-optimal front can
be shaped very differently. The convergence graphs in Fig-
ure 6 show that for l = 6, NSGA-II performs slightly better
than MO-GOMEA. For l = 12, only NSGA-II 16×, the one
with the largest population size, outperforms MO-GOMEA.
As the problem size increases however, the picture starts
to change. For l = 25, only NSGA-II 16× has a conver-
gence result as good as MO-GOMEA with k = 5, 7, but it is
still outperformed by MO-GOMEA with k = 10. For larger
problem sizes, l = 50, 100, MO-GOMEAs with clustering
(k > 1) distinctly outperform all NSGA-II instances. The
facts that MO-GOMEA with clustering exhibits better con-
vergence for problem sizes l > 25 and that the bigger the
problem, the wider the performance gap between the various
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MO-GOMEAs k > 1 and NSGA-IIs becomes, indicate the
intrinsic superior scalability of MO-GOMEA over NSGA-II.
MO-GOMEA without clustering (k = 1) has performance
results relatively the same as those of NSGA-IIs, which do
not have clustering either, on most problem sizes (l > 6).
This emphasizes again the importance of clustering to han-
dle different parts of the Pareto-optimal front separately.
Also, although we did not perform bisection to find the min-
imally required population size for each instance (because
the entire true Pareto-optimal front is unknown), it can be
inferred, to a certain degree, from MAXCUT l = 12, 25, 50
that the more clusters MO-GOMEA have the better the
convergence result is. This is because, different from the
other benchmark problems, the structures of the objectives
may now differ, causing different structures to require to be
exploited along the front, which is supported by clustering.

5. CONCLUSIONS
In this paper, we have presented the MO-GOMEA frame-

work. We have shown that for the combination with the LT
FOS model, superior scalability for solving different classes
of MO optimization problems can be achieved as compared
to classic GAs (i.e. NSGA-II) and even state-of-the-art EDAs
(i.e. mohBOA). Our experimental results further support
that the key features of scalable MO optimizers that we
identified and incorporated into MO-GOMEA are indeed re-
sponsible for the observed performance. These features are:
an elitist archive to keep track of the Pareto front, clustering
to process different regions of the Pareto front differently,
linkage learning and an efficient mechanism for exploiting
the learned linkage relations to generate offspring solutions.
An elitist archive, even in a basic implementation, is benefi-
cial for solving MO optimization problems. Clustering and
the incorporation of an explicit, dedicated bias for SO op-
timization embedded in extreme clusters help MO-GOMEA
to have better coverage of the Pareto-optimal front and to
find extreme solutions more efficiently. Finally, the efficient
and effective linkage learning and exploitation contribute to
the scalability of MO-GOMEA in solving MO optimization
problems. The experimental results have further indicated
that diversity loss can easily play an important role in MO
optimization and particularly for MO-GOMEA, for which
reason diversity improving mechanisms such as mutation
and local search should be studied in more detail in the fu-
ture. Moreover, especially when multiple clusters are used,
there is a clear need for filtering superfluous subsets in the
FOS models and further improve scalability.
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